38
工工工 12 工工工工工工工工工 e-Learning 工工 工工工工工工工 6 工 工工工工工工工工工工 (1): 工工工工工工工工工 工工工工工工

工学系 12 大学大学院単位互換 e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

Embed Size (px)

DESCRIPTION

工学系 12 大学大学院単位互換 e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-. 佐藤勝昭 東京農工大学. 復習コーナー 磁気光学 Kerr 効果. 反射の磁気光学効果を磁気光学カー効果 (MOKE) という 通常の反射の法則を導く:電界に対する反射率=複素振幅反射率 (Fresnel 係数 ) 右回り円偏光に対する Fresnel 係数と左回り円偏光に対する Fresnel 係数の差を考える。位相の差から Kerr 回転が振幅の差から Kerr 楕円率が導かれる。. 復習コーナー 斜め入射の場合の反射. - PowerPoint PPT Presentation

Citation preview

Page 1: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

工学系 12 大学大学院単位互換 e-Learning 科目磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

佐藤勝昭東京農工大学

Page 2: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

復習コーナー磁気光学 Kerr 効果

反射の磁気光学効果を磁気光学カー効果(MOKE) という

1. 通常の反射の法則を導く:電界に対する反射率=複素振幅反射率 (Fresnel 係数 )

2. 右回り円偏光に対する Fresnel 係数と左回り円偏光に対する Fresnel 係数の差を考える。位相の差から Kerr 回転が振幅の差から Kerr 楕円率が導かれる。

Page 3: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

復習コーナー斜め入射の場合の反射反射は界面における電

磁波の伝搬の境界条件により決められる。

XE0p

E1p

E2p

法線

0 1

K0

K 1

K 2

Kの x 成分の連続性K0sin0=K1sin1 = K2sin 2

これより Snell の法則が導かれる。

201 n

22 in2

1

2

1

2

0

0

2

10

ˆ

ˆ

sin

sin

N

N

K

K

Page 4: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

復習コーナー複素振幅反射率 (Fresnel係数 )

20

20

022

02200

022

02200

2200

2200

0

1

20

20

022

022

200

22

022

022

200

22

2002

2002

0

1

sin

sin

sincos

sincos

coscos

coscos

tan

tan

sincos

sincos

coscos

coscos

KKK

KKK

KK

KK

E

Er

KKKK

KKKK

KK

KK

E

Er

S

S

s

P

P

pP 偏光の反射

S 偏光の反射

ここに、r p = | r p| e iδp 、r s = | r s| e iδs である。

Page 5: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

復習コーナーエリプソメトリ ( 偏光解析)

  azimuth ( 方位角 ) phase ( 位相差 ) 反射は方位角と位相差 =p-s によって記述できる。反

射光は一般には楕円偏光になっているが、そのp成分とs成分の逆正接角と位相差を測定すれば r が求められる。(測定には 1/4 波長板と回転検光子を用いる。)この方法を偏光解析またはエリプソメトリという。

)exp(tan)exp()cos(

)cos(

20

20

iir

r

r

r

p

s

p

s

Page 6: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

復習コーナーP 偏光反射率と S 偏光反射率

第1の媒体が真空、第2の媒体の複素屈折率が の場合

2

022

0

022

0

2

022

02

022

02

sinˆcos

sinˆcos

sinˆcosˆ

sinˆcosˆ

N

NR

NN

NNR

s

p

Page 7: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

復習コーナー入射角に依存する反射率

P偏光と S 偏光では反射率の入射角依存性が異なる。

Page 8: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

復習コーナー垂直入射の光強度反射率と位相

R= r*r=|r|2 は光強度の反射率、は反射の際の位相のずれ

2221

22

22

1

2tan

)1(

)1(

n

n

nR

cos21

sin2

cos21

1

RR

R

RR

Rn

Page 9: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

復習コーナー反射率と位相

Kramers-Kronig( クラマースクローニヒ)の関係

dR

P0

22

)(ln)(

Page 10: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

復習コーナーKerr 効果

磁気カー回転角 Kと磁気カー楕円率 Kをひとまとめにした複素カー回転 K

22

K

R

R

r

r

rr

rrK

4

1

2

1

r

ri

r

ri

r

rii KKK ˆ

ˆln

2

1ˆ2

ˆ

22

Page 11: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

復習コーナー複素カー回転

この式から,カー効果が誘電率の非対角成分 xy に依存するばかりでなく,分母に来る対角成分 x x にも依存することがわかる.

xxxx

xyK

1

Page 12: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

磁気光学効果の電子論

今回:古典電子論(光と磁気第4章4.1 、 4.2 )

電子を古典的な粒子として扱い、磁場中の古典的運動方程式を解いて電子の変位を求め、分極や誘電率を計算します。

次回は量子論にもとづく扱いをお話しします。

Page 13: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

誘電率と電気分極

物質中の電束密度は Dは、真空中での電束密度 0Eに物質の電気分極 Pがもたらす電束密度を付け加えたものとなっています。

PEED 00~ (4.1)

一般に、電気分極 Pは印加電圧に依存し、電気感受率テンソルを用いて、次式のように表せます。

EP ~0 (4.2)

比誘電率テンソルは ~1~ (4.3)

成分で書くとijijij (4.4)

Page 14: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

電気分極は、電気双極子の総和

電気分極 P は単位体積あたりの電気双極子の総和を表しているので、電気双極子 ( 電荷 q 、距離 u )密度を N とすると、 P は次式であらわされます。

uP Nq (4.5)

したがって、電界 E を加えたときの電荷対の相対変位 u を見積もることができれば、電気感受率、ひいては、比誘電率を求めることができます。

Page 15: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

電界・磁界のもとにおける荷電粒子の運動

古典力学の運動方程式を考えます。荷電粒子の電荷 q [C], 質量 m [kg]荷電粒子の変位 u=(x, y, z) [m]慣性力 md2u/dt2

摩擦力 mdu/dtLorentz 力 q(E+vB)=q(E+du/dtB)

EB

Page 16: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

運動方程式の振動解

B

dt

duEqum

d

dum

dt

udm 2

02

2

t

),0,0( BB

tiexp 0EE )exp(0 tiuu

BuEuuu iqmimm 20

2

z

y

qEzim

qEyimqBxi

qEqByixim

20

2

20

2

x20

2

(磁界はz方向を向いているとします。)

(振動解を仮定します。)

運動方程式 (4.6)

(4.8)

(4.7)

という連立方程式が得られます。

Page 17: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

変位 uを求める

連立方程式を解いて、変位 u=(x, y, z) を求めます。

Ez

im

qz

Eyi

i

m

qE

i

i

m

qy

Ei

i

m

qEx

i

i

m

qx

c

x

c

c

y

c

c

c

20

2

22220

2

20

2

22220

2

22220

222220

2

20

2

1

Page 18: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

電気分極 Pを求める

P=nqu により分極 P を求めます。

zz

y

c

x

c

cy

y

c

cx

c

x

Eim

nqP

Ei

i

m

nqE

i

i

m

nqP

Ei

i

m

nqE

i

i

m

nqP

20

2

2

22220

2

20

22

22220

2

2

22220

2

2

22220

2

20

22

1

mqBc ここに はサイクロトロン角振動数です。

Page 19: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

電気感受率を求める

P=0E により電気感受率を求めます。

20

20

2

22220

20

2

22220

2

20

2

0

2

1

im

nq

i

i

m

nq

i

i

m

nq

zz

c

cxy

c

xx

zzzz

yxxxxyy

yxyxxxx

EP

EEP

EEP

0

0

0

より、非対角成分は磁界に比例することがわかります。

が得られます。

(4.9)

mqBc

Page 20: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

誘電率に変換する

ij=ij+ij を用いて、誘電率テンソルに変換します。

20

20

2

22220

20

2

22220

2

20

2

0

2

11

1

im

nq

i

i

m

nq

i

i

m

nq

zz

c

cxy

c

xx

(4.10)

mqBc

Page 21: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

伝導率テンソルであらわすと

(4.10) 式を σ で書き直すと

20

2

2

22220

2

22

22220

2

20

22

1

im

nqi

im

nq

i

i

m

nqi

zz

c

cxy

c

xx

(4.11)

Page 22: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

磁界ゼロの場合:ローレンツの式 B=0 なので c=0 を代入すると Lorentz の分散式が得られます。

0

11

20

20

2

xy

zzxxim

nq

22220

20

2

22220

2

20

2

0

2

)()(

)(1)(

m

nq

m

nq

xx

xx

(4.12)

(4.13)

Page 23: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

磁界がなく,束縛項もない場合:ドルーデの式

c=0, 0=0 とおくと Drude の式が得られます。

0

)(

11

0

2

xy

zzxx im

nq

)()(

11)(

220

2

220

2

m

nq

m

nq

xx

xx

負の誘電率

(4.14)

(4.15)

0 のとき虚数部は発散します。

=p’ のとき実数部はゼロを横切ります。

p’=

Page 24: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

プラズマ振動数

Drude の式で、ダンピング項を 0 としたとき、 ε の実数部が 0 となる振動数を自由電子プラズマ振動数 pとよび下の式で求められます。

01

1)(2

0

2

p

xx m

nq

m

nqp

2

ダンピングのある場合の Drude の式を p を使って書き直すと

)()(

1)(

22

2

22

2

pxx

pxx

においてゼロを横切ります

22 pp

Page 25: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

FAQ金属中の電子はなぜ自由電子と見なせるのか

金属では、構成している原子が外殻電子を放出して結晶全体に広がる電子の海を作っています。

この電子の海による遮蔽効果で、原子核の正電荷からのクーロンポテンシャルは非常に弱められています。

このため、電子はあたかも自由電子のように振る舞うのです。実際、有効質量もほとんど自由電子質量と一致すると言われています。

Page 26: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

FAQ

金属結合 金属においては、原子同士が接近していて、外殻の s 電子は

互いに重なり合い、各軌道は2個の電子しか収容できないので膨大な数の分子軌道を形成しています。

電子は、それらの分子軌道を自由に行き来し、もとの電子軌道から離れて結晶全体に広がります。これを非局在化といいます。

正の原子核と負の非局在電子の間には強い引力が働き、金属の凝集が起きます。

この状態を指して、電子の海に正の原子核が浮かんでいると表現されます。 ++

+ + +

+ + +

+

+ + + + +

+ + + + +

+

++

+ + +

+ + +

+

+ + + + +

+ + + + +

+

Page 27: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

FAQ自由電子とプラズマとの関係が分からない

金属は電子がたくさんありますが、全体としては中性です。これは、電子による負電荷の分布の中心と原子核の正電荷の中心が一致しているからです。

光の電界を受けて電子が+側に移動すると、-側には正電荷が残されます。この結果電気分極が生じるのですが、このように正電荷と負電荷が空間的に分離した状態をプラズマというのです。

+ + -

電界 +-

電子の移動

Page 28: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

FAQ

金金銀銀銅銅の反射スペクトル

波長表示

エネルギー表示

nm

1240

10602.110nm

10998.210626.6

Cm

smsJeV

m

smsJssJJ

199

8341-

-11-

e

chE

chhE

佐藤勝昭:金色の石に魅せられて

Page 29: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

FAQ

貴金属の選択反射の原因

光は電磁波の一種です。つまりテレビやラジオの電波と同じように電界と磁界が振動しながら伝わっていきます。

金属中に光がはいると金属中に振動電界ができ、この電界を受けて自由電子が加速され集団的に動きます。

電子はマイナスの電荷を持っているので、電位の高い方に引き寄せられます。その結果電位の高い方にマイナスの電荷がたまり、電位の低い側にプラスの電荷がたまって、電気分極が起きます。

外から金属に光の電界が進入しようとすると、逆向きの電気分極が生じて電界を遮蔽してしまって、光は金属中に入れません。光が入れないということは、いいかえれば、光が全部反射されてしまうということを意味します。

Page 30: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

磁界がかかっており束縛項がない場合:マグネトプラズマ共鳴

0=0 , =0 を代入しますと

2

2

20

2

22

2

220

2

22

2

220

2

11

1

11

1

pzz

c

cp

c

cxy

c

p

c

xx

m

nq

ii

m

nq

m

nq

= c で発散

2=p2+c

2 でゼロを横切る

マグネトプラズマ共鳴

Page 31: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

マグネトプラズマ共鳴の伝導率表現

02

0

022

2

0

220

2

0

1

1

pzzzz

c

cpxyxy

c

pzzxx

ii

i

ii

ij=-i0(ij-ij) によりに変換すると

(4.17)

Page 32: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

ホール効果( 直流において、自由電子のみを考え、磁界のある場合 )

0

2

202222

2

20

22

2

22

2

22

2

10

1)/(

/0

1)/(0

nqm

qnq

m

nq

m

qnq

m

nq

nqm

qnq

m

nq

zz

c

c

c

c

c

cxy

cccc

xx

BRHxy

zzxx

0

1

DC においては、→ 0 とすることにより、次式を得ます。 xy は x方向に電流が流れたとき y 方向に電圧が生じることを表していますから、まさにホール効果を記述するものとなっています。

(4.18)

ここに 0 は直流伝導率です。抵抗率テンソルに変換すると次式になります。

(4.19)

0

0

0

/100

0/1

0/1

ˆ

BR

BR

H

H

Page 33: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

磁界がかかっていて,束縛がなく,散乱のない場合

2

2

22

2

22

2

1

1

pzz

c

cpxy

c

pxx

i

c

pc

c

pxyxx iN

2

22

22 11

(4. 21)

Page 34: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

Fe の磁気光学効果は古典電子論で説明できるか?

比誘電率の非対角成分の大きさ:最大 5 の程度              

22220

20

2

c

cxy

i

i

m

nq

eV20 eV1.0

-33 mcmn 2822 1010

磁気光学効果の量子論

(4.10)

キャリア密度と仮定

B=3000T という非現実的な磁界が必要

スピン軌道相互作用によって初めて説明可能

Page 35: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

量子論に向けて 古典電子論では、電子が原子核にバネで結びついているイ

メージで説明しました。 しかし、実際には、電子は原子核の付近にクーロン力で束

縛され、その軌道のエネルギーは、量子数で指定されるとびとびの値をとります。

誘電率とは、物質に電界が加わったときの分極のできやすさを表す物理量です。分極とは、電界によって電子の波動関数の分布の形がゆがみ、重心(負電荷)が原子核(正電荷)の位置からずれることを意味します。

波動関数の分布のゆがみは、量子力学では、基底状態の波動関数に、励起状態の波動関数が混じり込むことによって生じます。この変化の様子を説明するのが「摂動論」です。

Page 36: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

電子分極のミクロな扱い:対角成分

++

+ -

-

無摂動系の波動関数

電界の摂動を受けた波動関数

電界を印加すると

s-s- 電子的電子的 p-電子的

無摂動系の固有関数で展開

= + +・・・・

摂動を受けた波動関数

2220

2

20

2210

2

10

0

2

220

2

00

2

02012

10

2

xxNq

xjNq

jjjxx

|2>

E+

|1>

|0>

<0|x|1><1|x|0>

<0|x|2>

<2|x|0>

Page 37: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

量子力学入門 量子力学では、電子は波動関数で表されます。 波動関数の絶対値の 2 乗 ||2 が存在確率を与えます。 電子の状態を記述するには、運動方程式の代わりに、シュレー

ディンガーの波動方程式を用います。 シュレーディンガー方程式は、 H=Eと書きます。

ここに H はハミルトニアン演算子、 E はエネルギーの固有値です。 ハミルトニアン演算子 H は、運動量演算子 p 、ポテンシャルエネ

ルギー演算子 V を用いて H=-(1/2m)p2+V となります。ここに p は、

ip によって表される演算子です。■ 運動量の期待値は、 p を * とで挟み全空間で積分して求めます。

d

dpp

*

*

Page 38: 工学系 12 大学大学院単位互換  e-Learning 科目 磁気光学入門第 6 回 - 磁気光学効果の電子論 (1): 古典電子論-

課題

1. 式 (4.7) から式( 4.9) が導かれることを確かめてください。

2. 今回の講義の感想・質問等を書いてください。