Fundamental of Groundwater Hydrology Ted Waysite.iugaza.edu.ps › ... › 2010 › 02 ›...

Preview:

Citation preview

Fundamental of Groundwater Hydrology

Ted Way

OutlineHydrologic cycleAquifersBasic groundwater equationsWell drilling and completionGroundwater level and velocityDefinition of key hydrologic parametersGroundwater/surface water interactionHydrologic testsSurface water monitoring/event samplingGround water problems

體積 百分比

OutlineHydrologic cycleAquifersBasic groundwater equationsWell drilling and completionGroundwater level and velocityDefinition of key hydrologic parametersGroundwater/surface water interactionHydrologic testsSurface water monitoring/event samplingGround water problems

Precipitation

Infiltration

Recharge

OutlineHydrologic cycleAquifersBasic groundwater equationsWell drilling and completionGroundwater level and velocityDefinition of key hydrologic parametersGroundwater/surface water interactionHydrologic testsSurface water monitoring/event samplingGround water problems

http://groundwater.ucdavis.edu/Publications/Harter_FWQFS_8083.pdf

http://www.bnl.gov/erd/Groundwater/GWreport01Files/Final.pdf.web.files/Appendix%20B.pdf

OutlineHydrologic cycleAquifersBasic groundwater equationsWell drilling and completionGroundwater level and velocityDefinition of key hydrologic parametersGroundwater/surface water interactionHydrologic testsSurface water monitoring/event samplingGround water problems

dxdhKv

e

xx φ

−=

WthS

bhK

zhbK

yhbK

yxhbK

xhbK zzyyxyxx +

∂∂

=+∂∂

+∂∂

+∂∂

∂+

∂∂

'

'

2

2

2

22

2

2

2

Water level measurements Precipitation,Pumping records

Pumping tests

Geologic study(drilling, geophysical study)

Pumping tests

Basic Groundwater Equations

h = water level elevationb = aquifer thicknessW = precipitation, pumping ratesK = hydraulic conductivityS = storage coefficientV = groundwater velocityΦ = effective porosity

Outline

Hydrologic cycleAquifersBasic groundwater equationsWell drilling and completionGroundwater level and velocityDefinition of key hydrologic parametersGroundwater/surface water interactionHydrologic testsGround water problems

http://ga.water.usgs.gov/edu/earthgwwells.html

Fetter C.W.,1999, Contaminant Hydrogeology, Second Edition, Prentice Hall

Geologic Cross-Sections

Fetter C.W.,1999, Contaminant Hydrogeology, Second Edition, Prentice Hall

http://www.jains.com/Pipefittings/jain%20pvc%20well%20casing%20and%20screen%20pipes.htmhttp://www.enviroequip.com/sales/screenandcasing50mm.htmhttp://www.ajaycorp.com/upvc-pipes-strainers-casing.html

http://www.wma-minelife.com/uranium/insitu/insitufr.htm

http://water.usgs.gov/owq/pubs/wri/wri964233/wri964233.pdf

http://cgsweb.moeacgs.gov.tw/ehome/Index10.htm

http://water.usgs.gov/owq/pubs/wri/wri964233/wri964233.pdf

Purposes of Monitoring wells

Groundwater level →water level fluctuations,→water quantity→ground water flow direction

Pumping tests/slug tests→aquifer properties

Water quality→sampling→in-situ measurement

Purposes of Monitoring wells

Groundwater level →water level fluctuations,→water quantity→ground water flow direction

Pumping tests/slug tests→aquifer properties

Water quality→sampling→in-situ measurement

Water Level Measurement

http://www.stevenswater.com/catalog/products/chart_recorders/datasheet/type_f.pdf

http://www.geotechnical.net/groundwaterpumps.shtml http://www.solinst.com/Prod/Data/428.pdf

Sampling pumps Bailers

Water Sampling

Ground

Gravel pack

6m

6m

5m

36m

Cover

Fine quartz

12m Cement+5%Bentonite

6mBentonite

Screen

3 to 5 casing volumesof water

OutlineHydrologic cycleAquifersBasic groundwater equationsWell drilling and completionGroundwater level and velocityDefinition of key hydrologic parametersGroundwater/surface water interactionHydrologic testsSurface water monitoring/event samplingGround water problems

http://imnh.isu.edu/digitalatlas/hydr/concepts/gwater/gwflow.htm

http://www.oregon.gov/DHS/ph/dwp/docs/gwater/grndwtr.pdf

Orange County, California

dxdhKv

e

xx φ

−=

WthS

bhK

zhbK

yhbK

yxhbK

xhbK zzyyxyxx +

∂∂

=+∂∂

+∂∂

+∂∂

∂+

∂∂

'

'

2

2

2

22

2

2

2

Water level measurements Precipitation,Pumping records

Pumping tests

Geologic study(drilling, geophysical study)

Pumping tests

Basic Groundwater Equations

h = water level elevationb = aquifer thicknessW = precipitation, pumping ratesK = hydraulic conductivityS = storage coefficientV = groundwater velocityΦ = effective porosity

OutlineHydrologic cycleAquifersBasic groundwater equationsWell drilling and completionGroundwater level and velocityDefinition of key hydrologic parametersGroundwater/surface water interactionHydrologic testsSurface water monitoring/event samplingGround water problems

K - Hydraulic Conductivity

Q

Q

L

v

Area A

hL

Darcy’s Law

French hydrologist Henry Darcy (1856)

Q ~ hL

Q ~ 1/L

Q ~ A

LhKAQ L=

Darcy’s Law

K = hydraulic conductivity

Lh

dldh L−=

dldhKAQ −=

dldhKv

eφ−=

hydraulic gradient

Φe = effective porosity

GravelCoarse sandMedium sandFine sandSiltTillClayMarine clayKarst LimestoneLimestoneSandstoneSiltstoneSaltAnhydriteShalePermeable basaltFractured bedrockWeathered graniteWeathered grabroBasaltCrystalline rock

Hydraulic Conductivity(m/sec)

10-14 10-13 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

Transmissivity(m2/sec)= Hydraulic conductivity(m/sec)x Aquifer thickness(m)

Darcy’s Law

Range of Values of Porosity

Unconsolidated deposits• Gravel 25-40%• Sand 25-50% • Silt 35-50%• Clay 40-70%Rocks • Fractured basalt 5-50%• Karst Limestone 5-50%• Sandstone 5-30%• Limestone,dolomite 0-20%• Shale 0-10%• Fractured crystalline rock 0-10%• Dense crystalline rock 0-5%

Effective Porosity

Clay and related materials 0 to 3%

Gravel, Sand, Gravel and Sand 25 to 35%

http://groundwater.orst.edu/under/images/permeabilityb.html

Gravel Sand Clay

Darcy’s Law

K = hydraulic conductivity

Lh

dldh L−=

dldhKv

eφ−=

hydraulic gradient

Φe = effective porosity

S – Storage Coefficient

http://flightline.highline.edu/cwhittington/G110/LectureNotes/WaterSystems.pdf

http://www.egr.msu.edu/igw/testing/Pumping%20near%20an%20impervious%20boundary.pdf

Storage Coefficient (Unconfined Aquifer)

Pump the well at a rate of 1 m3/minute for one day

Volumepumped = 1 m3/min x 1,440 minutes = 1,440 m3

Volumecone of depression = 14,400 m3

storage coefficient (S)= Volumepumped/Volumecone of depression= 1,440 m3/14,400 m3

= 10%= effective porosity = specific yield

pumping

cone ofdepression

initial water level

unconfinedaquifer

drainageeffect

Ranges of Values of Specific Yield

Material No. of analyses Range Arithmetic mean

Sandstone (fine) 47 0.02-0.40 0.21

Sandstone (medium) 10 0.12-0.41 0.27

Siltstone 13 0.01-0.33 0.12

Sand (fine) 287 0.01-0.46 0.33

Sand (medium) 297 0.16-0.46 0.32

Sand (coarse) 143 0.18-0.43 0.30

Gravel (fine) 33 0.13-0.40 0.28

Gravel (medium) 13 0.17-0.44 0.24

Gravel (coarse) 9 0.13-0.25 0.21

Silt 299 0.01-0.39 0.20

Clay 27 0.01-0.18 0.06

Limestone 32 0.00-0.36 0.14

From Morris and Johnson, 1967.

Storage Coefficient (Confined Aquifer)

storage coefficient (S)

= Volumepumped/Volumecone of depression

= 0.001 to 0.00001

= f(cm,cw)

∗ matrix compaction

∗ water expansion

initial water level

cone ofdepression

pumping

ConfinedAquifer

S = γb(α+φβ)

Ranges of Values of Specific Storage

Material Specific storage (m-1)

Loose sand 1.0x10-3 - 4.9x10-4

Dense sand 2.0x10-4 - 1.3x10-4

Dense sandy gravel 1.0x10-4 - 4.9x10-5

Plastic clay 2.0x10-2 - 2.6x10-3

Stiff clay 2.6x10-3 - 1.3x10-3

Medium-hard clay 1.3x10-3 - 9.2x10-4

Rock, fissured, jointed 6.9x10-5 - 3.3x10-6

Rock, sound Less than 3.3x10-6

i 19 2

solid

OutlineHydrologic cycleAquifersBasic groundwater equationsWell drilling and completionGroundwater level and velocityDefinition of key hydrologic parametersGroundwater/surface water interactionHydrologic testsSurface water monitoring/event samplingGround water problem

http://www.oregon.gov/DHS/ph/dwp/docs/gwater/grndwtr.pdf

http://www.hydrosphere.com/img/surface_water.jpg

http://ponce.sdsu.edu/groundwater_utilization_and_sustainability.html

Source: U.S. Geological Survey.Conceptual hydrological flow system in Georgia's coastal plains.

Base Flow

http://nevada.usgs.gov/wb/final/chapter5.pdf

http://pubs.usgs.gov/circ/circ1139/htdocs/natural_processes_of_ground.htm

http://nevada.usgs.gov/wb/final/chapter5.pdf

http://www.na.fs.fed.us/spfo/pubs/n_resource/wetlands/wetlands4_hydrology.htm

http://ga.water.usgs.gov/edu/graphics/piessw.gif

dxdhKv

e

xx φ

−=

WthS

bhK

zhbK

yhbK

yxhbK

xhbK zzyyxyxx +

∂∂

=+∂∂

+∂∂

+∂∂

∂+

∂∂

'

'

2

2

2

22

2

2

2

Measurement Precipitation recordPumping record

Pumping test

Geologic study(drilling, geophysical logs)

Pumping test

h = water level elevationb = aquifer thicknessW = precipitation, pumping ratesK = hydraulic conductivityS = storage coefficientV = groundwater velocityΦ = effective porosity

OutlineHydrologic cycleAquifersBasic groundwater equationsWell drilling and completionGroundwater level and velocityDefinition of key hydrologic parametersGroundwater/surface water interactionHydrologic testsSurface water monitoring/event samplingGround water problems

(1) Constant rate pumping test - T(K), S(multiple wells)

(2) Slug tests - T(K)

Aquifer Tests

Constant Rate Pumping Test

Q

Observation well Pumping well

bK

r

Q

http://www.if.uidaho.edu/~johnson/ifiwrri/radflow/radflow.html

drainage Static water level

Troll Troll

Pump

Computer

Generator

Valve Flow meter

Slug test

Computer

Static water level

Troll

(Slug test)

Static WL

(1)

Static WL

(2)

OutlineHydrologic cycleAquifersBasic groundwater equationsWell drilling and completionGroundwater level and velocityDefinition of key hydrologic parametersGroundwater/surface water interactionHydrologic testsSurface water monitoring/event samplingGround water problems

http://www.uwsp.edu/geo/faculty/ritter/geog101/textbook/fluvial_systems/channel_geometry_and_flow.html

http://nevada.usgs.gov/barcass/articles/Ely3.pdf

http://geology.com/articles/hydrograph.shtml

http://geology.com/articles/hydrograph.shtml

http://ga.water.usgs.gov/edu/measureflow.html

http://www.uwsp.edu/geo/faculty/ritter/geog101/textbook/fluvial_systems/channel_geometry_and_flow.html

http://ga.water.usgs.gov/edu/measureflow.html

http://ga.water.usgs.gov/edu/measureflow.html

http://ga.water.usgs.gov/edu/measureflow.html

http://www.who.int/water_sanitation_health/resourcesquality/wqmchap12.pdf

http://www.uwsp.edu/geo/faculty/ritter/geog101/textbook/fluvial_systems/channel_geometry_and_flow.html

60%

http://geology.com/articles/hydrograph.shtml

http://geology.com/articles/hydrograph.shtmlEvent monitoring schedule

Event Sampling

Every 5 data points

Or

W L Change ≧ 0.05M

0.00 3.50 109:52

-0.01 3.50 109:51

0.00 3.51 109:50

0.01 3.51 109:49

-0.02 3.50 109:48

-0.07 3.52 109:47

-0.07 3.59 109:46

-0.09 3.66 109:45

-0.09 3.75 109:44

-0.06 3.84 109:43

0.15 3.90 109:42

0.13 3.75 109:41

0.07 3.62 109:40

0.05 3.55 109:39

0.01 3.50 109:38

-0.01 3.49 109:37

0.00 3.50 109:36

0.01 3.50 109:35

0.01 3.49 109:34

0.01 3.48 109:33

-0.02 3.47 109:32

0.01 3.49 109:31

03.48 109:30

RecordWater Level Change (M)Water Level (M)Duration (mins)Time

http://ga.water.usgs.gov/edu/gageonbridge.html

http://www.lmnoeng.com/Weirs/RectangularWeir.htm

http://www.uwsp.edu/geo/faculty/ritter/geog101/textbook/fluvial_systems/channel_geometry_and_flow.html

Lab – TSS (Total Suspended Solids)

Turbidity

TSS

Log

Log

Turbidity TSS Amount of solids (erosion)Flow

OutlineHydrologic cycleAquifersBasic groundwater equationsWell drilling and completionGroundwater level and velocityDefinition of key hydrologic parametersGroundwater/surface water interactionHydrologic testsSurface water monitoring/event samplingGround water problems

Ground Water Problems

Quantity(over-pumping)Reduction in aquifer storageDeeper wells, more equipment costsSubsidenceSeawater Intrusion

Quality(contamination)Seawater intrusionPesticide, herbicideIndustrial wastesLandfillsSeptic tanks

Miami, Florida, USA

Chloride concentration (ppm)

水位

http://www.solinst.com/Res/papers/101C4Salt.html

http://www.unep.org/DEWA/water/groundwater/pdfs/Groundwater_33-84_SCREEN.pdf

http://flightline.highline.edu/cwhittington/G110/LectureNotes/WaterSystems.pdf

http://ponce.sdsu.edu/groundwater_utilization_and_sustainability.html

SubsidenceMaterial Compressibility (m2/N) -

medianCompressibility (m2/kg) -

medianClay 1.0E-07 1.0E-06Sand 1.0E-08 1.0E-07Gravel 1.0E-09 1.0E-08Jointed rock 1.0E-09 1.0E-08Competent rock 1.0E-10 1.0E-09

http://ga.water.usgs.gov/edu/earthgwlandsubside.html

This is a picture of the San Joaquin Valley southwest of Mendota in the agricultural area of California. Years and years of pumping ground water for irrigation has caused the land to drop. The top sign shows where the land surface was back in 1925! Compare that to where the man is standing (about 1977).

http://ponce.sdsu.edu/groundwater_utilization_and_sustainability.html

Source: U.S. Geological Survey (Circular 1182) Regions of the United States where land subsidence has been linked to groundwater pumping

http://www.sewrpc.org/watersupplystudy/pdfs/tr-43_chapter-06_preliminary_draft.pdf

http://www.azwater.gov/dwr/Content/Find_by_Program/Recharge/images/Sweet_Water_Recharge_Fac-Smaller_Aerial_Photo.jpg

http://seismo.berkeley.edu/~manga/chia_et_al2001.pdf

1:47am, September 21, 1999Chi Chi, Taiwan

ML 7.3 earthquake

http://www.answers.com/topic/geologic-fault

http://www.geologicresources.com/earthquake_seismic_waves.html

The focus is the point or center where the energy release starts.The epicenter is the point on the Earth's surface directly above the focus of the earthquake

The Mars Climate Observer, an US$125 millionspacecraft, apparently burned up as it was aboutto go into orbit around Mars on September 23, 1999.

The loss was largely blamed on an embarrassingfailure to convert measurements from feet and inches into metric units.

Thank You!