33
Farmacología del sistema nervioso periférico. Organización del sistema nervioso El sistema nervioso se caracteriza por su especial capacidad para recibir y emitir información. Sistema Nervioso Central: Consta del cerebro y la medula espinal. Recibe e interpreta la información sensorial (nervios aferentes) e iniciar las respuestas motoras adecuadas (nervios eferentes). Sistema Nervioso Periférico: Está compuesto 12 pares de nervios craneales y 31 pares de nervios raquídeos. Se encuentran separados en dos divisiones, en somático y visceral (SNA). Sistema nervioso somático: Se encarga de las funciones controladas conscientemente como movimiento y postura. Sistema nervioso autónomo, vegetativo, involuntario o visceral: Se encarga de regular automáticamente un gran número de funciones fisiológicas básicas del organismo de forma autónoma, sin requerir el control de la conciencia. Funciones: Respiración, presión arterial, motilidad y secreciones digestivas, emisión urinaria, sudoración y temperatura corporal. Algunas de estas funciones están controladas totalmente por el hipotálamo. El SNA simpático y parasimpático Interactúan mutuamente para mantener el equilibrio fisiológico del organismo Organización funcional SNS y SNP, tienen la misma estructura general que consta de de dos neuronas (sistema bipolar). La 1ª. Neurona de ambos sistemas, tiene origen en el SNC, pero no realiza sinapsis directa con el órgano efector, sino que transmite el impulso hasta una 2ª neurona denominada postganglionar; la sinapsis ocurre a nivel de unas estructuras denominadas ganglios autónomos, en el SNS o en la pared del mismo órgano. Sistema nervioso simpático Los centros nerviosos se encuentran en el asta inter-mediolateral de la médula espinal, del primer segmento dorsal hasta el segundo o tercero lumbar.

Estudiar farma

Embed Size (px)

DESCRIPTION

farmacia

Citation preview

Page 1: Estudiar farma

Farmacología del sistema nervioso periférico.

Organización del sistema nervioso

El sistema nervioso se caracteriza por su especial capacidad para recibir y emitir información.

Sistema Nervioso Central:

Consta del cerebro y la medula espinal. Recibe e interpreta la información sensorial (nervios

aferentes) e iniciar las respuestas motoras adecuadas (nervios eferentes).

Sistema Nervioso Periférico:

Está compuesto 12 pares de nervios craneales y 31 pares de nervios raquídeos. Se encuentran

separados en dos divisiones, en somático y visceral (SNA).

Sistema nervioso somático:

Se encarga de las funciones controladas conscientemente como movimiento y postura.

Sistema nervioso autónomo, vegetativo, involuntario o visceral:

Se encarga de regular automáticamente un gran número de funciones fisiológicas básicas del

organismo de forma autónoma, sin requerir el control de la conciencia.

Funciones:

Respiración, presión arterial, motilidad y secreciones digestivas, emisión urinaria, sudoración y

temperatura corporal.

Algunas de estas funciones están controladas totalmente por el hipotálamo.

El SNA simpático y parasimpático Interactúan mutuamente para mantener el equilibrio

fisiológico del organismo

Organización funcional

SNS y SNP, tienen la misma estructura general que consta de de dos neuronas (sistema

bipolar).

La 1ª. Neurona de ambos sistemas, tiene origen en el SNC, pero no realiza sinapsis directa con

el órgano efector, sino que transmite el impulso hasta una 2ª neurona denominada

postganglionar; la sinapsis ocurre a nivel de unas estructuras denominadas ganglios

autónomos, en el SNS o en la pared del mismo órgano.

Sistema nervioso simpático

Los centros nerviosos se encuentran en el asta inter-mediolateral de la médula espinal, del

primer segmento dorsal hasta el segundo o tercero lumbar.

Page 2: Estudiar farma

De ahí parten las raíces eferentes o fibras preganglionares que conectan con células de los

ganglios simpáticos pre y paravertebrales de donde salen las fibras posganglionares, que

inervan los órganos y tejidos.

Sistema nervioso parasimpático

Los centros nerviosos se agrupan en una división craneal, que comprende grupos neuronales

de los núcleos de los pares craneales III, VII, IX y X, y una división sacra que abarca los

segmentos 2, 3 y 4 de la médula sacra.

De donde parten las largas fibras eferentes preganglionares que suelen terminar en centros

ganglionares situados en la proximidad del órgano que han de inervar mediante fibras

posganglionares.

Sistema nervioso entérico

Es localizado en la pared del tubo GI.

Su estudio sirvió para definir la existencia de fibras nerviosas no colinérgicas y no adrenérgicas

que inervan las células musculares lisas del tubo digestivo y de algunas células vasculares.

Esto originó el hallazgo de nuevas sustancias neurotransmisoras.

Sistemas de neurotransmisión

ACETILCOLINA, y NORADRENALINA

Las neuronas preganglionares son colinérgicos; la transmisión ganglionar se produce a través

de los receptores nicotínicos de ACh (receptores muscarínicos de ACh excitadores en las

células posganglionares).

Las neuronas simpáticas postganglionares son fundamentalmente noradrenérgicas aunque

algunas son colinérgicas y actúan sobre receptores adrenérgicos α o β.

Las neuronas parasimpáticas posganglionares son colinérgicas y actúan sobre receptores

muscarínicos en el órgano efector.

Conducción

Se denomina conducción al proceso por el cual el impulso nervioso se desplaza a lo largo de

una neurona.

La conducción de la información es un fenómeno eléctrico que se debe a una modificación de

la permeabilidad de la membrana para ciertos iones.

Despolarización, Bomba ATPasa

Transmisión

Se denomina transmisión al paso del impulso nervioso, información o mensaje de una neurona

a otra neurona o bien a una célula efectora no neuronal.

Page 3: Estudiar farma

Existen dos tipos de transmisión: la transmisión eléctrica y la transmisión química, siendo esta

última la más importante.

Transmisión Eléctrica

El espacio extracelular entre las células es inexistente de modo que iones y moléculas

pequeñas pueden pasar de una a otra célula por lo que existe una comunicación metabólica.

Entre las células hay conexiones eléctricas que forman zonas de intercomunicación (canales)

que van del citoplasma de una célula al citoplasma de la otra y a través de los cuales se

transmite el potencial eléctrico por simple conducción.

Estas estructuras de comunicación se denominan gap junctions.

Transmisión Química

Aquí la información pasa de una célula a otra célula que se encuentra separada por un espacio,

que se denomina espacio sináptico o sinapsis.

Debido a la separación existente entre las células se necesita de una molécula o sustancia

química que se libere de la primera célula, recorra el espacio que separa ambas células y,

finalmente, interacciona con moléculas receptoras existentes en la segunda célula.

Neurotransmisión

Cotransmisión

El cotransmisor va a actuar modulando, ya sea de forma positiva o negativa, el efecto del

neurotransmisor principal.

Los principales cotransmisores en el sistema nervioso parasimpático son el óxido nítrico (NO) y

el péptido intestinal vasoactivo (VIP), mientras que en el sistema nervioso simpático van a ser

el ATP y el neuropéptido Y.

Neurotransmisores

a) Aminas biógenas. Acetilcolina, Noradrenalina, Dopamina, serotonina, Adrenalina e

Histamina

b) Aminoácidos: GABA, Glicina, Ac. Glutámico, Ac. Aspártico

c) Nucleótidos:Adenosina, ATP

d) Polipéptidos: Encefalinas, Endorfinas, Dinorfinas, Bradiquinonas , CCK, Sust. P y K, VIP,

Somatostatina, Secretina.

Neurotransmisores no adrenérgicos ni colinérgicos (NANC)c

Page 4: Estudiar farma

Acciones farmacológicas

Los uso de fármacos consiste en que:

a) Imiten la actividad de los neurotransmisores para interactuar con los receptores: agonistas

colinérgicos y adrenérgicos.

b) Reduzcan o supriman la actividad de uno u otro sistema, mediante bloqueo de los

receptores de sus respectivos neurotransmisores: fármacos antagonistas o bloqueantes

colinérgicos y adrenérgicos.

c) Modifiquen la actividad de los neurotransmisores por interferir en su síntesis, su

almacenamiento sináptico o su mecanismo de desaparición.

Transmisión colinérgica

La ACh es la molécula que da la transmisión colinérgica. Distribuida en diferentes especies.

Enlace éster y un grupo cuaternario.

Síntesis de la acetilcolina

La ACh es sintetizada en el citoplasma neuronal a partir de la colina y de la acetilcoenzima A

(acetil-CoA) mediante la acción de la enzima colinoacetiltransferasa (CAT).

Almacenamiento

La ACh es almacenada en la terminal colinérgica presináptico.

Existen tres formas de depósito:

1. De forma libre, disuelta en el citoplasma

2. En el interior de vesículas sinápticas

3. Asociada lábilmente a membranas y puede desprenderse con facilidad.

Liberación de la acetilcolina

Cuando un potencial de acción despolariza la terminación colinérgica, provoca de forma rápida

y pasajera la abertura de canales de Ca+2 en la membrana presináptica, con lo que el Ca+2

penetra en el interior a favor del gradiente electroquímico. El aumento de Ca+2 en el interior

Page 5: Estudiar farma

del terminal desencadena la movilización de la acetilcolina, tanto de la fracción que está en

forma libre como de la asociada a las vesículas sinápticas.

Éstas interactúan con la membrana presináptica y descargan su contenido en el espacio

sináptico; posteriormente retornan y se recuperan (reciclaje). Si la estimulación nerviosa es

muy prolongada, disminuye el número de vesículas del terminal, pero su síntesis se recupera

con mayor rapidez que la de la propia acetilcolina.

Inhibición de la liberación de la ACh

Toxinas producidas por el Clostridiumbotulinum, el Clostridiumtetani o la araña viuda negra.

Las neurotoxinas del grupo de los Clostridia son la toxina tetánica y siete serotipos de toxina

botulínica (A-G).

La activación neurotóxica requiere la ruptura del puente disulfuro de las cadenas, para que la

cadena ligera quede libre la secuencia donde se encuentra el dominio proteásico responsable

de la inactivación.

Receptores Colinérgicos

Existen 2 tipos:

Nicotínicos (SN Simpático preganglionar) forman parte de un canal ionico cuya abertura es

controlada.

Muscarínicos (SN Parasimpático) Están asociados a diversos tipos de proteinas G mediante las

cuales activan sistemas efectores de diversa naturaleza.

Receptor nicotínico

Pertenece a la familia de los canales iónicos receptor-dependientes.

Son los encargados de mediar la transmisión sináptica del SNC como SNP.

La estructura primaria está formada por cuatro subunidades glicoproteínas, independientes( α,

β, γ y δ), semeja un pentágono con un poro central.

Este receptor está compuesto por un extremo hidrófilo N-terminal en el exterior, seguido por

tres regiones hidrófobas (M1, M2, M3), un bucle hidrófilo citoplásmico seguido de una cuarta

región (M4) dominio hidrófobo, para finalizar en un segmento C-terminal en el exterior de la

membrana.

Características estructurales

El segmento hidrófobo M2 de cada una de las subunidades en la conformación del canal, de

modo que se propone que este dominio transmembrana está dirigido hacia el interior de la

estructura pentamérica que adopta el receptor.

Las subunidades α son fundamentales para la fijación de agonistas y antagonistas

competitivos.

Page 6: Estudiar farma

Cada receptor presenta 2 subunidades α, se necesitan dos moléculas de acetilcolina para su

activación, ejerciendo entre ellas un fenómeno de cooperación positiva.

La nicotina, principio activo de la Nicotianatabacum, es un alcaloide natural que desencadena

acciones farmacológicas estimulantes a nivel de los ganglios autonómicos y en la placa

mioneural estriada.

El estímulo nicotínico produce efectos excitatorios en ambos sistemas, pero el efecto final es

simpático con hipertensión y taquicardia a través de la liberación de adrenalina y NA de la

médula suprarrenal, se manifiesta de manera rápida y breve.

El dimetilfenilpiperazinio (DMPP) y la acetilcolina son ejemplos de agonistas nicotínicos.

La activación del receptor nicotínico provoca la abertura de canales iónicos y el aumento de la

permeabilidad iónica para Na+ y e K+ pasan con facilidad y, en menor grado, el Ca+2 y el Mg+2.

Así se provoca el potencial postsináptico excitador (EPSP).

Los receptores nicotínicos se encuentran en la membrana de la placa motriz, en la membrana

de las células ganglionares simpáticas y parasimpáticas, y en muy diversas localizaciones del

SNC.

Los receptores nicotinicostiene dos subtipos, dos subtipos.

El Nm o receptor nicotínico muscular se encuentra en la placa motriz, siendo sus antagonistas

más específicos la tubocurarina y la α-bungarotoxina.

El subtipo Nn o receptor nicotínico neuronal se encuentra en el SNC, en ganglios vegetativos y

en células de la médula suprarrenal, siendo su antagonista más específico el trimetafán.

Receptor muscarínico

Pertenecen a la familia de receptores de membrana, presenta siete dominios

transmembranales, asociados a proteínas G.

Son responsables de la neurotransmisión parasimpática postganglional.

Se conocen 5 receptores (M1 a M5).

Su ocupación produce respuestas lentas, mediadas por receptores ionotrópicos o segundos

mensajeros.

Dependiendo del tipo celular, se obtendrá respuestas excitatorias o inhibitorias.

Están acoplados siempre a proteína G.

Característica estructural

Su extremo amino terminal está en el exterior y el extremo carboxilo terminal en el interior

citoplásmico, y tiene un gran tercer bucle intracitoplásmico que es el responsable del

reconocimiento y activación de las proteínas G.

Page 7: Estudiar farma

La muscarina es un alcaloide que se obtiene del hongo venenoso Amanita muscaria. Este

compuesto natural posee la propiedad de desencadenar acciones parasimpaticomiméticas por

interactuar específicamente con ciertos receptores sobre los cuales también actúa la

acetilcolina.

La muscarina, pilocarpina, metacolina y el carbacol son alguno de los agentes colinérgicos que

poseen la propiedad de estimular a estos receptores.

Se encuentran distribuidos en neuronas del SNC, repartidos de forma irregular, ubicados en

zonas neuronales, dendritas y terminaciones axónicas tanto de neuronas colinérgicas como no

colinérgicas.

Subtipos de receptores muscarínicos

M1: Neuronas ganglionares del sistema vegetativo, incluidas las de los plexos mientéricos de la

pared gástrica

M2: Tejidos periféricos, predominan en el corazón (nodos sinoauricular, auriculoventricular y

músculo auricular) y, en mucho menor grado, en otras células musculares lisas.

M3: Células secretoras y en células musculares lisas.

M4: células endoteliales vasculares, en neuronas ganglionares, vasos deferentes y útero.

Los receptores muscarinicos se encuentran en las neuronas postganglionares del sistema

nervioso parasimpático del corazón y del músculo liso de todo el organismo y su estimulación

produce bradicardia, disminución del inotropismo, broncoconstricción, miosis, salivación,

hipermotilidad gastrointestinal y aumento de la secreción de ácido gástrico.

Estos receptores pueden bloquearse con atropina sin que se produzcan efectos sobre los

receptores nicotínicos.

Todos los subtipos de receptores muscarínicos ejercen sus efectos mediante proteínas G.

Dependiendo de la naturaleza de la proteína G, esta interacción activa el sistema de segundos

mensajeros a través de tres vías fundamentales:

1. Inhibición de la enzima adenililciclasa

2. Estimulación de la hidrólisis de fosfoinosítidos

3. Regulación de la abertura de un canal iónico.

Agonistas colinérgicos de acción muscarínica

Clasificación:

De acción directa: activan directamente los receptores muscarínicos.

Se distinguen los grupos siguientes:

a) Ésteres de la colina.

b) Alcaloides naturales y sus derivados sintéticos.

Page 8: Estudiar farma

c) Fármacos de síntesis.

De acción indirecta: son los inhibidores de la acetilcolinesterasa, cuya acción se debe al

incremento local de acetilcolina en la terminación colinérgica, por lo que activan

receptores muscarínicos y nicotínicos.

Fármacos colinérgicos de acción directa

Los ésteres de la colina son de dos grupos:

a) Ésteres de colina y ácido acético: acetilcolina y acetil-β-metilcolina o metacolina

La administración de acetilcolina provoca:

Contracción de bronquios, intestinos, estomago, útero, vejiga y vesícula biliar, aumenta la

secreción de saliva y jugo pancreático, produce una acción miótica pasajera e inconstante

debido a la rapidez con la que es destruida por la enzima, produce un efecto vasodilatador

potente y a estos efectos se les llama muscarínicos.

Se produce un estimulo y aumento de tono de musculos esqueléticos y a estos efectos se les

llama nicotínicos.

La acetilcolina es importante por su papel fisiológico pero como medicamento es inútil porque

aun administrada por vía intravenosa su acción es muy breve ya que es destruida por las

colinesterasas presentes en el organismo.

Causa diversos efectos, por lo que no puede lograrse un buen efecto terapéutico selectivo.

Relación estructura química con la actividad medicamentosa

1.- Si se coloca un CH3 en el carbono β de la cadena hace al producto menos activo

colinérgicamente pero tiene una vida media mayor por lo que tiene una acción mas

prolongada. Protege contra la acción de la colinesterasa no especifica.

2.- Si se sustituye el grupo metilo de la porción acetato por un amino se observan efectos

semejantes al anterior.

3.- Si se hacen ambas sustituciones al mismo tiempo, disminuyen la actividad colinérgica y la

actividad es menor.

b) ésteres de colina y ácido carbámico: carbamilcolina, o carbacol, y carbamilb-

metilcolina, o betanecol.

La esterificación con ácido carbámico confiere a la molécula una alta resistencia a la hidrólisis

por colinesterasas, por lo que su acción es mucho más prolongada que la de la acetilcolina.

La metilación en posición β de la metacolina y del betanecol aumenta también la resistencia a

la hidrólisis y reduce la potencia de activación de receptores nicotínicos, por lo que sus efectos

se restringen más al espectro muscarínico.

Alcaloides naturales poseen un nitrógeno terciario o cuaternario.

Page 9: Estudiar farma

Tiene nitrógeno cuaternario la muscarina (obtenido de la Amanita muscaria)

Nitrógeno terciario: pilocarpina, arecolina, aceclidina

Fármacos inhibidores de la colinesterasas

Derivados carbámicos: son ésteres del ácido carbámico y alcoholes que poseen un nitrógeno

terciario o cuaternario. Unos son de aplicación clínica:

Fisostigmina o eserina es un alcaloide natural terciario de la Physostigmavenenosum,

cuya liposolubilidad le permite atravesar la barrera BHE.

Prostigmina o neostigmina

Piridostigmina

Otras son de aplicación agrícola como insecticidas:carbary

Efecto de los fármacos en la transmisión colinérgica

Síntesis del transmisor

Almacenamiento del transmisor

Liberación del transmisor

Activación y bloqueo del receptor

Page 10: Estudiar farma

Desactivación enzimática del transmisor

Fármacos estimulantes de la transmisión colinérgica

Fármacos parasimpaticomiméticos

Fármacos que mimetizan los efectos evocados mediante el estímulo de las fibras

postganglionares parasimpáticas.

Pueden activar en grado variable:

1) Receptores muscarínicos presentes en órganos inervados por el parasimpático.

2) Receptores nicotínicos de sinapsis ganglionares, médula adrenal y placa motora.

3) Receptores nicotínicos y muscarínicos en el SNC.

Clasificación

Estimulación colinérgica Parasimpáticomiméticos de acción directa o agonistas

muscarínicos (ésteres de la colina y alcaloides naturales).

Parasimpáticomiméticos de acción indirecta o inhibidores de la acetilcolinesterasa

Agonistas muscarínicos o parasimpaticomimético de acción directa

Esteres de colina

√ Acetilcolina

√ Metacolina

√ Carbacol

√ Betanecol

Alcaloides naturales

√ Muscarina

√ Pilocarpina

√ Arecolina

√ Oxotremorina (Sintético)

Page 11: Estudiar farma

Mecanismo de acción

Todos ellos activan receptores muscarínicos pero pueden activar también receptores

nicotínicos ganglionares en mayor (acetilcolina, carbacol, arecolina) o menor (metacolina,

pilocarpina) grado.

Acciones farmacológicas

Sistema cardiovascular: Vasodilatación arteriolar generalizada. Disminución de la frecuencia y

contractilidad miocárdica, disminución de la conducción.

Aparato gastrointestinal. Estimulación de las secreciones digestivas y del peristaltismo.

Aparato genitourinario. Aumento del peristaltismo uretral. Contracción del músculo detrusor

de la vejiga y relajación del trígono y esfínter uretral facilitando la micción.

Tracto bronquial. Broncoconstricción y aumento de secreciones.

Glándulas exocrinas. Incremento de la secreciones.

Ojo. Miosis.

Farmacocinética

La acetilcolina y metacolina no pueden administrarse por vía oral ya que se destruyen por

hidrólisis gástrica.

El carbacol y el betanecol no son sensibles a la hidrólisis por colinesterasas y aunque son poco

liposolubles, atraviesan la membrana gastrointestinal en cantidad suficiente.

La BHE sólo la atraviesan los compuestos con amonio terciario (pilocarpina, arecolina y

oxotremorina).

Usos terapéuticos

Aplicación oftálmica como mióticos(acetilcolina, carbacol, pilocarpina).

Acetilcolina

Cuando se une a los receptores de acetilcolina de las fibras musculares, las estimula para

contraerse. Tiene su uso en el cerebro, donde causa acciones excitatorias, las glándulas que

reciben impulsos de la parte parasimpática del SNA se estimulan de la misma forma.

Un incremento de acetilcolina

Indicaciones: Para producir una miosis rápida en el iris del ojo y reducir los aumentos

postoperatorios de la presión intraocular en la cirugía de catarata, queratoplastia, iridectomía

simple y otras cirugías segmentarias anteriores.

Carbacol

Estimula tanto a los receptores muscarínicos como a los nicotínicos.

Page 12: Estudiar farma

El carbacol no es metabolizado por la acetilcolinesterasa, sus efectos en el organismo duran

entre 4 y 6 horas administrado tópicamente y unas 24 horas si se administra por vía

intraocular.

Indicaciones: Este medicamento se utiliza para el tratamiento de la presión intraocular elevada

causada por el glaucoma u otras enfermedades de los ojos (por ejemplo, hipertensión ocular).

El carbacol funciona al disminuir la cantidad de líquido dentro del ojo.

Metacolina

Es un agente broncoconstrictor y produce miosis.

Su principal uso clínico, es en el diagnóstico de la hiperactividad bronquial característica en

pacientes con asma.

Test de Provocación conMetacolina, función pulmonar.

Su uso terapéutico es limitado debido a sus efectos adversos cardiacos. Como bradicardia e

hipotensión, los cuales son duplicados en virtud de su función de agonista colinérgico.

Indicaciones: Para el diagnóstico de la hiper-reactividad de las vías aéreas bronquiales en

pacientes sin asma clínicamente.

Pilocarpina

Es un agonista no selectivo de los receptores muscarínicos del sistema nervioso parasimpático,

el cual, terapéuticamente, actúa a nivel del receptor muscarínico M3 en especial debido a su

aplicación tópica.

Indicaciones: Alivio de síntomas de hipofunción de glándulas salivales en xerostomía grave,

post-radioterapia en cáncer de cabeza y cuello. Tratamiento de los síntomas de la sequedad de

boca y de la sequedad ocular en pacientes con el síndrome de Sjögren.

Betanecol

Por sus propiedades hidrófilas, se absorbe y distribuye de forma inadecuada en el sistema

nervioso central. Debido a la capacidad de resistir la acción de la colinesterasa, su tiempo de

acción es en suma prolongado, pero la presencia de un grupo beta-metilo en su molécula

disminuye la potencia de la sustancia en el receptor nicotínico.

Indicaciones: Este medicamento se utiliza para el tratamiento de la retención urinaria no

obstructiva atonía intestinal, atonía vesical, retención urinaria.

Contraindicaciones

Asma bronquial

Insuficiencia coronaria

Hipertiroidismo

Úlcera gastroduodenal

Retención mecánica digestiva o urinaria.

Page 13: Estudiar farma

Inhibidores de la colinesterasa

Los estimulantes colinérgicos de acción indirecta son los inhibidores de las colinesterasas, que

constituyen un grupo heterogéneo de fármacos con la propiedad de antagonizar la hidrólisis

de la acetilcolina, provocando incrementos en la intensidad y duración de sus efectos.

Clasificación

A) Derivados carbámicos

Inhibidores reversibles:

√ Fisostigmina

√ Neostigmina

√ Piridostigmina

√ Edrofonio

√ Donepezilo

B) Alcoholes simples

C) Compuestos organofosforados

Inhibidores irreversibles:

√ Ecotiofato

√ Insecticidas organofosforados.

Fisostigmina.

Indicaciones: Reversión del bloqueo inducido por los relajantes musculares no despolarizantes,

delirio postoperatorio, sobredosis de antidepresivos tricíclicos, reversión del síndrome

anticolinérgico central (ansiedad, confusión) o periférico (vasodilatación, retención urinaria,

hipertermia), tratamiento tópico del glaucoma.

Neostigmina.

Indicaciones: Diagnóstico y tratamiento de miastenia gravis. Profilaxis del íleo paralítico y

atonía vesical. Tratamiento de la distensión abdominal y retención urinaria. Antagoniza el

efecto de los agentes bloqueadores neuromusculares no despolarizantes (tubocurarina,

metocurina, galamina y pancuronio). Tratamiento del estreñimiento severo en pacientes con

daño del cordón espinal torácico. Revierte el bloqueo sobre la placa neuromuscular que

pueden ocasionar algunos aminoglucósidos.

Piridostigmina.

Indicaciones: Indicados en el tratamiento de la miastenia gravis. Por su presentación en

tabletas de liberación prolongada, Mestinon® Timespan proporciona una duración de acción

Page 14: Estudiar farma

por más tiempo. Mestinon® puede emplearse como antídoto para bloqueadores musculares

no despolarizantes como la galamina o pancuronio.

Edrofonio.

Indicaciones: Diagnóstico de miastenia gravis. Reversión del bloqueo neuromuscular de

curarizantes. Diagnóstico diferencial de arritmias por intoxicación por digitálicos.

Donepezilo.

Indicaciones: Indicado para tratar la demencia (un trastorno cerebral que afecta la capacidad

de recordar, pensar con claridad, comunicarse y realizar las actividades diarias, y puede causar

cambios en el estado de ánimo y la personalidad) asociada con la enfermedad de Alzheimer.

Isoflurato.

Indicaciones: Isoflurofato daña la enzima acetilcolinesterasa y por lo tanto, es irreversible, sin

embargo, pralidoxima puede desplazar a los organofosforados, como isoflurofato de la

acetilcolinesterasa, Pero sólo si se administra antes de causar daño isoflurofato (alquilatos) de

la enzima.

Mecanismo de acción

Los inhibidores de la acetilcolinesterasa interfieren en el proceso al interactuar con la enzima e

inactivarla, pero lo consiguen por mecanismos algo diferentes.

1) Dependiendo la intensidad con que se fijan a la enzima.

2) Duración de acción anticolinesterásica.

Acciones farmacológicas

Son consecuencia de la acumulación de acetilcolina en las sinapsis colinérgicas y la activación

de receptores muscarínicos y nicotínicos (placa motora y ganglio).

Los efectos dependen de la dosis y la farmacocinética del compuesto administrado.

Placa neuromuscular. Prolongación del potencial de acción e incremento de la fuerza de

contracción muscular. A altas dosis despolarización mantenida y parálisis muscular.

SNC: Activación seguida de parálisis (sólo los que atraviesan BHE).

Aparato digestivo. Aumento del tono, peristaltismo y secreciones

Ojo. Miosis, lagrimación

Farmacocinética

La fisostigmina e insecticidas organofosforados se absorben bien por vía gastrointestinal,

atravesando la BHE.

Page 15: Estudiar farma

Los derivados de amonio cuaternario (neostigmina y piridostigmina), se absorben mal por vía

gastrointestinal y no atraviesan la BHE.

Indicaciones terapéuticas

Parálisis muscular postanestésica por tubocurarina (neostigmina o edrofoniomás

antimuscarínico).

Miastenia gravis (diagnóstico: edrofonio; tratamiento: neostigmina o piridostigmina más

antimuscarínico).

Parálisis intestinal (neostigmina).

Glaucoma (fisostigmina).

Intoxicación por antimuscarínicos (fisostigmina).

Enfermedad de Alzheimer (donepezilo).

Intoxicación

Intoxicación aguda: miosis, dolor ocular, congestión conjuntival; disnea; vómitos, diarreas;

hipotensión, arritmias; fasciculaciones musculares, sobrestimulación seguida de depresión del

SNC.

Intoxicación crónica. Polineuritis severa y parálisis muscular flácida

Tratamiento: Mantener constantes; atropina; pralidoxima

Bloqueadores neuromusculares

Los bloqueadores neuromusculares (BNM) son sustancias inicialmente naturales, hoy

sintéticas, capaces de producir parálisis muscular actuando en la unión neuromuscular, donde

bloquean la transmisión del impulso nervioso y por tanto la contracción muscular.

Los bloqueadores neuromusculares se utilizan como complemento de la anestesia cuando se

emplea ventilación mecánica; no representa una intervención terapéutica. Todos los fármacos

que se utilizan interfieren en la actividad postsináptica de la acetilcolina.

Clasificación de los bloqueadores neuromusculares

Se subdividen en:

Bloqueadores no despolarizantes (mayoría) actúan como antagonistas competitivos de

los receptores nicotínicos de la placa motora. Ejemplos: tubocurarina, pancuronio,

atracuronio.

Bloqueadores despolarizantes actúan como agonistas del receptor nicotínico. Ejemplo:

succinilcolina, pero al no ser destruidos, producen una acción repetida del receptor

que conduce a una reducción progresiva de la respuesta de este y a una perdida de da

excitabilidad muscular.

Page 16: Estudiar farma

Historia

La preparación de curare por los indios de América del Sur se remonta a varios siglos antes del

descubrimiento de América

Claude Bernard, en 1856, demostró que el curare produce parálisis al bloquear la transmisión

neuromuscular.

En 1865, Preyer consiguió la primera forma purificada y cristalizada de curare, a la que

denominó curarina.

En 1912 fue la primera administración de curare en una anestesia general, por el cirujano

alemán Arthur Läwen.

La introducción del curare en la anestesia clínica general ocurrió en 1928 cuando el Dr. Francis

Percival de Caux.

En 1941 se llevo a cabo la primera investigación acerca de la fuente del curare en el Amazonas

por Richard Evans Schultes, descubrió que diferentes de curare poseían hasta 15 ingredientes

e identifico más de 70 especies que producían la droga.

Bloqueadores no despolarizantes

El principio activo del curare la más importante es la d-tubocurarina, que se identifico en

1935. La tubocurarina ya casi no se usa como medicamento, pero se han desarrollado algunos

fármacos sintéticos que presentan efectos muy parecidos, entre los que destacan el

pancuronio, vecuronio y atracuronio, que se diferencian por la duración de acción. La galamina

fue el primer derivado sintético, pero ha sido desbancado por otros fármacos con menos

efectos secundarios.

Mecanismo de acción

Producen un bloqueo superable. A pequeñas dosis clínicas y bajas frecuencias de estimulación,

los relajantes musculares no despolarizantes actúan sobre los sitios receptores nicotínicos para

competir con la acetilcolina.

A dosis altas, algunos de estos fármacos también entran al conducto iónico de la placa

terminal para producir el bloqueo del conducto.

También pueden bloquear los conductos de Na+ previo a las uniones, pero no a los del Ca+2,

como resultado, estos relajantes interfieren con la movilización del acetilcolina desde los sitios

de síntesis a los sitios de la liberación.

Acciones farmacológicas

Durante la anestesia, la administración intravenosa de la tubocurarina, 0.12 a 0.4 mg/kg,

causara debilidad motora, por lo que los músculos esqueléticos estarán totalmente flácidos e

inexcitables ante una estimulación. Los efectos de estas dosis suelen durar de 30 a 60 minutos.

Page 17: Estudiar farma

La propiedad mas importante que diferencia a los relajantes no despolarizantes es el tiempo

de inicio del efecto, lo cual determina que tan pronto puede intubarse al paciente.

Efectos farmacológicos

Obedecen fundamentalmente a la parálisis motora, aunque algunos producen efectos

neurovegetativos significativos. Los principales músculos afectados son los extrínsecos del ojo

(visión doble) y los músculos pequeños de la cara, las extremidades y la faringe (dificulta la

deglución). Los músculos respiratorios son los últimos que se afectan y los primeros que se

recuperan.

Bloqueadores despolarizantes

Decametonio (desuso) se utilizo clínicamente, pero presenta un efecto demasiado prolongado.

Suxametonio posee una estructura similar al decametonio (dos moléculas de acetilcolina

unidas por su grupo acetilo). Su acción es más breve que el decametonio ya que es hidrolizado

por la colinesterasa plasmática. Estos fármacos actúan de forma análoga a la acetilcolina,

como agonistas sobre los receptores de la placa motora terminal.

Al administrarse estos fármacos, se difunden lentamente hacia la placa terminal y permanecen

allí durante el tiempo necesario para que la despolarización induzca una pérdida de la

excitabilidad eléctrica.

La succinilcolina es el fármaco utilizado clinicamente de este grupo. Su duración de acción es

de 5 a 10 minutos, se debe a la rápida hidrólisis por la colinesterasa presente en el hígado y

plasma. El metabolito inicial succinilmonocolina que es un bloqueador muscular débil, para

finalmente ser metabolizado a acido succínico y colina.

Una pequeña fracción de la succinilcolina llega a las terminaciones nerviosas, ya que

hidrolizada rápidamente.

Mecanismo de acción

Este se lleva a cabo en dos fases:

Fase I despolarización----- fasciculaciones

Fase II repolarización------ parálisis flácida

Fase I.

La succinilcolina reacciona con los receptores muscarínicos para abrir el conducto y ocasionar

una despolarización de la placa terminal, y estas a su vez se disemina a la membranas

adyacentes y las despolariza, lo que da una contracción desorganizada generalizada de la

unidades motoras musculares. La succinilcolina no es metabolizada con eficacia en la sinapsis,

las membranas despolarizadas se mantienen así, y no tienen la capacidad de respuesta a

estímulos adicionales.

Page 18: Estudiar farma

Debido que el acoplamiento de excitación-contracción requiere de una repolarización de la

placa terminal y activación repetitiva para mantener la tensión muscular, sobreviene una

parálisis flácida. Los inhibidores de la colinesterasa aumentan, no revierten.

Fase II.

Con la exposición continua la acetilcolina, la despolarización inicial de la placa terminal

disminuye, y la membrana se repolariza, pero la acetilcolina no puede despolarizar de nuevo

la membrana en tanto haya succinilcolina.

Debido a que la placa terminal está parcialmente repolarizada y aun no responde a la

acetilcolina, se dice que la membrana esta desestabilizada a los efectos de la acetilcolina.

Acciones farmacológicas

Después de la administración intravenosa de succinilcolina, se presenta fasciculaciones

musculares transitorias, en tórax y abdomen. Conforme sobreviene la parálisis, los músculos

de brazos, cuello y piernas quedan afectados momentáneamente, mientras existe una ligera

debilidad de los músculos faciales y faríngeos. Después se debilitan los músculos respiratorios.

El inicio del bloqueo neuromuscular por la succinilcolina es muy rápido, alrededor de un

minuto, la duración del bloqueo a esta dosis es de 5 a 10 minutos.

Efectos farmacológicos

A nivel cardiovascular produce arritmias cardiacas; estimula los colinorreceptores del SN; los

receptores nicotínicos en ganglios tanto simpáticos como parasimpáticos y los receptores

muscarínicos del corazón.

Se ha observado bradicardia cuando se administra una segunda dosis aproximadamente 5

minutos después de la primera dosis. Esto se puede prevenir con la administración de

tiopental, atropina, bloqueadores ganglionares y relajantes musculares no despolarizantes.

Otros efectos observados con estos fármacos son hipercalemia, presión intraocular, presión

intragástrica y dolor muscular.

En dosis bajas se presentan respuestas inotrópicas como cronotrópicas negativas que pueden

atenuarse administrándose atropina. En grandes dosis, pueden presentarse efectos

inotrópicos y cronotrópicos positivos.

Aclaración

Inotrópico es el efecto que producen las sustancias que, sean producidas de forma natural por

el cuerpo o administradas como medicamentos, producen un bloqueo de los canales que

expulsan el calcio fuera de las células.

Cronotrópico efecto que tienen algunas sustancias sobre el ritmo cardíaco

Reversión del bloqueo neuromuscular no despolarizante

Page 19: Estudiar farma

La neostigmina y la piridostigmina antagonizan el bloqueo neuromuscular no despolarizante al

incrementar la disponibilidad de acetilcolina en la placa terminal muscular, principalmente

mediante la inhibición de la acetilcolinesterasa. En menor grado, estos agentes aumentan la

liberación de transmisores desde la terminal nerviosa motora. En cambio, el edrofonio

antagoniza el bloqueo neuromuscular tan solo por inhibición de la acetilcolinesterasa.

FARMACOS INHIBIDORES DE LA TRANSMISION COLINERGICA.

PARASIMPATICOLITICOS,

COLINOLITICOS,

ANTICOLINERGICOS,

ANTIMUSCARINICOS O

ANTAGONISTAS MUSCARINICOS

Antagonistas muscarínicos

Los compuestos con efectos antimuscarínicos que existen en la naturaleza se han conocido y

empleado durante milenios como medicamentos, venenos y cosméticos. El prototipo de estos

compuestos es la atropina. Se conocen muchos alcaloides vegetales similares, y se han

preparado cientos de compuestos antimuscarínicos sintéticos.

La atropina y sus derivados naturales son ésteres alcaloides de amonio terciario del ácido

trópico.

Atropina (hiosciamina) se encuentra en la planta Atropa belladona, y en Datura stramonium

(estramonio o toloache).

Escopolamina (hioscina) se encuentra en Hyoscyamusniger o beleño (beleño negro).

Estos fármacos actúan sobre las terminaciones posganglionares del sistema nervioso

parasimpático.

ABSORCION.

Los alcaloides naturales y la mayoría de los antimuscarínicos terciarios son bien absorbidos en

el intestino y a través de la conjuntiva, la escapolamina se absorbe a través de la piel, los

antimuscarínicos cuaternarios se absorben lentamente, debido a su liposolubilidad que

presenta.

DISTRIBUCION.

La atropina y otras sustancias terciarias se distribuyen ampliamente después de absorberse

alcanzando concentraciones significativas en el sistema nervioso central luego de 30 a 60

minutos.

ELIMINACION.

La atropina es eliminada rápidamente del organismo ya que tiene una vida media de dos

horas, el 60% es eliminado por la orina. Sus efectos en el musculo ciliar y el iris persisten 72

horas o más.

Page 20: Estudiar farma

Mecanismo de acción

La atropina provoca un bloqueo competitivo reversible de las acciones de los colinomiméticos

en los receptores muscarínicos, es decir, el bloqueo producido por una dosis baja de atropina

puede contrarrestarse por una concentración más grande de acetilcolina o de un agonista

muscarínico equivalente.

La atropina tiene una acción muy selectiva por receptores muscarínicos. Los antagonistas

muscarínicos sintéticos son menos específicos que la atropina en las interacciones con

receptores no muscarínicos.

Efectos

SNC: bradicardia seguida de una taquicardia, somnolencia y amnesia

A dosis toxicas provocan excitación, agitación, alucinaciones y coma.

El temblor y la rigidez de la enfermedad de Parkinson esta enfermedad parecen ser

ocasionados por un exceso relativo de la actividad colinérgica y una deficiencia de la actividad

dopaminérgica.

Ojo. producen dilatación simpática, midriasis, ciclopejía, así como la reducción de la secreción

lagrimal.

En el aparato respiratorio se presenta una broncodilatación y reducción de la secreción.

Aplicaciones terapéuticas

Enfermedad de Parkinson, cinetosis, inducción paralisis ciliar, midriasis, prevenir sinequias,

uveítis e iritis, úlceras peptídicas, diarrea común del viajero.

La combinación clásica de atropina con difenoxilato (lomotil).

La inhalación del humo de hojas estramonio se emplea para el asma bronquial.

El ipratropio que es un análogo sintético de atropina, se emplea para del asma.

Farmacología de los bloqueadores ganglionares

Estas sustancias bloquean la acción de la acetilcolina y de agonistas similares en los receptores

nicotínicos de los ganglios autonómicos simpáticos y parasimpáticos, bloqueando el canal

iónico que tiene el colinoceptor nicotínico. Su falta de selectividad produce una amplia gama

de efectos indeseables, por lo cual su uso clínico es poco frecuente. Su principal aplicación

terapéutica es para controlar la presión arterial a corto plazo.

Farmacocinética

Los fármacos de interés son las aminas sintéticas como la tetraetilamonio (TEA), que tiene un

efecto de duración muy corto.

El hexametonio fue el primer fármaco eficaz para controlar la hipertensión.

Page 21: Estudiar farma

La mecamilamina, es un compuesto de amonio secundario, por lo que es bien absorbido por el

aparato digestivo.

El trimetafán, tiene un efecto de corta duración, es inactivo por vía oral, por lo que se

administra por infusión.

Mecanismo de acción

Los receptores nicotínicos de ganglios, unión neuromuscular, están sujetos al bloqueo

despolarizante y no despolarizantes.

Todos los fármacos que se emplean como bloqueantes ganglionares antagonistas competitivos

no despolarizantes. El hexametonio produce el bloqueo ocupando sitios en o sobre el

conducto iónico controlado por el receptor de la acetilcolina, y no ocupando el colinoceptor de

acetilcolina en si. En contraste, parece que el trimetafán bloquea el receptor nicotínico y no el

conducto.

EFECTOS.

En el SNC, la mecamilamina provoca sedación, temblores, movimientos coreiformes (mov.

Involuntarios) y aberraciones mentales; en ojo produce ciclopejía, y midriasis. En el sistema

cardiovascular presenta vasoconstricción, reducción del tono muscular e hipotensión. En el

aparato digestivo disminuye su secreción.

Fármacos activos sobre la transmisión catecolaminérgica.

TRANSMISION ADRENERGICA

La adrenalina, la noradrenalina y la dopamina son tres sustancias naturales que componen el

conjunto de las catecolaminas, así denominadas por poseer un grupo aromático común 3,4-

dihidroxifenilo o catecol y una cadena lateral etilamino con diversas modificaciones. Las tres

están íntimamente relacionadas y, de hecho, forman tres eslabones seguidos en la cadena de

síntesis.

SINTESIS

La vía clásica de la síntesis de catecolaminas requiere la actividad de cuatro enzimas: la

tirosina-hidroxilasa (TH), que cataliza el primer paso al convertir la tirosina en

dihidroxifenilalanina (L-dopa); la L-aminoácido-aromáticodescarboxilasa (LAAD), que cataliza la

conversión de la L-dopa en dopamina; la dopamina-b-hidroxilasa (DBH), que convierte la

dopamina en noradrenalina, y la feniletanolamina-N-metiltransferasa (FNMT), que cataliza la

conversión de la noradrenalina en adrenalina.

Pero estas cuatro enzimas no siempre se expresan juntas en todas las células. Las que lo hacen

producirán adrenalina (médula suprarrenal y cerebro); otras carecen de FNMT y producen

noradrenalina (médula suprarrenal, neuronas ganglionares simpática posganglionar y

numerosos grupos neuronales del SNC), y otras carecen de DBH y FNMT, produciendo

dopamina (grupos neuronales del SNC y algunas células periféricas).

Page 22: Estudiar farma

Pero estas cuatro enzimas no siempre se expresan juntas en todas las células. Las que lo hacen

producirán adrenalina (médula suprarrenal y cerebro); otras carecen de FNMT y producen

noradrenalina (médula suprarrenal, neuronas ganglionares simpática posganglionar y

numerosos grupos neuronales del SNC), y otras carecen de DBH y FNMT, produciendo

dopamina (grupos neuronales del SNC y algunas células periféricas).

El primer paso consiste en la hidroxilación del anillo fenólico del aminoácido tirosina por la

enzima tirosina-hidroxilasa (TH). La tirosina puede ser sintetizada a partir de fenilalanina, o de

la dieta y penetrar en la neurona por transporte activo.

La TH es específica de las células catecolaminérgicas. Esta reacción constituye el paso limitante

en la síntesis de catecolaminas, es la responsable de la activación e inhibición.

La enzima es activada mediante fosforilación, mientras que los productos con anillo catecol la

inhiben, por lo que se convierte en regulador de su propia síntesis.

La descarboxilación de la L-dopa por parte de la enzima.

La hidroxilación de la dopamina en posición β se realiza mediante la enzima DBH, que la

convierte en noradrenalina.

Finalmente, algunas células poseen la enzima FNMT, que convierte la noradrenalina en

adrenalina mediante la adición de un grupo metilo, requiriendo como donante de grupos

metilo a la S-adenosilmetionina.

ALMACENAMIENTO

La mayor parte de las catecolaminas se encuentran almacenadas en gránulos o vesículas, tanto

las células neuronales como de la médula suprarrenal. En las neuronas, los gránulos se

concentran en las varicosidades que existen a lo largo de los axones. La membrana de estos

gránulos tiene sistema de transporte que requiere ATP y Mg+2, mediante el cual genera un

gradiente de protones hacia el interior vesicular.

Desde un punto de vista funcional se encuentra almacenada en dos fracciones o depósitos:

una es fácilmente disponible, se sitúa en las proximidades de la membrana presináptica y es

liberable en respuesta al impulso nervioso, mientras que la otra es más estable, permanece

anclada a proteínas y se comportaría como sistema de reserva.

LIBERACION

Esta etapa se lleva a cabo en terminaciones de nervios simpáticos. El estímulo nervioso

provoca la liberación de acetilcolina en la terminación preganglionar y la activación de

receptores colinérgicos nicotínicos ocasiona la despolarización en la célula catecolaminérgica,

la entrada de Ca+2 y la iniciación del proceso de exocitosis de los gránulos, DBH, ATP, entre

otras sustancias.

La liberación está sometido a múltiples influencias reguladoras, de carácter facilitador e

inhibidor. El principal elemento regulador es la misma noradrenalina liberada que actúa sobre

autorreceptores situados en la membrana presináptica, del subtipo α2-adrenoceptor, y como

Page 23: Estudiar farma

consecuencia inhibe la liberación de más noradrenalina; se trataría de un mecanismo de

retroalimentación de gran importancia. La liberación de dopamina también está bajo el control

de autorreceptores específicos (receptores dopaminérgicos D2).

PROCESO DE INACTIVACION ENZIMATICA

La acción de las catecolaminas recién liberadas finaliza por dos mecanismos principales:

inactivación enzimática y captación de carácter neuronal y extraneuronal.

Las dos primeras enzimas que intervienen en la metabolización son la catecol-O-

metiltransferasa (COMT) y la monoaminooxidasa (MAO). La MAO es una enzima oxidativa

mitocondrial que actúa en la cadena lateral. Su actividad se centra en la fracción

citoplasmática de las monoaminas no protegida en el interior de las vesículas. La COMT es una

enzima de la fracción soluble citoplasmática, puede estar asociada a la membrana, pero no se

encuentra ligada a las neuronas catecolaminérgicas.

La noradrenalina es metilada por la COMT y convertida en normetanefrina. Esta es

transformada por la MAO y una deshidrogenasa originando ácido 3-metoxi-4-

hidroximandélico. La noradrenalina endógena, es oxidada por la MAO en 3,4-

dihidroxifenilglicolaldehído; y sigue un doble camino: a) reduciéndose y convertirse en 3,4-

dihidroxifeniletilenglicol (DOPEG), que es metilado por la COMT en 3-metoxi-4-

hidroxifeniletilenglicol (MOPEG), o b) sufre otra oxidación por la aldehído deshidrogenasa y

convertirse en ácido 3,4-dihidroximandélico y, posteriormente, en ácido 3-metoxi-4-

hidroximandélico. Las catecolaminas circulantes siguen preferentemente la vía oxidativa para

convertirse en ácido, mientras que las del SNC sufren una reducción en alcohol.

CAPTACION CELULAR DEL NEUROTRANSMISOR.

La captación puede ser neuronal y extraneuronal

a) Captación neuronal. Se lleva a cabo en las terminaciones nerviosas, las cuales captan

hasta el 80 % de la noradrenalina recién liberada, reduciendo la cantidad del

neurotransmisor capaz de actuar sobre los receptores. Es inhibido por la cocaína,

anfetamina y otras aminas, por algunos antidepresivos tricíclicos como imipramina y

amitriptilina, y por algunos neurolépticos. La noradrenalina es captada con avidez,

pasa al citoplasma y es transportada de nuevo activamente a los gránulos, donde

queda disponible para ser liberada de nuevo por el estímulo nervioso. Este sistema,

actúa en forma de reciclaje y representa un notable ahorro de transmisor.

b) Captación extraneuronal. Otras células no neuronales captan también la noradrenalina y

otras aminas por un sistema que posee menor afinidad por las catecolaminas.

El transporte es también activo, pero difícilmente saturable. Es inhibido por los metabolitos

metilados, por la fenoxibenzamina y los esteroides.

Es más activo para la adrenalina que para la noradrenalina.

La amina captada no queda almacenada, sino que es posteriormente metabolizada por la MAO

o por la COMT.

Page 24: Estudiar farma

TRANSMISION ADRENERGICA.

Las neuronas adrenérgicas transportan una molécula precursora al interior dela terminación

nerviosa, para sintetizar el neurotransmisor y almacenarlo en vesículas, la síntesis de los

transmisores adrenérgicos es mas compleja. En la medula suprarrenal y en ciertas áreas del

encéfalo, la noradrenalina se convierte en adrenalina. Varios procesos importantes en la

terminal nerviosa noradrenérgica son sitios potenciales de acción de fármacos.

La conversión de tirosina en dopa, es el paso limitante de la velocidad en la síntesis de

noradrenalina. Puede ser inhibido por el análogo de la tirosina denominado metirosina. Un

portador de alta afinidad que transporta catecolaminas, situado en la pared de la vesícula de

almacenamiento, puede ser inhibido por alcaloides de reserpina. Se produce una disminución

en las reservas de transmisor. El transportador de la noradrenalina y moléculas similares al

interior del citoplasma celular, puede ser inhibido por cocaína y antidepresivos tricíclicos,

produciendo un incremento en la actividad del transmisor en la hendidura sináptica.

La liberación de la reserva vesicular a partir de las terminaciones nerviosas noradrenérgicas es

similar al proceso dependiente de Ca+2.

Noradrenalina y adrenalina pueden ser metabolizadas por varias enzimas. Debido a la alta

actividad de la monoaminooxidasa en las mitocondrias de la terminal nerviosa, hay un

recambio significativo de noradrenalina aun en la terminal en reposo. Las terminación de la

transmisión noradrenérgica es resultado de varios procesos, incluyendo difusión simple a

partir del sitio receptor y recaptación interior de la terminal nerviosa (captación 1) o en el

tejido glialperisináptico o las células musculares lisas (captación 2).

Receptores adrenérgicos y dopaminérgicos

Las funciones de la noradrenalina son el mantenimiento del tono simpático normal y el ajuste

de la dinámica circulatoria. La adrenalina es la hormona de las emergencias; estimula el

metabolismo y acelera el flujo sanguíneo de los músculos esqueléticos, preparando al

individuo para la huida o la lucha.

La dopamina se localiza en ciertas áreas del SNC, donde actúa como transmisor importante.

También es el precursor de la noradrenalina y adrenalina en otros lugares.

Son glucoproteínas de membrana, cuyas cadenas polipeptídicas poseen secuencias fuera de la

célula (terminal-NH2), en la membrana celular (siete hélices transmembrana) y en el

citoplasma (terminal-COOH).

Estas estructuras poseen, por un lado, los grupos funcionales para fijar agonistas y, por el otro,

los encargados de activar la transducción de señales a través de proteínas G.

Ahlquist en 1948 clasificó los receptores adrenérgicos en dos clases, α y β.

Los receptores se los clasifica según su orden de potencia:

Receptores α(α-adrenoceptores):

Adrenalina> noradrenalina >>isoprenalina.

Page 25: Estudiar farma

Receptores β (β-adrenoceptores):

Isoprenalina> adrenalina > noradrenalina.

Más tarde, se confirmó la existencia de estos receptores por la aparición de fármacos

antagonistas que bloquean de una manera selectiva las acciones α(ergotamina y

fenoxibenzamina) o las β(dicloroisoprenalina y propranolol).

La contracción del músculo liso es causada por la activación de receptores α, mientras que la

relajación del músculo liso o la activación cardíaca se deben a la activación de receptores β. Se

subdividen con base en su selectividad por agonistas y antagonistas.

Los receptores alfa controlan funciones como la vasocontriccion, midriasis y relajación

intestinal. La fenilefrina y metoxamina actúa sobre los receptores alfa y para eliminar sus

efectos son utilizados bloqueadores alfa adrenérgicos como lafentolamina o

fenoxibenzamina.

Los receptores beta controlan funciones como vasodilatación, aumento de la frecuencia

cardiaca, relajación bronquial y relajación intestinal. Isoproterenol es un agonista beta y sus

acciones son bloqueadas por el propanolol un agente bloqueador beta adrenérgico.

Aunque los receptores alfa controlan la mayor parte de la vasoconstricción y son

postsinápticos, también existen receptores alfa presinápticos que inhiben la liberación de la

noradrenalina, además, controlan otros efectos como la liberación de insulina por la glucosa y

la hipertensión intestinal.

Esto condujo una subdivisión de los receptores alfa 1 y alfa 2. Los alfa 2 son más susceptibles a

los agonistas adrenalina, noradrenalina, metoxamina y fenilefrina.

Los receptores alfa 1 se llevan a cabo la contracción del musculo liso de la unión neuromotora

y los alfa 2 se encuentran en las neuronas presinápticas.

Los receptores beta se subdividen en beta 1, beta 2 y beta 3. Los receptores beta 1 controlan

los efectos sobre el corazón, los beta 2 controlan la broncodilatación y vasodilatación

adrenérgica, son especialmente útiles para el tratamiento del asma y para prevenir el parto

prematuro, los receptores beta 3 participan en el metabolismo de lípidos.

La dopamina es una catecolamina endógena produce una diversidad de efectos biológicos que

son mediados por interacciones sobre los receptores dopaminérgicos en vasos sanguíneos

mesentéricos y renales donde produce vasodilatación selectiva, y es antagonizada por

haloperidol y las fenotiacinas. Además actúa sobre los receptores beta uno en el corazón

donde su acción es bloqueada por el propanolol. Esta catecolamina se encuentra localizada en

ciertas áreas del SNC.

A dos mayores actúa también sobre vasos sanguíneos periféricos en los que produce

vasoconstricción y su acción es antagonizada por la fentolamina. Se han identificado subtipos

de receptores dopaminérgicos farmacológicamente distintos, denominados D1, D2, D4 y D5.

Page 26: Estudiar farma

Las funciones de la noradrenalina son el mantenimiento del tono simpático normal y el ajuste

de la dinámica circulatoria. La adrenalina es la hormona de las emergencias; estimula el

metabolismo y acelera el flujo sanguíneo de los músculos esqueléticos, preparando al

individuo para la huida o la lucha.

La dopamina es el precursor de la noradrenalina y adrenalina en otros lugares.

Mecanismos de activación β-adrenérgica

El β-adrenoceptor es uno de los receptores asociados al sistema de la adenililciclasa, situado

en la membrana celular. Cuando un agonista β ocupa su sitio de reconocimiento acoplado a

una proteína Gs, inicia un proceso que termina en la activación de la adenililciclasa, enzima

que estimula la formación de adenosinmonofosfato cíclico (AMPc) y la consiguiente activación

de la proteín-cinasaAMPc-dependiente (proteín-cinasa A, PKA), la cual se encargará de

fosforilar otras proteínas intracelulares, unas de naturaleza enzimática y otras de naturaleza

estructural.

Mecanismos de activación α-adrenérgica

El α1 es un receptor acoplado a la proteína Gq y asociado al sistema de la fosfolipasa C,

situado en la membrana celular, que provoca la formación de dos moduladores: el

inositoltrifosfato (IP3) y el diacilglicerol (DAG). Así, la respuesta molecular se caracteriza

principalmente por el aumento y la movilización de Ca+2 intracelular en determinadas

estructuras.

Mecanismo de activación dopaminérgica

El receptor D1 típicamente se relaciona con la estimulación de la adenililciclasa, como la

relajación del musculo liso inducida por receptores D1 se debe a la acumulación de AMPc en

los lechos vasculares, donde la dopamina es un vasodilatador. Los receptores D2 inhiben la

actividad de la adenililciclasa, abren los conductos de potasio y disminuyen la entrada de

calcio.

Fármacos estimulantes de la transmisión

El sistema nervioso simpático es un importante regulador de las actividades de órganos como

corazón, especialmente en las respuestas al estrés. Los efectos finales de la estimulación

simpática son mediados por la liberación de noradrenalina a partir de terminaciones nerviosas

que activan los adrenoceptores en sitios postsimpáticos. En respuesta al estrés, la medula

suprarrenal libera adrenalina, la cual es transportada en la sangre a los tejidos blanco.

Es de esperar que los fármacos que simulan la acción de la adrenalina o noradrenalina, los

simpatomiméticos, tengan una amplia gama de efectos.

El sistema nervioso simpático es un importante regulador de las actividades de órganos como

corazón, especialmente en las respuestas al estrés. Los efectos finales de la estimulación

simpática son mediados por la liberación de noradrenalina a partir de terminaciones nerviosas

que activan los adrenoceptores en sitios postsimpáticos. En respuesta al estrés, la medula

suprarrenal libera adrenalina, la cual es transportada en la sangre a los tejidos blanco.

Page 27: Estudiar farma

Es de esperar que los fármacos que simulan la acción de la adrenalina o noradrenalina, los

simpatomiméticos, tengan una amplia gama de efectos.

Estos fármacos actúan de modo directo, es decir, interactúan directamente con

adrenoceptores y los activan. Y los que actúan de modo indirectamente, sus acciones

dependen de la liberación de catecolaminas endógenas. Estos fármacos pueden tener uno de

dos mecanismos distintos: 1) desplazamiento de catecolaminas almacenadas a partir de la

terminación nerviosa adrenérgica (anfetaminas y tiramina) o 2) inhibición de la recaptación de

catecolaminas ya liberadas (cocaína y antidepresivos tricíclicos).

RELACION ESTRUTURA ACTIVIDAD

La feniletilamina es considerada el prototipo de los fármacos simpatomiméticos. Este

compuesto se compone de un anillo bencénico con una cadena lateral de etilamina.

Depende de las sustituciones que se hagan en el anillo aromático, cadena lateral y el grupo

amino.

SUSTITUCION EN ANILLO BENCENICO.

Los compuestos difenólicos (grupo –OH en posición 3 y 4) o catecolaminas presentan actividad

alfa y beta máximos.

Los compuestos monofenólicos o ausentes de -OH en el C3 pueden reducir la potencia de los

fármacos (adrenalina es más potente que la fenilefrina, en la actividad alfa es menor y beta es

casi insignificante).

La ausencia de uno o ambos grupos de -OH aumentan la biodisponibilidad y prolonga el

tiempo de acción. Protege de la acción COMT.

La ausencia de los dos OH (no catecólicos), incrementa la distribución de la molécula al sistema

nervioso central. Ejemplo: efedrina y anfetaminas. Son activas por vía oral, tienen acción

prolongada y producen efectos en el sistema nervioso central.

Sustitución en la cadena lateral

Para una mayor actividad deben de ser dos átomos de carbono.

Las sustituciones en el carbono alfa bloquean la acción por la MAO, prolongando la acción del

compuesto en especial de los no catecólicos (efedrina y anfetaminas). Los compuestos son un

metilo en esta posición seles llama fenilisopropalaminas. Poseen mayor capacidad para

desplazar a las catecolaminas delos sitios de almacenamiento en los nervios noradrenérgicos,

son SIMPATICOMIMETICOS de acción indirecta.

Si la cadena aumenta el número de átomos de carbono, la actividad disminuye pero aparece

un efecto broncodilatador.

El OH de carbono beta hace que los compuestos sean menos volátiles, si este se convierte en

acetona pierde su actividad.

Page 28: Estudiar farma

Los agonistas de acción directa suelen tener este grupo beta hidroxilo el cual puede ser

importante para el almacenamiento de aminas simpaticomiméticas en vesículas neurales.

SUSTITUCION DEL GRUPO AMINO.

Al aumentar el tamaño de los sustituyentes, incrementan la actividad de los receptores beta

(metilo en la noradrenalina dan como resultado la adrenalina incrementando la actividad en

los receptores beta 2).

La actividad aumenta más aun si se sustituye por un isopropilo (isoproterenol).

En general los agonistas beta 2 selectivos requieren un sustituyente grande en el grupo amino.

Cuanto mas grande sea menor es la actividad en los receptores alfa.

EFECTOS FARMACOLOGICOS.

Vasoconstrictor: mezclado con los anestésicos locales retrasa la absorción y limita los efectos a

una zona determinada con el fin de prolongar su acción y reducir las reacciones secundarias.

Vasoconstrictor periférico: actúa sobre los vasos sanguíneos de la piel, mucosa, nariz, faringe,

en los cuales actúa como hemostático, detiene el flujo sanguíneo superficial, pero no de los

vasos mayores o venas.

Descongestionante nasal: aplicado tópicamente en forma de pomada, presenta la desventaja

que por tiempo prolongado causa escozor y sequedad de la mucosa, y como disminuye el riego

sanguíneo atrofia dicha mucosa, se usa en casos de rinitis alérgica, sinusitis y coriza aguda.

Midriático: produce dilatación intensa pero de corta duración. Indicado para llevar a cabo un

examen adecuado de fondo del ojo y en el tratamiento del glaucoma en donde disminuye la

presión intraocular y disminuye la producción de humor acuoso.

Broncodilatador: produce dilatación de bronquios en caso de que estén contraídos por asma

bronquial, histamina, metacolina, etc.

Cardiaco: como estimulante del miocardio lo que produce un aumento de la frecuencia

cardiaca, se puede inyectar directamente sobre el corazón en caso de asistolia aunque el

masaje cardiaco esta imponiéndose cada día más.

Simpatomiméticos de acción directa

Fármacos de acción mixta

Adrenalina (epinefrina) actúa sobre los receptores alfa y beta, esta indicado para el

tratamiento del asma(de urgencia), shock anafiláctico, paro cardiaco es un estimulante

cardiaco muy potente, el aumento de la presión arterial se debe a sus acciones inotrópicas y

cronotropicas positivo sobre el corazón. Se utiliza en combinación con anestésicos locales. Es

la hormona principal de la medula suprarrenal. Sus efectos adversos son hipertensión arterial,

vasoconstricción, taquicardia y arritmia. Es administrado vía IM o SC, debido a su escasa

absorción por vía oral. Se elimina rápidamente del organismo y es metabolizado por MAO y

COMT. Su semivida es de 2 minutos.

Page 29: Estudiar farma

Noradrenalina (levarterenol, norepinefrina) actúa sobre los receptores alfa y beta, su función

es como transmisor en las neuronas simpáticas postganglionares y en el SNC. Es la hormona de

la médula suprarrenal, no es utilizado clínicamente. Sus efectos adversos son hipertensión

arterial, vasoconstricción, taquicardia y arritmia. La noradrenalina presenta una escasa

absorción por vía oral. Se elimina rápidamente del organismo y es metabolizado por MAO y

COMT. Su vida media es de 2 minutos.

Isoproterenol (isoprenalina) es un agonista mixto fue utilizado en el tratamiento del asma, es

un vasodilatador muy potente, debido a que los efectos adversos que se presenta son

taquicardias y arritmias ya no es tan utilizado clínicamente. Participa en la captación de

transmisores en algunos tejidos seguida de una inactivación por COMT. Su vida media es de 2

horas.

Dopamina el precursor metabólico intermedio de la noradrenalina, activa a los receptores D1

produciendo vasodilatación. La activación de los receptores D2 presinápticos suprimen la

liberación de noradrenalina. Además, activa los receptores beta 1 en el corazón. La dopamina

activa receptores alfa vasculares, provocando vasoconstricción.

Ibopamina es un éster de ácido butírico de la metildopamina (epinina) y es activo vía oral,

presenta efectos farmacológicos similares que la dopamina.

Fármacos Agonistas alfa 1 selectivos

Fenilefrina es un agonista alfa 1 es utilizado en la descongestión nasal, sus efectos son

hipertensión arterial y bradicardia. Su administración es intranasal, es metabolizado por MAO.

Tiene vida media es muy corta. Es un midriático, descongestivo eficaz y es utilizado para

aumentar la presión arterial.

Metoxamina actúa farmacológicamente como la fenilefrina, es un agonista de los receptores

alfa 1 de acción directa. Ocasiona un aumento prolongado de la presión arterial debido a la

constricción, además de ocasionar bradicardia. Es utilizada vía parenteral y en aerosol. Su uso

esta limitado a estados de hipotensión. Tiene vida media de 1 hora.

Fármacos Agonistas alfa 2 selectivos

Clonidina es un agonista parcial alfa 2, es indicado para el tratamiento de hipertensión arterial

y migraña, los efectos adversos que se presentan son somnolencia, hipotensión, edema y

aumento de peso. Su vía de administración es oral y su vida media es de 12 horas.

Oximetazolina es un agonistas alfa 2 de acción directa. Que se emplea como descongestivo

tópico y provoca constricción de la mucosa nasal. A altas dosis la causa hipotensión.

Fármacos Agonistas no selectivos

Xilometazolina es agonistas alfa de acción directa. Empleado como descongestivo tópico ya

que provoca constricción de la mucosa nasal.

Fármacos Agonistas beta 1 selectivos

Page 30: Estudiar farma

Dobutamina es un agonista beta 1, esta indicado cuando se presenta un shock cardíaco, su

efecto adverso arritmias, su vida media es de 2 minutos, es administrado por vía IV.

Fármacos Agonistas beta 2 selectivos

Salbutamol indicado en el tratamiento del asma y en parto prematuro, puede presentarse

taquicardia, arritmia, temblor, vasodilatación periférica, es administrado vía oral o en aerosol.

Su vida media es de 4 horas.

Salmeterol indicado en el tratamiento del asma, puede presentarse taquicardia, arritmia,

temblor, vasodilatación periférica, su administración es en aerosol. Y tiene una larga duración

de acción.

Terbutalina indicado en el tratamiento del asma, puede presentarse taquicardia, arritmia,

temblor, vasodilatación periférica, debido a su escasa absorción oral su administración es en

aerosol. Tiene una vida media de 4 horas.

Clenbuterol es un fármaco de acción anabólica para incrementar la fuerza muscular su efectos

adversos son taquicardia, arritmia, temblor, vasodilatación periférica, su vía de administración

es oral. Presenta una larga duración de acción. Su uso es ilícito en los deportistas.

Fármacos Agonista beta 3 selectivo

Aun están en desarrollo y su función es para el control de la obesidad.

Simpatomiméticos de acción indirecta

Estos fármacos solo presentan una acción débil sobre los receptores adrenérgicos, pero se

parecen a la noradrenalina para ser transportadas a las terminaciones nerviosas. Estos

fármacos tienen efectos sobre el SNC, que dependen de su capacidad para liberar

noradrenalina, serotonina y dopamina, de las terminales nerviosas cerebrales. El efecto más

importante del grupo de las anfetaminas es que produce tolerancia y a dosis repetidas causa

dependencia.

Fármacos Agonistas beta 2 selectivos

Tiramina es un subproducto del metabolismo de la tirosina en el organismo. Participa en la

liberación de catecolaminas almacenadas principalmente noradrenalina. Es metabolizada con

rapidez por la MAO y es inactiva cuando se ingiere.

Fenilpropanolamina es una variante de anfetaminas con efectos débiles sobre el estado de

ánimo. El uso incontrolado de este fármaco esta relacionado con la hipertensión grave y riesgo

de infarto o daños al miocardio. Este fármaco es utilizado para perder peso, pero no hay

pruebas de que el tratamiento con estos fármacos conduzca a una perdida de peso.

Efedrina fue el primer fármaco simpatomimético con actividad oral, tiene una alta

biodisponibilidad y duración de acción muy prolongada, se excreta por orina sin sufrir cambios,

pero su excreción se puede acelerar acidificando la orina. Esta actúa principalmente a través

de la liberación de catecolaminas almacenadas, es un estimulante débil del SNC, es de acción

directa sobre los receptores beta, no es selectiva. Se utiliza cuando se desea un efecto de

Page 31: Estudiar farma

duración prolongada, después de la administración oral. Sus principales aplicaciones son como

descongestionante nasal y agente presor.

Sus efectos adversos son hipertensión arterial, taquicardia, insomnio, psicosis aguda por

sobredosis y dependencia. Estos fármacos presentan una buena absorción oral, se distribuye

libremente en cerebro. Tienen una vida media de 12 horas, dependiendo el flujo y pH urinario.

Son contraindicados cuando se administra un inhibidor de MAO.

Fármacos Antagonista de los receptores adrenérgicos

Los antagonistas farmacológicos cuyo efecto principal consiste en ocupar el receptor alfa o

beta fuera del sistema nervioso central y prevenir su activación por catecolaminas y agonistas

relacionados.

Mecanismo de acción de los bloqueadores de receptores alfa

Los antagonistas de los receptores alfa pueden ser reversibles o irreversibles en su interacción

con estos receptores. Los antagonistas reversibles pueden disociarse del receptor alfa,

mientras que los irreversibles no. La duración de acción de un antagonista reversible depende

de la vida media del fármaco, la velocidad a la que se disocia de su receptor: cuanto más corta

es su vida media, menor será el tiempo necesario para que se disipen los efectos del fármaco.

Mientras que los efectos de un antagonista irreversible pueden persistir por mayor tiempo

después de que el medicamento ha sido eliminado.

Fármacos antagonistas de acción mixta

Labetalol fármaco alfa y beta bloqueante, aunque clínicamente actúa sobre los receptores

beta, esta indicado para el tratamiento de hipertensión arterial en la gestación. Sus efectos

adversos que se presentan son hipotensión postural y broncoconstricción. Su administración

es vía oral. Su conjugación se lleva a cabo en el hígado y su vida media es de aproximadamente

4 horas.

Carvedilol es un bloqueador alfa y beta, esta indicado para el tratamiento de la insuficiencia

cardiaca e hipertensión arterial, sus efectos adversos son exacerbación de la insuficiencia

cardiaca e insuficiencia renal. Su vía de administración es oral y el tiempo de vida media es de

10 horas aproximadamente.

Butoxamina es un antagonista de receptores beta 2 y un agonista débil de receptores alfa.

Estos fármacos no tienen aplicación clínica.

Fármacos antagonistas alfa 1 selectivos

Prazosina fue el primer antagonista alfa 1 selectivo, es utilizado como tratamiento de

hipertensión arterial, sus efectos adversos son hipotensión, sofocos, taquicardia, congestión

nasal e impotencia. Su tratamiento vía oral, es metabolizado por el hígado y la vida media es

de 4 horas. Doxazosina y terazosina son similares pero de acción más prolongada.

Page 32: Estudiar farma

Tamsulosina es un antagonista de los receptor alfa 1, este fármaco es utilizado en el

tratamiento de hiperplasia prostática y los efectos adversos son insuficiencia eyaculatoria, su

vía de administración es oral y el tiempo de vida media es de aproximadamente 5 horas.

Fármacos antagonistas alfa 2 selectivos

Yohimbina es un alcaloide natural; se han sintetizado varios análogos sintéticos, tales como

idazoxan. Estos fármacos tienen un efecto vasodilatador, neuropatía diabética dolorosa, se

afirma que este es un afrodisiaco, pero clínicamente no es utilizado. Sus efectos adversos son

excitación e hipertensión arterial, su vía de administración es oral, es metabolizado por el

hígado y su vida media es de aproximadamente 4 horas.

Fármacos antagonistas alfa no selectivos

Fenoxibenzamina no es especifica para de los receptores alfa adrenérgicos ya que también

antagoniza las acciones dela acetilcolina, histamina y serotonina. Tiene una duración de acción

prolongada por lo que se une de forma covalente al receptor. Sus efectos adversos que

presenta son hipotensión, sofocos, taquicardia, congestión nasal e impotencia. Su vía de

administración es oral y tiempo de vida media es de aproximadamente 12 horas.

Fármacos antagonistas beta 1

Practolol este fármaco indicado en hipertensión arterial, angina, arritmias, sus efectos

adversos son broncoconstricción, insuficiencia cardiaca, frialdad de extremidades, astenia,

depresión e hipoglucemia, también se puede presentar el síndrome oculomucocutáneo. Vía de

administración es oral. Su semivida es de aproximadamente 4 horas. Este fármaco ha sido

retirado por tu alto grado de toxicidad.

Fármacos antagonistas beta no selectivos

Propanolol es un antagonista puro que bloquea por igual a receptores beta 1 y beta 2. Esta

indicado en el tratamiento de angina de pecho, hipertensión arterial, arritmias cardiacas,

ansiedad, temblor y glaucoma. Sus efectos adversos son broncoconstricción, insuficiencia

cardiaca, frialdad de extremidades, astenia, depresión e hipoglucemia. Vía de administración

es oral, aproximadamente el 90% del fármaco se une a proteínas plasmáticas, tiene una vida

media de aproximadamente 4 horas. Timolol presenta las mismas características y es utilizado

en el tratamiento del glaucoma.

Fármacos que actúan sobre la síntesis de la adrenalina

Metiltirosina inhibe la tirosinahidroxilasa, utilizado ocasionalmente en el feocromocitoma, su

uso ocasiona hipotensión y sedación.

Carbidopa inhibe la dopa descarboxilasa, es utilizado como complemento de levodopa para

evitar efectos periféricos, es administrada vía oral.

Metildopa es un precursor de un falso transmisor, utilizado en hipertensión arterial en la

gestación, sus efectos son hipotensión, somnolencia, diarrea, impotencia y reacciones de

Page 33: Estudiar farma

hipersensibilidad. Su absorción vía oral es muy lenta y tiene una semivida de 6 horas

aproximadamente.

Fármacos que actúan sobre la liberación de la adrenalina

Guanetidina inhibe la liberación de la noradrenalina, causa depleción de ella y puede lesionar

irreversiblemente las neuronas noradrenérgica, su uso fue para el tratamiento de la

hipertensión arterial pero este ya es obsoleto, sus efectos son hipotensión, somnolencia,

diarrea, impotencia, hipertensión arterial con la primera administración y reacciones de

hipersensibilidad. Tiene una escasa absorción oral, tiene una semivida de aproximadamente

100 horas y los inhibidores de la captación 1 evitan su acción. Betanidina y debrisoquina son

similares.

Fármacos que actúan sobre la captación de la adrenalina

Imipramina bloquea la captación 1 también tiene una acción similar a la atropina. Esta

indicado para el tratamiento de la depresión, presenta efectos secundarios atropinicos,

arritmias cardiacas en sobredosis, su vía de administración es oral, el 95% de este fármaco se

une a las proteínas plasmáticas. Se convierte en un metabolito activo (desmetilimipramina),

tiene una semivida de aproximadamente 4 horas. Desipramina y amitriptilina son similares.

Cocaína es un anestésico local¸ bloquea la captación 1, es un estimulante del sistema nervioso

central, raramente es utilizado como anestésico local, debido a sus efectos que causa como

hipertensión arterial, excitación, convulsiones, es una droga de abuso que llega a causar

dependencia, presenta una buena absorción oral.