35
1. Introduction to Power Plants 1 / 35 Thermal Fluid Techniques in Plants 발전설비 열유체기술 발전설비 열역학 발전용 가스터빈 754 MJ/s (100%) 205 MW (27.2%) 203 160 119 MW = 482 MW (63.9%) 277 MW (Net Output) (36.7%) 272 MJ/s (36.1%) 증기터빈 열유체기술 발전설비 입문 - 열유체기술

발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

  • Upload
    lykhanh

  • View
    215

  • Download
    3

Embed Size (px)

Citation preview

Page 1: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 1 / 35Thermal Fluid Techniques in Plants

발전설비 열유체기술

발전설비열역학

발전용가스터빈

754 MJ/s

(100%)

205 MW

(27.2%)

203 160 119 MW = 482 MW (63.9%)

277 MW (Net Output)

(36.7%)

272 MJ/s

(36.1%)

증기터빈열유체기술

발전설비입문 - 열유체기술

Page 2: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 2 / 35Thermal Fluid Techniques in Plants

1. Introduction to Power Plants

Page 3: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 3 / 35Thermal Fluid Techniques in Plants

Energy Conversions 112

Classification of Power Plants 21

Generals for Power Plants 173

Page 4: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 4 / 35Thermal Fluid Techniques in Plants

발전설비 대분류

형태 1차 계통 2차 계통

화력발전

원자력발전

복합발전

Topping cycle Bottoming Cycle

Page 5: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 5 / 35Thermal Fluid Techniques in Plants

형태 내용

기력발전

• 다양한 에너지를 이용하여 증기를 생산하고, 생산된 증기를 이용하여 증기터빈을구동시켜 기계적인 동력을 생산하고, 생산된 동력을 발전기로 보내 전기를 생산하는 발전 방식

• 석탄 및 석유와 같은 화석연료를 이용하여 보일러에서 증기를 생산하는 화력발전을일반적으로 기력발전이라고 함

• 원자력발전은 연료가 핵에너지라는 점을 제외하면 석탄이나 석유를 이용한 발전 방식과 동일하기 때문에 기력발전에 포함

• 따라서 화력발전과 원자력발전 모두 기력발전에 속함

내연력발전

• 내연기관을 이용한 발전방식

• 내연기관으로 대형 디젤엔진 사용

• 디젤발전이라고도 함

특수화력발전

• 열 공급 발전

• 폐열 이용 발전

• 지열발전

• 가스터빈발전

복합발전• 하나의 발전소에 두 가지 형태의 발전 방식이 결합된 형태

• 가스터빈과 증기터빈이 결합된 형태의 복합발전이 가장 일반화되어 있음

발전설비 대분류

Page 6: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 6 / 35Thermal Fluid Techniques in Plants

발전원별 분류

발전원별 특징

수력(Hydro)

• 물의 위치에너지를 운동에너지로 변환시켜 수차(runner)를 통과시켜 발전

• 양수발전: 심야 잉여전력을 이용하여 하부 저수지 물을 펌핑(양수)하여 상부 저수지에 저장했다가 첨두부하 요구 시 발전

화력(Fossil)

• 화석연료를 이용하여 생산된 증기로 증기터빈을 구동시켜 발전

• 무연탄발전(영동,서천,동해화력), 유연탄발전(대부분의 국내 석탄화력발전), 중유발전(울산,영남,평택,제주화력), LNG발전(서울,인천화력) 등

원자력(Nuclear) • 핵분열 에너지 이용하여 생산된 증기로 증기터빈을 구동시켜 발전

복합화력

(Combined Cycle)

• 가스터빈 1차 발전(topping cycle) + 증기터빈 2차 발전(bottoming cycle)

• CHP(Combined Heat and Power): 일산, 분당, 안양, 부천 등

• 등유를 사용하는 한림복합을 제외한 모든 복합발전소 LNG 사용

내연력

(Internal Combustion)• 디젤엔진 발전

대체 / 신재생

(Alternative Energy / Renewable Energy)

• 신에너지(3개 분야) : 기존의 에너지를 가스 또는 액체연료로 전환하여 직접 또는 발전에이용하는 에너지 (수소, 연료전지, 석탄 액화가스화)

• 재생에너지(8개 분야) : 자연에너지를 재생시켜 새로운 에너지로 변환 (태양광, 태양열, 바이오, 풍력, 수력, 해양, 폐기물, 지열)

• 대체 에너지(화석연료): 풍력, 태양광, 태양열, 매립가스, 부생가스

- 매립가스(land fill gas): 서희, 상원 ENC 등

- 부생가스(제철/석유산업 공정에서 발생하는 가스: 포항제철

• Biomass(에너지화 할수있는생물체량): GS EPS (당진)

Page 7: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 7 / 35Thermal Fluid Techniques in Plants

발전단가 (원/kWh) 2015년 말 (만 kW) 2016년 추가 (만 kW)

LNG발전 156 3220 (33%)

석탄화력발전 66 2730 (28%) 900 (당진 910, 태안 910)

원자력발전 55 2170 (22.2%) 140 (신고리 3)

신재생에너지 740 (7.6%)

합계 2015년 기준 9760 10870

국내 발전설비 용량

신규석탄화력발전

• 1000 MW급 USC발전

• 태안 910은 저압터빈 화재로 지연가능성 있음

신규원자력발전

• APR-1400급

• 신고리 3호기불량전선 사용으로 준공지연

원자력22.2%

석탄26.8%

국내탄1.2%

유류4.4%

LNG33.0%

양수4.8%

수력1.7%

기타5.2%

Page 8: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 8 / 35Thermal Fluid Techniques in Plants

석탄

60

단위: 원/kWh출처: 경향신문 (자료 제공: 한화큐셀)석탄 및 LNG 발전단가는 미국 및 선진국 자료 기준

LNG 원자력 풍력태양광

8070

80

120130

140

8090

70

2014

2020

국내 발전단가 비교

발전소: 셀라필드 원자력 발전소 (영국)

준공: 1953년 착공, 1956년 10월 준공

목적: 초기엔 핵무기용 플루토늄(Pu) 생산이 주목적,

1964년 이후엔 전기를 생산해내는 것이 주목적

용량: 200 Mwe (50MWe 용량의 마그녹스 원자로 4기)

해체허가: 2005년 6월

해체비용: 1,100억 달러(675억 파운드) 셀라필드 원자력 발전소 (영국)

그리드패리티(grid-parity) : 보조금을 빼고도 신재생 에너지의 발전단가가 화석연료의발전단가와 같아지는 균형점

Page 9: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 9 / 35Thermal Fluid Techniques in Plants

미국과 영국: PNG(Pipeline natural Gas, 액화과정 생략과 운송비용 절약으로 가격 저렴) 사용

미국: 셰일가스 등장으로 천연가스 가격 급격히 하락

한국: 액화천연가스(LNG; Liquefied Natural Gas) 사용. 러시아산 천연가스 도입 시 PNG로 대체

SK E&S 파주천연가스발전소(1800 MW급): 미국으로부터 셰일가스 직접 수송해서 발전 연료로 사용 중 (국내 최초)

대형 집단발전으로 복합발전이 가장 유망

해외 발전단가 비교

석탄(CCS장착)

123.2

단위: USD/MWh출처: EIA (미국 에너지정보청)기준: 2022년 (발표: 2017년)

원자력(신형)

태양광 LNG(복합)

풍력(육상)

99.1

66.852.5

82.4

미국

석탄

131

단위: 파운드/MWh출처: 영국 기업에너지산업전략부기준: 2025년 (발표: 2017년)

원자력 태양광(대용량)

LNG(복합)

풍력(육상)

95

63 61

82

영국

Page 10: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 10 / 35Thermal Fluid Techniques in Plants

Energy Conversions 2

Classification of Power Plants1

Generals for Power Plants 3

Page 11: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 11 / 35Thermal Fluid Techniques in Plants

Energy Conversion [1/4]

Thermal Efficiency 50%

Turbine losses (10%)• Profile loss

• Secondary flow loss

• Leakage loss

Boiler losses (10%) Condenser

exhaust (30%)

100%

[ Heat balance for a typical USC plant ]

Factors should be considered for power plants

• Thermal efficiency

• Environmental problems

• Reliability

• Durability

• Compactness

There are two costs in the development of the economic

power plants, initial capital cost and the operating cost.

Of these costs, the fuel cost is the highest of all costs

over the life of the plant, and thus the plant efficiency is

extremely important.

Page 13: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 13 / 35Thermal Fluid Techniques in Plants

Energy Conversion [3/4]

Terminology

The chemical energy contained in the fossil fuels is

converted into heat energy by combustion.

The heat (thermal) energy is transferred into a fluid,

then the energy level of the fluid goes up. In general,

the fluid flowing in the machines is called as a working

fluid. The representative working fluids are air and

water/steam.

The thermal energy contained in the working fluid is

converted to mechanical energy which can rotate the

shaft of the turbine.

Then, turbine rotates the generator and finally the

electricity is produced.

The conversion of energy to usable forms takes place

in a fluid machine, so called power-producing machines.

There are also power-absorbing machines, such as

pumps, in which energy is transferred into a fluid

stream. Pumps are used to increase pressure of liquids.

Compressors, blowers, and fans do the same for gases.

A Typical Gas Turbine [7FA, GE]

A Typical Steam Turbine [SST-600, Siemens]

Page 14: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 14 / 35Thermal Fluid Techniques in Plants

In both power-producing and power-absorbing

machines, energy transfer takes place between a

working fluid and a moving machine part.

In turbomachines, energy transfer takes place

between a continuously flowing fluid stream and a

set of rotating blades.

In an axial compressor, they are attached to a

compressor wheel.

In steam and gas turbines, the blades are fastened

to a disk, which is fixed to a shaft, and the assembly

is called as a turbine rotor.

Working fluid is guided into a rotating blades by

stator vanes. Normally, rotating blades are called as

buckets, and stator vanes are called as nozzles.

Terminology

Energy Conversion [4/4]

Page 15: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 15 / 35Thermal Fluid Techniques in Plants

The Forms of Input Energy

Hydroelectric power plant : The potential energy of an elevated body of water.

Fossil fuel fired power plant: The chemical energy that is released from the hydrocarbons

contained in fossil fuels such as coal, natural gas, and boimass fuels. The chemical

energy is converted into thermal (heat) energy when the fossil fuel is burned.

Solar power plant: The solar energy from the sun.

Nuclear power plant: The fission or fusion energy that separates or attracts atomic

particles.

Wind farm: The wind energy generated from natural environment.

Page 16: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 16 / 35Thermal Fluid Techniques in Plants

Energy Conversions 2

Classification of Power Plants1

Generals for Power Plants 3

Page 17: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 17 / 35Thermal Fluid Techniques in Plants

Capacity Factor and Availability

Both wind power and solar power are energy sources to combat the “global warming” fear.

There is no doubt that these have a place in the energy picture. But it also has its limitations.

There are two major issues: (1) electric demand is constant, however, wind power is intermittent, and (2)

electric demand is local, but major power sources are remote.

Because of the intermittent nature of wind, wind farms are estimated to have a capacity factor of 20 to 30

percent, as compared to 80 percent for a fossil-fired or nuclear power plant.

Solar power also has a very low capacity factor of approximately 20 to 30 percent.

Thus a 80 percent backup power plant, coal- or natural-gas-fired, would be necessary to meet the power

demand.

Due to the low availability of wind farms and the need for backup power, and because of the need for adding

extensive transmission lines, it is estimated by some that electricity from a wind farm would cost 2 to 4 times

more than electricity from a conventional power plant.

Careful studies must be made to evaluate these additional costs against the potential environmental impact of

conventional plants.

The conventional power plants are still required to meet the electric demand because of the expected low

availability of wind or solar power plants.

Page 18: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 18 / 35Thermal Fluid Techniques in Plants

Reliability and Availability [1/4]

Reliability is the percentage of the time between planned overhauls where the plant is generating or is ready

to generate electricity, whereas the availability is the percentage of the total time where power could be

produced.

Reliability is affected by many parameters, such as the type of fuel, the preventive maintenance program, the

operating mode, the control system, and the firing temperatures.

Availability and reliability are very important in terms of plant economy. When a unit is down, power must be

generated in another power station or purchased from another producer. In each case, replacement power is

generally more expensive.

The power station’s fixed costs are incurred whether the plant is running or not.

In deregulated markets, reliability is important. At peak tariff hours, a major portion of the income is generated

and the plant must be reliable. Scheduled outages can be planned for off-peak periods when tariffs are close

to or even below variable costs. Then only a small income loss results from the planned outages.

Reliability = (1 FOH/PH)100 (%)

Availability = (1 UH/PH)100 (%)

PH = period hours (normally one year, 8,760h) (source: GER-3620K)

FOH = total forced outage hours for unplanned outages and repairs

UH = total unavailable hours (forced outage, failure to start, scheduled

maintenance hours, unscheduled maintenance hours

Reliability = (P F) / P

Availability = (P S F) / P

P = period hours (normally one year, 8,760h)

S = scheduled outage hours for planned maintenance

F = forced outage hours or unplanned outage due to repair

(source: M.P. Boyce, Gas Turbine Engineering Handbook)

Page 19: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 19 / 35Thermal Fluid Techniques in Plants

A high availability has a positive impact on the cost of electricity because it allows an operator to run a power

plant with a higher utilization time per year and, therefore, achieve a higher income.

Many analyses show that a 1% drop in the availability needs about 2~3% increase in the efficiency to offset

that loss.

The larger gas turbines, just due to their size, take more time to undergo any of the regular inspections, such

as combustor, hot gas path, and major overall inspections, thus reducing the availability of these turbines.

To achieve a high reliability and availability, the designer should consider blade and shaft stresses, blade

loadings, material integrity, auxiliary systems, and control systems.

The high temperatures required for high thermal efficiencies have a negative effect on turbine blade life.

Therefore, in order to get high reliability of gas turbine, proper cooling must be provided to achieve blade

metal temperature between 1000F (537C) and 1300F (704C), below the levels of the onset of hot

corrosion.

Reliability and Availability [2/4]

Page 20: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 20 / 35Thermal Fluid Techniques in Plants

• SGT6-5000F (W501F): Reliability: 99%, Availability: 95%, Starting reliability: 93% (2010)

Type of Plant

Source A Source B

Availability

(%)

Reliability

(%)

Availability

(%)

Reliability

(%)

Combined Cycle Power Plant 90 ~ 94 95 ~ 98 86 ~ 93 95 ~ 98

Advanced GT CCPP 84 ~ 90 94 ~ 96

Gas Turbine Plant (gas fired) 90 ~ 95 97 ~ 99 88 ~ 95 97 ~ 99

Steam Power Plant (coal fired) 88 ~ 92 94 ~ 98 82 ~ 89 94 ~ 97

Nuclear Power Plant 88 ~ 92 94 ~ 98 80 ~ 89 92 ~ 98

The major factors affecting plant availability and reliability are:

• Design of the major components

• Engineering of the plant as whole, especially of the interfaces between the systems

• Mode of operation (whether base, intermediate, or peak-load duty)

• Type of fuel

• Qualifications and skill of the operating and maintenance staff

• Adherence to manufacturer’s operating and maintenance instructions (preventive maintenance)

Reliability and Availability [3/4]

Page 21: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 21 / 35Thermal Fluid Techniques in Plants

Source: EPRI CS-3344 pp.1-3

Gas

clean up

Fans (0.6%) Boiler tubes (4.2%) Fouling/slagging (2.8%) Pulverizers (0.6%) Bearings (2.0%)

Pumps (1.7%) Condenser (3.8%) Turbine blades (2.7%) Generator (3.8%)

Stack

Air

heater

Pulverizer

Coal

prepCoal

HP

heater

LP

heater

Water

treatment

Condenser

Water

HP Turbine IP Turbine

LP Turbines

Econ

S.H.R.H.

AshAsh

I.D. fan

F.D. fan

Generator

Availability Reduction in Coal-Fired Power Plant

Reliability and Availability [4/4]

Page 22: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 22 / 35Thermal Fluid Techniques in Plants

Nomenclature Steam ConditionsNet Plant

Efficiency, %

Net Plant Heat Rate

(HHV), Btu/kWh

Subcritical2400 psig (16.5 MPa)

1050F/1050 F (565C/565C)35 9751

Supercritical (SC)3600 psig (24.8 MPa)

1050F/1075F (565C/585C)38 8981

Ultrasupercritical (USC)3600 psig (24.8 MPa)

1100F/1150 F (593C/621C) 42 8126

Advanced

Ultrasupercritical (A-

USC)

5000 psig (34.5 MPa)

1292F (700C)

and above

45 7757

Classification of Fossil PlantsEPRI

Critical point for water = 3208 psia/705°F (22.09 MPa/374.14C)

Supercritical steam cycles: Operating pressure is higher than critical pressure of water. Water to steam

without boiling.

Ultra-supercritical steam cycles: Steam temperatures above 1100°F as defined by Electric Power Research

Institute (EPRI)

Page 23: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 23 / 35Thermal Fluid Techniques in Plants

Base load Intermediate load Peak load

Operating

hours [hr/a] 5000 2000 to 5000 2000

Generating

units

• Nuclear plant

• High-performance steam

turbine plant

• High efficient combined cycle

plant

• Hydropower plant

• Simple steam turbine plant

• Old base-load plant

• Combined gas and steam

plant

• Gas turbine

• Diesel engine

• Pumping-up power plant

• Old simple steam turbine

plant

Characteri-

stics

• Operated at full load as long as

possible during the year

• High efficiency and lowest cost

• Poor load change capability

(take more time to respond load

demand)

• Operated on weekdays and

shutdown at night and on the

weekend

• The efficiency is higher than

that of peak-load plants, but

lower than that of base-load

plants

• Low capital investment, but

highest operating costs

• Ease in startup

• Used as standby or

emergency also

Type of Plants

Page 24: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 24 / 35Thermal Fluid Techniques in Plants

The Life of Hot Section Parts of gas Turbines

Operational parameters Facts

1. Type of fuel

• Natural gas is the base fuel against which all other fuels are measured.

• Diesel fuel reduces life by about 25%.

• Residual fuel reduces life by as much as 65%

2. Type of service• Peaking service reduces life by as much as 20% as compared with base load

operation.

3. Number of starts • Each start is equivalent to about 50 hours of operation.

4. Number of full-load trips• This is very hard on the turbine and is nearly equivalent to about 400~500 hours of

operation.

5. Type of material

• The properties of the nozzle and buckets are a very important factor.

• The single crystal materials have done much to help the life of turbine blades in the

higher temperatures.

• If more than about 8% of the air is used in cooling then the advantage of going to

higher temperature is lost.

6. Coatings

• The use of coatings in both compressor and turbines has extended the life of them.

• TBCs are commonly used on turbine blades.

• Coatings are also being used on combustor liners.

• The coatings of compressor are now more common, especially in high pressure

ratio machines.

• Compressor coatings also reduce profile loss and can have a very rapid payback.

Page 25: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 25 / 35Thermal Fluid Techniques in Plants

Electricity must be produced when the consumers

need it because it cannot be stored in a practical

manner on a large scale.

Electricity can be stored indirectly through water,

but it is not economical.

Actually only storage of water pumped into lakes

during off-peak time to be used during peak hours

has been used practically.

Demand and Supply

Excellent start-up and

shut down capabilities

are essential for this

Large fluctuation in demand during the day requires quick response from power plants to meet the balance

between demand and supply.

Gas turbine combined cycle power plants have good characteristics in terms of fast start-up and shut-down.

In addition, they have low investment costs, short construction times compared to large coal-fired power

stations and nuclear plants.

The other advantages of combined cycles are high efficiency and low emission.

Page 26: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 26 / 35Thermal Fluid Techniques in Plants

Power Plant Costs - Fossil

Capital costsO&M costs

Variable costs Fixed costs

• Steam generator

- coal receipt and preparation system

- environmental protection system

- air and flue gas handing system,

including FD and ID fans

• Turbine and generator

• BOPs

• Building

• Instrumentation and controls

• Site preparation

• Construction

• Taxes

• Engineering and project management

• Startup

• Performance and efficiency test

• Fuel costs

• Auxiliary power requirement

for equipment such as fans,

pumps, pulverizers, etc.

• Water treatment, including

chemicals

• Ash and by-product effluent

handling

• Annual maintenance

• Spare parts

• Plant operators

• Plant management

• Maintenance personnel

• Overhead costs

Page 27: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 27 / 35Thermal Fluid Techniques in Plants

매립지가스(LFG; Land Fill Gas)

• 쓰레기매립지폐기물가운데 유기물질이혐기성분해과정에서발생하는가스• 주성분: 메탄(CH4; 40∼60%), 이산화탄소(CO2; 30∼50%)

바이오가스(Biogas)

• 혐기적소화작용에의해바이오매스에서 생성되는메탄과이산화탄소의혼합기체로부터분리된메탄(바이오메탄가스)

• 그밖에퇴비가스, 습지가스, 폐기물등으로부터자연적으로생성되는것과제조된 가스도있음

바이오디젤• 자연에존재하는각종기름(fat, lipid) 성분을물리적화학적처리과정(에스테르공정)을 거쳐석유계액체연료로변환시킨

바이오매스(Biomass)

• 바이오매스란원래 "생물량"이라는생태학적용어였으나현재는 에너지화할수있는생물체량이란의미로사용• 녹색식물은태양에너지를받아물과 탄산가스를이용하여전분, 당또는섬유소를합성하고 이를식물에저장함

바이오에너지• 동식물또는파생 자원(바이오매스)을직접 또는생화학적, 물리적변환과정을통해액체, 기체, 고체연료나전기또는열

에너지형태로이용하는것• 연료용알콜, 메탄가스, 매립지가스, 바이오디젤등을생산하여에너지원으로활용하는 기술로서차량용/난방용연료및

발전분야등에이용가능

바이오에탄올• 생물공정에의해생산되는에탄올 (에탄올은화학적으로합성하여생산)

• 술제조공정과마찬가지로당을 생성하는작물로부터추출한당을효모나박테리아로발효시켜생산• 옥수수같이전분이원료인 경우산이나아밀라제로불리는효소로먼저전분을포도당으로 전환시킨후발효

부생가스• 석탄에열을가했을때부산물로 생성되는가스• 주로제철공장, 석유화학공장등의공정에서많이생성

신재생에너지 관련 용어

Page 28: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 28 / 35Thermal Fluid Techniques in Plants

구분 석유 천연가스 석탄 원자력 신재생 합계

소비량 162.1 99.1 100.4 26.5 32.7 420.8

소비비중 38.5 23.6 23.9 6.2 7.8 100

(단위: QBtu, %)

기준년도: 2003년

자료) 미국에너지정보국, International Energy Outlook, 2006

1 QBtu = 25.2Mtoe

1 QBtu = 1 Quadrillion Btu {Quadrillion = 1015

(미국) or 1024 (유럽)}

toe = Tonnage of Oil Equivalent (1석유환산톤 = 석유 1톤을 연소시킬 때 발생하는 에너지)

석유 (38.5%)

천연가스 (23.6%)

석탄(23.9%)

원자력 (6.2%)

신재생 (7.8%)

세계 에너지원별 소비

Page 29: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 29 / 35Thermal Fluid Techniques in Plants

국내 발전시장 환경

1. 신재생에너지

발전소 부지 (1,000 MW 발전 기준)

원자력 여의도 면적의 1/6

태양광 여의도 면적의 12배 (= 축구장 15,000개 = 원자력의 72배)

풍력

여의도 면적의 91배 (3 MW/unit 설치 기준)

• 풍력터빈 블레이드 사이 간섭 회피 위한 이격거리 확보

• 해상풍력은 건설비 증가 및 어업권 피해보상 필요

• 국내 풍력자원 빈약 (풍속 8 m/s 이상이라야 경제성 확보)

• Cut-in speed: 6 m/s, cut-out speed: 25 m/s

기타사항

• 제주도 ‘carbon free island 2030’ – 2030년까지100% 신재생에너지로 모든전력대체

• 제주도는 풍력자원 보유

결론

• 국내의경우활용가능자원이태양광과 풍력뿐임

• 국내의경우설치공간 부족으로신재생에너지 비중확대거의불가능

• 결국한국은전통적인 대형집단발전에의지할 수밖에없음 맹동산 정상 풍력발전단지

Page 30: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 30 / 35Thermal Fluid Techniques in Plants

국내 발전시장 환경

2. 새로운 형태의 에너지

국제핵융합실험로(ITER) 프로젝트

• 초기미국러시아EU일본 추진

• 2003년 한국중국 합류

• 2005년 인도합류

한국의국가핵융합연구소(NFRI) 핵융합연구

• 목표: 2040년대 상업용 전기생산

• 1995년 초전도핵융합장치 KSTAR 개발착수

• 2007년 완공

• 2008년 플라즈마 개발성공

• 핵융합발전은 이상적이지만 실현하기 위해얼마나많은시간이소요될 지예측하기어려움. 이는 1억도의플라즈마를 만들기도 어렵지만 이를가두어서지속적인 연쇄반응을유도하기 어렵기때문임. 현재 몇분동안만작동가능

인공광합성

• 식물광합성 원리로 무한청정한태양광에너지를 이용해아미노산및플라스틱 같은화학제품 생산

• 다른화석연료필요 없이태양광으로 에탄올이나 다른화학물질을 얻는 기술

• 20~30년 안에상용화 목표

Page 31: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 31 / 35Thermal Fluid Techniques in Plants

국내 발전시장 환경

3. 파리 기후변화협약 (2015년)

한국 2030년온실가스감축목표를배출전망치대비 37% 감축약속

국내석탄소비의 60%가 발전에사용

• 석탄화력발전 위축 예상

• 석탄화력발전은 국내발전설비 30%, 전력생산 40% 담당

• 석탄화력발전에 CCS(Carbon Capture and Storage) 추가시발전효율 9% 저감

- 석탄화력발전 경쟁력상실

- 전기요금인상요인발생 국가산업경쟁력 저하

• 석탄화력설비를 LNG설비로 대체할경우연간 10조원정도추가비용 발생예상

LNG발전기회증대예상

• LNG발전은 석탄화력발전 대비 1/2의 온실가스 배출

IGCC발전기회증대예상

• 석탄화력발전 대비 온실가스 배출 20% 저감

• 전세계적으로 IGCC시장 급성장전망

• 2017년 300 MW급 IGCC 준공예정 (서부발전)

Page 32: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 32 / 35Thermal Fluid Techniques in Plants

국내 발전시장 환경

4. CCS

2050년 지구전체의온실가스 총감축량 430억톤의약 19%인 82억톤을 CCS 기술이감당전망 – 국제에너지기구(IEA)

2015년 전세계적으로 40여개수준인 CCS 설비는 2020년을 기점으로폭발적으로 신장전망

연평균 84조원 규모의 CCS 시장형성전망 – IEA

이산화탄소 거래가격이 상승하여 CCS 기술을적용한 포집비용과비슷해져 2020년 이후 CCS 기술 상용화및보급가속화전망

Page 33: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 33 / 35Thermal Fluid Techniques in Plants

GEs Business and Revenue

Page 34: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 34 / 35Thermal Fluid Techniques in Plants

KORUS-AQ의 미국 측 운영위원인 김세웅 미국 어바인 캘리포니아대 교수는 “서해 화력발전소 지역의 아황산가스 등 대기오염물질의 농도가1990년대 후반 미국 남부 화력발전소에서 관측된 수준만큼 높아 놀랐다”고 말했다. 더 큰 문제는 화력발전소 지역에서 발생한 대기오염물질이봄철 북서풍에 실려 한국 전체로 퍼져나간다는 점. 루이자 에먼스 미국 국립대기연구센터(NCAR) 대기성분 원격탐사 및 예측단장은 서해 화력발전소 5곳에서 발생한 초미세먼지가 동쪽으로 퍼지면서 남한 전체로 뻗어나간 사실을 확인했다. 대기오염물질이 다른 성분과 광화학 반응을 일으키면 2차 초미세먼지를 만들 가능성이 크다. 한국 상공의 초미세먼지 성분은 유기물질이 약 50%로 가장 많았고, 고체 상태인 질소산화물(NO3)과 SO4는 각각 20% 수준이었다. 유기물질의대부분은 자동차 매연과 유기용제 사용 등에서 주로 발생하는 휘발성유기물질(VOCs)의 산화물이다. 단일 성분으로 가장 많은 비중을 차지한NO3 역시 주된 배출원은 자동차 배기가스다. 잭 딥 미국 햄프셔대 교수는 “서울 초미세먼지의 성분은 부산 등 다른 도시의 초미세먼지보다 NO3가 차지하는 비중이 더 높게 나타났다. 이는서울에 밀집돼 있는 교통량 때문인 것으로 추정된다”고 말했다.

석탄화력발전 초미세먼지 배출 주범?

‘한미 공동 대기 질 연구(KORUS-AQ)’ 연구진이 2016년 5월17일 0시부터 24시간 동안 초미세먼지 등 대기오염 물질의이동 경로를 추적했다. 서해 화력발전소 지역에서 발생한 초미세먼지는 전남 일부 지역을 제외한 전국으로 퍼져나갔다(왼쪽). 서울에서 발생한 초미세먼지는 충북 일대와 강원, 경북으로 퍼져나갔다. 국립환경과학원과 미국항공우주국(NASA) 관계자로 구성된‘한미 공동 대기 질 연구(KORUS-AQ)’ 연구진은 5월 2일∼6월 12일 NASA의 연구용 항공기 ‘DC-8’을 포함한 항공기 3대와 인공위성 5기 등을 총동원해 한국 대기 질을 처음으로조사했다. 동아일보는 미국 측 연구진으로부터 자료를 입수했다. 초미세먼지는 특히 서해안에 위치한 화력발전소 인근에서대거 발생했다. 연구진이 5월 21일과 6월 5일 각각 인천∼태안, 당진∼서천 인근 앞바다를 날며 대기 질을 관측하자 초미세먼지의 주된 성분 중 하나인 고체 상태의 황산화물(SO4)을 만드는 아황산가스(SO2)의 수치가 10∼60ppb(ppb는1000분의 1ppm) 수준으로 치솟았다. 같은 시각 서울은1∼3ppb 수준에 불과했다.

Page 35: 발전설비열유체기술€¦ ·  · 2018-01-13Thermal Fluid Techniques in Plants 1. Introduction to Power Plants 3 / 35 2 Energy Conversions 11 1 Classification of Power Plants

1. Introduction to Power Plants 35 / 35Thermal Fluid Techniques in Plants

질의 및 응답

작성자: 이 병 은 (공학박사)작성일: 2016.02.15 (Ver.1)연락처: [email protected]

Mobile: 010-3122-2262저서: 실무 발전설비 열역학/증기터빈 열유체기술