今井浩 東京大学情報理工学系研究科コンピュータ科 …imai/lecture/ising1.pdf•...

Preview:

Citation preview

Feynmanの2つの提唱からグラフと計算量への展開

Exploration from Two Proposals by Feynmanto Graphs and Computational Complexity

今井 浩

東京大学情報理工学系研究科コンピュータ科学専攻

ナノ量子情報エレクトロニクス研究機構

1

Two Proposals by Feynman

• `Nanotechnology’``Why cannot we write the entire 24 volumes of the Encyclopedia Britannica on the head of a pin?''– Annual Meeting of  American Physical Society, 1959

• Quantum Computer/SimulationSimulating Physics with Computers:quantum computer may outperform classical one– MIT Physics of Computation Conference, 1981– CLEO/IQEC, 1984

2

Arranging Atoms one by one with STM/AFM

Feynman (1959):``What would happen if we could arrange the atoms one by one the way we want them'‘

• STM (Scanning TunnelingMicroscope)– Eigler, Schweizer (1990)

• AFM (Atomic Force Microscope)– Sugimoto, Abe, Hirayama, Oyabu, Custance, Morita (2005)– Sugimoto, Pou, Custance, Jelinek, Abe, Perez, Morita (2008)

Title : The Beginning Media : Xenon on Nickel (110) 

3

A Boy And His Atom: The World‘s Smallest Movie (IBM Research)

http://www.research.ibm.com/articles/madewithatoms.shtml

4

5

Lattice ー tiling• Tiling by regular polygons– Grünbaum, Shephard (1977), Chavey (1989)

• 3 Platonic tilings: triangular, square, honeycomb+ 8 = 11 Archimedean tilings

Platonic tilings

6

Archimedean tilings

7

Motion planning for reconfiguring atoms

• Călinescu, Dumitrescu, Path (2008)– Reconfigulation in Graphs and Grids– Minimum‐weight bipartite matching

• Fu, Imai (2008)– Motion planning for square lattice case

• Fu, Imai, Moriyama (2010)– Proximity on lattices ⇒ faster matching algo.

• Graph algorithms for lattices

8

9

10

From Graphs to Quantum states

• Measurement‐based Quantum Computation(MBQC)– Graph state for square lattice ‐‐‐ universality

• What types of graphs are universal?Van den Nest, Miyake, Dür, Briegel (2006)– Necessary condition:

rank width of graph is unbounded– Besides square lattice

triangular, honeycomb, Kagome: universal11

Graph Minor Theory

• Robertson, Seymour (1983‐)• Origin/example:–Wagner’s theorem (similar to Kuraowski’s theorem)• Graph is planar iff it has no K5, K3,3 as its minor

K5 K3,312

Minor

e

Contractionof e

Deletionof e

13

Graph Minor Theory

• Robertson, Seymour (1983‐)

• Main Theorems:– A class of graphs closed under minor operation can be characterized by a finite set of forbidden minors

– A graph with sufficiently large tree width has a large square lattice as its minor 

14

Minor/Vertex‐minor

v

e

Contractionof e

Deletionof e

Minor

Vertex‐minor

Local complementationof v

Deletionof v

15

Measurement‐Based Quantum Computing (MBQC)and Graph Vertex‐Minors

• Vertex‐minor– Vertex deletion σz in MBQC– Local complementation σy in MBQC

• Rank width introduced by  Oum (2005)⇒Open Problem:  ``A graph with very largerank width has a large grid as its vertex‐minor?’’

• Restricting to some planar tiling (Chavey 1989)Proposition:All 3+8=11 Archimedean lattices are universal.(including 3 Platonic ones and Kagome)

16

Returning to Feynman’s 2nd proposal`Quantum computer may execute quantum simulation fast,while classical computer would not’

For a new problem to solve, in computer science,

• Devise an efficient algorithm to solve it

or

• Show its computational intractability, hardness– Computational Complexity: P vs. NP (BPP vs. MA)– Quantum Computational Complexity: BQP vs. QMA,…

So we should do this17

Quantum Complexity Theory

• BQP: quantum simulation (Lloyd 1996)• QMA: ground state energy of a 2‐local Hamiltonian

(Kempe, Kitaev, Regev 2006)• QMA(2): pure‐state N‐representability

(Liu, Christandl, Verstraete 2007)

QMA (Watrous 2000)QMA(2) (Kobayashi,Matumoto, Yamakami 2003,2009)‐‐‐ Quantum (Multi‐prover) Interactive Proof 

18

QMA(2)(Kobayashi, Matsumoto, Yamakami 2003, 2009)

• Two Merlins (provers) give an advice to Arthur (verifier)

• QMA(2)=QMA(k) (k>2)(Harrow, Montanaro, FOCS 2010) 

• Tool to demonstrate the computational intractability much deeper

19

Quantum Nonlocality to Graph Problem

• Bell inequality model= 2‐prover 1‐round Quantum Interactive Proof

• Directly connected with – graph cuts,  cut polytope– its semidefinite relaxation

• Quantum chromatic number χQ(G)(Avis, Hasegawa, Kikuchi, Sasaki 2006;Cameron, Montanaro, Newman, Severini, Winter 2007)

20

Chromatic number and Perfect Graph Theorem

• χ(G): minimum number of colors such that two adjacentvertices have different colors

• ω(G): maximum number of vertices forming a complete graph

• Graph G is perfect if  χ(GS)=ω(GS) for induced subgraph GS for any subset S of vertices

• Weak Perfect Graph Theorem (Lovász 1972):Graph is perfect iff its complement is perfect.

⇒• Polyhedral characterization• Semidefinite Relaxation through Lovász theta function (1979)

21

Concluding remarks

• Connection with graph theory, especially– Graph minor theory– Perfect graphs

• Quantum complexity theory–We should ask intrinsic complexity of problems,• not only by devising efficient quantum algorithms• but also through quantum complexity classes

22

Acknowledgment• Figures on Archimedean tilings were provided by Akihiro Hashikura, who is working jointly for our periodic graph project.

• Problems around arranging atoms were conducted with Norie Fu and Sonoko Moriyama.

• Valuable comments on complexity issues from Hirotada Kobayashi and Keiji Matsumoto are greatly appreciated.

23

量子シミュレーションの計算量理論へ

今井 浩

東京大学情報理工学系研究科コンピュータ科学専攻

東京大学ナノ量子情報エレクトロニクス研究機構

24

Quantum Simulation by Quantum Computer

• Universality of Computation• Analog vs. Digital Computation– Classical case / Quantum case

• Computational Complexity Theoryfor any computational problem!

– over the Reals– for Differential Equations– and then for Quantum Simulation!

25

注: MIT Physics of Computation Conference 1981

26

27

28

風洞は「計算装置」Goldstein, von Neumann

29

物理シミュレーションと万能計算

力学系シミュレーションをとある物理実験で実行

• 風洞実験装置 ≠ universal computation• 量子コンピュータ= universal computation

汎用性の観点(cf. Universal Turing machine 1936)⇒ universal computationを目指す

(専用計算機の限界)

30

Digital vs. Analog

• Digital Computation, now everywhere• Analog Computer– コンピュータ開発黎明期に存在、廃れてきた歴史

–近似精度を思いのままに制御する困難さ

– `Analog’, `アナログ’という言葉の多義さ

• 数値を、長さ・回転角・電流などの連続的に変化する物理量で示すこと。⇔デジタル[大辞泉]

• 離散値に対する連続値、実数

• 類似性

31

32

Church‐Turing Thesis

[P. Shor, SICOMP, 1997]

33

(Universal) Quantum Turing Machine

• [Deutsch 1985]• [Bernstein, Vazirani 1997] ,[Adleman, DeMarrais, Huang 1997]

⇒ 3/5, 4/5の振幅でε近似実現

有限離散値・離散時間!

Perfectly, Digital, yet with controllable error

34

Computational complexity over the Reals

• Blum, Shub, Smale (1989)モデル- analog?–実数を1 wordに正確に蓄え、演算も正確にできる

–その上でのNP完全性等の理論

• Julia set, undecidability• 4‐feasibility problem, NP‐complete

• Ko, Friedman (1982)モデル- digital?–実数値をm ビット2進数でデジタル近似、

–そのm を入力サイズに入れて計算時間を定義

⇒より高精度の近似解を求める-より時間がかかる

35

Computational Compexityfor Solving Differential Equation

• Ko, Friedman (1982):解析的ならP(多項式時間)

• Kawamura (IEEE CCC 2009)Lipschitz連続なものでPSPACE(多項式領域量)完全なもの存在

36

Returning to Feynman’s proposal`Quantum computer may execute quantum simulation fast,

while classical computer would not’

For a new problem to solve, in computer science,• Devise an efficient algorithm to solve itor• Show its computational intractability, hardness– Computational Complexity: P vs. NP (BPP vs. MA)– Quantum Computational Complexity: BQP vs. QMA,…

So we should do this 37

Quantum Complexity Theory• BQP: quantum simulation (Lloyd 1996)• QMA: ground state energy of a 2‐local Hamiltonian

(Kempe, Kitaev, Regev 2006)• QMA(2): pure‐state N‐representability

(Liu, Christandl, Verstraete 2007)

QMA (Watrous 2000)QMA(2) (Kobayashi,Matsumoto, Yamakami 2003,2009)‐‐‐ Quantum (Multi‐prover) Interactive Proof QMA(k)=QMA(2) (k≥2) (Harrow, Montanaro, FOCS, 2010)Tool to demonstrate the computational intractability deeper

38

課題

• 実数計算量

–多変数関数・多価関数の理論構築

• 量子計算量

– QMA完全性周辺での近似可能性解明

• 物理シミュレーションの計算量解明へ

39

Approximability

イジング分配関数の古典・量子計算について

今井浩

東京大学情報理工学系研究科コンピュータ科学専攻

東京大学ナノ量子情報エレクトロニクス研究機構

Ising model [Ising 25]

• グラフ 点 枝

• スピン , 相互作用力 ,  外部磁場

, ∈ ∈

∈ ,

0: ferromagnetic, 強磁性 0: antiferromagnetic, 反強磁性

Quantum Algorithm for Partition Function

Van den Nest, Dür, Vidal, Briegel (PRA 2007)/

∈ ∈

過去から現在そして未来へ

• グラフ理論と統計物理は、数十年前にPlanar graphでIsingモデル分配関数計算を軸に出会ったことがあった

• グラフ理論・アルゴリズム論からは着実な発展

– MCMCからFPTASまで

– Tutte多項式([Sekine, I, Tani 95]以来の研究も)– Exponential‐time algorithmicsの展開

• 今一度さらなる出会いが量子アルゴリズムでも

本スライド:Ising分配関数計算を軸に古典・量子アルゴリズムの先端へ

Partition function, planar case

平面グラフの場合(正方格子を含む):• 有限平面グラフ:完全マッチングの数の多項式時間よりP[Kasteleyn 61] (Bergeの本参照),  [Temperley, Fisher 61]

• 遡るとTutte行列、Pfaffianと完全マッチング[Tutte 47]

• Lovász, Plummer (82)のMatching Theoryの本参照

– Chap. 8 Determinants and matchings,  8.1. Permanents,8.3. The Pfaffian and the number of perfect matchings,8.7. Two applications to physical science, etc.

Partition function, complexity

厳密解法

• NP完全 [Barahona, JPA 82], [Istrail, STOC 00]• Jerrum, Sinclair (SICOMP 93)–#P‐complete even for ferromagnetic case–No FPRAS for general cases unless NP=RP

Partition function, approximability• Ferromagnetic case:– Jerrum, Sinclair (SICOMP 93): FPRASRapidly mixing of a Markov chain ⇒MCMC

– For states of spanning subsets, Not for spin states

• Antiferromagnetic case:– Sinclair, Srivastava, Thurley (SODA 12): FPTASfor graphs of degree inside the region

for a unique Gibbs measure of a  ‐regular tree– Based on [Weitz, STOC 06] for FPTAS for #stable sets and more

– Sly, Sun (arXiv:1203.2602; FOCS 12) No FPRAS unless NP=RP for  outside the region

FPTAS, FPRASComputation of • FPTAS (Fully Polynomial‐Time Approximation Scheme):

Exponential‐time Algorithms

厳密解法(NP完全なのでexponential algo.で)• 既存研究Tutte多項式に対するexponential algorithmsをIsing partition functionに適用

• ではTutte多項式とは?

– Tutte多項式計算の量子アルゴリズムも重要

Tutte多項式とは• 1912年頃からBirkhoffら

chromatic polynomial• Tutte, Whitney による2変数多項式

枝部分集合Aのランク

縮約削除

)2)(1();( 3 K

Tutte‐Gröthendieck invariant

Tutte多項式の性質・計算量

特殊な場合

• グラフの諸性質– 森・木・spanning sets等個数

– chromatic/flow polynomial– Reliability

• 統計物理– Ising, Potts model– percolation

• 結び目Jones多項式

• マトロイド, 符号理論, etc.

計算量

• 5点を除き#P完全

アルゴリズム(後述)• Exact– mildly/moderately exponential

• Approximate– Randomized– Quantum– Deterministic

Tutte平面[Björklund, Husfeldt, Kaski, Koivisto]より

Ising

Potts

Jones

Partition function & Tutte polynomial

• の条件は、グラフに 点新たに追加で解決可能

Tutte多項式計算アルゴリズム

厳密解法

•一般 ∗ time

•平面グラフ ∗ [Sekine, HI, Tani 95; 関根, HI, KI 98]

• ∗ ,  tree‐width of G

• Vertex‐exponential time [Björklund, Husfeldt, Kaski, Koivisto 08]∗ bounded‐degreeなら ∗

17 17正方格子の厳密計算可能

[Andrzejak 98; Noble 98]

Tutte多項式計算

近似アルゴリズム• PRAS [Alon, Frieze, Welsh 95]

量子近似アルゴリズム• 加法近似 [Aharonov, Jones, Landau 06]More recent papers• I. Arad, Z. Landau: Quantum computation and the evaluation of tensor networks. Arxiv:0805.0040v3; SICOMP 2010.

• M. Van den Nest: Simulating quantum computers with probabilistic methods. arXiv:0911.1624v3; QIC 2011.

Quantum Algorithm for Partition Function

Van den Nest, Dür, Vidal, Briegel (PRA 2007)/

∈ ∈

例:

の添字で表記

 +      +      +  

Stabilizer, ∈

)

1

0

Tensor network I: subcubic treeVan den Nest et al. [PRA 07]の図

行列の 上

1 2 3 4 5 6

Tensor network II: Graph Minor Theory

1 2 3 4 5 6

Van den Nest et al. [PRA 07]の図

Oum, Seymour [JCT B 06]

Theorem 5. [Van den Nest et al. 07]TTN description of graph state | , inner product  | , and MQC on  , can be classically computed/simulatedin poly , 2 time.

Tensor network III: Schmidt decompositions

1 2 3 4 5 6

[Van den Nest, Dür, Vidal, Briegel PRA 07]([Shi, Duan, Vidal PRA 06]の結果利用)

, ∈ 0,1

計算過程の例

Graph state

Tree‐width  (83~)[Robertson, Seymour 90]

Branch‐width    (88~)[Robertson, Seymour 91]Subcubic tree for widthsGeneralization to matroids

Rank‐width  (04~)[Oum, Seymour 06]

AKLT model[Affleck, Lieb, Kennedy, Tasaki 87]

Matrix Product State (MPS)[Fannes, Nactergaele, Werner 92]

Projected Entangles Pair Strategies (PEPS)[Verstraete, Cirac 04]

Subcubic Tensor Tree Network[Shi, Duan, Vidal 06]

MQC and rank‐width[Van den Nest, Miyake, Dür, Briegel 06]

Concluding Remarks1.Originally Classical vs. Classical via Quantum• vs.  (N.B.  1)

2.More recent papers towards quantum algorithmics• I. Arad, Z. Landau: Quantum computation and the evaluation of tensor networks. Arxiv:0805.0040v3; SICOMP 2010.•M. Van den Nest: Simulating quantum computers with probabilistic methods. arXiv:0911.1624v3; QIC 2011.

3.There are many quantum algorithms!

4.One direction: Quantum Computing vs. Graph Theory

Recommended