Elektrochemische Modelle für Lithium-Ionen Batterien MES 10 - Elektrochemische Modelle...

Preview:

Citation preview

KIT – Universität des Landes Baden-Württemberg undnationales Forschungszentrum in der Helmholtz-Gemeinschaft www.iam.kit.edu/wet

Elektrochemische Modelle für Lithium -Ionen Batterien

André Weber

Institut für Angewandte Materialien - Werkstoffe der Elektrotechnik IAM-WETAdenauerring 20b, Geb. 50.40 (FZU), Raum 314

phone: 0721/608-7572, fax: 0721/608-7492andre.weber@kit.eduwww.iam.kit.edu/wet

Modellbildung elektrochemischer Systeme

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 2, 10.07.2018

www.iam.kit.edu/wet

Elektrochemisches ModellStand der Technik & Motivation

IAM-WET

Verhaltensmodell

geringe örtliche AuflösungechtzeitfähigParametrierung einfach

R1

UO

CV

R0 C1

Uba

tt

Ibatt

grobe Verhaltensprädiktion im vermessenen Parameterraum

Differentialgleichungen & FEM

hohe örtliche Auflösungnicht echtzeitfähigParametrierung aufwendig

Simulation von unbekannten Strukturen und MaterialienInter-/Extrapolation des Parameterraums

( )cDt

c ∇⋅∇=∂∂

( ) ( )

−−= …00

1exp UU

RT

zFjj

α

physikalisch motiviertes Ersatzschaltungsmodell

geringe örtliche AuflösungechtzeitfähigParametrierung mittel

Diagnose durch Simulation Fehler-/DegradationsfälleInter-/Extrapolation des Parameterraums

UO

CV

Uba

tt

Ibatt

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 3, 10.07.2018

www.iam.kit.edu/wet

Distribution of Relaxation Times as Basis for Time-Domain Models of Li-Ion Batteries

IAM-WET

Impedance Measurement

Physically MotivatedModel

Time-DomainSimulation

Model Targets:

Good Real-time Capabilities - model structure deployable on microcontroller

Scalability - accuracy and computational effort easy adaptable

Automization of Parameterization - model quality does not depend on human expertise

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 4, 10.07.2018

www.iam.kit.edu/wet

IntroductionBattery Modeling Today

IAM-WET

EIS Measurement

electrochemical impedance measurements

non parametric representation of linear dynamics

variation of operating points (SOC,T)

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 5, 10.07.2018

www.iam.kit.edu/wet

Model selection and fit

a priori knowledge necessary

stabilization of fit procedure critical

subtraction of differential capacity

R0 RQ1 RQ2 RQ3 ZGFLWC0

differential capacity

IntroductionBattery Modeling Today

IAM-WET

EIS Measurement

R0 RQ1 RQ2 RQ3 ZGFLWC0 fractional impedance elements

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 6, 10.07.2018

www.iam.kit.edu/wet

IntroductionBattery Modeling Today

IAM-WET

EIS Measurement

Model selection and fit

Approximation of fractional impedance elements

Fractional impedance elements cannot be simulated directly in time domain

Approximation with sum of RC-Elements:

empirical relation [1]

analytical expansion to sum

discretization of the distribution of relaxation times

RQ

RC1 RC2 RC3

Analytical expression for the measured impedance ha s to be known!

[1] Stephan Buller, Phd-Thesis, Aachener Beitrage des ISEA, Shaker Verlag GmbH, 2002

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 7, 10.07.2018

www.iam.kit.edu/wet

Approximation of fractional impedance elements

IntroductionBattery Modeling Today

IAM-WET

EIS Measurement

Model selection and fit

Time Domain Model and Simulation

OCV

SOC

UO

CV …+

PLECSt

U

t

I

Loss ofaccuracy

time effort

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 8, 10.07.2018

www.iam.kit.edu/wet

g(τ): Dirac pulses

g

t

1

p o l

RR

2

p o l

RR

τ1 τ2

ideal process: RC-Elements

RC1 RC2

The Distribution of Relaxation Times

IAM-WET

pol0

( )( )

1polg

Z j R djτω τωτ

∞=

+∫ g(τ): distribution function of relaxation times (DRT)

H. Schichlein, A.C. Müller, M. Voigts, A. Krügel and E. Ivers-Tiffée, Journal of Applied Electrochemistry, Vol. 32, No. 8, pp. 875-882, 2002

The Continuous Distribution of Relaxation Times

g

tτ1 τ2general distribution function

RQ1 RQ2

real process: RQ-Elements

Calculation of the Discrete Distribution of Relaxat ion Times

N is the Number of RC-Elementsdiscrete distribution: � is logarithmical equally spacedg(�n) = 0 at highest and lowest �n

g

log(τ)

ττω δωτ=

=+∑

1

( )( )

1

Nn

polnn

gZ j

j

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 9, 10.07.2018

www.iam.kit.edu/wet

Approximation of fractional impedance elements

IntroductionBattery Modeling Today

IAM-WET

EIS Measurement

Model selection and fit

Time Domain Model and Simulation

OCV

SOC

UO

CV …+

PLECSt

U

t

I

Loss ofaccuracy

time effort

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 10, 10.07.2018

www.iam.kit.edu/wet

IntroductionBattery Modeling Today

IAM-WET

EIS Measurement

Method of the Distribution of Relaxation Times

Time Domain Model and Simulation

OCV

SOC

UO

CV +

PLECSt

U

t

I

…Re(Zth)

Im(Z

th)

deconvolution of EIS

τωωτ=

=+∑

1

( )( )

1

Nn

polpolnn

Z jg

Rj

distribution ofrelaxation times

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 11, 10.07.2018

www.iam.kit.edu/wet

Verification of the DRT ModelExperimental

IAM-WET

2 Ah Li-ion cell from KOKAM

Pouch-cell

Anode: Graphite

Cathode: NCA/LCO-Blend

REM: Anode

2µm 2µm

Anode: Graphite Cathode: NCA / LiCoO2 Blend

LiCoO2

NCA

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 12, 10.07.2018

www.iam.kit.edu/wet

pulse height 1C

pulse length = 10s

f = [100kHz … 5mHz]

Uampl = 10mV / 5mV

Verification of the DRT ModelExperimental

IAM-WET, D. Klotz, M. Schönleber, J. P. Schmidt, and E. Ivers-Tiffée, Electrochim. Acta, 56, 8763 (2011).

Electrochemical Measurements

quasi stationary OCV

discharge/charge at C/40

Variation of Imax = C/4 … 2C � 0.5A � 4A

average discharge with Imax/2

transformationto frequencydomain1

merger of high andlow frequency range

impedance spectraf = [100kHz …10µHz]

completely autom

ated process

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 13, 10.07.2018

www.iam.kit.edu/wet

impedance spectroscopy time domain measurements

Impedance Measurements in the Frequency and Time Domain

IAM-WET

0.1 0.2 0.3 0.40

0.05

0.1

0.15

Z´ [Ω]

-Z´´

[Ω]

1 2 3

5

10

15

20

25

30

35

40

45

50

55

Z´ [Ω]

-Z´´

[Ω]

1 2 3

5

10

15

20

25

30

35

40

45

50

55

Z´ [Ω]

-Z´´

[Ω]

0.1 0.2 0.3 0.40

0.05

0.1

0.15

Z´ [Ω]

-Z´´

[Ω]

cell

00

00

SOC = 100 %

Û = 10 mV

fmin = 5,88 µHz

fmax = 10 kHzΔSOC = 1,95 %

tMess = 19 days

nIntegration = 3...8

LiCoO2 / C

C = 120 mAh

cellLiCoO2 / C

C = 120 mAh

SOC = 100 %

ΔU = 50 mV

fmin = 6,84 µHz

fmax,ZB = 8,63 Hzfmax = 10 kHz

ΔSOC = 5,01 %

tMess = 4 days

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 14, 10.07.2018

www.iam.kit.edu/wet

Measurement ResultsEIS

IAM-WET

f �0

f � ∞∞∞∞

SOC [%]

f �0

10mHz

extended frequency range via pulse measurements

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 15, 10.07.2018

www.iam.kit.edu/wet

Measurement ResultsDRT

IAM-WET

SOC ↓

SOC ?

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 16, 10.07.2018

www.iam.kit.edu/wet

Measurement ResultsDRT

IAM-WET

complex SOC-dependence

beneficial use of the DRT for identification and se paration of Processes 1,2

interpretation not necessary for parameterization of time domain model

[1] J.P. Schmidt, T. Chrobak, M. Ender, J. Illig, D. Klotz, and E. Ivers-Tiffée, J. Power Sources, 196 (2010) 5342-5348.

[2] J. Illig, T. Chrobak, D. Klotz, and E. Ivers-Tiffée, ECS Trans., 33 (2011) 3-15.

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 17, 10.07.2018

www.iam.kit.edu/wet

Measurement ResultsComparison: EIS / DRT-Model

IAM-WET

SOC [%]

DRT Model

Measurement

Very good accordance of measurement and DRT-model

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 18, 10.07.2018

www.iam.kit.edu/wet

Verification of the DRT-ModelScalability

IAM-WET

EIS Measurement / DRT-Model Variation of N

τωωτ=

=+∑

1

( )( )

1

Nn

polnn

gZ j

j

Results

N = 100 � 11.6 RC / decade

20 RC-elements show no significant difference to 100 RC-elements

N = 20 � 2.3 RC / decade

10 RC-elements show slight deviations

N = 10 � 1.1 RC / decade

4 RC-elements result in a bad fit of the impedance data

N = 4 � 0.5 RC / decade

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 19, 10.07.2018

www.iam.kit.edu/wet

Δ

Verification of the DRT-ModelScalability – Time Domain Simulation

IAM-WET

Comparison of dynamic behavior

seconds-timescale shows significant differences for 4 RC-model

slight increase of accuracy between 10 and 20 RC-model

no visible difference for 20 and 100 RC-model

10 RC-Model shows good accordance and modest calcul ation effort

Imax

-Imax Currrent

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 20, 10.07.2018

www.iam.kit.edu/wet

Comparison of Simulation Time

DRT-ModelReal-Time Capability

IAM-WET

Model Order

100

20

10

4

RCs / decade

11.6

2.3

1.1

0.5

Tsim / Tmeas [%]

9%

0.8%

0.5%

0.3%

Simulation Environment

PLECS

Matlab R2009awww.mathworks.com

PLECS 2.1www.plexim.com

Hardware:Intel® Core™ i7 CPU4GB RAM

����

����

����

����

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 21, 10.07.2018

www.iam.kit.edu/wet

Physically based models Behavioral models

Electrochemical models Equivalent circuit models Time -domain models

+ charge- and mass transport+ understand electrochemical

reactions+ high accuracy

+ dependence of battery characteristics on operating parameters

+ optimal battery design according to performance and capacity

+ estimation of the current battery condition

+ fast computation+ battery management systems

- time consuming computation - only applicable in the frequency domain

- no physical interpretation possible

Battery Models

IAM-WET

[1] Ma, Y. et al., RSC Advances, 6 (2016), 25435-25443

anode separator cathode

curr

entc

olle

ctor

curr

entc

olle

ctor

[1]

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 22, 10.07.2018

www.iam.kit.edu/wet

Physically based models Behavioral models

Electrochemical models Equivalent circuit models Time -domain models

Battery Models

IAM-WET

� New approach combines advantages

� High-resolution electrochemical characterisation needed for physical interpretability

physical interpretability fast computation in the time domain

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 23, 10.07.2018

www.iam.kit.edu/wet

Methodology

IAM-WET

Voltage behavior of a battery when applying a curre ntLoss processes that determine the overvoltage

< �� Open circuit voltage ���� ���

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 24, 10.07.2018

www.iam.kit.edu/wet

Methodology

IAM-WET

< �� Open circuit voltage

�� �� Instantaneous voltage drop

���� ���

���� �

Voltage behavior of a battery when applying a curre ntLoss processes that determine the overvoltage

Lithium transport in the electrolyte, electron transportin the electrodes and current collectors

1

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 25, 10.07.2018

www.iam.kit.edu/wet

Methodology

IAM-WET

< �� Open circuit voltage

�� �� Instantaneous voltage drop

�� �� Fast kinetic processes

���� ���

���� � ���� ���,�/�����,�

Voltage behavior of a battery when applying a curre ntLoss processes that determine the overvoltage

Lithium transport in the electrolyte, electron transportin the electrodes and current collectors

Interface losses at anode and cathode2

1

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 26, 10.07.2018

www.iam.kit.edu/wet

Methodology

IAM-WET

< �� Open circuit voltage

�� �� Instantaneous voltage drop

�� �� Fast kinetic processes

�� �� Slow diffusion processes

���� ���

���� � ���� ���,�/�����,�

���� �����,�/�

Voltage behavior of a battery when applying a curre ntLoss processes that determine the overvoltage

Lithium transport in the electrolyte, electron transportin the electrodes and current collectors

Interface losses at anode and cathode

Lithium solid state diffusion in anode and cathode3

2

1

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 27, 10.07.2018

www.iam.kit.edu/wet

Methodology

IAM-WET

< �� Open circuit voltage

�� �� Instantaneous voltage drop

�� �� Fast kinetic processes

�� �� Slow diffusion processes

���� ���

���� � ���� ���,�/�����,�

���� �����,�/�

Voltage behavior of a battery when applying a curre ntLoss processes that determine the overvoltage

Lithium transport in the electrolyte, electron transportin the electrodes and current collectors

Interface losses at anode and cathode

Lithium solid state diffusion in anode and cathode

Contact losses included in 4 1

3

2

1

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 28, 10.07.2018

www.iam.kit.edu/wet

Methodology

IAM-WET

Voltage behavior of a battery when applying a curre ntLoss processes that determine the overvoltage

< �� Open circuit voltage

�� �� Instantaneous voltage drop

�� �� Fast kinetic processes

�� �� Slow diffusion processes

���� ���

���� � ���� ���,�/�����,�

���� �����,�/�

Lithium transport in the electrolyte, electron transportin the electrodes and current collectors

Interface losses at anode and cathode

Lithium solid state diffusion in anode and cathode

Contact losses included in 4 1

3

2

1

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 29, 10.07.2018

www.iam.kit.edu/wet

Methodology

IAM-WET

How to determine the operating voltage

„fast“ lossprocesses (< 1 Hz)

„slow “ lossprocesses (> 1 Hz)

UOCV

Uop

ηloss

ηDiff

η0

ηCT/SEI

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 30, 10.07.2018

www.iam.kit.edu/wet

Methodology

IAM-WET

How to determine the operating voltage

Z´´

[]

g(f

) [

s]

Electrochemical Impedance Spectroscopy

DRT-Analysis:

Description of the loss processes over the frequency

Equivalent Circuit Modelling

Fast loss processes

P1

P2P3

� �� � �� !" #$�%1 ' ��� (�

)

*

„fast“ lossprocesses (< 1 Hz)

„slow “ lossprocesses (> 1 Hz)

UOCV

Uop

ηloss

ηDiff

η0

ηCT/SEI

���� Measurement of the frequency dependent resistance

�process identification

���� process quantification

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 31, 10.07.2018

www.iam.kit.edu/wet

Methodology

IAM-WET

How to determine the operating voltage

Current interruption method in the time domain

Time domain model fit

Slow loss processes

η � , ∙ �. ∙ 1 exp 2�.

', ∙ �3 ∙ 1 exp 2�3

„fast“ lossprocesses (< 1 Hz)

„slow “ lossprocesses (> 1 Hz)

UOCV

Uop

ηloss

ηDiff

η0

ηCT/SEI

���� Measurement of the low-frequent loss contributions

���� process quantification

U [

V]

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 32, 10.07.2018

www.iam.kit.edu/wet

Investigated Cell

IAM-WET

anode:

graphite

2 µm

LiNixCoyAl1-x-yO2LiCoO2carbon black

10 µm

SEM imagesHigh power pouch cell

Manufacturer KOKAM

Nominal capacity 350 mAh

Nominal voltage 3,7 V

Max. charge current 700 mA (≙ 2C)

Max. discharge current 7 A (≙ 20C)

Voltage limits (Umin- Umax) 2,7 - 4,2 V

cathode:

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 33, 10.07.2018

www.iam.kit.edu/wet

„fast“ lossprocesses (< 1 Hz)

„slow “ lossprocesses (> 1 Hz)

UOCV

Uop

ηloss

ηDiff

η0

ηCT/SEI

Experimental

IAM-WET

Fast loss processes

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 34, 10.07.2018

www.iam.kit.edu/wet

ExperimentalAnalysis of high and middle frequency Electrochemical Processes

IAM-WET

Electrochemical impedance spectroscopy: measurement of the frequency-dependent resistance

Excitation and response signal

0

0

( )( ) Re( ) Im( ) ' ''

( )juu t

Z e Z j Z Z j Zi t i

ϕω ⋅= = ⋅ = + ⋅ = + ⋅

T = 25 °CSOC = 60 %

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 35, 10.07.2018

www.iam.kit.edu/wet

ExperimentalAnalysis of high and middle frequency Electrochemical Processes

IAM-WET

Electrochemical impedance spectroscopy: measurement of the frequency-dependent resistance

Excitation and response signal Impedance in a Nyquist diagram

0

0

( )( ) Re( ) Im( ) ' ''

( )juu t

Z e Z j Z Z j Zi t i

ϕω ⋅= = ⋅ = + ⋅ = + ⋅

T = 25 °CSOC = 60 %

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 36, 10.07.2018

www.iam.kit.edu/wet

Requirements for validity

ExperimentalAnalysis of high and middle frequency Electrochemical Processes

IAM-WET

Kramers Kronig validity test to ensure the validity o f the measurement

http://www.iam.kit.edu/wet/Lin-KK.php

If all these requirements are fulfilled, the Kramers Kronigrelations can be derived:

Linearity of the measured system

Time invariance of the measured system

Causality of the measured system

2 20

2 ' Im( ( '))Re( ( )) '

'

ZZ d

ω ωω ωπ ω ω

∞ ⋅=−∫

2 20

2 ' Re( ( '))Im( ( )) '

'

ZZ d

ω ωω ωπ ω ω

∞ ⋅= −−∫

If Re(Z) is known, Im(Z) can be computed.

� Comparison of computed part and measured partreveals the Kramers Kronig residuals .

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 37, 10.07.2018

www.iam.kit.edu/wet

Requirements for validity

ExperimentalAnalysis of high and middle frequency Electrochemical Processes

IAM-WET

Kramers Kronig validity test to ensure the validity o f the measurement

Example: change of SOC

http://www.iam.kit.edu/wet/Lin-KK.php

If all these requirements are fulfilled, the Kramers Kronigrelations can be derived:

Linearity of the measured system

Time invariance of the measured system

Causality of the measured system

2 20

2 ' Im( ( '))Re( ( )) '

'

ZZ d

ω ωω ωπ ω ω

∞ ⋅=−∫

2 20

2 ' Re( ( '))Im( ( )) '

'

ZZ d

ω ωω ωπ ω ω

∞ ⋅= −−∫

If Re(Z) is known, Im(Z) can be computed.

� Comparison of computed part and measured partreveals the Kramers Kronig residuals .

1. Approach the desired SOC

2. Wait for x hours until the cell is in stationary mode

� What is x ?

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 38, 10.07.2018

www.iam.kit.edu/wet

ExperimentalAnalysis of high and middle frequency Electrochemical Processes

IAM-WET

Distribution of relaxation times for the clear sepa ration of loss processes

T = 25 °CSOC = 60 %

Z´´

[]

15 Hz100 Hz

MHz

µHz

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 39, 10.07.2018

www.iam.kit.edu/wet

ExperimentalAnalysis of high and middle frequency Electrochemical Processes

IAM-WET

Distribution of relaxation times for the clear sepa ration of loss processes

T = 25 °CSOC = 60 %

Z´´

[]

15 Hz100 Hz

MHz

µHz

relaxation time of process n

2,0

2

1,0

1

22

2

11

1

1111)(

ωτωτωωω

jR

jR

CRjR

CRjR

jZ+

++

=+

++

=

:nnn0, CR=τ

distribution function of relaxation timespol

0

( )( )

1g

Z j R djτω τωτ

=+∫

# � :[2]

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 40, 10.07.2018

www.iam.kit.edu/wet

ExperimentalAnalysis of high and middle frequency Electrochemical Processes

IAM-WET

Distribution of relaxation times for the clear sepa ration of loss processes

T = 25 °CSOC = 60 %

Z´´

[]

15 Hz100 Hz

MHz

µHz

relaxation time of process n

2,0

2

1,0

1

22

2

11

1

1111)(

ωτωτωωω

jR

jR

CRjR

CRjR

jZ+

++

=+

++

=

:nnn0, CR=τ

distribution function of relaxation timespol

0

( )( )

1g

Z j R djτω τωτ

=+∫

# � :[2]

process 1 process 2

ggeneraldistributionfunction

�*,3�*,. �

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 41, 10.07.2018

www.iam.kit.edu/wet

ExperimentalAnalysis of high and middle frequency Electrochemical Processes

IAM-WET

Distribution of relaxation times for the clear sepa ration of loss processes

T = 25 °CSOC = 60 %

Z´´

[]

15 Hz100 Hz

MHz

µHz

relaxation time of process n

2,0

2

1,0

1

22

2

11

1

1111)(

ωτωτωωω

jR

jR

CRjR

CRjR

jZ+

++

=+

++

=

:nnn0, CR=τ

distribution function of relaxation timespol

0

( )( )

1g

Z j R djτω τωτ

=+∫

# � :[2]

P1

P2 P3

15 Hz

100 Hz

process 1 process 2

ggeneraldistributionfunction

�*,3�*,. �

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 42, 10.07.2018

www.iam.kit.edu/wet

process 1 process 2

ggeneraldistributionfunction

�*,3�*,. �

relaxation time of process n

2,0

2

1,0

1

22

2

11

1

1111)(

ωτωτωωω

jR

jR

CRjR

CRjR

jZ+

++

=+

++

=

:nnn0, CR=τ

distribution function of relaxation timespol

0

( )( )

1g

Z j R djτω τωτ

=+∫

# � :[2]

ExperimentalAnalysis of high and middle frequency Electrochemical Processes

IAM-WET

Distribution of relaxation times for the clear sepa ration of loss processes

T = 25 °CSOC = 60 %

Z´´

[]

15 Hz100 Hz

MHz

µHz

P1

P2 P3

15 Hz

100 Hz

Physical meaning of P1, P2 and P3 ?Physical meaning of P1, P2 and P3 ?

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 43, 10.07.2018

www.iam.kit.edu/wet

ExperimentalAnalysis of high and middle frequency Electrochemical Processes

IAM-WET

Experimental cells for the assignment of loss proce sses

3-electrode setup

IAM-WET-housing

6$2%78!!

6$2%98:3 ;$2%78!!6$2%98:.

Working electrode: Anode or Cathode

Reference electrode: Al-mesh with LTO coating

Counter electrode: Lithium

T = 25 °CSOC = 40 %

• inhouse development• 18 mm electrode diameter• 3-electrode setup[3,4]

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 44, 10.07.2018

www.iam.kit.edu/wet

ExperimentalAnalysis of high and middle frequency Electrochemical Processes

IAM-WET

Experimental cells for the assignment of loss proce sses

3-electrode setup

IAM-WET-housing

6$2%78!!

6$2%98:3 ;$2%78!!6$2%98:.

Working electrode: Anode or Cathode

Reference electrode: Al-mesh with LTO coating

Counter electrode: Lithium

Measurement results

P1 P2 P3

T = 25 °CSOC = 40 %

• inhouse development• 18 mm electrode diameter• 3-electrode setup[3,4]

Charge transfer of the

cathode PCT,C

SEI-process / charge transfer

of the anode PSEI/CT,A: side

peaks due to the porous

electrode structure

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 45, 10.07.2018

www.iam.kit.edu/wet

ExperimentalAnalysis of high and middle frequency Electrochemical Processes

IAM-WET

T = 25 °CSOC = 60 %

Quantification of loss processes by equivalent circ uit modeling

� Frequency dependent processes can be simplified simulated

with RQ elements

<=>,= <?@A/=>,B

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 46, 10.07.2018

www.iam.kit.edu/wet

ExperimentalAnalysis of high and middle frequency Electrochemical Processes

IAM-WET

T = 25 °CSOC = 60 %

Quantification of loss processes by equivalent circ uit modeling

� Frequency dependent processes can be simplified simulated

with RQ elements

� Good fit quality despite simplified model

� Fit delivers resistance and time constant of each process

Im(Z

) [

]

<=>,= <?@A/=>,B

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 47, 10.07.2018

www.iam.kit.edu/wet

Experimental

IAM-WET

Slow loss processes

„fast“ lossprocesses (< 1 Hz)

„slow “ lossprocesses (> 1 Hz)

UOCV

Uop

ηloss

ηDiff

η0

ηCT/SEI

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 48, 10.07.2018

www.iam.kit.edu/wet

ExperimentalAnalysis of low frequency Electrochemical Processes

IAM-WET

I = 350 mAT = 25 °C

Slow diffusion process PDiff,A/C takes place in the low frequency range

� EIS not applicable

Current interruption method in the time domain

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 49, 10.07.2018

www.iam.kit.edu/wet

ExperimentalAnalysis of low frequency Electrochemical Processes

IAM-WET

I = 350 mAT = 25 °C

Slow diffusion process PDiff,A/C takes place in the low frequency range

� EIS not applicable

� Time domain measurement

1. Start at OCV-level

2. Apply a current pulse

3. Analyze the voltage curve after cut-off of the current

� cell in stationary mode

Current interruption method in the time domain

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 50, 10.07.2018

www.iam.kit.edu/wet

ExperimentalAnalysis of low frequency Electrochemical Processes

IAM-WET

I = 350 mAT = 25 °C

Slow diffusion process PDiff,A/C takes place in the low frequency range

� EIS not applicable

� Time domain measurement

1. Start at OCV-level

2. Apply a current pulse

3. Analyze the voltage curve after cut-off of the current

� cell in stationary mode

Current interruption method in the time domain

4. Subtract η0, ηCT,C and ηCT/SEI,A from relaxing overvoltage

� diffusion overvoltage ηDiff,A/C remains

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 51, 10.07.2018

www.iam.kit.edu/wet

ExperimentalAnalysis of low frequency Electrochemical Processes

IAM-WET

I = 350 mAT = 25 °C

At least two diffusion processes in the cell: anode and cathode

� Fit delivers resistance and time constant :

CDE:: � , ∙ �DE::,. ∙ 1 exp GHIJKK,L ' , ∙ �DE::,3 ∙ 1 exp G

HIJKK,M

Time domain fit model

[5] Pop, V. et al., J. Electrochemical Society, 153 (2006), A2013-A2022

� Relative error below 0.1%

� good fit quality

[5]

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 52, 10.07.2018

www.iam.kit.edu/wet

Battery Model

IAM-WET

NOPQQ,B/=(SOC,T)ROPQQ,B/=(SOC,T)

OCV by linear interpolation ofcharge and discharge curve

EISDRT-AnalysisECM TDM

OCV(SOC,T) N (SOC,T)N=>,=(SOC,T)

R=>,=(SOC,T)

N?@A/=>,B(SOC,T)

R?@A/=>,B(SOC,T)

curr

ent

S � TUV, W, , �SXYZ TUV, W C* TUV, W, , C[\]/Y^,_ TUV, W, , CY^,Y$TUV, W, ,% CDE::,_/Y$TUV, W, ,%

Battery Model

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 53, 10.07.2018

www.iam.kit.edu/wet

Results

IAM-WET

�`a � ��� � ����/��,� ���,� �����,�/�Simulation of a cell discharge

I = 350 mAT = 25 °C

U [V

]

Quelle:

Institut für Angewandte Materialien Werkstoffe der Elektrotechnik

Vorlesung MES 10 - Elektrochemische Modelle LiB - Zellen.pptx, Folie: 54, 10.07.2018

www.iam.kit.edu/wet

Results

IAM-WET

Simulation of a cell discharge

� Absolute residuals below 30 mV in 90% of the SOC range

� Only at SOCs < 10% the residuals are higher than 30 mV

I = 350 mAT = 25 °C

U [V

]

resid

uals

[m

V]

�`a � ��� � ����/��,� ���,� �����,�/�

Recommended