18
TECSUP – PFR Tecnología de Materiales Avanzada 37 UNIDAD III ENSAYOS NO DESTRUCTIVOS 1. INTRODUCCIÓN El aprovechamiento cada vez mayor de los materiales, y por ende, de los elementos elaborados con los mismos, convierte en obligatorio el control de toda la producción, y no solo de los especimenes ensayados de acuerdo con el muestreo estadístico. Dicho ensayo por su propia índole, puede resultar totalmente satisfactorio a pesar de existir un gran porcentaje de piezas falladas debido a que por los métodos avanzados de cálculos y los coeficientes de seguridad mas bajos, dichas piezas con las a veces imperfecciones internas, no poseen el margen de seguridad necesario para hacer frente con éxito a cualquier contingencia. 2. IMPORTANCIA En todo proceso industrial existen varias fases que hacen necesaria la intervención de algún tipo de ensayo no destructivo. Cada proceso de elaboración de un cierto producto impone realizar el control de fabricación mediante el cual se pueden detectar aquellos elementos que presentan fallas. Dicho proceso de fabricación se puede efectuar: a) Durante la fase de elaboración, por el fabricante, quien de ese modo se ciñe a las normas de elaboración ya sea generales o particulares, que tienen en cuenta las condiciones que impone el mercado. b) Durante la fase de recepción, por el usuario, quien realiza una inspección del producto de acuerdo a las normas generales o las cláusulas particulares convenidas de antemano por el y el fabricante. Los dos controles citados permiten la detección inmediata de las piezas falladas, de modo tal que estas puedan ser retiradas antes de ponerlas en servicio para ser mejoradas o destruirlas. 3. CLASIFICACIÓN Los ensayos no destructivos se pueden clasificar en ensayos no destructivos de corta duración y en ensayos no destructivos de larga duración. Los primeros realizan determinaciones en un momento específico, de duración reducida. Pueden o no repetirse de acuerdo con las necesidades o la índole del material o la estructura.

Texto3

Embed Size (px)

Citation preview

Page 1: Texto3

TECSUP – PFR Tecnología de Materiales Avanzada

37

UNIDAD III

ENSAYOS NO DESTRUCTIVOS 1. INTRODUCCIÓN

El aprovechamiento cada vez mayor de los materiales, y por ende, de los elementos elaborados con los mismos, convierte en obligatorio el control de toda la producción, y no solo de los especimenes ensayados de acuerdo con el muestreo estadístico. Dicho ensayo por su propia índole, puede resultar totalmente satisfactorio a pesar de existir un gran porcentaje de piezas falladas debido a que por los métodos avanzados de cálculos y los coeficientes de seguridad mas bajos, dichas piezas con las a veces imperfecciones internas, no poseen el margen de seguridad necesario para hacer frente con éxito a cualquier contingencia.

2. IMPORTANCIA

En todo proceso industrial existen varias fases que hacen necesaria la intervención de algún tipo de ensayo no destructivo. Cada proceso de elaboración de un cierto producto impone realizar el control de fabricación mediante el cual se pueden detectar aquellos elementos que presentan fallas. Dicho proceso de fabricación se puede efectuar: a) Durante la fase de elaboración, por el fabricante, quien de ese modo se ciñe

a las normas de elaboración ya sea generales o particulares, que tienen en cuenta las condiciones que impone el mercado.

b) Durante la fase de recepción, por el usuario, quien realiza una inspección del producto de acuerdo a las normas generales o las cláusulas particulares convenidas de antemano por el y el fabricante.

Los dos controles citados permiten la detección inmediata de las piezas falladas, de modo tal que estas puedan ser retiradas antes de ponerlas en servicio para ser mejoradas o destruirlas.

3. CLASIFICACIÓN

Los ensayos no destructivos se pueden clasificar en ensayos no destructivos de corta duración y en ensayos no destructivos de larga duración. Los primeros realizan determinaciones en un momento específico, de duración reducida. Pueden o no repetirse de acuerdo con las necesidades o la índole del material o la estructura.

Page 2: Texto3

Tecnología de Materiales Avanzada TECSUP - PFR

38

Los ensayos no destructivos de larga duración son aquellos que se prolongan en el tiempo y sirven de elemento de control y vigilancia permanentes del funcionamiento de maquinas y de estructuras.

4. DETECCIÓN DE FALLAS POR MEDIO DE ENSAYOS NO DESTRUCTIVOS

Los principales ensayos no destructivos tienen por finalidad descubrir y ubicar defectos o fallas que se originan en el interior de los materiales y las piezas fabricadas con dichos materiales. Las fallas principales que suelen presentarse en los productos metálicos son:

Costuras, es decir, grietas longitudinales originadas durante el laminado de

barras, chapas, etc. Grietas de temple, que son aquellas que se originan en los procesos de

tratamiento térmico p. ej. en zonas de cambio de tensión

Fallas superficiales, que son las que aparecen en la superficie, si bien, suelen ser invisibles a simple vista.

Fallas superficiales, que son las que se presentan en forma de porosidades e inclusiones por debajo de la superficie de los elementos.

Grietas por fragilización y fatiga, que son las que se originan por acción química y envejecimiento mecánico, las primeras, y por solicitaciones dinámicas reiteradas con o sin proceso de corrosión, las segundas.

Los ensayos con los que se cuenta para la detección de fallas se pueden agrupar del modo siguiente: Ensayos macroscópicos Ensayos magnéticos

Ensayos magneto-acústicos Ensayos electromagnéticos Ensayos sonidos Ensayos ultrasónicos Ensayos por medio de rayos X (exografía) Ensayos por medio de rayos gamma (gammagrafía)

Si se toma como base la profundidad de penetración de cada uno de estos procedimientos de ensayos en los metales Fe, Cu y Al, se puede establecer la siguiente comparación en lo que respecta al alcance de cada uno de ellos.

Page 3: Texto3

TECSUP – PFR Tecnología de Materiales Avanzada

39

> 1,5 mm < 10000 um Fe-Al-C

< 300 mm < 200 mm Fe Cu

20 - 100 mm Fe

20 - 100 mm 50 - 300 mm Fe Al

< 30 mm < 50 mm Fe Al

8 - 20 mm Fe

10 - 100 mm 5 - 50 mm Fe Cu

1 - 5 mm Fe

1 - 50 mm Fe

50 - 500 mm Fe

5. PRUEBA DE FISURAS (TINTES PENETRANTES)

Los ensayos macroscópicos suelen designarse también ensayos con tintes penetrantes. Estas sirven para localizar fallas con salida a la superficie, o sea fallas cutáneas. Su observación se hace a ojo desnudo, sin recurrir a dispositivos de ninguna naturaleza por lo que constituye un simple método para detectar fallas superficiales sin poder definir su abertura ni profundidad. Estos ensayos pueden aplicarse a materiales metálicos o no metálicos En materiales metálicos pueden detectarse fallas producidas por defectos de forja, laminación, colado mecanización. Entre las fallas que se pueden detectar tenemos: Grietas, costuras, solapes y falta de adhesión en las uniones soldadas. La técnica que se sigue en general para un ensayo macroscópico es el siguiente:

1. Las piezas a examinar deben estar limpias y secas. 2. Se pintan o impregnan con un líquido fuertemente coloreado o

fluorescente. 3. Pasados unos minutos de la operación anterior, se limpia el excedente

del líquido colorante con lo cual este habrá quedado retenido en la grieta o falla.

4. Se cubre la superficie examinada con un revelador, generalmente blanco.

Page 4: Texto3

Tecnología de Materiales Avanzada TECSUP - PFR

40

5. El revelador absorbe el colorante de la grieta, señalándola nítidamente.

Un buen líquido penetrante debe tener las siguientes características:

a) Penetrar prontamente en las aberturas muy estrechas. b) Ser capaz de mantenerse en las aberturas relativamente gruesas. c) No evaporarse o secarse muy rápidamente. d) Ser removido fácilmente de la superficie a la cual fue aplicado. e) Aflorar de las discontinuidades, cuando el revelador es aplicado. f) Tener la habilidad e expandirse en capas muy delgadas como del borde de

una abertura muy estrecha. g) Tener gran brillantez de color o fluorescente, aun en capas muy delgadas. h) Tener permanencia de color al ser expuesto al calor, la luz o la luz negra. i) Ser inactivo con respecto a los recipientes y a los materiales que están

siendo probados. j) Ser inodoro. k) No ser inflamable. l) Ser estable en condiciones de almacenaje y uso. m) No tóxico. n) De bajo costo.

Las operaciones citadas se pueden efectuar de diversas maneras. Una de ellas consiste en sumergir la pieza en kerosén o petróleo a una Temp. de 150 °C secar la superficie y cubrirla a continuación con talco, previo golpeteo de la pieza con martillo, lo cual favorece la exudación del petróleo. Las fallas aparecen en correspondencia con las zonas húmedas del talco. La eficacia de este procedimiento depende de la geometría de la abertura y del tamaño y limpieza de la superficie. En efecto el líquido penetrante actúa por capilaridad y viscosidad, interviniendo también la tensión superficial de los que dependen la velocidad y la extensión de la penetración del líquido colorante. Si durante su funcionamiento la pieza ha estado sumergida en aceite, las fisuras pueden descubrirse a simple vista secándola previamente. Las fisuras aparecen por efecto de la exudación que se produce en su correspondencia, luego de la operación de secado. En algunos casos las fisuras presentan en los bordes manchas rojizas de óxidos que se han formado por frotamiento reiterado de los bordes. Para aumentar la percepción de dichas manchas puede recurrirse a la luz amarilla. En lugar de petróleo se puede aplicar aceite caliente, donde se sumerge la pieza a examinar durante algunas horas. Luego se limpia con nafta, se seca y se pinta con cal. Las manchas de aceite en la cal indicaran la ubicación de las fisuras.

Los procedimientos descritos se aplican a los materiales ferrosos. Pero la detección d fisuras invisibles, porosidades, costuras y otros defecto con salida a la superficie pueden extenderse también a materiales tales como aluminio, magnesio bronce, tungsteno, carburos, plásticos, cerámicos vidrios y otros.

Page 5: Texto3

TECSUP – PFR Tecnología de Materiales Avanzada

41

Comercialmente y a modo de ejemplo presentaremos algunos productos desarrollados por la Magnaflux Corp. cuyos líquidos penetrantes denominados “Zyglo” y “Zyglo-Pentrex” hacen brillar las fallas con fluorescencia bajo luz negra. Esos penetrantes se pueden aplicar por inmersión, pintado con pincel o sopleteando la pieza en estudio. El exceso de penetrante se elimina mediante lavado con agua, y luego se deja secar la pieza. \a continuación se aplica sobre la superficie un polvo seco o una suspensión acuosa que actúa como revelador al absorber el penetrante de las fallas. Bajo la luz negra se perciben claramente todas las imperfecciones. La composición de algunos de los líquidos empleados en la técnica de los tintes penetrantes son:

1. Penetrante. Colorante inorgánico (soluble en aceite) 2%, hidrocarburo aromático 58%, plastificante 40%. Revelador. Polvo fino inorgánico 15%, hidrocarburo aromático 15%, solvente de alcohol 70%. Removedor. Mezcla de hidrocarburos aromáticos 100%.

2. Penetrante. Colorante inorgánico (soluble en aceite) 2%, bencenos

alkidicos 32%, nafta de petróleo 56%, polioxietileno-alkil-pentil-eter 10%. Revelador. Polvo fino inorgánico 15%, hidrocarburo aromático 15%, solvente de alcohol 70%. Esta fórmula da un producto lavable con agua.

Figura 1.

Page 6: Texto3

Tecnología de Materiales Avanzada TECSUP - PFR

42

Figura 2.

Page 7: Texto3

TECSUP – PFR Tecnología de Materiales Avanzada

43

6. PRUEBAS CON RAYOS ROENTGEN Los rayos roentgen penetran a través de la mayoría de los materiales. Según sea la resistencia que encuentren en su camino a través de la pieza ennegrecen más o menos intensamente una película dispuesta detrás de aquella o dan sobre una pantalla una imagen sombreada que por medio de un amplificador y un dispositivo óptico adecuado puede hacerse bien visible. Las cavidades burbujas gaseosas o grietas se hacen visibles por la menor densidad del material que suponen, mediante un mayor ennegrecimiento de la película o mediante la presencia de sitios claros sobre la pantalla. Las escorias ejercen influencia distinta según sean más densas que el material base o que sean porosas. El límite de penetración para los rayos roentgen es con el acero de 80 mm, con el cobre de 50 mm y con el metal ligero de 400 mm. Diversos materiales como el Radio y muchos isótopos (Cobalto 60 o Iridio 192), emiten rayos invisibles. Una parte de estos rayos son los llamados rayos gamma que se emplean para el ensayo de materiales si destrucción de la pieza. Estos rayos son de acción más enérgica que los rayos roentgen y atraviesan por ejemplo la fundición de acero hasta 200 mm de espesor. Los aparatos de ensayo con estos rayos son más sencillos de manejar que los rayos roentgen. En el manejo de todos estos aparatos es necesario tener una especial precaución ya que los rayos emitidos pueden producir graves daños a la salud. Como el radio es muy caro se emplean generalmente isótopos.

7. ENSAYOS MAGNÉTICOS La propiedad que tienen ciertos productos ferrosos de convertirse en imanes al ser atravesados en ciertas condiciones por una corriente eléctrica, es muy útil para la detección de fallas, no solo en casos aislados sino como método de inspección a ritmo industrial. El método magnético también llamado el de las partículas magnéticas se basa en que toda partícula ferrosa susceptible de ser magnetizada al entrar en contacto con un imán se orienta de acuerdo con su respectiva polaridad y sigue las líneas de fuerza del campo magnético. Dichas líneas se interrumpen tan pronto como en el cuerpo principal se presenta alguna discontinuidad en forma de grieta, tanto sea esta superficial o cutánea como subsuperficial o subcutánea,

Figura 3.

Page 8: Texto3

Tecnología de Materiales Avanzada TECSUP - PFR

44

en cuyas inmediaciones se producirá además una mayor acumulación de partículas. Las fallas deben formar un cierto ángulo con las líneas de fuerza magnética para originar un cambio en la trayectoria del flujo magnético. Dicho cambio es tanto más abrupto cuanto mas se acerca dicho ángulo a 90°. Esa propiedad es la que sirve básicamente al método de detección de fallas mediante partículas magnéticas. Si se trata de fallas superficiales, las partículas siguen en contorno de las grietas, las que resultan perfectamente delineadas. Una fallas subsuperficial, en cambio, da origen a una acumulación desdibujada de las finas partículas en las inmediaciones del defecto., al que señalan pero no definen exactamente en cuanto a su configuración. El ensayo magnético es muy utilizado en las plantas de laminación de aceros, especialmente en la detección de fallas en planchones y en general en las palanquillas. El objetivo es descubrir aquellas imperfecciones que durante el laminado se pueden transformar en costuras o solapes, con o sin la presencia de inclusiones que luego aparecen en el producto terminado. También el templado da lugar a la aparición de grietas, así como los procesos lentos de fragilización progresiva y las fallas originadas por la fatiga, con o sin corrosión. Las fallas superficiales son detectables sin ningún requisito. No sucede lo mismo con las fallas subsuperficiales, cuyo mayor o menor grado de definición depende de la profundidad a que se hallan ubicadas. Los resultados del ensayo magnético son tanto mas nítidos cuanto mayor es la permeabilidad magnética del material en estudio. Las aleaciones ligeramente magnéticas no dan imágenes muy satisfactorias. Los aceros austeníticos, que no son magnetizables, no admiten el método de las partículas magnéticas.

8. PRUEBA DE ULTRASONIDO

La aplicación de ultrasonido para la detección de fallas, constituye uno de los métodos de ensayo no destructivo más importantes, tanto por su versatilidad como por su facilidad de aplicación. El ensayo de ultrasonido constituye un método de control de aquellos materiales que poseen conductividad acústica, tales como metales, cerámica, plásticos, etc. Con este método se pueden controlar piezas forjadas y fundidas, material laminado, productos semi o totalmente elaborados, chapas tubos y caños con sus cordones de soldadura.

Page 9: Texto3

TECSUP – PFR Tecnología de Materiales Avanzada

45

9. ONDAS SÓNICAS También denominadas acústicas son ondas elásticas que se caracterizan por su intensidad y frecuencia de vibración. De esta última propiedad depende que sean audibles o no para el oído humano. De este punto de vista se ha establecido la siguiente categoría de ondas. a) Ondas infrasónicas. Las que están ubicadas en la banda de las frecuencias

mas bajas, siendo en general f < 16 Hz. Las vibraciones de esas ondas no son audibles.

a) Ondas audibles. Las ondas sónicas o audibles tienen un rango de frecuencia

entre 16 y 20 Hz.

a) Ondas ultrasónicas. se consideran así a aquellas con f > 20 Hz. El límite superior no es preciso ya que depende de las posibilidades de captación y emisión de las mismas.

10. ENSAYO POR ONDAS SUPERSÓNICAS

Figura 4.

En el ensayo mediante ultrasonido se proyectan mediante un cabezal ultrasónico, ondulaciones sonoras a través de la pieza. El numero de vibraciones es tan grande que no puede ser percibido (ultrasonido, hasta 10 millones de vibraciones). Las ondas son reflejadas por la cara opuesta de la pieza o por las superficies de los defectos que puedan existir y alcanzan nuevamente después de algunos microsegundos el cabezal emisor el cual transforma nuevamente los

Page 10: Texto3

Tecnología de Materiales Avanzada TECSUP - PFR

46

impulsos eléctricos en impulsos mecánicos reflejados. La diferencia de tiempo entre el eco de la pared posterior y el de la superficie del defecto hace posible determinar con bastante exactitud, la posición y el perímetro del defecto en el material. Esto se hace visible en la pantalla del aparato. La escala de graduaciones del indicador es ajustable, con lo cual se puede ajustar sobre toda la figura de la pantalla cualquier longitud de pieza desde los 10 cm. hasta los 10 m.

Figura 5.

Figura 6.

Los ultrasonidos son ondas acústicas de idéntica naturaleza que las ondas sónicas, diferenciándose de éstas en que su campo de frecuencias se encuentra por encima de la zona audible. Por los fenómenos que provocan en su propagación a través de los sólidos, líquidos y gases han dado lugar a la aparición de numerosas aplicaciones técnicas y científicas, siendo la más significativa el control no destructivo de materiales, de forma que en este tipo de inspecciones se aprovecha la energía acústica como portadora de la señal, lo que en general va asociado a bajos niveles de energía.

10.1 PROCEDIMIENTO

Mediante un generador de pulsos eléctricos, las sondas acústicas son introducidas en el material gracias a un cristal o palpador con propiedades piezoeléctricas capaz de transformar el impulso eléctrico en ondas

Page 11: Texto3

TECSUP – PFR Tecnología de Materiales Avanzada

47

ultrasónicas. Dichas ondas de alta frecuencia se propagan a través del material, se reflejan, difractan y atenúan, según encuentren o no obstáculos en su camino. La señal, recogida por el mismo u otro palpador, y enviada a una pantalla de rayos catódicos dará una imagen formada por distintos ecos, de los que analizando su situación, altura y forma podrá saberse el tipo de obstáculo en que rebotó (grieta, poro, escoria, etc.) y su situación en la pieza examinada.

10.2 VENTAJAS DE LAS PRUEBAS ULTRÁSONICAS

Los factores deseables de las pruebas ultrasónicas incluyen: 1. Alta sensibilidad, lo que permite la detección de fallas pequeñísimas. 2. Gran potencia de penetración, permitiendo la examinación de

secciones extremadamente gruesas. 3. Seguridad en la medición de la posición de la falla y estimación del

tamaño de esta. 4. Respuesta rápida, lo que permite una inspección rápida y

automatizada. 5. Necesidad de acceso solamente por un lado del espécimen. 6. Determinación de la posición de los defectos internos. 7. Sólo es necesario el acceso por una superficie. 8. El resultado de la inspección es instantáneo, produciéndose en

tiempo real.

9. No presenta riesgo para el operador. 10. Los equipos utilizados son portables. 11. La información obtenida en el ensayo puede ser fácilmente procesada

por técnicas digitales. 12. Elevada versatilidad.

10.3 LIMITACIONES DE LA PRUEBAS ULTRASÓNICAS

Las condiciones de pruebas que pueden limitar la aplicación de los métodos ultrasónicos, usualmente se relacionan con los siguientes factores:

1. Geometría desfavorable de la muestra que se requiere inspeccionar;

por ejemplo, contorno, complejidad y orientación del defecto. 2. Estructura interna indeseable, por ejemplo, tamaño del grano,

porosidad de la estructura, contenido de las inclusiones o precipitaciones finas o dispersas.

3. Problemas de exploración y acoplamiento. 4. Detectibilidad del defecto. 5. Costo del equipo.

Page 12: Texto3

Tecnología de Materiales Avanzada TECSUP - PFR

48

Figura 7.

Figura 8.

Page 13: Texto3

TECSUP – PFR Tecnología de Materiales Avanzada

49

11. ABREVIATURAS DE LOS PALPADORES NORMALES

En todo tipo de palpadores existen unas abreviaturas que nos dan ciertas características de los mismos. Generalmente aparece una primera letra que nos indica el tipo de cristal que utiliza el mismo, es decir: B = Titanato de bario Q= Cristal de cuarzo K = Cristales especiales, bien sulfato de litio o metabionato de plomo. A continuación aparece un número que nos indica la frecuencia del cristal del palpador, generalmente se trabaja con las frecuencias comprendidas entre 0'5 y 25 MHz., aunque las más utilizadas son 2 MHz., 4 MHz., y 6 MHz. Seguidamente aparecen una serie de letras que nos indican características físicas del palpador entre sí. Así, por ejemplo, si aparece una "S" a continuación es que se trata de un palpador con suela protectora, si existe una "T" es que se trata palpadores que puedan sumergirse en agua. Si delante de la letra que nos indica el tipo de cristal que posee el palpador, aparece una "M", es que se trata de un palpador miniatura y, si además posee una "S" delante de la "M" se tratará de un palpador subminiatura, dependiendo de que se trate de palpadores de 34,24,1005 mm., de diámetro.

Figura 9.

Page 14: Texto3

Tecnología de Materiales Avanzada TECSUP - PFR

50

Vamos a describir a continuación algunas características importantes de las mismas. Ante todo mencionar los diferentes tipos de cristales que se utilizan normalmente y que suelen ser de titanato de bario, metabionato de plomo, sulfato de litio y cuarzo, entre los más importantes. Aparte del cristal, el palpador tiene un amortiguamiento pegado por la parte superior del cristal. Si el amortiguamiento producido es pequeño los impulsos sonoros son largos, mientras que su espectro de frecuencia es pequeño. Si el amortiguamiento es mayor se obtienen impulsos cortos con un espectro o banda de frecuencias grande. Estos impulsos muy cortos ofrecen un gran poder de resolución permitiendo obtener medidas muy precisas de tiempos de recorrido.

Figura 10.

Cuando el palpador posee un buen poder resolutivo los ecos de fondo aparecen perfectamente separados entre sí, en la pantalla del equipo. En caso de un palpador con mal poder resolutivo, los ecos de fondo tienen cada vez más anchura y llega un momento en que la distancia de la pared posterior más lejana no se puede determinar. Los palpadores de titanato de bario poseen una elevada sensibilidad, junto con un poder resolutivo razonablemente bueno.

Page 15: Texto3

TECSUP – PFR Tecnología de Materiales Avanzada

51

Figura 11.

12. MEDIOS DE ACOPLAMIENTO

El objeto de un medio de acoplamiento en la prueba ultrasónica es dar una trayectoria de baja resistencia para las ondas de sonido entre la unidad de investigación y el trabajo. El aire es un transmisor muy pobre de energía ultrasónica a frecuencias en Mhz, una capa muy delgada de aire impide que se pueda hacer una transmisión entre dos sólidos. Entonces un medio de acoplamiento que pueden ser líquidos o grasas es utilizado para acoplar la energía ultrasónica entre la unidad de investigación y de trabajo.

Los más comunes son: El agua. Glicerina.

Grasas de petróleo. Grasas de silicona. Pasta para papel de paredes.

12.1 CONDICIONES PARA ESCOGER LOS TIPOS DE ACOPLAMIENTO

1. Costos. 2. Disponibilidad. 3. Viscosidad y adhesión a la superficie requerida. 4. Posible reacción química con el trabajo. 5. Requerimiento de aseo general después de la prueba.

12.2 VENTAJAS Y DESVENTAJAS DE LOS TIPOS DE ACOPLAMIENTOS El agua es el más barato y el más rápido disponible medio de acoplamiento, tiene una baja viscosidad y no puede ser utilizado donde puede fugarse fácilmente o puede en su recorrido tocar un alambre, el agua reacciona desfavorablemente con muchos metales. Los aceites y grasas, no fluyen con facilidad, ellos son sin embargo, son difíciles de limpiar y duros para removerlos, sus viscosidades cambian drásticamente con la temperatura y algunos son inflamables.

Page 16: Texto3

Tecnología de Materiales Avanzada TECSUP - PFR

52

Aplicaciones Dada la enorme variedad de aplicaciones de los ultrasonidos nos limitamos a citar aquellas más importantes desde el punto de vista industrial: Defectología En procesos de fabricación, chapas, placas, barras, redondos, tubos, uniones soldadas, etc. Metrología Control de corrosión y medida de espesores. Caracterización de materiales Medida de la velocidad acústica, de la atenuación, acustoelasticidad, etc. Ensayos de nuevos materiales Materiales compuestos, cerámicas técnicas, uniones soldadas por difusión, uniones adhesivas, etc. Inspecciones de mantenimiento Detección de grietas, grietas de corrosión, grietas de fatiga, estimación del tamaño de grieta, etc.

13. RAYOS X

13.1 DEFINICIÓN

Los rayos x son vibraciones electromagnéticas que se propagan con la misma velocidad de la luz unos 300 000 Km por segundo pero tiene una longitud de onda unas 10 000 veces menor que ésta.

13.2 EXAMEN POR RAYOS X

Atraviesan fácilmente espesores considerables, aunque pierde en la penetración parte de su energía conserva lo suficiente para impresionar películas fotográficas. Grietas, poros, inclusiones de escoria, bolas... etc., tienes diferentes densidades, lo cual sale en zonas más claras o más oscuras en la película fotográfica colocada detrás de la pieza. La intensidad de la radiación se expresa en miliamperios, la cual depende de la temperatura del filamento y también de la tensión aplicada entre el filamento o ánodo y la placa o cátodo.

Page 17: Texto3

TECSUP – PFR Tecnología de Materiales Avanzada

53

La intensidad está entre 15 a 20 mA.

13.3 PENETRACIÓN DE LOS RAYOS X Las tensiones utilizadas en la industria varía entre 200 a 3000 Kv. Los aparatos de rayos x pueden ser de tipo fijo y transportables.

13.4 LONGITUD DE ONDA Longitud de ondas duras. Longitud de ondas blandas.

13.5 PRINCIPIO DE FUNCIONAMIENTO

Los rayos x se generan en un tubo de roentgen, formada por una ampolla de vidrio especial con vacío muy avanzado, provista de dos electrodos de cobre y un anticátodo de tungsteno situado en su interior. El cátodo en forma de vaso tiene un filamento de tungsteno alimentado por una corriente de baja tensión. El filamento del cátodo, al ponerse incandescente por el caso de la corriente, emite un haz de electrones a gran velocidad, los cuales chocan con el anticátodo, conectando al electrodo positivo y esto origina vibraciones electromagnéticas (rayos x). Anticátodo se calienta por el choque de electrones, refrigerar con una circulación de agua o aceite.

13.6 CARACTERÍSTICA DE LOS RAYOS X

No sufre desviación por campos magnéticos. Se propagan en línea recta. Atraviesan cuerpos opacos sin reflejarse ni refractarse. Su longitud de onda depende de la velocidad de electrones que atacan el anticátodo y el grado de vacío que exista en el tubo.

13.7 RADIOGRAFÍA EN LA SOLDADURA Inclusión de gas, tienen menos densidad, lo cual forma impresiones oscuras redondeadas. Inclusiones de escoria. Baja permeabilidad, lo cual debilitan los rayos, dando impresiones inciertas e irregulares. Fisuras. Líneas oscuras, onduladas, variables o ramificadas.

Page 18: Texto3

Tecnología de Materiales Avanzada TECSUP - PFR

54

RELACIONES ENTRE ENSAYOS NO DESTRUCTIVOS

EXAMEN RADIOGRÁFICO

EXAMEN POR LÍQUIDO

PENETRANTE

EXAMEN POR PARTÍCULAS

MAGNÉTICAS

EXAMEN POR ULTRA-SONIDO

Costo relativamente

alto.

Difícil utilización. Detecta

discontinuidades Interna en el

material.

No requiere preparar la

superficie Permite registro

permanente De las fallas

encontradas.

Puede ser aplicado en cualquier

material. Duración del tiempo

del examen

relativamente largo. Requiere

conocimientos de grado superior en la

ejecución e

interpretación de resultados.

No detecta discontinuidades

perpendiculares planas en la

dirección de la

radiación. Exige medidas de

seguridad en su ejecución.

Bajo costo.

Fácil utilización. Detecta apenas

discontinuidades En la superficie de

el material.

Exige superficie previamente

preparada. Dificultad en el

registro de las fallas encontradas.

No puede ser

aplicado en materiales porosos.

Rapidez en la ejecución del

examen.

No requiere gran conocimiento

para su ejecución y para la

interpretación de

los resultados. Detecta cualquier

tipo de discontinuidades,

desde que esta abierta la

superficie.

No requiere medidas especiales

de seguridad.

Bajo costo.

En algunos casos, es fácil utilización.

Detecta apenas discontinuidades

superficies o

próximas a la superficie.

Exige superficie previamente

preparada. Es difícil mantener

un registro de las

fallas encontradas. Sólo puede ser

aplicado en materiales

ferromagnéticos.

Rapidez en la ejecución de el

examen. No requiere gran

nivel de

conocimiento para su ejecución y para

la interpretación de los resultados.

Detecta apenas discontinuidades

perpendiculares Las

líneas de fuerza de el campo

magnético. No requiere

medidas especiales

de seguridad.

Costo relativamente

alto.

Fácil utilización. Detecta

discontinuidades internas en el

material.

Exige superficie previamente

preparada. No es posible

mantener un registro de las fallas

encontradas.

Dificultad de aplicación en

algunos materiales. Rapidez en la

ejecución del

examen. Requiere elevado

grado de conocimiento para

su ejecución

y para el análisis de los

resultados. No detecta

discontinuidades paralelas a la

dirección de el

flujo cónico. No requiere

medidas especiales de seguridad.