フルオロアルコール溶媒を用いる らせん状多環式芳香族炭化 ......2O (2/1),...

Preview:

Citation preview

フルオロアルコール溶媒を用いるらせん状多環式芳香族炭化水素の

高効率合成法

氏 名 庄司訓章

指導教員 市川淳士

1

代表的なヘリセン類

2

カルボヘリセン

多重ヘリセン

ヘテロヘリセン

ヘリセン類S

◆ 円偏光発光素子◆ 非線形光学材料◆ 不斉配位子

ヘリセン合成の従来法

3

OTIPS

TIPSOh!

Toluene (0.0002 M)90 ºC, 48 h

I2 (6 eq)

O

Me(100 eq)

7%

Murase, T.; Fujita, M. et al. Angew. Chem., Int. Ed. 2015, 54, 6847.

OTIPSTIPSO

Ru

NMesMesN

PCy3PhCl

Cl

CH2Cl2, 100 °C, 60 min

(15 mol%)

80%

Collins, S. et al. Angew. Chem., Int. Ed. 2006, 45, 2923.

HFIP溶媒による触媒的芳香環増環法

4

HCF3O

CF3

HHigh ionizing power

Cation-stabilizing effect

!– !+ CF3O

CF3

Steric effect and Inductive effect

Low nucleophilicity

1,1,1,3,3,3-Hexafluoropropan-2-ol (HFIP)

cat. TfOH

HFIP

Ichikawa, J. et al. Eur. J. Org. Chem. 2017, 262.

O+

TfO– –

– TfOH

TfOH

O

O

HO

O

HO

HO OH

オキソカルベニウムイオン

タンデム型芳香環増環法

5

OO 99%

TfOH (10 mol%)

HFIP (0.3 M), 0 oC, 15 min

Ichikawa, J. et al. Chem. Lett. 2017, 46, 392.

97%

TfOH (10 mol%)

HFIP (0.3 M), 0 oC, 15 min

OO

O

O

O

O

6

カルボヘリセンの合成戦略

O

O O

O

O

O O

O

X X

XX

Y

O

O

Y

O

O

+

+

カルボヘリセンの合成

7

O

O O

O

O

O O

O

I I

BrBr

BOO

pin

TfOH (15 mol%)

HFIP0 °C, 40 min

92%

90%

HFIP0 ºC to RT, 40 min

TfOH (20 mol%)

cat. Pd92%

45%

1

Method A1 (2.2 eq), Pd2(dba)3・CHCl3 (2.5 mol%)SPhos (5.0 mol%), K3PO4 (6.0 eq)Dioxane–H2O (2/1), 120 ºC, 11.5 h

Method B1 (2.2 eq), Pd2(dba)3・CHCl3 (2.5 mol%)SPhos (5.0 mol%), K3PO4 (6.0 eq)DMF–H2O (2/1), 90 ºC, 9.5 h

Method A

Method B

PCy2MeO

MeO

SPhos

蛍光特性を示すヘテロヘリセン

8

N

NN

N

Otani, T.; Shibata, T. et al. Angew. Chem., Int. Ed. 2017, 56, 3906.

λemmax = 492 nm, φ = 0.80

(CH2Cl2–TFA, 6.7 × 10–5 M)

O

OO

Bedekar, A. V. et al. Org. Lett. 2015, 17, 5808.

λemmax = 432 nm, Φ = 0.19

(CH3CN, 9.1 × 10–5 M)

ヘテロヘリセン合成の従来法

9

aq. HCl (excess)

OH I

DMSO (0.05 M), 110 ºC, 12 h

KOH (1.7 eq)

DMF, 160 ºC, 4 h

NaSMe (20 mol%)SMe

MeS

O

S

98%

91%

NH2

H2N

HN

85%

Dioxane, reflux, 8 h

Yorimitsu, H. et al. Angew. Chem., Int. Ed. 2018, 57, 4663.

Chatani, N.; Tobisu, M. et al. Synlett 2019, 30, 1995.

Cho, C.-G. et al. Tetrahedron 2011, 52, 6015.

ヘテロヘリセンの合成戦略

10

S

O

OO

O

S S

O

OO

O

Y

X

+

Z Z

O

OZ

X+

(Z = O, S, NTs)

(Z = O, NTs)ZO

O O

OZ

Z

X X+

Y

O

O

Y

O

O

ヘテロ[4]ヘリセンの合成

11

Z

Br

Z

O

O

NTs = 93%

Pd2(dba)3・CHCl3 (1.2–2.5 mol%)PPh3 (5.0–10 mol%)

K3PO4 (6.0 eq)Dioxane–H2O (2/1)

120 °C, 10–17 h(1.1 eq) O = 92%

S = 81%

BOO

pin+

(Z = O, S, NTs)

NTsO S

93%96% 88%

Z

O

O

TfOH (10 mol%)

HFIP, 0 °C, 40 min

Z

ヘテロ[5]ヘリセンの合成

12

BOO

pinZ

Br Br

Pd2(dba)3・CHCl3 (2.5–2.6 mol%)SPhos (5–10 mol%)K3PO4 (6.0–6.1 eq)

Dioxane–H2O (2/1)120 °C, 5–15 h ZO

O O

O

(2.2 eq)NTs = 78%

O = 53%

+

(Z = O, NTs)

ZO

O O

O

TfOH (15–20 mol%)

HFIP, 0 ºC to RT, 40 min

O NTs

90% 88%

チア[6]ヘリセンの合成

13

S

O

OO

O

S

O

OO

O

BpinO

O

Pd2(dba)3・CHCl3 (2.6 mol%)SPhos (10 mol%)

K3PO4 (6.0 eq)

Dioxane–H2O (2/1)reflux, 9 h

(1.1 eq)

92%

S

63%

HFIP, 0 ºC to RT, 40 min

TfOH (20 mol%)

S

Br O

O

ダブルヘリセンの光学特性

14

DNH

DPC

HH

–2.5

–2.1

–0.9

–2.5

–2.1

–1.5

In dichloromethane at 25 °C. glum: luminescencedissymmetry factor; g/n: dissymmetry factor per one benzene unit.

DNH DPC HH

Helicene glum/10–3 (glum/n)/10–4

Mori, T. et al. Commun. Chem. 2018, 38.

多重ヘリセン合成の従来法

15

OTf

TMS

CsF (6.0 eq)Pd2(dba)3 CHCl3 (10 mol%)

MeCN, RT, 24 h54%

Tsurusaki, A.; Kamikawa, K. et al. J. Am. Chem. Soc. 2017, 139, 18512.See also: Segawa, Y.; Itami, K. et al. Chem. Sci. 2019, 10, 2326.

Wang, J. et al. Angew. Chem., Int. Ed. 2019, 58, 587.

t-Bu

t-Bu

t-Bu

t-Bu

DDQ (4.8 eq)TfOH (20 eq)

CH2Cl2, 0 ºC, 2 h75%

Müllen, K.; Narita, A. et al. Angew. Chem., Int. Ed. 2017, 56, 3374.

16

ダブルヘリセンの合成戦略

O

O O

O

XX

Y

O

O+

O O

YOO

+

OO

O O

X X

O

O O

O

X

X

Y

O O

OO

+

ダブル[4]ヘリセンの合成

17

90%

O

O O

O

OOOO

86%

HFIP0 °C, 40 min

HFIP0 ºC, 40 min

B(OH)2

Br

Br

Br Br

O

O O

O

OOOO

TfOH (15 mol%)

TfOH (15 mol%)

cat. Pd

Method A2 (2.2 eq), Pd2(dba)3・CHCl3 (2.9 mol%), SPhos (12 mol%), K3PO4 (5.5 eq)Dioxane–H2O (2/1), 120 ºC, 5 h

Method B2 (5.0 eq), Pd2(dba)3・CHCl3 (2.4 mol%), PPh3 (9.2 mol%), Na2CO3 (5.5 eq)Dioxane–H2O (2/1), 120 ºC, 8 h

86%

2

70%

Method A

Method B

18

ダブル[4]ヘリセンの合成

90%

O

O O

O

OOOO

86%

HFIP0 °C, 40 min

HFIP0 ºC, 40 min

B(OH)2

Br

Br

Br Br

O

O O

O

OOOO

TfOH (15 mol%)

TfOH (15 mol%)

cat. Pd

Method A2 (2.2 eq), Pd2(dba)3・CHCl3 (2.9 mol%), SPhos (12 mol%), K3PO4 (5.5 eq)Dioxane–H2O (2/1), 120 ºC, 5 h

Method B2 (5.0 eq), Pd2(dba)3・CHCl3 (2.4 mol%), PPh3 (9.2 mol%), Na2CO3 (5.5 eq)Dioxane–H2O (2/1), 120 ºC, 8 h

86%

2

70%

Method A

Method B

ダブル[5]ヘリセンの合成

19

Br

Br

O

O O

O

O

O

O

O

O

OO

O

Bpin

OO

+

Suzuki–MiyauraCoupling

cat. TfOH HFIP

Bpin

ダブル[5]ヘリセン環化前駆体の調製

20

BOO

(1.1 eq)

Br

Br

OO

65%O

O

O

O

O

OO

OBr

BrBpin

OO

+

(2.2 eq)

Pd2(dba)3・CHCl3 (2.5 mol%)SPhos (10 mol%)K3PO4 (6.1 eq)

DMF–H2O (2/1)90 °C, 18.5 h

OOI

88%

Pd2(dba)3・CHCl3 (1.6 mol%)PPh3 (6.4 mol%)K3PO4 (4.0 eq)

Dioxane–H2O (2/1)120 °C, 2 h

(Bpin)2 (1.1eq)AcOK (4.1 eq)

PdCl2dppf・dcm (1.0 mol%)

Dioxane, reflux, 14 h

Bpin

51%

O

O O

O

PCy2MeO

MeO

SPhos

pin

ダブルヘリセンの作り分け

21

FeCl3 (10 eq)

CH2Cl2–CH3NO2

(20/3, 0.01 M)0 ºC to RT, 21 h

[4,4] 18%TfOH (50 mol%)

HFIP–CH2Cl2(10/1, 0.18 M)60 ºC, 40 min

O

O

O

O

O

OO

O

[5,5] 14%

[5,4] 26%

TfOH (50 mol%)

HFIP–CH2Cl2 (10/1, 0.18 M)0 ºC, 40 min

TfOH (400 mol%)

HFIP–CH2Cl2 (10/1, 0.018 M)0 ºC, 40 min

分子内酸化的C–Hカップリング(Scholl反応)

22

t-Bu

t-Bu

t-Bu

t-Bu

TfOH (110 eq)DDQ (2.1 eq)

CH2Cl2, 0 ºC, 5 h

91%

Riu, R.-S. et al. Org. Lett. 2011,13, 4644.

23

ダブルヘリセンの作り分け

FeCl3 (10 eq)

CH2Cl2–CH3NO2

(20/3, 0.01 M)0 ºC to RT, 21 h

[4,4] 18%TfOH (50 mol%)

HFIP–CH2Cl2(10/1, 0.18 M)60 ºC, 40 min

O

O

O

O

O

OO

O

[5,5] 14%

[5,4] 26%

TfOH (50 mol%)

HFIP–CH2Cl2 (10/1, 0.18 M)0 ºC, 40 min

TfOH (400 mol%)

HFIP–CH2Cl2 (10/1, 0.018 M)0 ºC, 40 min

24

[5]ヘリセン骨格を2つ有するダブルヘリセンの合成

BrBr

O O O O

OO OO

O O O O

Bpin

OO

(2.2 eq)

Pd2(dba)3・CHCl3 (2.5 mol%)SPhos (10 mol%)K3PO4 (6.0 eq)

DMF–H2O (2/1)90 °C, 19 h

52%

HFIP0 ºC to RT, 40 min

TfOH (210 mol%)

OO OO

O O O O

N.D.

22%

25

[7]ヘリセン骨格を有するらせん状分子の合成

BrBr

O O O O

OO OO

O O O O

Bpin

OO

(2.2 eq)

Pd2(dba)3・CHCl3 (2.5 mol%)SPhos (10 mol%)K3PO4 (6.0 eq)

DMF–H2O (2/1)90 °C, 19 h

52%

HFIP0 ºC to RT, 40 min

TfOH (210 mol%)

OO OO

O O O O

N.D.

22%

総括

26

S

X(X = O, NTs)

BOO

Bpin

OO

HFIPcat. TfOHBr

Br

Br Br

OO OO

I I

OO

O O

X

Br Br

SBr

OO

(X = O, NTs)

CycloaromatizationSuzuki–MiyauraCoupling

cat. TfOH

HFIPO

O

pin

27

28

HFIPのイオン化力

29

ROH

Solvolysisk

ROH

Nucleophilicty (NOTs)

EtOH

0.00

(CH3)2CHOH

0.12

(CF3)2CHOH

-4.27

H2O

-0.44

CF3CH2OH

-3.0

80% EtOH / H2O

0.0

Tsuno, Y. et al. Bull. Chem. Soc. Jpn. 1994, 67, 2233.Bentley, T. W. et al. Prog. Phys. Org. Chem. 1990, 17, 121.

OTs OR

HFIPの求核力

30

ブレンステッド酸による反応性の違い

ブレンステッド酸による反応性の違い

SO O

F3COH

F3C O

OH

pKa = –14 pKa = –0.25

������ ��� �

(TfOH)

�������(TFA)

Entry

1

2

3

4

OAcid (X mol%)

HFIP, Conditions

Acid

CF3COOH

CF3COOH

CF3SO3H

CF3SO3H

X / mol%

100

10

10

4

Conditions

RT, 16 h

RT, 16 h

0 °C, 20 min

0 °C, 20 min

Yield

92

(41)

98

93Isolated yield. 1H NMR is shown in parentheses

溶媒検討

O OH

H+

OH

�������H+, H2O

H

推定反応機構 (エノール型中間体への異性化)

OH

H+

Ph

OH

OHOPolymer

H+

O OH

H+

OH

�������H+, H2O

H

推定反応機構 (カチオン中間体の安定化)

OH

H+

Ph

OH

OHOPolymer

H+in HFIP

推定反応機構

OH OH OH OH2H+

HH

H+

H+

H+, H2O

�������

OTfOH (4 mol%)

HFIP, 0 °C to RT, 20 min

36

OO

OO

H OO

H

O

HO

O

HO

HHH+

H+

HOOH

反応機構

37

OO

H

O

OH

Ph

O

OH

Ph

O

OH

polymerization

副生成物の反応機構

38

◆臭素化

◆ Friedel-Crafts型環化

Balci, M. Tetrahedron 1999, 55, 12853.

Br2 (1.0 eq)

120 oC

Br

90%

Br

0%

αβ

MeO α -0.234

β -0.235

OMe

OMe

3.5 kcal/mol

6.7 kcal/molminor

major

ブレンステッド酸による反応性の違い

39

O

O

1st Cyclization 2ed Cyclizationa

b

O

O

OO

O

O

1st CyclizationO

O

a

b2ed Cyclization

O

O

ブレンステッド酸による反応性の違い

40

271

1'

TfOH (X mol%)

HFIP (Y M), 0 oC, 15 min

Entry

1

2

3

4

5

X (mol %)

15

15

15

10

3

Y (M)

0.1

0.3

1.0

0.3

0.3

Total yield (%)a

quant.

quant.

86

quant. (97)

77

1/1'b

>99/1

>99/1

93/7

>99/1

>99/1

a) 1H NMR yield. Isolated yield is shown in parentheses.b) Isomer ratio was determined by 1H NMR spectroscopy.

OO

O

O

ビスアセタールの酸の当量および濃度検討

41

-0.279

-0.178O

OH

OHO

OHO

minor

major

1.3 kcal/mol

8.9 kcal/mol

環化における位置選択性の説明①

42

OH

O

O

OO

O

OOH

O

O

O

–0.248

–0.389

OH

環化における位置選択性の説明②

トリフルオロメタンスルホン酸の水和

SPhosの安定構造

45

Br

O (Ph3PCH2OMe) Cl (2.0 eq)t-BuONa (3.0 eq)

THF, 0 oC, 10 minBr

OMe

HCl (10 eq)

Acetone-H2O (2:1)0 oC to RT, 12 h

Br

O

TsOH H2O (10 mol%)ethylene glycol (3.0 eq)

Toluene, reflux, 11 hdean-stark

BrO

O

B(pin)O

OPdCl2(dppf) CH2Cl2 (5 mol%)B2(pin)2 (1.1 eq)AcOK (6.0 eq)

Dioxane, reflux, 8 h

88%(E/Z = 50:50)

78% (2 steps) 86%

アセタール部位を有するボロン酸エステルの調製

46

I I O

O O

O

cat. [Pd] (X mol%)Ligand (Y mol%)

K3PO4 (6 eq)

Dioxane–H2O (2/1)120 °C, 2–14 h

(2.2 eq)

Entry Ligand[Pd] Yield / % n

dppe: n = 2dppp: n = 3

O

Me Me

PPh2PPh2

XantPhos

Determined by 1H NMR using CH2Br2 as an internal standard.

PdCl Cl

N

NN

Cl

i-Pr

i-Pr i-Pr

i-Pr

PEPPSI-IPr

+

1

2

3

4

5

6

7

8

Pd(PPh3)4

PdCl2(PCy3)2

Pd2(dba)3・CHCl3

Pd2(dba)3・CHCl3

Pd2(dba)3・CHCl3

Pd2(dba)3・CHCl3

Pd2(dba)3・CHCl3

PEPPSI-IPr

PPh3

P(o-tol)3

XantPhos

dppe

dppp

31

25

32

26

9

10

9

21

PPh2Ph2P

5

5

3

3

3

3

3

5

10

10

10

10

10

X / mol% Y / mol%

——

— —

BOO

pin

条件検討

47

条件検討

P R2

R4

R1R1 Cy-JohnPhos: R1 = Cy, R2, R3, R4 = Ht-Bu-JohnPhos: R1 = t-Bu, R2, R3, R4 = HDavePhos: R1 = Cy, R2, R3 = H, R4 = NMe2Ph-DavePhos: R1 = Ph, R2, R3 = H, R4 = NMe2SPhos: R1 = Cy, R2, R4 = OMe, R3 = H

R3

I I O

O O

O

cat. [Pd] (X mol%)Ligand (Y mol%)

K3PO4 (6 eq)

Dioxane–H2O (2/1)120 °C, 2–14 h

(2.2 eq)

Entry Ligand[Pd] Yield / %

Determined by 1H NMR using CH2Br2 as an internal standard.

+

1

2

3

4

5

Pd2(dba)3・CHCl3

Pd2(dba)3・CHCl3

Pd2(dba)3・CHCl3

Pd2(dba)3・CHCl3

Pd2(dba)3・CHCl3

Cy-JohnPhos

t-Bu-JohnPhos

DavePhos

Ph-DavePhos

SPhos

35

36

39

28

49

3

3

3

3

3

11

11

11

10

11

X / mol% Y / mol%

BOO

pin

48

Entry

1

2

3

4

5

6

7b

Yield / %

49

28

28

34

50

50

(45)

Solvent

Dioxane

Toluene

THF

DMA

DMF

DMF

DMF

T / °C

120

120

120

160

160

90

90

Determined by 1H NMR using CH2Br2 as an internal standard.Isolated yield is shown in parentheses. a) 0.1 mmol scale. b) 2.0 mmol scale.

I I O

O O

O

Pd2(dba)3・CHCl3 (3 mol%)SPhos (X mol%)

K3PO4 (6 eq)

Solvent–H2O (2/1)T °C, 2–20 h

(2.2 eq)

+

X / mol%

10

10

10

10

10

10

5

BOO

pin

条件検討

49

環化前駆体の構造①

O

O O

O O

O

O

O

anti/syn = 2/1

Br Br BrBr

Prim, D. et al. Org. Lett. 2011, 13, 4450.

multiplet

回転しにくく完全にddが2つ見える

50

環化前駆体の構造②

O

OO

O O

OO

O

anti/syn = 3/1

Kharafi, A.; Panihi, F. J. Organomet. Chem. 2012, 717, 141.

51

S OMe

Br

S O

Br

S

Br

S

S

Br

Br

Br2 (2.3 eq)NaOAc (2.8 eq)

CH2Cl20 ºC, 2 h

95%

n-BuLi (1.1 eq)DMF (5.0 eq)

Et2O–78 ºC to RT, 0.5 h

ClPPh3CH2OMe (1.5 eq)t-BuONa (2.0 eq)

THF–CH2Cl2 (8/3)0 ºC, 2 h

90%

TsOH・H2O (1.0 eq)

Toluelereflux, 3 h

80%(2 steps)

OOHO

OH (2.0 eq)

アセタールと臭素置換基を併せ持つベンゾチオフェンの調製

52

TfOH (50 mol%)

[5,5] [5,4]

+Solvent, Temp40–100 min

Entry

1

2

3

4b

5

[5,5] / %a

13

13

13

9

15

[5,4] / %a

24

23

21

18

23

a) Determined by 1H NMR using CH2Br2 as internal standard. b) microwave

O

O

O

O

O

OO

O

Temp / °C

60

60

80

80

60

[5,5]+[5,4] / %a

37

36

34

27

38

Solvent

HFIP

HFIP–DCE (10/1, 0.18 M)

HFIP–DCE (10/1, 0.18 M)

HFIP–DCE (10/1, 0.18 M)

HFIP–CH2Cl2 (10/1, 0.18 M)

九環式のS字型ダブルヘリセンの条件検討

53

Entry

1

2

3

4

5

X / mol%

50

420

50

100

50

[5,5] / %

15

3

trace

11

21

[5,4] / %

23

10

trace

23

11

Determined by 1H NMR using CH2Br2 as an internal standard. Isolated yield is shown in parentheses.

Temp / °C

60

0

0

60

60

[5,5]+[5,4] / %

38

13

trace

34

32

Solvent

HFIP–CH2Cl2 (10/1, 0.18 M)

HFIP–CH2Cl2 (10/1, 0.18 M)

HFIP–CH2Cl2 (10/1, 0.018 M)

HFIP–CH2Cl2 (10/1, 0.18 M)

HFIP–CH2Cl2 (1/1, 0.18 M)

TfOH (X mol%)

[5,5] [5,4]

+Solvent, Temp40–100 min

O

O

O

O

O

OO

O

九環式のS字型ダブルヘリセンの条件検討

54

SO O

CF3OH

CF3 O

OH

TsOH

pKa = –2.8

H3O+

pKa = –1.7

CF3

CF3OH

pKa = 9.3

MeOH

H

pKa = –2.2

pKa = –0.25

pKa = –14

HCl

pKa = –8.0

pKa