Flash steam geothermal l t power plants

Preview:

Citation preview

Flash steam geothermall tpower plants

f dMain features and issues

Fabio Sabatelli

Enel Green Power Pisa Oct 9th 2013Enel Green Power Pisa, Oct. 9 , 2013

Presentation overviewPresentation overview

illi d d llh d i ll i• Drilling pad and wellhead installations• Gathering systemg y• Flash steam power plant• Main components• Main components• Mercury and Hydrogen Sulfide abatement• Operation and maintenance• Remote controlRemote control• Operation problems

2

Power generation technologyPower generation technology

3

Geothermal generation in ItalyGeothermal generation in ItalyLarderello/Lago (250 km2) Larderello/Lago (250 km2) 

Since 1913 – superheated steam Installed capacity: 478 MW

Travale Radicondoli (30 km2)

Since 1913 – superheated steam Installed capacity: 478 MW

Travale Radicondoli (30 km2)Pisa FIRENZE

Travale‐Radicondoli (30 km2)  Since 1950 – saturated steam Installed capacity: 175 MW

Travale‐Radicondoli (30 km2)  Since 1950 – saturated steam Installed capacity: 175 MW

SienaPisa FIRENZE

Piancastagnaio/Bagnore(Mt Amiata – 50 km2)Piancastagnaio/Bagnore(Mt Amiata – 50 km2)

GrossetoROMA

VITERBO

(Mt. Amiata 50 km ) Since 1955 – water‐dominated Installed capacity: 69 MW

(Mt. Amiata 50 km ) Since 1955 – water‐dominated Installed capacity: 69 MW

ROMA

722 MW gross generating capacity

4

g g g p y

Drilling pad layoutDrilling pad layout

5

Drilling pad featuresDrilling pad features

• Underground piping in well pad area (avoids interference with rig for well work‐over)g )

• Separator with dedicated line for well start‐up and initial dischargeand initial discharge

• Water pit• Water‐steam separation (at wellhead)

6

Typical wellheadTypical wellhead

7

Gathering system: layoutsGathering system: layouts

• Separation at wellhead– Separate steam andp

(saturated) water flows

• Separation at satellite stations• Separation at satellite stations– Two‐phase flow + separate flows

• Separation at the power plant– Two‐phase flowTwo phase flow

Source: DiPippo

8

Two Phase flowTwo‐Phase flow

• Higher pressure drop• Flow regimeFlow regimeconsiderations(slug to be avoided)(slug to be avoided)

• Transient analysishard to implement

• Downhill strongly• Downhill stronglypreferred

Mandhane flow map

9

Typical production curvesTypical production curves

40

50)

30

40

sure (b

ar)

Bagnore 22CP 1

20

head

 pres

10Wellh

00 100 200 300 400

Total flow rate (t/h)

10

Total flow rate (t/h)

Pipeline optimizationPipeline optimization

• CapEx increases with diameter (approx. linear) and thermal insulation thickness

• Thermal loss increases with external diameter and decreases with insulation thicknessand decreases with insulation thickness

• Pressure drop (power loss) decreases with diameter (5th power: Δp = 4fLρu2/d)

• Optimum at the lowest total lifecycle cost• Optimum at the lowest total lifecycle cost (strongly dependent on electricity FIT)

11

Pipeline optimizationPipeline optimization

INT. RATE 10%TAXES 30%GENERATION 1 kWGEN. HRS. 8400 hr/yrENERGY VALUE 170 €/MWh

1,2

4

ENERGY VALUE 170 €/MWhACTUAL. 15 YRS. 7603 €/kW

100 t/h 27,78 kg/s18 bar2% NCG

0,8Cape

x (M

€)2

Total (M€)

2% NCG206,7 °C (saturated)

1 km length80 mm insulation

u hIN Q pOUT hOUT Tout Xout Win Wout ΔW LOSS CAPEX TOTALID

0,4300 500 700 900

ID (mm)

0300 500 700 900

ID (mm)

u hIN Q pOUT hOUT Tout Xout Win Wout ΔW LOSS CAPEX TOTAL(mm) (in) (m/s) (kJ/kg) (kW) (bar) (kJ/kg) (°C) (%) (kW) (kW) (kW) (M€) (M€) (M€)

300 12 49,2 2742,6 143 12,86 2737,5 192,5 100,00% 15598 14640 958 7,28 0,49 7,77350 14 35,3 2742,6 160 15,92 2736,9 200,7 99,87% 15598 15220 377 2,87 0,53 3,40450 18 20,9 2742,6 195 17,45 2735,6 205,2 99,67% 15598 15455 142 1,08 0,64 1,72600 24 11 5 2742 6 247 17 87 2733 7 206 3 99 54% 15598 15502 95 0 72 0 87 1 59

ID

600 24 11,5 2742,6 247 17,87 2733,7 206,3 99,54% 15598 15502 95 0,72 0,87 1,59800 32 6,4 2742,6 315 17,97 2731,3 206,6 99,40% 15598 15496 101 0,77 1,07 1,841000 40 4,1 2742,6 384 17,99 2728,8 206,7 99,26% 15598 15478 120 0,91 1,32 2,22

12

Pipeline designPipeline design

• Loads/stresses– Weight (even steam pipes as if filled with water)g ( p p )– Internal pressureWind snow seismic– Wind, snow, seismic

– Dynamic loads (esp.h fl )two‐phase flow)

– Thermal expansion– Friction on supports

13

Pipeline routePipeline route

• Safety• EnvironmentEnvironment• Land availability• Cost

14

Gathering systemGathering system

15

Typical gathering systemTypical gathering system

16

Power generationPower generation

l h l• Flash steam cycle– Backpressure (single stage)– 1 to 3 flash stages (2 stages most common)– Rule of thumb for flash pressure optimizationp p– Lower pressure limit 1.2 to 2 bar

• Binary cycle• Binary cycle• Combinations thereof

– Flash + binary (bottoming cycle)– Backpressure turbine + binary

17

Flash steam power plantFlash steam power plant

• By far the most common technology, developed in New Zealand in the 1950sp

18

Single flash power plantSingle flash power plant

• Hot water from the reservoir flashes into the well, as a consequence of the pressure dropq p p

• Steam is fed to the turbine from a surface separatorseparator

• The power plant is quite similar to a dry‐steam facility

19

Single flash power plantSingle flash power plant

20

Single flash power plantSingle flash power plant

21

Double flash power plantDouble flash power plant

22

Flash optimizationFlash optimization

• Steam flow decreases with flash pressure• Power generation per unit mass flow of steamPower generation per unit mass flow of steam increases with flash pressure i f ifiMaximum of specific power output

23

Flash optimizationFlash optimization

• Thermodynamic calculations• Rule of thumb (equal temperature split)Rule of thumb (equal temperature split)

– Tflash opt = (Tres – Tcond)/2 (single flash)T T (T T )/3– Tflash 1 opt = Tres – (Tres – Tcond)/3

– Tflash 2 opt = Tres – 2(Tres – Tcond)/3 (double flash)p

• Bottoming binary cycle using flashed water

24

Flash optimizationFlash optimizationTres 245 °C NCG 0,10% hbrine 1061,6 kJ/kg Gbrine 682 t/h Hbrine 201,1 MWt

p 7,92 barTflash1 170 0 °C WATER NCG 0 00% pflash 7 92 bar hLsat 719 12 kJ/kgTflash1 170,0 C WATER NCG 0,00% pflash 7,92 bar hLsat 719,12 kJ/kgWturb 16708 kW hVsat 2767,1 kJ/kg

STEAM NCG 0,60% hV 2766,90 kJ/kg r 2047,94 kJ/kgTcond 41,5 °C NCG 0,0068 t/h Xflash 16,72%Tsplit(singleflash) 143,2 °C Gliq 568,0 t/h 113,5 MWtTsplit(doubleflash) 177,2 °C Gvap 114,0 t/h 87,7 MWt

682,0 t/h 201,1 MWtTflash2 170,0 °C WATER NCG 0,00% pflash 7,92 bar hL 719,11 kJ/kgWturb 0 kW hV 2767,1 kJ/kgTsplit(doubleflash) 109 3 °C STEAM NCG 0 00% hV 2767 06 kJ/kg r 2047 94 kJ/kgTsplit(doubleflash) 109,3 C STEAM NCG 0,00% hV 2767,06 kJ/kg r 2047,94 kJ/kg

Xflash 0,00%Gliq 567,9 t/h 113,4 MWtGvap 0,0 t/h 0,0 MWt

113,5 MWt18,0

18,4

19,0

17,2

17,6

Power (M

W)

13,0

15,0

17,0

wer (M

W)

CONDENSING

16,4

16,8

120 130 140 150 160 170T flash (°C)

7,0

9,0

11,0

120 130 140 150 160 170 180 190

Pow

BACKPRESSURE

25

T flash ( C)T flash (°C)

Flash optimization constraintsFlash optimization constraints

h l l• Technical issues: minimum pressure, silica scaling (for high Tres)res

• CapEx issue (increase at lower pressures)

Source: DiPippo

26

Resource utilization efficiencyResource utilization efficiency

cy*

fficien

ergy

ef

TR 230°C ƞT 0.75 TA 45°C

Exe

Flash stages* 2nd principle eff.

27

Power plantsPower plants

28

Power plant and gatheringPower plant and gathering

29

Power plant featuresPower plant features

• Wet (saturated) steam at turbine inlet– Vane‐type demister to minimize erosion– Efficient water removal system in the turbine– Blade coating/protection (erosion)– Blade materials (corrosion)– Entrained water contains dissolves salts that may yprecipitate after isenthalpic expansion (first stage nozzles, HP shaft labyrinth seals)

– Double steam inlet (inlet valve testing)– Low p & T (no creep, low efficiency)

30

Power plant features

NCG i

Power plant features

• NCG in steam– Condenser selection (direct‐contact or surface)G li ti i d– Gas cooling section in condenser

– NCG extraction system• Heat rejection• Heat rejection

– Wet cooling towers (steam condensate as make‐up water)• counter‐flow• counter‐flow• cross‐flow

– Hybrid cooling towers– Dry cooling towers– Air cooled condenser

31

Power plant flexibilityPower plant flexibility

Inlet pressure adjustment with 1st stage (impulse) nozzle area and stage #g

32

Simplified flow schemeSimplified flow scheme

33

P&IDP&ID

34

Turbine Condenser configurationTurbine‐Condenser configuration

Toshiba

Source: T

35

Power plant layoutPower plant layout

Travale 4 (40 MW)

36

Travale 4 (40 MW)

Powerhouse viewPowerhouse view

Chiusdino 1 (20 MW)Chiusdino 1 (20 MW)

37

Power plant 3DPower plant 3D

Bagnore 4

38

Power plant layoutPower plant layout

Bagnore 4

39

Power plant viewPower plant view

Bagnore 4

40

Main machineryMain machinery

S bi• Steam turbine– Single flow/Double flow

• Generator• Condenser

– Direct‐contact/Surface

• Hotwell pump• NCG extraction system

– Ejectors/LRVP/Compressor

• Cooling tower– Wet/Hybrid/Dry

41

Single and double flow turbinesSingle and double flow turbines

Source: Mitsubishi

42

Double admission turbineDouble admission turbine

43

Turbine (20 MW reaction)Turbine (20 MW, reaction)

44

Turbine rotor (20 MW reaction)Turbine rotor (20 MW, reaction)

45

Turbine (20 MW impulse)Turbine (20 MW, impulse)

46

Turbine (20 MW impulse)Turbine (20 MW, impulse)

47

Turbine (20 MW impulse)Turbine (20 MW, impulse)

48

Turbine (60 MW impulse)Turbine (60 MW, impulse)

49

Turbine rotor (60 MW impulse)Turbine rotor (60 MW, impulse)

50

Turbine (40 MW reaction)Turbine (40 MW, reaction)

51

Turbine (40 MW reaction)Turbine (40 MW, reaction)

52

DC Condenser (40 MW)DC Condenser (40 MW)

53

CondenserCondenser

54

Hotwell pumpHotwell pump

55

Cooling towersCooling towers

56

NCG extraction from condenserNCG extraction from condenser• Steam ejectors (2 or 3 stages)j ( g )

57

NCG extraction from condenserNCG extraction from condenser• (Steam ejector) + LRVP( j )

58

NCG extraction from condenserNCG extraction from condenser• Centrifugal compressorg p

59

NCG compressorNCG compressor

60

NCG extraction from condenserNCG extraction from condenserSelection is based on:• NCG flow (steam flow * NCG content)• Condenser pressure• Availability of vendorsAvailability of vendors• Economic considerations

– Value of electricity/steam– Discount rate

61

Abatement of H S and Hg (AMIS)Abatement of H2S and Hg (AMIS)AMIS process, developed by Enel, is suitable for:p , p y ,• Direct‐contact condensers (increased H2S partitioning in the NCG)partitioning in the NCG)

• NCG with low calorific value (over 95% w. CO2) th t t th l id tithat prevents thermal oxidation

• Unattended operation (sulfur sludge filtration, chemistry control)

• Small size units: low O&M requirements,Small size units: low O&M requirements, reliable operation

62

AMIS simplified schemeAMIS simplified scheme

MX-1TC

C-1

R-1 TREATED NCGTO CT

TCMX-2

NCG FROM COMPRESSOR

C-2

R-2

P-1

K-1 M

K-2 M

O2CP-1

WATER FROM CT

WATER TO CT

63

AMIS plantsAMIS plants

64

Operation & MaintenanceOperation & Maintenance

l• Remote control center• Data supervision by O&M employees• Local inspection (visual control, daily maintenance))

• Interventions (alarms, shut‐downs)• Scheduled maintenance• Scheduled maintenance• Consumables & spare parts

i i i ( ll )• Reservoir monitoring (well measurements)• Work‐overs, drilling of make‐up wells

65

O&M highlightsO&M highlights

• Availability is of paramount importance– O&M best practices (remote control & diagnostics)p ( g )– Scheduled maintenance optimizationSpare parts management (substitution & off line– Spare parts management (substitution & off‐line repair)

• Efficiency– Power plants has to adapt to reservoir changesp p g– Machinery repair & improvement (workshops)

66

Remote controlRemote control

• Operation data available on‐line (Internet)– General overview– Synoptic schemesMeasurements– Measurements

• Physical (p, T, flows, …)M h i l ( ib i )• Mechanical (vibrations)

• Electrical

– Alarms

67

Remote control OverviewRemote control ‐ Overview

68

Remote control SchemesRemote control ‐ Schemes

69

Remote control SchemesRemote control ‐ Schemes

70

Remote control SchemesRemote control ‐ Schemes

71

Remote control SchemesRemote control ‐ Schemes

72

Remote control SchemesRemote control ‐ Schemes

73

Remote control MeasuresRemote control ‐Measures

74

Remote control MeasuresRemote control ‐Measures

75

Remote controlRemote controlDiagnost

• Targets:– Quick alert

gics

Q– Summarized info

Plant “signature”

Statistical variations

Video pages

SignalsSignals

76

Remote controlRemote control

• Diagnostics alarms:– Statistical trend analysis of data w/o seasonal y /variation (e.g. vibrations, frozen measures, etc.)

i i f i l b h i (“ l i ”)– Deviation from typical behavior (“plant signature”) in the relationship between parameters featuring 

l i i i lseasonal variations, in plant start‐up, etc.– “Rules” defined by operational experience

77

“Plant signature”Plant signature

f• Performance control:– CWT vs. WBT– Inlet pressure vs. pinlet flow rate

– kg/kWh vs. condenser vacuum

– NCG suction temperature vs. condenser vacuum

78

“Plant signature”Plant signature

• Start‐up: vibrations

79

Remote controlRemote control

Summarized info (color coding) for quick alert

80

Results (unavailability)Results (unavailability)

81

Operation problems: erosionOperation problems: erosion

82

Operation problems: cloggingOperation problems: clogging

83

Operation problems: washingOperation problems: washing

84

Operation problems: corrosionOperation problems: corrosion

85

Operation problems: pittingOperation problems: pitting

86

Operation problems: creviceOperation problems: crevice

87

Operation problems: SCCOperation problems: SCC

88

Operation problems: SCCOperation problems: SCC

• 60 MW turbine

89

Operation problems: fatigueOperation problems: fatigue

• Turbine shaft failure

90

Operation problems: mechanical failureOperation problems: mechanical failure

• Compressor impeller failure

91

Operation problems: depositsOperation problems: deposits

• Turbine labyrinth seal area

92

Operation problems: depositsOperation problems: deposits

• Turbine labyrinth seal area

93

ReferencesReferences• DiPi R Geothermal Energ as a So rce of Electricit• DiPippo, R. Geothermal Energy as a Source of ElectricityDOE/RA/28320‐1. Washington, D.C.: U.S. Dept. of Energy (1980)

• Kestin, J., DiPippo, R. and Khalifa, H.E. (eds.) Sourcebook on the P d ti f El t i it f G th l E DOE/RA/28320 2Production of Electricity from Geothermal Energy DOE/RA/28320‐2 Washington, D.C.: U.S. Dept. of Energy (1980)

• Armstead, H.C.H. Geothermal Energy London/New York: E.&F.N. S (2nd d 1983)Spon. (2nd edn., 1983)

• Palmerini, C.G. Geothermal Energy in “Renewable Energies: Sources for Fuels and Electricity”. T.B. Johansson, H. Kelly, A.K.N. Reddy, R.H. Willi ( d ) 549 591 W hi D C I l d P (1993)Williams (eds.), pp. 549‐591. Washington, D.C.: Island Press (1993)

• Dickson, M.H. e Fanelli, M. (eds.) Geothermal Energy Chichester, J. Wiley & Sons (1995)

• DiPippo, R. Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact (3rd edn.) Oxford, Elsevier (2012)

94

Thank You!VISIT GEOELEC.EU

95

Recommended