Calculation of Eigenmodes in Superconducting Cavities

Preview:

Citation preview

Calculation of Eigenmodes

in Superconducting Cavities

W. Ackermann, C. Liu, W.F.O. Müller, T. Weiland

Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt

Status Meeting December 17, 2012 DESY, Hamburg

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 1

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 2

Outline

▪ Motivation

▪ Computational model

- Problem formulation in 3-D

- Problem formulation in 2-D (boundary condition)

▪ Numerical examples

- 1.3 GHz structure, single cavity

- 3.9 GHz structure, string of four cavities (preliminary,without bellows)

▪ Summary / Outlook

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 3

Outline

▪ Motivation

▪ Computational model

- Problem formulation in 3-D

- Problem formulation in 2-D (boundary condition)

▪ Numerical examples

- 1.3 GHz structure, single cavity

- 3.9 GHz structure, string of four cavities (preliminary, without bellows)

▪ Summary / Outlook

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 4

Motivation

▪Particle accelerators

- FLASH at DESY, Hamburg

http://www.desy.de

TESLA 1.3 GHz

TESLA 3.9 GHz

RF Gun

Laser

Bunch

Compressor

Bunch

Compressor

Diagnostics Accelerating Structures Collimator Undulators

250 m

19. Dezember 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 5

Motivation

▪ Linac: Cavities

- Photograph

- Numerical model http://newsline.linearcollider.org

CST Studio Suite 2012

upstream downstream

Motivation

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 6

▪Superconducting resonator 9-cell cavity

Downstream

higher order mode coupler

Input

coupler

Upstream

higher order mode coupler

Motivation

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 7

▪Superconducting resonator 9-cell cavity

Downstream

higher order mode coupler

Input

coupler

Upstream

higher order mode coupler

Variation:

Penetration depth

Variation:

Coupler orientation

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 8

Outline

▪ Motivation

▪ Computational model

- Problem formulation in 3-D

- Problem formulation in 2-D (boundary condition)

▪ Numerical examples

- 1.3 GHz structure, single cavity

- 3.9 GHz structure, string of four cavities (without bellows)

▪ Summary / Outlook

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 9

Computational Model

▪Problem formulation

- Time domain

• Efficient algorithms available (explicit method, coupled S-parameter)

• Field excitation to discriminate unknown mode polarizations

- Frequency domain (driven problem)

• Efficient algorithms available (coupled S-parameter)

• Field excitation to discriminate unknown mode polarizations

- Frequency domain (eigenmode formulation)

• Expensive algorithms

• Field distributions available including mode polarization

• Localized mode patterns with weak coupling naturally included

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 10

Computational Model

▪Problem formulation

- Local Ritz approach

continuous eigenvalue problem

+ boundary conditions

vectorial function

global index

number of DOFs

scalar coefficient

discrete eigenvalue problem

Galerkin

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 11

Computational Model

▪Eigenvalue formulation

- Fundamental equation

- Matrix properties

- Fundamental properties

Notation:

A - stiffness matrix

B - mass matrix

C - damping matrix

for proper chosen scalar and vector basis functions

or static dynamic

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 12

Computational Model

▪Fundamental properties

- Number of eigenvalues

- Orthogonality relation

Notation:

A - stiffness matrix

B - mass matrix

C - damping matrix Matrix B nonsingular:

• matrix polynomial is regular

• 2n finite eigenvalues

If the vectors and are no longer B-orthogonal:

Computational Model

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 13

▪Geometrical model

9-cell cavity

Beam

tube

Downstream

HOM

coupler

Input coupler

Upstream

HOM

coupler

High precision

cavity simulations

for closed structures

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 14

Outline

▪ Motivation

▪ Computational model

- Problem formulation in 3-D

- Problem formulation in 2-D (boundary condition)

▪ Numerical examples

- 1.3 GHz structure, single cavity

- 3.9 GHz structure, string of four cavities (preliminary, without bellows)

▪ Summary / Outlook

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 15

Computational Model

▪Port boundary condition

Port face, fundamental coupler

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 16

Computational Model

▪Port boundary condition

Port face, HOM coupler

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 17

Computational Model

▪Problem formulation

- Local Ritz approach

vectorial function

global index

number of DOFs

scalar coefficient

Port face

Mixed 2-D vector and scalar basis

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 18

Computational Model

▪Problem formulation

- Local Ritz approach

continuous eigenvalue problem, loss-free

+ boundary conditions

vectorial function

global index

number of DOFs

scalar coefficient

discrete eigenvalue problem

Galerkin

0 5 10 15 200

100

200

300

400

0 2 4 6 8 100

50

100

150

200

Computational Model

▪Wave propagation in the applied coaxial lines

- Main coupler

- HOM coupler

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 19

12.5 mm

60.0 mm

3.4 mm

16.0 mm

TEM

TE11 TE21

TEM

TE11 TE21

f0 = 1.3 GHz

f0 = 1.3 GHz

Dispersion relation

propagation

damping

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 20

Computational Model

▪Problem formulation

- Determine propagation constant for a fixed frequency

algebraic eigenvalue problem

eigenvector

and

eigenvalue

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 21

Computational Model

▪Problem formulation

- Determine propagation constant for a fixed frequency

algebraic eigenvalue problem

eigenvector

and

eigenvalue

Mode 1 Mode 2 Mode 3 Mode 4 …

Computational Model

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 22

▪Memory requirement for waveguide formulations

- Ports with 2-D eigenmodes

- Impedance boundary condition

Port mode series expansion

Projection of the port fields on the set of 3-D basis

functions results in a dense matrix block

Same population pattern as PMC (natural boundary condition)

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 23

Computational Model

▪Memory requirement for waveguide formulations

- Example 1: 1.119.219 tetrahedrons

- Example 2: 1.218.296 tetrahedrons

- General rule:

b = mean bandwidth of sparse system matrix

h = mean grid step size

TESLA 1.3 GHz

Refined port mesh area

NNZ = number of non-zero elements

Computational Model

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 24

▪Waveguide ports implementation options

- Standard approach:

Incorporate dense matrix blocks into sparse system matrix

- Memory-efficient approach:

Utilize that system matrix is dense but of low rank

Port mode series expansion

Dyadic product of modified port mode vectors

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 25

Outline

▪ Motivation

▪ Computational model

- Problem formulation in 3-D

- Problem formulation in 2-D (boundary condition)

▪ Numerical examples

- 1.3 GHz structure, single cavity

- 3.9 GHz structure, string of four cavities (preliminary, without bellows)

▪ Summary / Outlook

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 26

▪Problem definition

- Geometry

- Task

Numerical Examples

TESLA 9-cell cavity

PEC

boundary condition

Search for the field distribution, resonance frequency and quality factor

Port

boundary

conditions

Port boundary conditions

Numerical Examples

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 27

▪Computational model

9-cell cavity

Beam

cube

Input

coupler

Upstream HOM coupler

Distribute

computational load

on multiple processes

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 28

Numerical Examples

▪Simulation results

- Accelerating mode (monopole #9)

- Higher-order mode (dipole #37)

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 29

Numerical Examples

▪Simulation results

Accelerating mode

(monopole #9)

Higher-order mode

(dipole #37)

Beam tube

HOM coupler

Coaxial

input coupler

Coaxial line

Beam tube

HOM coupler

Coaxial

input coupler

Numerical Examples

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 30

100

200

500100020005000

Monopole

Dipole

Quadrupole

Sextupole

2.46 2.48 2.50 2.52 2.54 2.56 2.58 2.60

0.00

0.01

0.02

0.03

0.04

Real

Imag

inary

▪Controlling the Jacobi-Davidson eigenvalue solver

- Evaluation in the complex frequency plane

- Select best suited eigenvalues in circular region around

user-specified complex target

Real and imaginary part of the complex frequency

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 31

Numerical Examples

▪Quality factor versus frequency

Calculations kindly performed by Cong Liu

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 32

Numerical Examples

▪Field distribution of selected mode

- First/second dipole passband (mode 17)

E

B

E B

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 33

Outline

▪ Motivation

▪ Computational model

- Problem formulation in 3-D

- Problem formulation in 2-D (boundary condition)

▪ Numerical examples

- 1.3 GHz structure, single cavity

- 3.9 GHz structure, string of four cavities (preliminary, without bellows)

▪ Summary / Outlook

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 34

Numerical Examples (preliminary)

▪3.9 GHz structure (3rd harmonic cavity)

- String of four cavities

- Field distribution for selected modes

4 main coupler, 8 HOM coupler and 2 beam pipes = 14 ports

Bellows omitted for the time being

1.040.212 tetrahedrons

6.349.532 complex DOF

December 19, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 35

Summary / Outlook

▪Summary:

Request for precise modeling of electromagnetic fields within

resonant structures including small geometric details

- Geometric modeling with curved tetrahedral elements

- Port boundary conditions with curved triangles

- Memory-efficient implementation to evaluate the port fields

now available

▪Outlook:

- Application to 1.3 GHz and 3.9 GHz structure and strings

Recommended