Optyka, Grzegorz Żyłka

Preview:

Citation preview

        Najstarsze przyrządy optyczne skonstruowano ok. 2000 lat temu. Źródła greckie i rzymskie opisują m. in., jak używać zaokrąglonego szklanego naczynia

wypełnionego wodą do otrzymywana powiększonych obrazów różnych przedmiotów. Szklane soczewki powstały znacznie później. Wykorzystywano je m. in. do korygowania wad wzroku oraz przy konstrukcji takich urządzeń, jak:

lunety, mikroskopy, aparaty fotograficzne, kamery.   Soczewki to ciała przezroczyste (zbudowane najczęściej ze szkła), ograniczone

z obu stron powierzchniami kulistymi lub z jednej strony powierzchnią kulistą, a z drugiej płaską.

   Każdy z fragmentów soczewki zachowuje się podobnie jak pryzmat i załamuje przechodzące przezeń promienie świetlne. Soczewka wypukła odpowiada dwom pryzmatom złączonym podstawami. Schematycznie przedstawiamy ją tak, jak na

rysunku.

  Poniższe rysunki przedstawiają różne rodzaje soczewek wklęsłych.

                                                    

                                                                                           

     Jeśli światło pada na granicę dwóch przezroczystych ośrodków, to zwykle jego część odbija się (zgodnie z prawem odbicia), a część wchodzi do drugiego ośrodka. Mówimy, że światło załamuje się

    Promień świetlny po przejściu z powietrza do wody zmienia kierunek. Mówimy, że światło uległo załamaniu. Zjawisko załamania światła występuje wtedy, gdy światło

przechodzi z jednego ośrodka przezroczystego do drugiego.

  

 Wiązka światła biegnie wzdłuż promienia tarczy, a matowa przednia ścianka półkrążka ułatwia obserwację biegu promienia w

szkle.   Wprowadźmy następujące oznaczenia:

n - prostopadła do powierzchni padania, wystawiona w punkcie padania P,

   - kąt padania (między promieniem padającym a prostą n), - kąt załamania (między promieniem załamanym a prostą n).

                                                                                                                                                                                                                                                              

                                                                                           

                                                                                                                                                                                                      

        Jeżeli światło przechodzi z ośrodka, w którym poruszało się z mniejszą szybkością, do ośrodka, w którym rozchodzi się z większą

szybkością, kąt załamania jest większy od kąta padania .                                                                                                              

                             

        Zwiększając kąt padania, doprowadzamy do sytuacji, w

której promień będzie się ślizgał po powierzchni zetknięcia obu

ośrodków.

                                                                                                                           

               

    Światłowody mogą przenosić ogromną ilość informacji (rozmowy telefoniczne, wiadomości wysyłane faksem, połączenia internetowe itp.) w bardzo krótkim czasie. Szkło, z którego wykonane jest włókno światłowodu jest tak czyste, że sygnały świetlne mogą w

nim wędrować niemal bez straty energii, a zatem bez konieczności stosowania odpowiednich wzmacniaczy.

    Włókno światłowodu wykonane jest z dwóch koncentrycznych warstw szkła: cylindrycznego rdzenia i otaczającego go płaszcza. Każda warstwa wykonana jest z innego

rodzaju szkła. Światło ulega wielokrotnemu całkowitemu wewnętrznemu odbiciu na granicy warstw

   Ponieważ włókna szklane światłowodów maja bardzo małe średnice (są cieńsze od ludzkiego włosa), można je wyginać w dowolny sposób bez groźby złamania i przerwania

światłowodu.

                                                                                                                                                                                                                                                                                                        

Oprócz zwierciadeł płaskich używane są również zwierciadła kuliste (są nimi np. zwierciadła stosowane na skrzyżowaniach ulic, w lusterkach i reflektorach

samochodów, w lusterkach dentystycznych). Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Jako zwierciadło może być wykorzystana

powierzchnia kuli. W związku z tym rozróżniamy zwierciadła kuliste:        * wklęsłe - gdy jako zwierciadło wykorzystujemy wewnętrzną powierzchnię kuli         * wypukłe - gdy jako zwierciadło wykorzystujemy zewnętrzną powierzchnię kuli.

   Każde zwierciadło kuliste posiada:        * środek krzywizny - jest nim środek kuli (O),

        * promień krzywizny - jest nim promień kuli (r),        * oś główną - którą jest prosta przechodząca przez środek krzywizny (O) i środek

czaszy zwierciadła (S).

                                                                                                                                                                                         

                                                                   

                                                                                                                                                                    

                                              

 

   Promienie świetlne równoległe do osi głównej po odbiciu od powierzchni zwierciadła kulistego wklęsłego przechodzą przez jeden punkt zwany ogniskiem zwierciadła.

   Ognisko to leży na osi głównej zwierciadła. Odległość ogniska od środka czaszy zwierciadła nazywamy ogniskową

                                                                                                            

                                                                                                                 

                                                                                                                                                                                                  

            Zjawisko skupiania światła słonecznego za pomocą

zwierciadeł wklęsłych wykorzystano w wielu współczesnych urządzeniach technicznych. W tzw. kuchenkach słonecznych

skupione promienie świetlne służą do podgrzewania żywności, którą umieszcza się w ognisku zwierciadła. Podobne rozwiązanie

zastosowano w piecach przemysłowych. W Mont Louis, we francuskich Pirenejach zbudowano wielopiętrową konstrukcją

złożoną z małych zwierciadeł, odpowiednio ustawionych, tworzącą gigantyczne zwierciadło wklęsłe. W ognisku takiego zwierciadła

uzyskuje się temperaturę do 3000oC, w której możliwa jest termiczna obróbka wielu metali.

                                                                                                                                            

Powstawanie cienia

   O prostoliniowym rozchodzeniu się światła możesz przekonać się również, wykorzystując tzw. kamerę otworkową.

Światło rozchodzi się w próżni z szybkością 300000 km/s. Mimo tej olbrzymiej drogi ze Słońca na Ziemię światło potrzebuje aż 8,3 minuty. Żadne poruszające się ciało nie może osiągnąć szybkości światła.

  Zjawisko fotoelektryczne znalazło szeroki zastosowanie w technice. Jednym z przykładów zastosowania jest fotokomórka

                                                                                           

    Tworzy ją próżniowa bańka szklana, której część wewnętrznej powierzchni pokryta jest cienką warstwą metalu o małej pracy wyjścia (np. cezu).

    Z tej powierzchni, zwanej fotokatodą, emitowane są elektrony (fotoelektrony). Drugą elektrodę (zwaną anodą) stanowi metalowa kulka lub pętla. Do wnętrza bańki

promieniowanie wpada przez przezroczyste okienko i pada na fotokatodę. Następnie z niej emisja elektronów, które są przyciągane przez dodatnio naładowaną anodę. W

obwodzie takim, jak na rysunku następuje przepływ prądu elektrycznego. 

                                                                                              

                                                                                       

Przygotujemy elektroskop, płytkę cynkową (dobrze oczyszczoną np. papierem ściernym) oraz lampę łukową. Płytkę cynkową mocujemy do elektroskopu - łącząc ją z jego listkami lub wskazówką. Po naelektryzowaniu płytki dodatnio skierujemy na nią światło z lampy łukowej. Eksperyment powtórzymy po naładowaniu płytki ujemnie.

Tym razem płytka naelektryzowana ujemnie nie traci już elektronów, bez względu na to, jak intensywny jest strumień światła. Ponieważ szkło pochłania promieniowanie nadfioletowe, można na podstawie przeprowadzonego doświadczenia wnioskować, że w przypadku cynku ta właśnie część widma fal elektromagnetycznych wywołuje zaobserwowane zjawisko, zwane zjawiskiem fotoelektrycznym.

   Po przejściu światła białego przez pryzmat obserwujemy nie tylko odchylenie światła do pierwotnego kierunku, ale również jego rozszczepienie na barwy. Na ekranie otrzymamy szereg

barw przechodzących w sposób ciągły jedna w drugą: od czerwonej poprzez pomarańczową, żółtą, zieloną, niebieską aż

do fioletowej. Ten zestaw barw nazywamy widmem ciągłym światła białego. Taką gamę kolorów, od czerwieni do fioletu możemy taż zaobserwować, gdy światło słoneczne przenika przez szklane przedmioty (np. kryształowy flakon) lub przez

krople deszczu (tworząc tęczę).