Present Status of ITER Scenario Development Code in Japanfukuyama/pr/... · Benchmark test between...

Preview:

Citation preview

ITPA Topical Group Meetingon Steady State and Energetic Particles

St. Petersburg, Russia2003-07-15

Present Status of ITER Scenario Development Codein Japan

A. FukuyamaKyoto University

in collaboration with

H. Shirai (JAERI), T. Ozeki (JAERI), T. Takizuka (JAERI)M. Yagi (Kyushu U), N. Nakajima (NIFS),

H. Naitou (Yamaguchi U), Y. Nakamura (Kyoto U)

Contents

• Integrated Code Development

• Transport Simulation by TASK/TR

• ECCD Analysis by TASK/WR+FP

• Summay

Integrated Code Development

• Integrated Burning Plasma Simulation Initiative

• Core code: Tokamak Transport Code

◦ TOPICS: JAERI Naka

◦ TASK: Kyoto Univ

• Present status and to do’s in 2003

◦ Benchmark test between TOPICS and TASK

◦ Comparison with JT-60U experimental data (transport models)

◦ Comparison with ITPA profile database

◦ Preliminary simulation of ITER scenario

Objectives

Integrated Simulation of Burning Plasmas

• Frameworkfor collaboration of various plasma simulation

codes• New physics

in interaction between phenomena with differenttime and space scales

• Advanced techniqueof computer science, network computing and

visualization

Framework

• Core Code– Based on Extended 1.5D Transport Code

• TASK/EQ, PL, TR, DP, WR, WM, FP (Kyoto U)– Analysis of Experimental Data (JT-60, ITPA)– Predictive Simulation for Burning Plasmas

• Common Interface for Data Transfer– Working group for interface specification– Interface with existing codes and modules

• Topics (JAERI), NTCC (USA)– Interface with experimental data base

• MDSPlus• Development and Enhancement of Modules• Elaborated User Interface

New Physics

• Transport-MHD Hierarchical Model– Interaction between MHD and transport phenomena– Consistent modeling with plasma flow– Transport in the presence of magnetic island

• Core-SOL Interface– Modeling of edge transport barrier– Two-dimensional transport in edge region

• Interaction with Energetic Particles

Transport-MHD Model

Advanced Technique

• Parallel Computing– PC cluster– Vector-parallel super computer

• Network Computing– GRID computing– Effective use of computer resources

• Visualization– Parallel visualization– VisiGRID

Integrated Code Development

• Integrated Burning Plasma Simulation Initiative

• Core code: Tokamak Transport Code

◦ TOPICS: JAERI Naka

◦ TASK : Kyoto Univ

• Present status and to do’s in 2003

◦ Benchmark test between TOPICS and TASK

◦ Comparison with JT-60U experimental data (transport models)

◦ Comparison with ITPA profile database

◦ Preliminary simulation of ITER scenario

Structure of TASK code

Integrated Code Development

• Integrated Burning Plasma Simulation Initiative

• Core code: Tokamak Transport Code

◦ TOPICS: JAERI Naka

◦ TASK: Kyoto Univ

• Present status and to do’s in 2003

◦ Benchmark test between TOPICS and TASK

◦ Comparison with JT-60U experimental data (transport models)

◦ Comparison with ITPA profile database

◦ Preliminary simulation of ITER scenario

CDBM Turbulence Model

• Marginal Stability Condition (γ = 0)

χTB = F(s, α, κ, ωE1)α3/2 c2

ω2pe

vA

qR

Magnetic shear s≡ rq

dqdr

Pressure gradient α ≡ − q2Rdβdr

Magnetic curvature κ ≡ − rR

(1− 1

q2

)

E × B rotation shear ωE1 ≡ r2

svA

ddr

ErB

• Weak and negative magnetic shear,

Shafranov shift and

E × B rotation shear

reduce thermal diffusivity.

s− α dependence ofF(s, α, κ, ωE1)

0.0

0.5

1.0

1.5

2.0

2.5

-0.5 0.0 0.5 1.0

F ωE1

=0.2

ωE1

=0.3

ωE1

=0.1

ωE1

=0

s - α

Fitting Formula

F =

11 + G1ω

2E1

1√2(1− 2s′)(1− 2s′ + 3s′2)

for s′ = s− α < 0

11 + G1ω

2E1

1 + 9√

2s′5/2√2(1− 2s′ + 3s′2 + 2s′3)

for s′ = s− α > 0

Simulation of ITB Formation

Comparison with JT-60U experimental data : on-going

Time Evolution

JT-60U EXP Simulation

t [s]

t [s]

t [s]

t [s]

t [s]

PNBIIp

I p [M

A] P

NB

I [MW

]

WdiaSn

Sn [10 16s -1]

Wdi

a [M

J]

n (0)

|

n (0.7)

|

n e [1

019 m

-3]

Te(0)Ti (0.34a)

T [k

eV]

βN

βNτΕ / τΕITER89-P

τ Ε /

τ ΕIT

ER

89-P

t [s]

t [s]

t [s]

t [s]

t [s]

WB WiWe

Ip IOHIBS

PNBI

ne (0) <ne>

TiTe<Te>

<Ti>

τ1τΕτ2

I p [M

A]

PN

BI [M

W]

Wdi

a [M

J]n e

[101

9 m-3

]T

[keV

Safety Factor

JT-60U EXP Simulation

r / a

q

r [m]

t = 5.2t = 4.4t = 3.6t = 2.8

t = 2.0

q

Ion Temperature

JT-60U EXP Simulation

T [k

eV]

r / a

T [k

eV]

r [m]

t = 2.2

t = 2.8t = 2.7

t = 2.6

t = 2.0t = 2.1

t = 2.5t = 2.4t = 2.3

Simulation of Current Hole Formation

• Current ramp up: Ip = 0.5 −→ 1.0 MA

• Moderate heating: PH = 5 MW

• Current hole is formed.

• The formation is sensitive to the edge temperature.

.1*2+

./-*2+

.,0*2+

.*/+

-0

,0

.*/+

-0

,0

/.*0+

,1

-110.0*2+

1.-*2+

1,/*2+0./*1+

-2

,2

Sustainment of Negative Shear Configuration

Off-Axis CD (H ' 1.2)

PLH/PIC = 12/2 MW

q

qj

[MA

/m2 ]

T [k

eV]

p [M

W/m

3 ]

r [m]

j tot

j LH

j BSj OH

TD

Te

p LH

p IC

Full CD (H ' 1.6)

PLH/PIC = 12/10.8 MW

qj

[MA

/m2 ]

T [k

eV]

p [M

W/m

3 ] p LHp IC

Te

TD

j tot

j LH

j BS

q

r [m]

Full CD + On-Axis CD

PLH/PIC/PEC = 12/10.8/0.2 MW

qj

[MA

/m2 ]

T [k

eV]

p [M

W/m

3 ]

r [m]

p LH

p IC

p EC

Te

TD

j tot

j LH

j BSj EC

q

Analysis of ECCD by TASK Code

Poloidal angle 70◦

Toroidal angle 20◦

Initial beam radius 0.05 mInitial beam curvature 2 m

/ 0 1 2 3,/

,.

-

.

/

5*6

+

4*6+1 2 3 4 5

-0

-/

.

/

0

6+;,

6+;

,

7<= 8:9>

One Ray Nine Rays Beam Tracing

Ray/Beam Profile

+*.+ +*./ +*/+ +*// +*0++

/

,+

,/

-+

5

1234

+*.+ +*./ +*/+ +*// +*0++

/

,+

,/

-+

-/

5

1234

-,- -,/- -,0- -,1- -,2- .,---

-,-/

-,-0

-,-1

-,-2

-,.-

3*4

+

5

PabsProfile

+*.+ +*./ +*/+ +*// +*0++

/

,+

,/

-+ 1234

5+*.+ +*./ +*/+ +*// +*0++

/

,+

,/

-+

-/ 1234

5+*.+ +*./ +*/+ +*// +*0++

/

,+

,/

-+

-/1234

5

jCD Profile

-+0- -+01 -+1- -+11 -+2-

-+--.-

-+---3

-+---2

-+---0

-+---/

-

965

4,:

8/7

;

-+0- -+01 -+1- -+11 -+2--

-+---/

-+---0

-+---2

-+---3

-+--.-

-+--./

965

4,:

8/7

;

-+-0

-+-/

-+-.

--+1- -+12 -+2- -+22 -+3-

;

965

4,:

8/7

Summary

• Integrated simulation codes, TOPICS and TASK, are under development. Bench-mark test between the codes and comparison with JT-60U data and ITPA profiledatabase in on-going.

• Improvement of physics models, such as interaction between transport and MHDphenomena, and transport model, is also going in parallel.

• Ballooning-type transport model which depends on s − α reproduces ITB andcurrent hole. The formation of the current hole is sensitive to the edge temper-ature through the current penetration time scale. Initial currnet profile control bylocalized edge heating may be possible.

• ECCD in ITER configuration was carried out by beam tracing method. Result ofbenchmark calculation will be reported within a month.