Evoluzione Temporale in Meccanica Quantisticapersonalpages.to.infn.it/~bianchi/Cinematica... · •...

Preview:

Citation preview

Evoluzione Temporale in Meccanica Quantistica

Sommario • Richiami di Meccanica Quantistica

• Evoluzione temporale

• Rappresentazioni di Schroedinger e di Heisenberg

• Serie di Dyson

• Matrice S

• Probabilita’ di transizione

• Regola d’oro

• Fattore di spazio delle fasi

F. Bianchi 2

Ket, Bra, Operatori (1) • |a> ket, vettore di stato in spazio vettoriale complesso. • |a> + |b> = |c> somma di ket e’ un ket • c|a> =|a>c c numero complesso • |a> e c|a> rappresentano lo stesso stato fisico

• Un’osservabile A puo’ essere rappresentata da un operatore. • In generale A|a> e’ diverso da c|a> • Per gli autoket di A vale la proprieta’ A|a1> = c1|a1>,

A|a2>=c2|a2>,… • L’insieme dei numeri ci e’ l’insieme degli autovalori di A • Gli stati fisici corrispondenti agli autoket |ai> sono chiamati

autostati di A • Gli autoket di un’osservabile A costituiscono una base in uno

spazio vettoriale: – Un generico ket puo’ essere scritto come |b> = Σici|ai>

3 F. Bianchi

Ket, Bra, Operatori (2) • Spazio dei bra <a|, spazio vettoriale duale dello spazio dei

ket – ca|a> + cb|b> c*a<a| + c*b<b|

• Prodotto interno: <b|a> – <b|a> = <a|b>* – <a|a> >= 0 – |a> e |b> ortogonali se <a|b> = 0

• X|a> <a|X+

• X+ e’ operatore aggiunto di X (in rappresentazione matriciale, l’aggiunto di X si ottiene sostituendo Xij con X*ji)

• Operatori Hermitiani: X=X+

– (XY)+ = Y+X+

– Autovalori di un operatore Hermitiano sono reali – Autoket di un operatore hermitiano sono ortogonali e possono

essere normalizzati: <ai|aj> = δij. Formano una base – Relazione di completezza: Σi|ai><ai| = 1 Operatore identita’ 4 F. Bianchi

Rappresentazione Matriciale • X=Σi Σj|ai><ai| X|aj ><aj| • Ci sono N2 numeri della forma <ai| X|aj> • Possono essere disposti in una matrice quadrata (i indice di riga,

j di colonna)

• Gli |ai> siano una base. Allora:

><><

><><>=<

><><=><><=<

><><

>=

...||

*,...)|*,|(|

*,...)|*,|(,...)|,|(|

...||

|

2

1

21

21

21

2

1

baba

cacabc

cacaacacc

baba

b

><><

>=...||

| 2

1

caca

c

5 F. Bianchi

Misura in MQ • “Una misura fa sempre saltare il sistema in un

autostato della variabile dinamica che si misura” (P.A.M. Dirac) – Prima della misura: |b> = Σici|ai> – La misura dell’osservabile A fa saltare il sistema in |ai>

uno degli autostati di A • Eccezione: quando il sistema si trova gia’ in un autostato di A

– Il risultato di una misura e’ uno degli autovalori di A. – Probabilita’ che il sistema salti nell’autostato |ai> e’

|<ai|b>|2

• Valore di aspettazione di A in uno stato |b>: <b| X|b>=<A>

– Se ai e’ l’autovalore dell’autostato|ai> <A> = Σi ai |<ai|b>|2

6 F. Bianchi

Osservabili Compatibili, Operatori Unitari

• Quando i corrispondenti operatori commutano: [A,B] = 0 – Sono diagonalizzabili contemporaneamente – Hanno autostati comuni: |ai,bi>

• A|ai,bi> = ai|ai,bi> • B|ai,bi> = bi|ai,bi>

• Autovalore degenere: quando a diversi autostati di un operatore corrisponde lo stesso autovalore.

• Date due basi di ket ortonormali e complete |ai> e |bi>, esiste un operatore unitario U (UU+=U+U=1) tale che: – |bi> = U|ai> – Uij=<ai|U|aj> = <ai|bj> – X’ =U+XU dove X e’ la rappresentazione matriciale di un

operatore nella base |ai> e X’ e’ la sua rappresentazione nella base |bi>,

7 F. Bianchi

Evoluzione Temporale in MQ (1) • Tempo e’ parametro (e non un operatore)

• A t= t0 stato del sistema e’ |a> • Ad un tempo t>t0 lo stato del sistema e’|a,t0;t> • limt->t0 |a,t0;t> = |a,t0;t0>=|a>=|a,t0>

• Vogliamo studiare l’evoluzione temporale |a> |a,t0;t> – Introduciamo l’operatore di evoluzione temporale U(t,t0) – |a,t0;t> = U(t,t0) |a,t0> – U+U=1 – U(t2,t0)=U(t2,t1)U(t1,t0) proprieta’ di composizione

• Operatore infinitesimo di evoluzione temporale: – |a,t0;t0+dt> = U(t0+dt,t0) |a,t0> – lim dt->0 U(t0+dt,t0) = 1 – Tutte richieste sono soddisfatte con U(t0+dt,t0) = 1-iWdt; W+=W – Identificando W con l’Hamiltoniana H: W=H/h: – U(t0+dt,t0) = 1-i(Hdt)/h

8 F. Bianchi

Evoluzione Temporale in MQ (2) • Usando la proprieta’ di composizione:

• Questa e’ l’equazione di Schroedinger per l’operatore di evoluzione temporale Moltiplicando ambo i membri per il ket di stato |a,t0>:

• Che e’ l’equazione di Schroedinger per un ket di stato.

• Se viene dato U(t,t0) e sappiamo come agisce su |a,t0>, non abbiamo bisogno di occuparci dell’equazione di Schroedinger per i ket di stato, basta applicare U(t,t0) a |a,t0> per ottenere |a,t0;t>. Dobbiamo trovare soluzioni dell’equazione di Schroedinger per

U(t,t0) con la condizione iniziale U(t0,t0)=1

),(),(),(),(),(

),(1),(),(),(

00000

000

ttHUttUt

ittdtUHittUtdttU

ttUiHdtttUtdttUtdttU

=∂∂

⇒−=−+⇒

−=+=+

>>=∂∂

>⇒>=∂∂ ttaHtta

titattHUtattU

ti ;,|;,|,|),(,|),( 000000

9 F. Bianchi

Evoluzione Temporale in MQ (3)

• Equazione da risolvere:

• Tre casi:

10 F. Bianchi

Evoluzione Temporale in MQ (4) • Occupiamoci del caso 1 (H non dipende dal tempo). Per sapere

come agisce U(t,t=0) su un generico ket, dobbiamo capire come agisce sui ket di una base.

• Scegliamo come base gli autoket di un operatore A tale che [A,H]=0 – autoket di A sono autoket di H: H|a’>=Ea’|a’>

• Se e’ nota l’espansione del ket iniziale |b>:

|'exp'||''|exp|''''|exp ''''' atiEaaaiHtaaiHt a

aaa <

>Σ=><

><ΣΣ=

==

>><Σ>==

>==

>⇒Σ>=><Σ>==

tiEtctc

tiEbaatbiHtttb

acbaatb

aaa

aa

aaa

'''

''

'''

exp)0()(

exp|''|0,|exp;0,|

'||''|0,|

N.B.: Le fasi relative delle diverse componenti Cambiano nel tempo perche’ le frequenze di oscillazioni sono diverse

11 F. Bianchi

Evoluzione Temporale in MQ (5)

• Caso speciale:

• Se il sistema e’ in un autostato di A ed H rimane in tale autostato

• Se [A,H]=0 allora A e’ una costante del moto

• Si puo’ facilmente generalizzare al caso di diverse osservabili compatibili tra di loro e con H. – E’ fondamentale trovare un insieme di osservabili compatibili

fra loro e con H

>>==>⇒>==

tiEattbatb a 'exp'|;0,|'|0,|

12 F. Bianchi

Evoluzione Temporale in MQ (6) • Consideriamo ora una osservabile B che non commuta

necessariamente con A od H e calcoliamone il valor medio in un autostato di A

• <B> e’ indipendente dal tempo autostati dell’energia sono stazionari

• Calcoliamo <B> in uno stato non stazionario. Se lo stato non e’ stazionario, lo si puo’ esprimere come una sovrapposizione di autostati dell’energia.

>>=<

=<

=><>=<

>>==+

'||''|expexp|'

)'|)0,(())0,(|'('|)0,(;0,'|

'' aBaatiEBtiEa

atUBtUaBatUtta

aa

−−><ΣΣ=

=

>

−Σ

<Σ>=<

>⇒Σ>==

tEEiaBacc

atiEcBtiEacB

actb

aaaaaa

aaa

aaa

aa

)(exp''||'

''|expexp|'

'|0,|

'''''

*''''

''''''

'*''

''

13 F. Bianchi

Rappresentazione di Schroedinger • Quella vista finora: • Gli stati evolvono nel tempo, gli operatori sono stazionari

>=

>==

>==>===∂∂

>>==

0,|exp;0,|

0,|)0,(0,|)0,(

|)0,(;0,|

taiHttta

tattHUtattUt

atUtta

>

<=

=><>=< +

aiHtBiHta

atUBtUaB

|expexp|

)|)0,(())0,(|(

Valore di aspettazione

14 F. Bianchi

Rappresentazione di Heisenberg

• Gli stati restano costanti • Le osservabili (gli operatori) evolvono nel tempo

=

=⇒

====

>=>==+

iHttBiHttB

ttUtBttUtBtatta

exp)0(exp)(

)0,()0()0,()(0,|;0,|

>

=

>=<<

=

aiHttBiHtaatBa

HtBdt

tdBi

|exp)0(exp||)(|

]),([)(

Equazione del moto di Heisemberg

Valore di aspettazione Identico nelle due rappresentazioni 15 F. Bianchi

Momento Magnetico in Campo Costante(1)

16 F. Bianchi

Momento Magnetico in Campo Costante(2)

17 F. Bianchi

Momento Magnetico in Campo Costante(3)

18 F. Bianchi

Rappresentazione d’Interazione(1) • Dovuta a Dirac

• Utile quando H =H0 + H’(t) – H0 termine libero – V(t) termine d’interazione eventualmente dipendente dal

tempo

• Intermedia tra la rappresentazione di Heisenberg e quella di Schroedinger – Osservabili variano nel tempo: evoluzione determinata da H0

– Stati variano nel tempo: evoluzione determinata dal termine d’interazione

],[10

// 00 HAidt

dAeAeA IItiH

stiH

I

=⇒= −

IIIStiH

I ttaHttat

ittaetta >==>=∂∂

⇒>==>= ,0,|',0,|;0,|;0,| /0

19 F. Bianchi

Rappresentazione d’Interazione(2) • Supponiamo che:

H =H0 + H’(t) H0|n> = En|n>

• Consideriamo un ket arbitrario, che all’istante t=0 e’ dato da:

|a> = Σncn(0)|n>

• Il nostro problema e’ determinare i cn(t) tali che:

|a,t=0;t>= Σncn(t)exp(-iEnt/h)|n>

• Attenzione alla fattorizzazione della dipendenza temporale: – Il fattore exp(-iEnt/h) sarebbe presente anche in assenza di

H’(t) – La dipendenza dal tempo di cn(t) e’ dovuta a H’(t). In assenza

di H’(t) cn(t)= cn(0)

20 F. Bianchi

Rappresentazione d’Interazione(3)

)(')(

,0,|)(

,0,|'

,0,||)('|

,0,||'|,0,|

,0,|',0,|

|)(,0,|

/)(

/)(

// 00

tceHtcdtdi

ttantc

ttameH

ttammetHen

ttammHnttant

i

ttaHttat

i

ntctta

mtEEi

nmmn

In

ItEEi

nmm

ItiHtiH

m

IImI

III

nnI

mn

mn

Σ=⇒

>==<

>=<Σ=

=>=><<Σ=

=>=><<Σ=>=<∂∂

>==>=∂∂

>Σ=>= Sviluppo di un ket generico nella base di autostati di H0

Moltiplichiamo ambo i membri dell’equaz. di Sch. per i ket per <n| ed usando la relazione di completezza

Definizione dei cn(t)

Equazione matriciale !!! 21 F. Bianchi

Serie di Dyson(1) • Soluzione di equazione differenziale per cn(t) in

generale complicata approccio perturbativo

• Lavoriamo con l’operatore di evoluzione temporale UI(t,t0) definito da:

|a,t0;t>I=UI(t,t0)|a,t0;t0>I

• Che quindi soddisfa all’equaz:

• Con la condizione iniziale U(t0,t0)=1

),()('),( 00 ttUtHttUdtdi III =

22 F. Bianchi

Serie di Dyson(2) • Equaz differenziale + condiz iniziale equivalente

a equazione integrale:

• Soluzione iterativa: '),'()'('11),( 00

0

dtttUtHh

ttUt

tIII ∫−=

)('...)''()'(...'''...

)''(')'(''''')'('1

'''),''()''('1)'('1),(

)()(''

''2

0

'

0

)(

00 0

0 00

0 0

nI

t

tII

nt

t

t

t

n

t

tII

t

t

t

tI

t

t

t

tIIII

tHtHtHdtdtdthi

tHtHdtdthidttH

hi

dtdtttUtHhitH

hittU

n

∫∫ ∫

∫ ∫∫

∫ ∫

×

−++

+

−+−=

=

−−=

23 F. Bianchi

Probabilita’ di Transizione (1) • Relazione tra UI(t,t0) ed U(t,t0) (nella rapp di Schroedinger)

• Elemento di matrice di UI(t,t0) tra autostati di H0:

• Ampiezza di transizione: diversa nella rapp di Interazione ed in quella di Schroedinger

• Ma la probabilita’ di transizione:

• E’ la stessa ! (N.B.: solo tra autostati di H0)

/0

/0

00/

0/

000/

0/

0

000

000

00

),,(),,(

;,|),,(

;,|),,(;0,|;0,|

tiHtiHI

ItiHtiH

StiH

StiH

I

ettUettU

ttaettUe

ttattUettaetta

=⇒

>=

=>=>==>=

20

20

0/)(

0

||),,(||||),,(||

|),,(||),,(| 0

><=><

><>=< −

ittUfittUf

ittUfeittUf

I

tEtEiI

if

24 F. Bianchi

Probabilita’ di Transizione (2) • Supponiamo che a t =0 il sistema sia in un autostato

di H0, |i>:

• Confrontando con:

• Si vede che:

• Anche i cn(t) possono essere sviluppati in modo

perturbativo:

>><Σ>=>== itUnnitUtti InI |)0,(|||)0,(;0,| 0

>=<

>Σ=>=

itUntc

ntctti

In

nnI

|)0,(|)(

|)(,0,|

...)()()()( )2()1()0( +++= tctctctc nnnn

25 F. Bianchi

Probabilita’ di Transizione (3) • Confrontando con lo sviluppo perturbativo di UI(t,0):

• Ampiezza di transizione all’ordine j da|i> ad|n>: cn(j)(t)

– Termine di ordine 0: nessuna interazione – La Σm nel termine di ordine 2 ha il senso di somma sui possibili stati

intermedi

• Probabilita’ di transizione da |i> ad |n> ( stati diversi fra loro!):

)''(')'('''')(

')'('')'(')(

)(

/'')(/')(''2

)2(

/')()1(

)0(

0 0

0 0

tHetHedtdthitc

dttHehidttH

hitc

tc

mitEEi

nmtEEi

m

t

t

t

tn

t

t

t

tni

tEEiIn

nin

immn

in

−−

∑∫ ∫

∫ ∫

−=

−=−=

2)2()1( |...)()(|)( ++=→ tctcniP nn26 F. Bianchi

Intuitivamente….

27 F. Bianchi

Perturbazione Costante (1) H’ = costante Sviluppo dell’ampiezza di transizione |i> |f>:

28 F. Bianchi

Perturbazione Costante (2) • Termine ordine zero: evoluzione libera dello stato iniziale da t0 a

t senza scambio energia con interazione

• Termine primo ordine:evoluzione libera dello stato iniziale da t0 a t1 in cui avviene scambio energia con interazione che lascia il sistema nello stato finale che evolve liberamente da t1 a t

• Termine secondo ordine: evoluzione libera dello stato iniziale da t0 a t1 in cui avviene scambio energia con interazione che lascia il sistema in uno stato intermedio |a> che evolve liberamente da t1 a t2. Nell’istante t2 c’e’ un ulteriore scambio energia con interazione che lascia il sistema nello stato finale che evolve liberamente da t2 a t. – Oltre ad integrare su tutti i possibili istanti t1 e t2 occorre anche

sommare su tutti i possibili stati intermedi.

• E cosi’ via per tuitti gli altri ordini perturbativi….

• Ad ogni ordine il sistema evolve liberamente con H0 fra i vertici dove interagisce con la perturbazione H’

29 F. Bianchi

• Finora: ampiezza di transizione per intervallo di tempo finito

• Per studio di problemi di scattering e’ piu’ interessante l’estensione ad intervallo di tempo infinito. Introduciamo la matrice di Scattering:

– Scambio di sommatoria e limite forza un po’ la matematica….

• Il sistema si considera non interagente con la perturbazione a tempi lunghi nel passato e nel futuro.

• Gli stati asintotici |i> ed |f> sono autostati di H0

Matrice S (1)

30 F. Bianchi

Matrice S (2)

Somma su stati intermedi include integrazione su gradi di liberta’ continui 31 F. Bianchi

Matrice T • Se la serie si sapesse sommare, si potrebbe scrivere: • Dove T e’ la matrice di transizione, il cui sviluppo perturbativo e’:

• Gli elementi di T, tra stati imperturbati, rappresentano la somma (in principio infinita) delle ampiezze per lo scambio di 1,2,..n quanti fra sistema imperturbato e perturbazione

• Interpretazione:negli ordini superiori al primo compaiono stati intermedi (virtuali), che corrispondono a transizioni interne al processo in cui il sistema scambia energia con la perturbazione – N.B: nelle interazioni intermedie il sistema non conserva l’energia

che viene invece conservata globalmente grazie aalla δ – Si puo’ far risalire alla relazione di indeterminazione tempo-energia.

32 F. Bianchi

Probabilita’ di Transizione (1)

33 F. Bianchi

Probabilita’ di Transizione (2) • Probabilita’ di transizione al primo ordine tra gli autostati

|i> ed |f> di H0:

• Probabilita’ di transizione per unita’ di tempo:

34 F. Bianchi

Probabilita’ di Transizione (3) • Prob. di transizione per unita’ di tempo, al II ordine

perturbativo:

• Quando e’ importante considerare ordini perturbativi > 1 ? – Quando l’elemento di matrice al I ordine e’ = 0

• (P.es. per motivi di simmetria) – Quando e’ necessaria elevata accuratezza

• N.B: Tutti gli elementi di matrice di processi relativistici fra particelle reali sono come minimo del II ordine; quelli del I ordine non conservano E,p

35 F. Bianchi

Una Rappresentazione della δ

36 F. Bianchi

Limiti Sbarazzini

37 F. Bianchi

Commenti sulle Probabilita’ di Transizione

• Finora: transizione tra stati |i> ed |f> specificati solo dalle energie

• In generale fissare Ef non fissa univocamente lo stato finale: esiste una molteplicita’ di stati finali (degeneri) corrispondenti ad una data energia – Questa molteplicita’ e’ funzione dell’energia.

• Per una data Ef si puo’ determinare la densita’ degli stati finali per intervallo di energia

• In pratica siamo interessati alla probabilita’ di transizione verso un gruppo di stati tutti alla energia Ef – Occorre sommare wfi su tutti gli stati finali che si considerano. – Normalmente si puo’ approssimare la somma con un integrale.

38 F. Bianchi

Regola d’Oro N. 2 • Se gli stati finali costituiscono un continuo: • Prob. (infinitesima) di transizione verso un “intervallo (infinitesimo) di

stati” • Al I ordine: regola d’oro n. 2 (Dirac, Fermi):

• Nel caso di transizioni verso lo spettro continuo la δ di fatto scompare

• dn/dEf :densita' di stati finali/Intervallo di energia; Fattore di spazio delle fasi – Fattore puramente cinematico (non dinamico) caratteristico dello

stato finale – Incremento del numero di stati finali accessibili al sistema per

incremento unitario dell’energia disponibile 39 F. Bianchi

Fattore di Spazio delle Fasi(1) Esempio 1:

40 F. Bianchi

Fattore di Spazio delle Fasi(2) Esempio 2:

41 F. Bianchi

Fattore di Spazio delle Fasi(3) • Esempio 3: • Due particelle libere senza vincoli tra gli impulsi

• Quindi:

F. Bianchi 42

Atomo d’Idrogeno in Condensatore (1)

• Atomo di H, nello stato fondamentale in condensatore piano collegato a generatore di corrente alternata di frequenza ω

• Generatore acceso a t= 0 e spento a t=t0 • EI (energia ionizzazione) • Hamiltoniano d’interazione:

• Due casi: hω<EI e hω>EI

F. Bianchi 43

Atomo d’Idrogeno in Condensatore (2)

• Primo caso: hω<EI • Atomo non viene ionizzato, possiamo calcolare ampiezza di

transizione fra stato fondamentale ed uno degli stati eccitati (insieme discreto):

• Da cui:

F. Bianchi 44

Atomo d’Idrogeno in Condensatore (3)

• Se Ef>Ei, solo il secondo termine e’ importante e la probabilita’ di transizione diventa:

• La probabilita’ di transizione oscilla nel tempo in funzione della durata della perturbazione con la frequenza di battimento (differenza fra frequenza della perturbazione e frequenza naturale della transizione)

F. Bianchi 45

Atomo d’Idrogeno in Condensatore (4) • Secondo caso: hω>EI • L’atomo si ionizza e lo stato finale appartiene al continuo. • Probabilita’ di transizione verso un gruppo di stati:

• Poiche’ (slide 40):

• Ne segue:

F. Bianchi 46

Atomo d’Idrogeno in Condensatore (5)

• Alcune considerazioni: – Il volume di quantizzazione L3 si cancella con i fattori di

normalizzazione L3/2 delle funzioni d’onda – Per avere probabilita’ di transizione finita occorre

integrare su range finito di energia ed angolo solido dell’elettrone

• Trattiamo l’elemento di matrice come costante:

F. Bianchi 47

Recommended