PowerPoint プレゼンテーション -...

Preview:

Citation preview

HiSIM Team 1

Measurements and Modeling of Noisein Advanced MOSFETs

MOS-AK Meeting20. April, 2007

HiSIM Team, Hiroshima UniversitySTARC

M. Miura-Mattausch

HiSIM Team 2

Noise Features in MOSFETs

1/f NoiseThermal NoiseInduced Gate NoiseCross-Correlation Noise

Shot NoiseJunction Noise

d

dsi

Δ=

Noise Spectral Density

2i

Sf

Intensity

HiSIM Team 3

Contents

MOSFET Modeling1/f NoiseThermal NoiseInduced Gate Noise+ Cross-Correlation Noise

HiSIM Team 4

Basic Equations

VgsVth

HiSIM Team 5

Surface-Potential

(analytical)

(exact)

Vth-Based

Charge-Based

Models Year 9896 02 0400

BSIM(UC Barkeley)

Model11(Philips)

EKV(Swiss IT)

SP2000(Penn.SU)

HiSIM

Available Models in Commercial SPICEs

PSP

CMC Standardization Process

HiSIM solves the Poisson equation iteratively.

HiSIM Team 6

Surface Potentials: HiSIM Results

Short-channel effects are included in potential calculations.

(Vth based model)

HiSIM Team 7

Measurement

HiSIM

Wg/Lg=2μm/40nm

Derivatives of Drain Current

H. J. Mattausch et al., IEEE Circuit & Devices Magazine, vol. 22, no. 5, p. 29, 2006.

HiSIM Team 8

Gummel Symmetry Test

HiSIM Team 9

Technology-Based Modeling

require accurate impurity-profile extraction

HiSIM Team 10

Modeling of Pocket Implant

HiSIM Team 11

Universal Mobility

S. Matsumoto et al., J. Appl. Phys., vol. 92, p. 5228, 2002.

Vds=0.1V

HiSIM Team 12

Vds=0.1V

Mobility determines the harmonic distortion characteristics.D. Navarro et al., IEEE Trans. ED, vol. 53, p. 2025, 2006.

Harmonic Distortion vs. Mobility

HiSIM Team 13

Under Saturation Condition

Pinch-off regionsteep potential increase

HiSIM Team 14

Inversion-Layer Thickness ~ 0Gradual-Channel Approximation Valid for long channel

Approximations Applied for Modeling

Beyond Pinch-off Point

modeling further potential increase

HiSIM Team 15

Contents

MOSFET Modeling1/f NoiseThermal NoiseInduced Gate Noise+ Cross-Correlation Noise

HiSIM Team 16

1/f Noise:

Thermal Noise:

Induced Gate Noise +Cross-Correlation Noise:

Noise Sources

HiSIM Team 17

Measurement Setup for 1/f Noise

HiSIM Team 18

Noise Figure Measurement

HiSIM Team 19

Origin of 1/f Noise

K. K. Huang et al., IEEE Trans. ED, 37, p. 1323, 1990.

HiSIM Team 20

H. Ueno et al., Appl. Phys. Let., vol. 78, p. 380, 2001.

Monte Carlo Simulation

Num

ber o

f ele

ctro

ns h

ittin

g

Noise Intensity Number of electrons hitting SiO2 surface

HiSIM Team 21

Measured 1/f Noise

S. Matsumoto et al., IEIEC T E, E88-C, p. 247, 2005.

HiSIM Team 22

HiSIM Team 23

HiSIM Team 24

Explanation

Wg/Lg=10μm/1μmVgs=0.5VVds=0.4V

Inhomogeneous trap density distribution

HiSIM Team 25

Statistics on a Wafer

Homogeneous Distribution on a Wafer

HiSIM Team 26

Model Equations

HiSIM Team 27

Ntrap is fitted to measurements.If technology is mature, Ntrap is nearly universal.

Comparison with Measurements

I-V characteristics determine 1/f noise characteristics.1/f noise is predictable.

S. Matsumoto et al., IEIEC T E, E88-C, p. 247, 2005.

HiSIM Team 28

22 ds

eff ds

ds0

id4 ( )

4

kTS gL IkTg γ

=

=

∫ y dy gds(y): Channel Conductance

van der Ziel Equation based on Nyquist Theorem:

gds0: at Vds=0

γ : Noise Coefficient

Origin of Thermal Noise

No Additional Model Parameters

HiSIM Team 29

Comparison with Measurements

Lines: HiSIMSymbols: Measurements

S. Hosokawa et al., Appl. Phys. Let., vol. 87, p. 092104, 2005.

HiSIM Team 30

• Knoblinger et al. (2001): Hot Electron Contribution• Jamal Deen et al. (2002): Channel Length Modulation• Scholten et al. (2002): Velocity Saturation

Noise Coefficient (γ) in Short-Channel MOSFETs

Different Explanations

HiSIM Team 31

Mobility Reduction along Channel

μ: Constant

μ: Position Dependent

γ Increase Potential Increase

Origin of γ Increase

S. Hosokawa et al., Ext. Abs. SSDM, pp. 20, 2003.

γ for Short-Channel MOSFETAnalytical Investigation

(No additional model parameter)

HiSIM Team 32

First γ Reduction and Increase in the Saturation RegionNo Drastic Increase of γ γ Minimum Increase from 2/3

Lines: Simulation (HiSIM) Symbols: Measurements

Comparison with Measurements: Excess Noise

HiSIM Team 33

Universal Relationship

Comparison with Vth Shift

Grad. γ

Grad. ΔVth

ΔVth=Vth(long)-Vth(short)

HiSIM Team 34

T. Warabino et al., Proc. SISPAD, p. 158, 2006.

Induced Gate Noise & Cross-Correlation Noise

( )( ) ( )

g

g d

i

i i

g

g d

′ ′Δ Δ + Δ

′ ′ ′Δ Δ Δ + Δ Δ

∴ = = Δ

= = Δ

∫ ∫

∫ ∫

: induced - gate

: cross - correlation

221 2

1 2 2

2

2**

i I I

i i I I I

S dx v dx

S dx v dx

HiSIM Team 35

g ch th0

0

0

( ) ( )

( ) ( ) ( )

( ) ( )

V x V V x V

V x V x v x

I x I I x

= − −

= − Δ⎧⎪⎨ = − Δ⎪⎩

{ } εω

εμ

⎧⎪

∂⎪ = −⎪⎪ ∂⎨⎪⎪ ∂⎪ = −

∂⎪⎩

Continuity eq.

Current Density eq.

( )( )

( ) ( ) ( )

i x Wj v xx d

dV x V x I xx W

( )( ) ( )

g

g d

i

i i

g

g d

′ ′Δ Δ + Δ

′ ′ ′Δ Δ Δ + Δ Δ

∴ = = Δ

= = Δ

∫ ∫

∫ ∫

221 2

1 2 2

2

2**

i I I

i i I I I

S dx v dx

S dx v dx

M. Shoji, IEEE TED, pp. 520-524, 1966.

HiSIM Team 36

Sig for Long-Channel Case

The van der Ziel model is valid only in the saturation region.

T 1f ≤ GHz

iggs

ds0

2

54C

gS kTω

β⎛ ⎞⎜ ⎟⎝ ⎠=

van der Ziel's model

HiSIM Team 37

Comparison with Measurements

The excess noise for short-channel devices isdue to the potential increase along the channel.

A. J. Scholten et al., Tech. Dig. IEDM, p. 867, 2003.

HiSIM Team 38

Excess Noise in Short-Channel MOSFETs

Excess noise starts to saturate for further Vds increase.

iggs

ds0

2

54C

gS kTω

β⎛ ⎞⎜ ⎟⎝ ⎠=

HiSIM Team 39

Correlation Coefficient (c) i i

i i

g d

g d

Sc

S S=Correlation Coefficient :

HiSIM Team 40

1/f Noise Thermal Noise

No model parameters are required.Features are determined only by I-V characteristics.

Harmonic Distortion

Phenomena Important for RF Applications

Electrostatic effect is still dominating.

Surface potential is important.

HiSIM Team 41

The 1/f noise is mostly governed by the carrier fluctuationdue to the trap/detrap process.

The thermal noise is governed by the potential distributionalong the channel.

The induced gate noise and the cross-correlation noise aregoverned by the same mechanism as the thermal noise.

These results conclude that the noise is still governedby the equilibrium carrier dynamics for MOSFETs down tothe sub-100nm channel length regime.

Summaries

The surface-potential-based model HiSIM is capable forpredicting noise characteristics.

Recommended