25
Ch18 The Micro/Macro Connection 講講 講講講 講講 1

講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

Embed Size (px)

Citation preview

Page 1: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

1

Ch18 The Micro/Macro Connection

講者: 許永昌 老師

Page 2: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

2

ContentsMolecular Speeds and CollisionsPressureTemperatureThermal energy and Specific heatThermal interaction and HeatIrreversible Processes & the 2nd Law of

thermodynamics.

Page 3: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

3

The aim of this chapterUnderstandMicroscopic

CollisionAverage translational

kinetic energyMicroscopic energiesMolecular basis

Energy transfer

Probability

MacroscopicPressureTemperature

Thermal energyIdeal-gas lawSpecific HeatHeat and Thermal

equilibriumEntropy

Page 4: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

4

Molecule Speeds ( 請預讀 P542)

Changing the (1)TEMPERATURE or changing to a (2) DIFFERENT GAS changes the most likely speed, but it does not change the shape of the distribution.

2

Boltzmann distribution statesProbability

2

*

1 1where and .

2B

P v dv e v dv

v mvk T

Page 5: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

5

Mean Free Path ( 請預讀 P543)

The average speed of N2 at 20oC is about 500 m/s

There must be some collisions happened.Reference:

http://en.wikipedia.org/wiki/Diffusion

~10m

~0.1 s (of course not)

Page 6: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

6

Mean Free Path (continue)

More careful calculation (all molecules move)

2

1

4 2 /N V r

2

area

assume that all other molecules are fixed 2

/ / 2

1

4 /

coll cyl

coll

N N V V N V r L

L

N N V r

Page 7: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

7

Stop to ThinkWhat would happen in the room if the

molecules of the gas were not moving?

What would happen in an isolated room if the molecular collisions were not perfectly elastic?

Page 8: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

8

Pressure in a Gas ( 請預讀 P544~P545)

Objects: A wall whose normal is x direction. Molecules in the left hand side of this wall.

Condition: perfectly elastic.

= + + …

wall on molecule ˆ2 xJ mv x

density probability Just 0

2 2 2

ˆ* * 2

2

where is the probability of a particle whose velocity i

ix i

ix i ix ixi i i

V v Jiavg

avgix i ix ix i x avg

i i

Av t p v v mv xN t J

Ft t

F N N NP mv p v v mv p v m v

A V V V

p v

s , and 1

1, 0and , respectively.

0, 0

ii

v p v

xx

x

velocity: # of particles collide with the wall:

i

i

vN t

,if .i ip v p v

Page 9: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

9

The Root-Mean-Square Speed ( 請預讀 P545~P546)

2rms avgv v

2 2

2 2 2

2 2 2

23

assume R , R Rotation Group

i iavgi

ix i iy i iz ii i i

x y zavg avg avg

x avg

i i

v v p v

v p v v p v v p v

v v v

v

p v p v

Page 10: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

10

Stop to Think & ExerciseWhat are the definitions of

1. rms speed2. Average speed3. Average velocity

What are the benefits of the definition of rms speed?EXERCISE:

2 particles: v=3êx+êy,

3 particles: v=-2êx+2êy,

4 particles: v=-2êy.Find: (1) rms speed (2) average speed (3) average

velocity.

Page 11: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

11

HomeworkStudent workbook:

18.118.518.6

Page 12: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

12

Temperature ( 請預讀 P546~P548)

Microscopic eavg Macroscopic T. Average translational kinetic energy:

eavg(½mv2)avg.

Kinetic Theory: PV=Nm(vx

2)avg. (v2)avg=3(vx

2)avg.

Ideal-gas Law: PV=NkBT.

We get

3

2avg Bk T

Page 13: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

13

Temperature (continue)

For a gas, this thing we call TEMPERATURE

measures the average translational kinetic energy.

This concept of temperature also gives meaning to ABSOLUTE ZERO as the temperature at which eavg=0 and all molecular motion ceases.

3

2avg Bk T

Page 14: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

14

HomeworkStudent workbook:

18.718.10

Page 15: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

15

Thermal Energy for monatomic Gases ( 請預讀 P549~P550)

Eth=Kmicro+Umicro.For monatomic gases:

Eth=Kmicro.Eth=Neavg=3/2NkBT=3/2nRT.

Owing to the 1st Law of thermodynamics,

We get CV=3/2R=12.5 J/mol K.

Q: How about other systems?

th V VE Q nC T

Page 16: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

16

The Equipartition Theorem ( 請預讀P550~P551)The thermal energy of a system of particles is equally divided among

all the possible energy modes. For a system of N particles at temperature T, the energy stored in each mode (each degree of freedom) is ½NkBT. It is not proved here. To prove it, you need the concepts of

Probability States Phase space Boltzmann distribution

Example: Solid (for high enough temperature) Dulong-Petit law

Detail: Solid State Physics. It has 6 degrees of freedom

Eth=6*N*½kBT C=3R=25.0 J/mol K~6.00 cal/mol K.*Solid State Physics, Ashcroft/Mermin, P463

Page 17: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

17

Specific Heat of diatomic molecules ( 請預讀 P552~P553)

2 22

2 2 2, , ,

1 1 1

2 2 2 2 2 2avg

y xzmicro CM x CM y CM z

zz yy xx

L LLMv Mv Mv

I I I

2 212 12

vibrational energyrotational kinetic energy

1 1

2 2v k r

Why? A: In quantum mechanics, 1. <Li>=nћ2. Discrete energy

levels for bounded states.

Page 18: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

18

不正規講法Microscopic Macroscopic

For a long time averageCase 1

Case 2

21

2 xmv

21

2 ymv

21

2 zmv0

Teff

2

2z

zz

L

I

2

2y

zz

L

I

'21'

2 xm v

'21'

2 ym v

'21'

2 zm v T

T

Page 19: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

19

Additional Remark ( 補充 ) For two particles system

<erot,z>~mH=1.66*10-27 kg, r~3.7*10-11 m, ћ=1.05*10-34 Js, kB=1.38*10-23 J/K Teff~180K (n=1)

2 21 1 2 2

2 212

1 1

2 21 1

,2 2

tot

CM

K m v m v

Mv v

1 21 2 12 2 1where , , .

mmM m m v v v

M

2 2 2

2

1 1 1

2 2 2 2z

B effz H

L nk T

I m r

Page 20: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

20

Thermal Interactions and Heat ( 請預讀 P554~P555)

Microscopic

CollisionsThermal Equilibrium:

(e1)avg= (e2)avg. (e1)avg : average

translational energy.Energy can transfer

from 2 to 1: YES

Macroscopic

Thermal interactionThermal

Equilibrium:T1=T2.

Energy can transfer from 2 to 1: No

Th TcHeatSystem 1 System 2

Probability

Page 21: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

21

ExerciseConditions:

System 1: 4.00 mol N2 at T1=27oC.

System 2: 1.00 mol H2 at T2=327oC.

3 s.f.Find:

Thermal energiesTf =?Heat transfer=?

Page 22: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

22

HomeworkStudent Workbook:

18.1218.1418.15

Page 23: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

23

Irreversible Processes and the 2nd Law of Thermodynamics ( 請預讀 P556~P558)

Microscopic (reversible)One particle

Macroscopic (irreversible)Many particles

Go to reach Equilibrium.

Probability

Page 24: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

24

Order, Disorder and Entropy ( 請預讀 P558~P560)Scientists and engineers use a state

variable called entropy to measure the probability that a macroscopic state will occur spontaneously.

The second Law of thermodynamics: The entropy of an ISOLATED

SYSTEM never decreases. The entropy either increases, until the system reaches equilibrium, or, if the system began in equilibrium, stays the same.

Th Tc spontaneously.

(Heat)

Page 25: 講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible

25

HomeworkStudent Workbook:

18.1718.19

Student Textbook:335165

製作 Terms and Notation 的卡片,以方便自我練習。