Characterization of White Portland Cement Grinded for a Long Time by Using X-ray Powder Diffraction...

Preview:

DESCRIPTION

粉末 X 線回折法と 29Si NMR による長時間粉砕した白色ポルトランドセメントのキャラクタリゼーション

Citation preview

  • Cement Science and Concrete Technology, Vol.68

    30

    WPCXRD 29Si NMR XRD C3S C3A

    5 C2S 5 10

    XRD/ 29Si NMR WPC C3S

    XRD NMR XRD 29Si

    NMR

    X 29Si NMR

    *1 *2

    *1060-8628 13 8 *2060-8628 13 8

    X

    1.

    1

    EMCEnergetically

    Modified Cement2

    3

    4

    Mori 5 Ca3SiO5

    Ca3SiO5

    Ca

    Ca3SiO5

    Mori 5 Ca3SiO5

    Ca3SiO5 C3S

    67

    C3S C2S

    C3AC4AF

    X XRD

    8

    9

    XRD

    2

    NMR

    1/2

    NMR

    10

    NMR 29Si NMR

    C3S C2S

  • Cement Science and Concrete Technology, Vol.68

    31

    10, 11

    XRD 29Si NMR

    5100

    WPC

    XRD 29Si NMR

    2.2. 1

    WPC 3.05g/cm3 3,380cm2/g

    80cc2cm

    5 WPC 6.0g 4

    300rpm 05102030

    250rpm 100

    6

    WPC0WPC5WPC10WPC20

    WPC30WPC100 Table 1

    105 1,000

    LOITable 2WPC0XRD/

    2. 2

    1XRD/

    XRD -Al2O3

    10.0wt

    CuK 40kV-40mA

    2 570 0.02

    6.5/min 0.5

    24mm

    3

    Siroquant V.3.0

    SIETRONICS C3S

    C2SC3ACaCO3

    CHCaSO40.5H2O

    CaSO42H2OSiO2

    C3SC2S3

    1

    A 1 100 1

    Awt

    Swt

    SRwt

    229Si NMR

    29Si NMR Bruker MSL 4009.4T

    29Si Q8M8SiCH338Si8O2012.4ppm7mm

    WPC 29Si

    T1 5 60

    10, 12 79.486MHz

    3.125MHz 4kHz90

    5s MASMagic Angle Spinning

    512

    29Si NMR Win-Nuts

    Acorn NMR 20Hz

    WPC 29Si NMR C3S

    C2S

    Rawal 10

    T1

    C3S 2

    100100S

    SSR

    Table 1Grinding condition and Loss of ignitionLOIName Speedrpm Timehr LOIwt

    WPC0 0 3.11

    WPC5 300 5 4.92

    WPC10 300 10 6.47

    WPC20 300 20 7.67

    WPC30 300 30 9.15

    WPC100 250 100 10.52

    Table 2Chemical composition and mineral composition of WPC

    Chemical compositionwt Mineral compositionwt1

    SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O TiO2 C3S C2S C3A Por2 Cal3 Gyp4 Bas5

    21.1 5.2 0.4 69.3 0.4 2.9 0.3 0.3 0.3 9.1 34.3 5.4 3.4 1.0 2.1 3.4111.3 wt amorphous phase was determined by internal standard method for ungrinded WPC2PorPortlandite, 3CalCalcite, 4GypGypsum and 5BasBassanite

  • Cement Science and Concrete Technology, Vol.68

    32

    C3S C2S

    29Si Rawal

    10C3S

    2 69.172.8ppmC2S 70.8ppm3

    /

    /

    C2S

    C3S

    Rawal 1069ppm 73ppm C3S

    6577ppm

    3.3. 1XRD Fig. 1 WPC0WPC5WPC10WPC20WPC30

    WPC100 XRD 570 2

    Mori 5

    Fig. 2 WPC0WPC10WPC30 XRD

    a1020 2b2638 2Fig. 2

    a10 30 WPC

    C3SC2S C3A

    Fig. 2b Fig. 2b 226.6

    WPC0

    WPC5WPC10WPC20WPC30

    WPC100XRD

    3. 2XRD/aC3S C2S

    bC3A Fig. 3

    XRD/

    100wt

    XRD/

    WPC0 11.3wtTable 2

    Fig. 3aWPC0 3. 3 29Si NMR

    C-S-H Si Q1

    78ppm Q283ppm

    WPC0

    1314Fig. 1XRD profiles from 5 to 70 2 deg.

    Fig. 2XRD profiles a from 10 to 20 and b from 26 to 38 2 deg.

  • Cement Science and Concrete Technology, Vol.68

    33

    C2S 0.420.990.410.42wt/hr

    C3A 0.230.220.040.05wt/hr

    Fig. 4C3A C3S C2S

    C3A

    C3S C3A 05

    C2S

    510

    C2S C3S

    15

    3. 329Si NMR WPC0 a 29Si NMR b

    C3S C2S

    c

    Fig. 5 29Si NMR

    70.8ppm C3S Fig. 5a

    b C3S C2S

    29Si NMR

    Fig. 5

    c

    Fig. 6 WPC5WPC10WPC20WPC30

    WPC100 29Si NMR

    WPC WPC0

    3. 429Si NMR

    appmbHzc Fig. 7

    69.172.8ppm C3S-hC3S-l 2

    RIs 2Is

    Is

    X

    1015

    WPC 14

    WPC0

    C3S

    C2S C3A

    Fig. 3ab250rpm100

    60wt

    C3SC2S C3A

    XRD/

    C3SC2S C3A

    C3S C2S C3A

    Fig. 4 C3S C2S C3A

    XRD/

    C3SC2S C3A

    WPC100

    Fig. 4

    C3S 05510102020

    30 1.11.070.480.36wt/hr

    Fig. 4Rate of amorphization of C3S, C2S and C3A

    Fig. 3Weight fraction of a C3S, C2S, and amorphous phase and b C3A from XRD/Rietveld analysis

  • Cement Science and Concrete Technology, Vol.68

    34

    C3S-h C3S-l

    Fig. 2bC2S

    77.94.4Hz

    Fig. 7b

    c3. 529Si NMR 29Si NMR

    RIss

    Iss

    sC3S-hC2S C3S-l

    Fig. 7a C3S-h 69.10.36ppmC2S70.70.14ppmC3S-l 72.80.28ppm

    Fig. 5 29Si NMR spectra of anhydrous white Portland cement WPC0a observed spectrum, b 29Si signals from unhydrated C3S and C2S, and c simulated spectrum

    Fig. 7 Relation between grinding time with a chemical shift, ppm, b full width at half maximum Hz, and c relative intensity of C3S and C2S optimized in least-squares fitting to the

    29Si NMR spectra

    Fig. 6 29Si NMR spectra of WPC5, WPC10, WPC20, WPC30, and WPC100 and 29Si signals from unreacted C3S and C2S

  • Cement Science and Concrete Technology, Vol.68

    35

    XRD/ C3S 39.1wt

    C2S 34.3wtTable 1NMR

    XRD/ WPC

    Fig. 8 29Si NMR C3S C2S

    C3S

    C2S 3. 6XRD 29Si NMR Fig. 9 XRD/ 29Si NMR

    C3S C2S C2S

    XRD/ 29Si NMR

    C3S

    WPC100 XRD 20.4wt

    NMR 59.3wtC3S

    38.9wt

    XRD/

    C3S C2S

    C3S C2S C2S

    XRD NMR

    Fig. 9

    C3S

    29Si

    NMR

    WPC 2

    13

    iC3S

    38.9wtiiWPC0

    11.3wtiii C3S

    C3S

    C2S

    WPC0 29Si 29Si NMR C3S

    SiO2 3

    1012

    Taylor 16 C3S

    C2S Ca2.9Si0.95Mg0.06Al0.04 Fe0.03P0.01Na0.01O5Ca1.94Si0.9Al0.07K0.03Fe0.02Mg0.02 P0.01Na0.01O3.93 C3S

    C3S-h C3S-l

    mxRAx Mx 3

    mxx wt

    RAxx

    CASiO2SiO2 wt

    MSiO2SiO2 60.08g/mol

    Mxx g/mol

    xC3S C2S

    RAC3S

    RAC2S

    AC3SAC2SC3S C2S

    29Si NMR WPC0 C3SC2S

    0.470.53 34

    37.631.9wt

    CASiO2MSiO2

    AC3SAC3SAC2S

    AC2SAC3SAC2S

    Fig. 8 Relation between grinding time and weight fraction of C3S circle and C2Ssquare quantified by 29Si NMR

    Fig. 9 Comparison with weight fraction of C3S circle and C2S square quantified by XRD and by 29Si NMR

  • Cement Science and Concrete Technology, Vol.68

    36

    C2S

    C3S C2S

    69.1ppm 72.8ppm Fig. 7b

    4.XRD/ 29Si NMR

    WPC

    1

    2 C3S C2S

    3 69.1 72.8ppm

    4 XRD/ 29Si NMR C2S

    C3S

    5 29Si NMR XRD

    C3S C2S C3S

    XRD/ 29Si NMR R20.81

    1

    p. 1361971

    2 EMC Cementhttp://www.emccement.com

    3 K. Johansson et al.Kinetics of the hydration reac-

    tions in the cement paste with mechanochemically

    modified cement 29Si magic-angle-spinning NMR

    study, Cem. Concr. Res., 29, pp. 1575-15811999

    4 L. Elfgren et al.High performance concretes with

    energetically modified cementEMC, Technical

    Paper Series prepared by EMC Cement BV, pp. 1-

    102013

    5 K. Mori et al.Structural and hydration properties

    of amorphous tricalcium silicate, Cem. Concr. Res.,

    36, pp. 2033-20382006

    6 F. Nishi et al.Tricalcium silicate Ca3OSiO4

    the monoclinic superstructure, Z. Kristallogr., 172,

    pp. 297-3141985

    7

    86pp. 195-2021978

    8 H.M. RietveldA profile refinement method for

    nuclear and magnetic structures, J. Appl. Cryst., 2,

    pp. 65-711969

    9 A. G. De la Torre et al.Rietveld quantitative

    amorphous content analysis, J. Appl. Cryst., 34,

    pp. 196-2022001

    10 A. Rawal et al.Molecular silicate and aluminate

    C3S C3S C2S

    4 29Si NMR C3S

    WcC3SNMRC3SWaC3SWaC2S 4

    WcC3S29Si NMR C3S

    wt

    NMRC3S29Si NMR C3S

    wt

    WaC3S C3S wt

    WaC2S C2S wt

    WaC3SXRDt,C3SXRD0,C3S

    WaC2SXRDt,C2SXRD0,C2S

    XRDt,C3SXRD WPC t C3S

    wt

    t05102030100

    XRD0,C3SXRD WPC0 C3S

    wt

    XRDt,C2SXRD WPC t C2S

    wt

    XRD0,C2SXRD WPC0 C2S

    wt

    Fig. 10 XRD C3S 4

    NMR C3S

    Fig. 10 XRD NMR C3S

    70.8ppm

    Fig. 10 Comparison with weight fraction of crystalline C3S by XRD and

    29Si NMR

  • Cement Science and Concrete Technology, Vol.68

    37

    cement clinker, Cem. Concr. Res., 9, pp. 757-763

    1979

    14 X

    68

    CD-ROM2014

    15

    23pp. 156-1591969

    16 H.F.W. TaylorModif ication of the Bogue

    calculation, Adv. Cem. Res., 2, pp. 73-771989

    species in anhydrous and hydrated cements, J. Am.

    Chem. Soc., 132, pp. 7321-73372010

    11 J. Skibsted and H. J. JakobsenQuantification of

    calcium silicate phases in Portland cements by 29Si

    MAS NMR spectroscopy, J. Chem. Soc. Faraday

    Trans., 91, pp. 4423-44301995

    12 I. F. Saez del Bosque et al.Effect of temperature

    on C-S-H gel nanostructure in white cement,

    Mater. Struct., DOI 10.1617/s11527-013-0156-8

    2013

    13 I. MakiMechanism of glass formation in Portland

    Tomotaka AWAMURA*1 and Toyoharu NAWA*2

    ABSTRACTLong time grinding by planetary ball mill was carried out to get white Portland cementWPCsamples including high weight fraction of amorphous phases. It was confirmed, from X-ray powder diffractionXRD/Rietveld analysis using an internal standard that major components in WPC, alite, belite and aluminateC3S, C2S and C3A in cement chemistry notation, partly changed to the amorphous state. Approximately 60wt of the sample converted to amorphous state after grinding for 100h at 250rpm. In addition, the rate of amorphization of C3S and C3A was the highest in 05h grinding, while the amorphization rate of C2S was the highest in 510h. Moreover, it is observed from 29Si MAS NMR analysis that the full width at half maximum heightFWHMof the C3S signals got broader by grinding, while FWHM of the C2S signal was almost constant. Furthermore, C3S and C2S weight fraction were calculated using molar percentages obtained after deconvolution of the 29Si NMR spectra and the total amount of SiO2 determined with X-ray fluorescence analysis. There was different correlation between amount of C3S from XRD/Rietveld analysis and that from NMR. We carried out the modification to the amount of C3S from NMR analysis using amount of amorphous C3S and amorphous C2S determined from XRD. Then the quantity of crystalline C3S from the two different methods showed positive correlation of R

    20.81. It was suggested that the 29Si signal of 70.8ppm belongs to crystalline C2S and that mechano-chemically modified calcium silicate minerals showed wide range of their in 29Si NMR spectra.

    KEY WORDSWhite Portland cement, X-ray powder diffraction, 29Si MAS NMR, Amorphization, Alite, Belite

    CHARACTERIZATION OF WHITE PORTLAND CEMENT GRINDED FOR A LONG TIME BY USING X-RAY POWDER

    DIFFRACTION AND 29Si NMR SPECTROSCOPY

    *1 HOKKAIDO UNIVERSITY, Graduate School of EngineeringNorth13-West8, Kita-ku, Sapporo-shi, Hokkaido 060-8628, Japan

    *2 HOKKAIDO UNIVERSITY, Faculty of EngineeringNorth13-West8, Kita-ku, Sapporo-shi, Hokkaido 060-8628, Japan

Recommended