59
第 2 第 第第第第第第

第 2 章 化学基础知识

  • Upload
    kelli

  • View
    103

  • Download
    5

Embed Size (px)

DESCRIPTION

第 2 章 化学基础知识. 2 - 1 气体. 2 - 1 - 1 理想气体的状态方程.   理想气体: 分子本身不占体积,分子间没有作用力的气体。. 低压高温下的气体接近于理想气体。. 2 - 1 气体. 2 - 1 - 1 理想气体的状态方程.   理想气体: 分子本身不占体积,分子间没有作用力的气体。. 低压高温下的气体接近于理想气体。. 1. V ∝. p. Boyle 定律. - PowerPoint PPT Presentation

Citation preview

Page 1: 第  2  章 化学基础知识

第 2 章化学基础知识

Page 2: 第  2  章 化学基础知识

2 - 1 气体

2 - 1 - 1 理想气体的状态方程

  理想气体:

分子本身不占体积,分子间没有作用力的气体。

低压高温下的气体接近于理想气体。

Page 3: 第  2  章 化学基础知识

2 - 1 气体

2 - 1 - 1 理想气体的状态方程

  理想气体:

分子本身不占体积,分子间没有作用力的气体。

低压高温下的气体接近于理想气体。

Page 4: 第  2  章 化学基础知识

   Boyle 定律

V ∝ 1 p

  当 n 和 T 一定时,气体的 V 与 p 成反比 。

Page 5: 第  2  章 化学基础知识

V ∝ T

   Charles - Gay∙Lussac 定律

  当 n 和 p 一定时,气体的 V 与 T 成正比。

Page 6: 第  2  章 化学基础知识

V ∝ n

   Avogadro 定律

  当 p 和 T 一定时,气体的 V 和 n 成正比。

Page 7: 第  2  章 化学基础知识

  实验测得,其比例系数是 R , 则

pV = n RT

V =     nRT   p

V ∝ nT p

综合以上三个经验公式,得

  或

  理想气体状态方程式

Page 8: 第  2  章 化学基础知识

     R = 8.3145 Pa ∙ m3 ∙ mol-1 ∙ K-1

     = 8.3145 J ∙ mol-1 ∙ K-1

R: 摩尔气体常数

   1 mol 理想气体气体, 0℃, 1 atm 时的体积 22.4

L 。

pV = n RT

Page 9: 第  2  章 化学基础知识

  物质的量 (n) mol

  温度 T (temperature) T = (t + 273.15) K

  压力 p (pressure) 1 atm = 760 mmHg

             = 101325 Pa

≈ 101 kPa

             ≈ 0.1 MPa

  体积 V (volume) 1 m3 = 103 L

             = 103 dm3

             = 106 cm3

Page 10: 第  2  章 化学基础知识

解:依据题意可知 V1 = V2 , n1 = n2

此时

  解得 T2 = 900 K

  当温度达到 900 K 以上时,烧瓶会炸裂。

例 2-1 一玻璃烧瓶可以耐压 3.08 × 105 Pa ,在温度为300 K 和压强为 1.03 × 105 Pa 时,使其充满气体。问在什么温度时,烧瓶将炸裂。

2 2

p1 1Tp T

2 K5

5

3.04×10×3001.03×10

T

22

1

p1T T

p

Page 11: 第  2  章 化学基础知识

例 2 - 2 27 ℃ 和 101 kPa 下, 1.0 dm3 某气体质量为 0.65 g ,求它的相对分子质量。

  解:由理想气体的状态方程

pV = nRT

得 n = pV/RT 即 m/M = pV/RT

mRTM

pV

0.65 8.314 300/ 16 /

101 1M g mol g mol

Page 12: 第  2  章 化学基础知识

2 - 1 - 1 实际气体状态方程

理想气体是在对于实际气体进行假定的基础上抽象出的模型,实际气体的实验数据偏离理想气体的状态方程,因此,必须对理想气体状态方程进行修正,才能够适用于实际气体。

Page 13: 第  2  章 化学基础知识

考虑到实际气体分子之间的相互作用,实际气体分子碰撞器壁时所产生的压力小于理想气体所产生的压力。

  因此 p = p 实 + p 内

   p :理想气体的压强

   p 实:实际气体的压强

   p 内:理想气体的压强 p 与实际气体的压强 p 实 的差

Page 14: 第  2  章 化学基础知识

   p 内 和内部分子的密度成正比,也和碰撞器壁的外层分子的密度成正比,即

  设其比例系数为 a ,则上式可写成

  则

p 内 ∞ n

V( )2

p 内 = a n V( )2

p = p 实 + a ( )2

Vn

Page 15: 第  2  章 化学基础知识

V = V 实 - nb

实际气体分子自身的体积不能忽略,实际气体的体积大于理想气体,气体分子自身体积与气体的物质的量有关,所以,

  理想气体方程可以写为

[p 实 + a(n/V)2][V 实 - nb] = nRT 范德华方程

a 、 b 称为气体的范德华常数    a 和 b 的值越大,实际气体偏离理想气体的程度越大。

Page 16: 第  2  章 化学基础知识

2 - 1 - 3 混合气体的分压定律

  混合气体 :由两种或两种以上的,相互之间不发生反应的气体混合在一起组成的体系。

  组分气体:混合气体中的每一种气体

混合气体的物质的量为 n

各组分气体的物质的量 ni

  则 i

i

n n

Page 17: 第  2  章 化学基础知识

  对于双组分体系, T , V 一定时

pA+ pB

nA nB

nA + nB

pA

pB

pB = nBRT/V    pA = nART/V

p 总 = pA + pB

1 道尔顿理想气体分压定律

Page 18: 第  2  章 化学基础知识

对于多组分体系

pi = niRT/V 总

在温度和体积恒定时,混和气体的总压力等于各组分气体分压力之和,某组分气体的分压力等于该气体单独占有总体积时所表现的压力。 

1 2 3 ii

p p p p p

Page 19: 第  2  章 化学基础知识

p = ∑ pi = ∑ niRT/V = nRT/V

n- 混合气体总的物质的量

pi /p = ni/n

or pi = ni p/n = xi p

Page 20: 第  2  章 化学基础知识

2 分体积定律 (1880 - E.H. Amage)

p , T 一定时

nB

p , V

B

p , VA + VB

nA + nB

pVA = nART pVB = nBRT

V 总 = VA + VB

在恒温恒压下,某组分的分体积等于该组分产生与混合气体相同的压力时所占据的体积。

p, VA

nA

Page 21: 第  2  章 化学基础知识

例 2 - 3  某温度下,将 2 ×105 Pa 的 O2 3 dm3 和 3 × 105 Pa 的 N2 1 dm3 充入 6 dm3 的真空容器中,求 混合气体的各组分的分压及总压 .

  解: O2 p1 = 2 × 105 Pa V1 = 3 dm3

         p2 = ? V2 = 6 dm3        O2 的分压

p(O2) = p1V1/V2 = (2 × 105 × 3/6) Pa = 1 × 105 Pa

Page 22: 第  2  章 化学基础知识

  同理 N2 的分压

  混合气体的总压力

   p(N2) = (3×105×1/6)Pa

     = 0.5 ×105 Pa

   p ( 总 ) = p ( O2 ) + p ( N2 )

= ( 1×105 + 0.5×105 )Pa

= 1.5 × 105 Pa

Page 23: 第  2  章 化学基础知识

例 2 - 4 制取氢气时,在 22 ℃ 和 100.0 kPa 下, 用排水集气法收集到气体 1.26 dm3 ,在此温度下水的蒸气压为 2.7 kPa ,求所得氢气的质量。

  解:由此法收集到的是氢气和水蒸气的混合气体,

   则其中水蒸气的分压 p(H2O) = 2.7 kPa

  那么 p(H2) = 100 kPa - 2.7 kPa = 97.3 kPa

Page 24: 第  2  章 化学基础知识

  由 pi V 总 = ni RT

  故所得氢气的质量为

2 g · mol × 1 × 0.05 mol = 0.1 g

   ni = piV 总 /(RT)

   = [97.3 × 103 × 1.26 × 10 - 3/(8.314 × 295)] mol

= 0.05 mol

Page 25: 第  2  章 化学基础知识

2 - 1 - 4 气体扩散定律

气体扩散定律 :同温同压下气态物质的扩散速度与 其密度的平方根成反比 (Graham , 1831 ) 。

A

B

B

A

u

u

ρρ

   ui :扩散速度

   ρi :表示密度

Page 26: 第  2  章 化学基础知识

  由理想气体状态方程推得

Mr = · m RT V p

同温同压下,气体的扩散速度与其相对分子质量的平方根成反比。

A

B

B

A

u

u

ρρ

( )

( )

r BA

B r A

M

M

Mr = ·RT ρ p

Page 27: 第  2  章 化学基础知识

2 - 1 - 5 气体分子的速率分布和能量分布1 气体分子的速率分布

u : 代表分子的运动速率。

单位速率间隔内分子的数目。ΔNΔu

速率大的分子少;速率小的分子也少;速率居中的分子较多 。

Page 28: 第  2  章 化学基础知识

气体分子的速率分布

up :最可几速率

气体分子中具有 up 这种速率的分子数目最多,在分子总数中占有的比例最大 。

Page 29: 第  2  章 化学基础知识

  不同温度下的气体分子运动速率的分布曲线 T2 > T1

温度升高时,气体分子的运动速率普遍增大,具有较高速率的分子的分数提高,分布曲线右移。

Page 30: 第  2  章 化学基础知识

气体分子的能量分布

2 气体分子的能量分布

0

0

Ei RT

E

Nf e

N

Page 31: 第  2  章 化学基础知识

2 - 2 液体和溶液

2 - 2 - 1 溶液浓度的表示方法

Page 32: 第  2  章 化学基础知识

  特点:较方便,实验室最常用;   由于体积受温度的影响,使用时要指明温度。

cB = nB

V

SI 单位: mol ∙ m - 3

溶质 B 的物质的量除以混合物的体积,即 1 m3 溶液中所含的溶质的物质的量,用 cB 表示。 

1 物质的量浓度

Page 33: 第  2  章 化学基础知识

2 质量摩尔浓度

溶质 B 的物质的量除以溶剂 A 的质量,用符号 m

表示, SI 单位是 mol/kg 。

特点:与温度无关,可用于沸点及凝固点的计算。

mB = nBmA

Page 34: 第  2  章 化学基础知识

3 质量分数

  溶质 B 的质量与混合物质量之比。

wB : SI 单位为 1

wB = mB

m 总

Page 35: 第  2  章 化学基础知识

4 摩尔分数

溶质和溶剂都用 mol 表示,溶质的物质的量占全部溶液的物质的量的分数,用 xB 表示。

B

(B) 1x 对于多组分体系:

xB = nB

n 总

Page 36: 第  2  章 化学基础知识

5 质量摩尔浓度与摩尔分数之间的关系

  稀溶液中, x 溶剂 >> x 溶质, 则

xB = ≈ n 溶质 n 溶质

n 溶质 + n 溶剂 n 溶剂

Page 37: 第  2  章 化学基础知识

  对于水溶液 ,当

   n 溶剂 = 1000 g/(18 g / mol) = 55.6 mol 时,

   n 溶质 = m 溶质

  即 x 溶质 = n 溶质 /n 溶剂 = m 溶质 /55.6

  令 k’ = 1/55.6 , 则 xm = k’m

  稀溶液中,溶质的摩尔分数与其质量摩尔浓度成正比。

Page 38: 第  2  章 化学基础知识

2 - 2 - 2 饱和蒸汽压

1 纯溶剂的饱和蒸汽压

在一定的温度下,液体与蒸气达到平衡时,水蒸气压力最大,称饱和蒸气压,用 pӨ 表示 .

H2O (l) H2O(g)蒸发凝聚

Page 39: 第  2  章 化学基础知识

乙醚乙醇

p

T

   A 同一液体,温度越高,蒸气压越大。

   B 与物质的本性有关:同一温度下,易挥发液体蒸 

    气压大。   C 液体的蒸气压与气相的体积及液相的量无关。

Page 40: 第  2  章 化学基础知识

2 溶液的饱和蒸气压

溶液的蒸气压低于纯溶剂

丙酮溶液压力计丙酮

Page 41: 第  2  章 化学基础知识

在一定的温度下,难挥发非电解质稀溶液的蒸气压等于纯溶剂的蒸气压与溶剂的摩尔分数的乘积。

p = pA*∙xA

拉乌尔定律 (F. M. Raoult)

Page 42: 第  2  章 化学基础知识

2 - 2 - 3 非电解质稀溶液的依数性

溶液的性质与哪些因素有关?

  导电性、酸碱性、氧化还原性∙∙∙

  蒸气压、凝固点、沸点、渗透压∙∙∙

与物质的本性有关

与溶质的数量有关

Page 43: 第  2  章 化学基础知识

水、溶液和冰的蒸气压-温度图

AA’ — 水线 , BB’ — 溶液线 , A’B’ — 冰线

Page 44: 第  2  章 化学基础知识

在一定的温度下,难挥发非电解质稀溶液的蒸气压下降值 Δp 与溶质的摩尔分数成正比。

  适用范围 : 非电解质,难挥发,稀溶液。

1 蒸气压下降

p = pA*xB

p = pA* xA p = pA*(1 - xB)

Page 45: 第  2  章 化学基础知识

2 沸点升高

当液体蒸气压力等于外界的压力时,液体沸腾,此时的温度称为该液体的沸点。

当外压为 101.3 k Pa 时,液体的沸点为正常沸点。

(1) 液体的沸点

Page 46: 第  2  章 化学基础知识

(2) 影响沸点高低的因素

与物质的本性有关,在一定的外压下,易挥发的液体沸点低;

对于同一物质,沸点与外压有关,外压越大,沸点越高;

外压一定时,纯净物具有固定的沸点。

Page 47: 第  2  章 化学基础知识

(3) 溶液的沸点升高

难挥发性非电解质稀溶液的沸点升高值与溶液中溶质的质量摩尔浓度成正比。

Kb: 溶剂沸点升高常数,只与溶剂有关,与溶质无关 ,

单位是 K∙kg∙mol-1 。

Tb = kb· m

Page 48: 第  2  章 化学基础知识

3 溶液的凝固点 (Freezing point)

  一定外压下,物质的固相与其液相达成平衡时的温度。

(1) 液体的凝固点

H2O (l) H2O(g)蒸发凝聚

  正常凝固点 : 101 kPa 下纯液体和其固相平衡时的温度。

Page 49: 第  2  章 化学基础知识

难挥发性非电解质稀溶液冰点降低的数值,与其蒸气压降低的数值成正比。

(2) 溶液的凝固点下降:

kf : 摩尔凝固点降低常数,是与溶剂有关,与溶质无关的常数,单位 K∙kg∙mol-1 。

ΔTf = kf∙m

Page 50: 第  2  章 化学基础知识

ΔTf = kf∙m = kf∙nB/mA = kf ∙mB/(MB∙mA)

利用此式可以测定溶质的摩尔质量。

Page 51: 第  2  章 化学基础知识

3 渗透压

渗透现象和渗透压

Page 52: 第  2  章 化学基础知识

a 渗透现象

b 渗透压

c 渗透压的定量计算

π = cBRT

π : kPa cB : mol∙L-1

R = 8.314 kPa∙L∙mol-1∙K-1

Page 53: 第  2  章 化学基础知识

π 小 π 大

稀溶液 浓溶液

理 解

  ① 渗透方向

  ②等渗溶液

渗透能力相同的溶液

  ③反渗透作用

溶剂 溶液

Page 54: 第  2  章 化学基础知识

依数性使用范围 :

对于难挥发非电解质浓溶液或电解质溶液,这些现象同样存在,不再符合依数性的定量规律。

难挥发非电解质稀溶液

Page 55: 第  2  章 化学基础知识

4 稀溶液依数性的应用

   a. 测定分子摩尔质量

低分子量 - 沸点升高,凝固点降低

高分子量 -渗透压

   b. “ 反渗透技术”应用

Page 56: 第  2  章 化学基础知识

例 2-5  在 26.6 g CHCl3 中溶解 0.402 g 难挥发性非电解质溶质,所得溶液的沸点升高了 0.432 K , CHCl3 的沸点升高常数为 3.63 K·kg ·mol-1 ,求该溶质的平均分子质量 Mr 。

  解:由 Δ Tb = kB m ,解得

11

0.4320.119

3.63b

b

T Km mol kg

K K kg mol

Page 57: 第  2  章 化学基础知识

  因为

1000

26.6

Wm

M

  所以

1000 0.402 1000/ 127 /

26.6 0.119 26.6

WM g mol g mol

m

Page 58: 第  2  章 化学基础知识

例 2 - 6 为防止汽车水箱在寒冬季节冻裂,需使水的冰点下降到 253 K ,则在每 1000 g 水中应加入甘油多少克?

  解: ΔTf = ( 273-253) K = 20 K

   m = ΔTf/kf = 20 K/1.8 K·kg·mol-1 = 10.75 mol·kg-1

根据题意, 1000 g 水中应加 10.75 mol甘油, 甘油的摩尔质量为 92 g/mol 。

  所以加入甘油的质量为 92 g/mol 10.75 mol = 989 g

Page 59: 第  2  章 化学基础知识

2 - 3 固体晶体类型 离子晶体 原子晶体 分子晶体 金属晶体

代表物质 NaCl 金刚石, SiO2 I2,干冰,大多数有机物 金属,合金

粒子间作用力 离子键 共价键 分子间力,氢键 金属键

熔沸点 较高 很高 较低 较高

挥发性 低 无 高 低

硬度 较大而脆 大而脆 较小 多数较大

导电、导热性

热的不良导体,熔融和溶于水可导电

非导电 ( 热 )体非导电 ( 热 )体,不绝对,有些有机物可以导电 (合

成金属 )

良导电 ( 热 )体

溶解性 极性溶剂 不溶于一般溶剂 符合相似相容原理 不溶于一般溶剂

机械加工性 不良 不良 不良良好的延展性和机械加工性

应用 电解质,耐火材料

半导体,硬质材料 溶剂,绝缘材料 机械制造