1 黃國卿 靜宜大學應用數學系. 2 Let G be an undirected simple graph and H be a subgraph...

Preview:

Citation preview

1

黃國卿靜宜大學應用數學系

2

• Let G be an undirected simple graph and H be a subgraph of G.

• G is H-decomposable, denoted by H|G, if its edge set E(G) can be decomposed into subgraphs such that each subgraph is isomorphic to H.

• G has an H-decomposition if G is H-decomposable.

DefinitionsDefinitionsDefinitionsDefinitions

3

2,2,2K

2,2,23 | KS2,2,23 | KK

2,2,24 | KP2,2,23 | KM

2,2,223 | KPP

4

4,1,14 | KP 4,1,1K

H

Hbut is not -decomposable

for other of size 3.

4,1,1K

5

MotivationMotivation MotivationMotivation

(Chartrand, Saba and Mynhardt;1994)

4p

4P),3(mod0q

GIfIf is a 2-connected graph of orderis a 2-connected graph of order

sizesize thenthen isis -decomposable.-decomposable.G

andand

Conjecture 1.Conjecture 1.Conjecture 1.Conjecture 1.

,2G

H

IfIf is a graph of sizeis a graph of size andand

thenthen isis -decomposable for some graphdecomposable for some graph

size 3.size 3.

)3(mod0qG

G H ofof

(Chartrand, Saba and Mynhardt;1994)Conjecture 2.Conjecture 2.Conjecture 2.Conjecture 2.

6

• It is interesting to us for studying the H-decompositions of a graph G with H of size at most three.

7

.1)(1 20 KHHq

It is trivial that for any graph with It is trivial that for any graph with

at least one edge. at least one edge.

GK |2G

8

20 2)(2 MHHq oror .3P

(Chartrand, Polimeni and Stewart.)

Every nontrivial connected graph of even size Every nontrivial connected graph of even size

is -decomposable. is -decomposable. 3P

Theorem 1.Theorem 1.Theorem 1.Theorem 1.

(Chen and Huang)Theorem 2.Theorem 2.Theorem 2.Theorem 2.

Suppose G is a graph of even size and different

from K3∪K2 . Then G is M2-decomposable if and

only if q(G) ≧2Δ(G).

9

• The Conjecture 1 is not true in general.

oror 323,1430 ,,,3)(3 PPKPKHHq .3M

CounterexamplesCounterexamples CounterexamplesCounterexamples

(C. Sunil Kumar)(C. Sunil Kumar)

10

)3(mod02,| ,,,,4 2121

rr nnnnnn KqrKP

3K .3,1K

except orexcept or

Theorem 3.Theorem 3.Theorem 3.Theorem 3. (C. Sunil Kumar)(C. Sunil Kumar)

11

1. -packings of graphs .-packings of graphs .1. -packings of graphs .-packings of graphs . 23 PP

Main resultsMain results Main resultsMain results

2. H-decompositions of graphs with H of size three.-decompositions of graphs with H of size three.2. H-decompositions of graphs with H of size three.-decompositions of graphs with H of size three.

3. -decomposability of graphs .3. -decomposability of graphs .kM

12

H -packing.-packing.

)()()()()(21

LEGEGEGEGErnnn

)(),(,),(),(21

LEGEGEGErnnn

HGin ri ,,2,1 for for

L : leave : leave

If thenIf then,L .| GH

are mutually disjoint.

13

)( 23 PP -packing-packing

3: PL 2: ML

14

SupposeSuppose is a graph different from withis a graph different from with

and Then has and Then has

a -packing with leave a -packing with leave LL where where

13,1,1 cKG

6)(,5)( GqGp .2)( G G

)( 23 PP

).3(mod2)(

);3(mod1)(

);3(mod0)(

3

2

GqifP

GqifP

Gqif

L

Theorem 4.Theorem 4.Theorem 4.Theorem 4.

1. -packings of graphs .-packings of graphs .1. -packings of graphs .-packings of graphs . 23 PP

15

(1) and (2-regular) (1) and (2-regular) 2)( G .2)( G

(2) and(2) and2)( G .3)( G

(3) and (3-regular) (3) and (3-regular) 3)( G .3)( G

(4) and(4) and3)( G .4)( G

Proof.Proof.Proof.Proof. Induction onInduction on ).(Gp

16

,2G

H

IfIf is a graph of sizeis a graph of size andand

thenthen isis -decomposable for some graphdecomposable for some graph

size 3.size 3.

)3(mod0qG

G H ofof

Conjecture 2.Conjecture 2.Conjecture 2.Conjecture 2.

17

Theorem 5.Theorem 5.Theorem 5.Theorem 5.

The Conjecture 2 is affirmative.

Proof.Proof.Proof.Proof.

(1) If q(G) = 3, then G|G.

(2) If G = K4 or K1,1,3c+1, then P4|G.

(3) Otherwise, by Theorem 4, we have (P3∪P2)|G.

18

2.1 HH-decompositions of complete multipartite graphs.-decompositions of complete multipartite graphs.

2.2 HH-decompositions of cubic graphs.-decompositions of cubic graphs.

2.3 HH-decompositions of hypercubes.-decompositions of hypercubes.

2. H-decompositions of graphs with H of size three.-decompositions of graphs with H of size three.2. H-decompositions of graphs with H of size three.-decompositions of graphs with H of size three.

19

2.1 H-decompositions of complete multipartite graphs. 2.1 H-decompositions of complete multipartite graphs. 2.1 H-decompositions of complete multipartite graphs. 2.1 H-decompositions of complete multipartite graphs.

.13,1,1 cK

)3(mod0| ,,,,3 2121

rr nnnnnn KqKS

Gandand oror4K

1111

)3(mod0| ,,,,32 2121

rr nnnnnn KqKPP

3,1Kandand G .13,1,1 cKoror,4K

2222

13,1,1 cK,3,1K

)3(mod0| ,,,,3 2121

rr nnnnnn KqKM

G ,3,2K ,3,3,1K

.,1,1,1 mK

andand

oror

3333

20

• The K3-decomposability of complete multipartite graphs is still widely open.

21

2.2 H-decompositions of cubic graphs.2.2 H-decompositions of cubic graphs.2.2 H-decompositions of cubic graphs.2.2 H-decompositions of cubic graphs.

A cubic graph is a 3-regular graph. Let be A cubic graph is a 3-regular graph. Let be

a cubic graph. By the a cubic graph. By the degree-sum formuladegree-sum formula, we , we

obtain Hence, obtain Hence,

G

.2

)(3)(

GpGq ).3(mod0)( Gq

22

Suppose Suppose is a cubic graph.is a cubic graph. G

(1)(1) is not is not -decomposable.-decomposable. 3KG

4P(2)(2) isis -decomposable if-decomposable if G G is 2-connected. is 2-connected.

3S(3)(3) isis -decomposable if and only if it is bipartite. -decomposable if and only if it is bipartite. G

.4KG 3M(5)(5) isis -decomposable except -decomposable except G

23 PP (4)(4) isisG .4KG -decomposable except -decomposable except

Theorem 6.Theorem 6.Theorem 6.Theorem 6.

23

4p

4P),3(mod0q

GIfIf is a 2-connected graph of orderis a 2-connected graph of order

sizesize thenthen isis -decomposable.-decomposable.G

andand

Conjecture 1.Conjecture 1.Conjecture 1.Conjecture 1.

(Chen and Huang)

3G

),3(mod0q

IfIf is 2-connected ,is 2-connected , and sizeand size

then then

G

4P isis -decomposable.-decomposable.G

Conjecture 3.Conjecture 3.Conjecture 3.Conjecture 3.

24

2.3 H-decompositions of hypercubes.2.3 H-decompositions of hypercubes.2.3 H-decompositions of hypercubes.2.3 H-decompositions of hypercubes.

(1) An -cube, denoted by(1) An -cube, denoted byn nQ

.2n21 KQ 21 KQQ nn and forand for

).3(mod0)3(mod02)( 1 nnQq nn(2)(2)

(3) is bipartite is not -decomposable.(3) is bipartite is not -decomposable.nQ nQ 3K

21 KQ 212 KQQ 223 KQQ

, is defined recursively by

25

(4) for(4) for3| QH .,,, 32334 PPMSPH

3Q 3Q

234 KQQ

3Q 3Q

3Q 3Q

245 KQQ

3Q 3Q

3Q 3Q

3Q 3Q

3Q 3Q

256 KQQ

(5)

26

3Q 3Q3Q 3Q3Q 3Q

3Q 3Q

3Q 3Q

3Q 3Q

3Q 3Q6Q 6Q

6Q 6Q

6Q 6Q

6Q 6Q

9Q

27

Suppose and is a graph of Suppose and is a graph of

size 3. Then is -decomposable if size 3. Then is -decomposable if

is different fromis different from

)3(mod0n H

.3K

nQ H H

Theorem 7.Theorem 7.Theorem 7.Theorem 7.

28

3. -decomposability of graphs .3. -decomposability of graphs .kM

.| GM k0d(1) If then(1) If then

kMG0d(2) If then is not -decomposable.(2) If then is not -decomposable.

.' GG GM k |.0d(3) Suppose Then(3) Suppose Then

,GkEd LetLet 1k ).(mod0 kE andandTheorem 8.Theorem 8.Theorem 8.Theorem 8.

29

Theorem 9.Theorem 9.Theorem 9.Theorem 9.

For a simple graphFor a simple graph .1)()(')(, GGGG

Theorem 10.Theorem 10.Theorem 10.Theorem 10.

G Suppose is a simple graph Suppose is a simple graph and and

Then is equitably -edge colorable. Then is equitably -edge colorable.

G ).(' Gn

G n

(Vizing)

(De Werra)

30

.|3 GM0d(1) If then(1) If then

3MG0d(2) If then is not -decomposable.(2) If then is not -decomposable.

.' GG GM |3.0d(3) Suppose Then(3) Suppose Then

GEd 3LetLet ).3(mod0EandandCorollary 11.Corollary 11.Corollary 11.Corollary 11.

31

.321 rnnnn W.l.o.g. , assumeW.l.o.g. , assume

0d (1)

0d (2)

3,3,113,1,13,23,1 ,,, KKKKG c .,1,1,1 mKoror

,,,,,, 2,2,2,14,2,1,14,4,16,3,12,2,2,3 KKKKKKG m

3,1,1,1,1K .61,1,1,1,1,1 KK oror

Proof ofProof of . 33

32

Conjecture 4.Conjecture 4.Conjecture 4.Conjecture 4.

If If and thenand then

)()( GkGq ,12)( kG ).()(' GG

33

Theorem 12.Theorem 12.Theorem 12.Theorem 12.

Theorem 13.Theorem 13.Theorem 13.Theorem 13.

Suppose G is a graph of size q(G) = 2Δ(G). Then χ’(G) = Δ(G) + 1 if and only if G = K3∪K2.

Suppose G is a graph of size q(G) = 3Δ(G) and Δ(G) ≧5. Then χ’(G) = Δ(G).

34

RemarkRemarkRemarkRemark

,1kFor there is a graph such that For there is a graph such that

andand

),()( GkGq

12)( kG .1)()(' GG

G

35

Proof.Proof.Proof.Proof. Let Let .2 ik

Case1. Then where Case1. Then where .)1(2,,4,2 ki 1)1(2 nik PKG

.2

)2)(1( ikin

.12,,5,3 ki 1)2(2 )\\( nik PeMKG

),12(2

1)2( 2 iikin M

)2(2 ikK

Case2. Then Case2. Then

where is maximum where is maximum

matching of andmatching of and ., Mxxye

36

ExampleExampleExampleExample

Case1. Case1. .6,4,2i

.7)('6 47 GPKG

.5)('4 75 GPKG

.3)('2 63 GPKG

Case2. Case2. .7,5,3i

.6)(')\\(5 47 GPeMKG .4)(')\\(3 65 GPeMKG .2)(')\\(1 43 GPeMKG

.7124 kkFor For

37

38

結論結論 .. 結論結論 ..

Conjecture 00.Conjecture 00.Conjecture 00.Conjecture 00. (C.Sunil Kumar)

G

),3(mod0qG

4P

If If is 3-connected and size is 3-connected and size

then is -decomposable.then is -decomposable.

Theorem 00.Theorem 00.Theorem 00.Theorem 00.

GG

4P

If If is a 2-connected cubic graph, then is a 2-connected cubic graph, then

is -decomposable. is -decomposable.

39

Conjecture 00.Conjecture 00.Conjecture 00.Conjecture 00. (Chen, Huang and Tsai)

G),3(mod0q

G

4P

If If is 2-connectedand, and sizeis 2-connectedand, and size

then is -decomposable.then is -decomposable.

3G

Remark 00.Remark 00.Remark 00.Remark 00.

Coniecture4 Coniecture3Coniecture4 Coniecture3

40

G (3) is 3-regular.(3) is 3-regular.

(a) connected.(a) connected.

(b) disconnected. (b) disconnected.

Proof.Proof.Proof.Proof.

41

3,3K 32 KK

4KG No!!No!!

6)( GpBasic step :Basic step :

(a) connected.(a) connected.

42

2211 ,,\ yxyxyxGH Let Let

x y

1y

2y2x

1x

x y

1y

2y2x

1x

8)( GpInduction step :Induction step :

43

3222111 ,:1 PPyxvyxcase

323212232111 ,,:2 PPuuuyxvvvyxcase

323212232111 ,,:3 PPuuuyxvvvyxcase

323212232111 ,,:4 PPuuuyxvvvyxcase

x y

1y

2y2x

1x

x y

1y

2y2x

1x

44

(b) disconnected(b) disconnected

,214 nGGGmKG

wherewhere 0m andand 4KGi

.1)( 0 ma LetLet .\ 4KGH

45

1)( 0 mb

evenmi )(

nGGGKm

G 21422

oddmii )(

nGGGKKm

G

2144 322

3

46

210 t

320 t

tGPP ,|32 2 or 32 or 3

Recommended