566
Τεχνολογία Συστημάτων Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος

Σημειώσεις ΤΣΥΠ

Embed Size (px)

DESCRIPTION

Σημειώσεις του μαθήματος Τεχνολογία Συστημάτων Υδατικών Πόρων του 9ου εξαμήνου της σχολής Πολιτικών Μηχανικών ΕΜΠ.

Citation preview

  • 4 :

    []:,,

    []:()

    []:,/

    []:,/,,

    : (!):2.

  • 1::,,,,.(:Rippl &Sequent Peak).

    2::,,

    3::(Markov,Fiering ).().:

    4:/.(/)

  • 5:(.).6:

    7:/.:

    8::/Kuhn Tucker

  • 9: 10: 11::

    12:/

    13:/

  • ,.(2007).,. (ebook)

    Loucks,D.P.,E.vanBeek,J.R.Stedinger,J.P.M.Dijkman,WaterResources Systems Planning andManagement,AnIntroduction to Methods,Models andApplications,StudiesandReports in Hydrology,UNESCOPublishing,680pages,Paris,2005(ebook)

    Mays,L.W.,andY.K.Tung,Hydrosystems Engineering andManagement,McGrawHill,New York,1992.

    Grigg,N.S.,WaterResources Management,McGrawHill,NewYork,1996.

  • https://mycourses.ntua.gr/

    online mycourses (,/)

    Email:[email protected]

  • 2012

  • - (DEDUCTION INDUCTION)

    ( , 2, 23)

    Deduction

    Induction

    (, )

    (, , )

    Deduction

    Induction

    Deduction

    Induction

  • Xt=k*xt-1*(1-xt-1) Xt :

    X1o=0.660001 X2o=0.66

    t

    1t, X2t

    1t-X2t

  • - -

  • :

    (, )

    , ,

    .

  • ( < )

  • (0.5)

    (0.75)

    (0.25)

    (0.75-0.25)

    1.5*(0.75-0.25)

    3* (0.75-0.25)

    > 3* (0.75-0.25)

  • -

    n

    Xx

    n

    ii

    1

    sX x

    nxi

    i

    n

    ( )2

    1

    1

    sx2

    sx

    x

    xi

    i

    nX x

    n( )

    ( )3 1

    3

    x

    ii

    nX x

    n( )

    ( )4 1

    4

    Cn

    n nsx

    xx

    ( )

    ( ) /( ) ( ) ( )

    3 2

    2 3 2 1 2

    C nn n nk

    x

    xx

    3 4

    21 2 3*

    ( ) * ( ) * ( ) *

    ( )

    ( )

    },...,,{max.. 211 nn

    iXXXTM

    E T X X Xi

    n

    n. . min{ , ,..., } 1 1 2

    1..n : n :

  • 010

    20

    30

    40

    5-10 10-15 15-20 20-25 25-30 30-35 (m3/s)

    (

    %

    )

    0

    20

    40

    60

    80

    100

    5 10 15 20 25 30 (m3/s)

    (

    %

    )

    0

    10

    20

    30

    40

    0 5 10 15 20 25 30 ()

    (

    m

    3

    /

    s

    )

    0

    2

    4

    6

    8

    10

    12

    5-10 10-15 15-20 20-25 25-30 30-35

    (m3/s)

  • 1 < 2 1 = 2 1 = 2 = 0 1 = 2

    1 = 2 1 < 2 1 = 2 = 0 1 = 2

    1 = 2 1 = 2 1 = - 2 1 = 2

    >0

  • 1)()()(0)()(

    XXX

    X

    FxFFxXPxF

    dxxdFXf

    xFxXPF

    XX

    XX

    )()(

    )(1)(1

    H x

    H x

    FFT 1

    11

    1

    x

  • NnxF xX )(

    : nx: o

    0

    200

    400

    600

    800

    1000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

    (

    m

    m

    )

    0

    200

    400

    600

    800

    1000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

    (

    m

    m

    )

    Fx(800)=18/25=0.72=72%F1(800)=7/25=0.28=28%

    :

    Fx(1000)=25/25=1=100%F1(1000)=0/25=0=0%

    :

    1)( N

    nxF xX

  • 020

    40

    60

    80

    100

    5 10 15 20 25 30 35

    (m3/s)

    (

    %

    )

    0

    10

    20

    30

    40

    0 20 40 60 80 100 (%)

    (

    m

    3

    /

    s

    )

    0

    10

    20

    30

    40

    0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45

    0

    20

    40

    60

    80

    100

    5 10 15 20 25 30 35 40 45

  • 010

    20

    30

    40

    0 20 40 60 80 100 (%)

    (

    m

    3

    /

    s

    )

  • 16

    Weibull Normal LogNormal Galton Exponential GammaPearsonIII LogPearsonIII Gumbel Max EV2-Max Gumbel Min WeibullGEV Max GEV Min Pareto GEV-Max (k spec.) GEV-Min (k spec.)

    (%) - : 9

    9

    ,

    9

    5

    %

    9

    9

    ,

    9

    %

    9

    9

    ,

    8

    %

    9

    9

    ,

    5

    %

    9

    9

    %

    9

    8

    %

    9

    5

    %

    9

    0

    %

    8

    0

    %

    7

    0

    %

    6

    0

    %

    5

    0

    %

    4

    0

    %

    3

    0

    %

    2

    0

    %

    1

    0

    %

    5

    %

    2

    %

    1

    %

    ,

    5

    %

    ,

    2

    %

    ,

    1

    %

    ,

    0

    5

    %

    1.200

    1.150

    1.100

    1.050

    1.000

    950

    900

    850

    800

    750

    700

    650

    600

    550

    500

    450

    400

    350

    300

    250

    200

    150

    100

    50

    0

    (Gauss)K Gumbel

  • 010

    20

    30

    40

    -4 -3 -2 -1 0 1 2 3 4 Gauss

    (

    m

    3

    /

    s

    )

    (%)

    (%)

    ()

    0.2% 2.3% 16% 50% 84% 97.7% 99.8%

    99.8% 97.7% 84% 50% 16% 2.3% 0.2%

    1.002 1.02 1.2 2 6.2 43.5 500

  • i z=(Xi-)/ =0, =1

    (0,1)z=1, F=0,8413

    i=15

    z=(15-10)/5=1

    z=1

    =10, =5

    F=84,1%

    =1(1-0,8413)=6

    i = 1.5

    F=1-(1/1.5)=0,333

    z=-0.43

    (0,1) F=1-0.333 z=0.43 F=0.333 z=-0.43

    F=33.3%

    (Xi-10)/5=-0.43 Xi=7.8

  • 020

    40

    60

    80

    100

    -3 -2 -1 0 1 2 3

    F(x) (%) -3 3

    0

    1

    2

    3

    4

    -3 -2 -1 0 1 2

    F(x) (%)

    68.3%

    95.4%

    99.7%

  • :

    200 hm3 : 10 hm3

    : 20 hm3 :

    100 hm3 : 30 hm3

    : 10 hm3 :

    110 hm3 : 40 hm3

    1000 .

    110

    94

    85

    65

    130

    ...

    130

    100

    30

    . 105

    90

    80

    80

    110

    ...

    120

    110

    40

    1

    2

    3

    4

    5

    ...

    1000

    200

    190

    210

    170

    160

    ...

    220

    200

    10

    +++->=0

    20+10+110+105-200=+55

    20+10+94+90-190=+24

    20+10+85+80-210=-15

    20+10+65+80-170=+5

    20+10+130+110-150=+120

    ............................................

    20+10+110+110-220=+30

    .........

    : 180

    : 180/1000=18%

  • 1 101 201 301 401 501 601 701 801 9010

    100

    200

    300

    400

    500

    1 101 201 301 401 501 601 701 801 9010

    100

    200

    300

    400

    500

    1 101 201 301 401 501 601 701 801 9010

    100

    200

    300

    400

    500

    m (hm3) s (hm3)Q 100 30Q 100 40 200 10 30

    m (hm3) s (hm3) P (%)(QA,QB)=1 Q+Q 200 70 29(QA,QB)=0 Q+Q 200 50 23(QA,QB)=-1 Q+Q 200 10 7

  • R n

    : F=1-F1=(1-1/)

    n : (1-1/)n

    n (): R=1-(1-1/)n

    =10 n=10

    R=1-(1-1/10)10=0.65=65%

  • xdxexFx x

    2)(

    21

    21)(

    2)(*5.0

    21)(

    x

    exf

    H

    T

    T

    SzxxSzxx

    2/1min

    2/1max

    )()()()(

    TS

    Z1+/2 %

    ST xT

    N

    2)(1

    2T )/11()( TZTK

  • H

    2)ln(

    21

    *21)(

    x

    YX ex

    xf2

    )ln(21

    0

    *21)(

    s

    Y

    x

    X esxF

    x

    x

    Sxxz

    ln

    lnln xx xzSx lnlnln xx xzSex lnln

    ( )

    22ln /1ln( xSS xx 2/ln

    2lnln xx Sxx

    Z

  • GUMBEL

    )(

    )(cxae

    X exF

    ( )

    )()()(cxaecxa

    X aexf

    xSa /282,1xSxc 45,0

    aTc

    aFcTx x ))/11ln(ln()lnln()(

    xSTkxTx *)()(

    ))/11ln(ln(*78.045.0)( TTk

    22,1 )(*1.1)(*1396.11)()( TkTkn

    STxTx x

  • GUMBEL

    )(

    1)(cxae

    X exF

    ( )

    )()()(cxaecxa

    X aexf

    xSa /282,1xSxc 45,0

    aTc

    aFcTx x ))/1ln(ln()1ln(ln()(

  • WEIBULL

    kcxX exF

    )/(1)(

    ( )

    kcxkX ec

    xckxf )/(1)(*)(

    )11(k

    c

    22

    2

    )11(

    )21(1

    k

    k

    kkx TcFcTx /1/1 )/1ln(*)1ln(*)(

    , c, Weibull(x)

  • LOG PEARSON III

    )(ln1)ln(*)(

    )( cxX ecxxxf

    dsecsx

    xFx

    e

    csX

    c )(ln1)(ln*)()(

    lnx

    x

    x

    Sxxz

    ln

    lnln xx xzSx lnlnln xx xzSex lnln

  • : 250*106 m3

    : 50*106 m3

    : m= 2 m3/s, s=1 m3/s

    : m= 8 m3/s, s=3 m3/s

    :(1) (2) 50% (3)

    786 m ,

    (4)

    (5) .

    787 m 300*106 m3 25 km2

    50*106 m3

  • : 250*106 m3

    : 50*106 m3

    : 63*106 m3

    : 252*106 m3

    A : 300+252=552 *106 m3

    A B: 50+63=113 *106 m3

    :(1) =552-50=502*106 m3(2) 50% =502-250*0.5=377*106 m3(3) 786 786 m : 300*106 m3-(787-786) m* 25 km2=275*106 m3(4) (3) (5) 125*106 m3 275*106m3 377-275=102*106 m3 125-102=23 *106 m3 =275*106 m3 =113-23=90*106 m3

  • =1.1

    : 250*106 m3

    : 50*106 m3

    :

    21*106 m3

    :

    126*106 m3

    A : 300+126=426 *106 m3

    A B: 50+21=71 *106 m3

    :(1) =426-50=376*106 m3(2) 50% =376-250*0.5=251*106 m3< 275*106 m3 =275*106 m3 =71-(275-251)*106 m3=47 *106 m3(3) 786 786 m : 300*106 m3-(787-786) m* 25 km2 =275*106m3(4) (3) (5) 125*106 m3 47 *106 m3 =275*106 m3 =0

  • 0 =1.04

    : 250*106 m3

    : 50*106 m3

    :

    7.5*106 m3

    :

    0*106 m3

    A : 300*106 m3 A B: 50+7.5=57.5 *106 m3

    :(1) =300-50=250*106 m3(2) 50% =57.5-57.5=0*106 m3 =250-(250*0.5-57.5)*106 m3=182.5 *106 m3(3) 786 786 m : 300*106 m3-(787-786) m* 25 km2 =275*106m3(4) (3) (5) =182.5*106 m3 =0

  • , , .

    :() (),

    ()

    () ( )

    , .

    (flash floods) . . .

    -

  • . , .

    :

    Q = 0.278 * C * i * A :

    Q (m3/sec): C : i (mm/hr): A (km2) :

    , .

  • : km2 : c

    =100

    : t (hr)

    =10

    1.

    3.

    2.

    1**

    b

    b

    taitah

    1

    10

    1 10 100

    T=2

    T=5

    T=10T=20T=50T=100T=200

    i=a*tb-1

    , t hr

    ,

    i

    m

    m

    /

    h

    r

    4. :

    ic (mm/hr)=*tb-1

    5.

    Q (m3/s)=0.278*c* ic*A

  • ( , )

    i1 i2 i3i1 i2 i3

    0

    100

    200

    300

    0 1 2 3 4 5 6

    (

    m

    3

    /

    s

    )

    0

    100

    200

    300

    0 1 2 3 4 5 6

    (

    m

    3

    /

    s

    )

    1

    10

    1 10 100

    T=2

    T=5

    T=10T=20T=50T=100T=200

    =100 =10

    i1 i2 i3i1 i2 i3

    0

    100

    200

    300

    400

    0 1 2 3 4 5 6 7 8

    (

    m

    3

    /

    s

    )

    0

    100

    200

    300

    400

    0 1 2 3 4 5 6 7 8

    (

    m

    3

    /

    s

    )

  • 1

    10

    100

    1000

    10000

    100000

    1 10 100 1000 10000 100000 1000000 10000000

    (min)

    (

    m

    m

    )

    Gouadeloupe26/11/1970

    38 mm

    Mongolia3/7/1975401 mm

    o Cherrapunji, India

    1-31/7/18619300 mm

    o Cherrapunji, India

    8/1860-7/186126461 mm

    Reunion

    6-7/1/19661825 mm

  • 05

    10

    15

    20

    1

    1

    0

    m

    i

    n

    r

    a

    i

    n

    f

    a

    l

    l

    (

    m

    m

    )

    21/10/1994 10:00

    21/10/1994 19:30

    21-22/10/1994

    19:30-20:30 67.7 mm

    : 17.5 mm : 29.9 mm : 82.3 mm

    21/10/1994 16:00

    21/10/1994 22:00

    22/10/1994 04:00

  • 110

    100

    1000

    0 1 10 100

    Rainfall duration (hr)

    M

    a

    x

    i

    m

    u

    m

    i

    n

    t

    e

    n

    s

    i

    t

    y

    (

    m

    m

    /

    h

    r

    T=10 YEARS

    T=50 YEARS

    T=500 YEARS

    max 10 min 17.5 mm

    max 20 min 29.9 mm

    max 30 min 36.3 mm

    max 1 h 67.7 mm

    max 2 h82.3 mm

    max 3 h 93.7 mm

    max 6 h 100.0 mm

    max 12 h 162.1 mm

    max 24 h 167.1 mm

    21-22/10/1994

  • 110

    100

    1000

    0.1 1.0 10.0 100.0

    (hr)

    T = 50

    T = 10

    21/10/1994

    20/11/1993

    T = 2

    13/1/1997

    11/1993, 10/1994 1/1997

  • Weibull Gumbel Max

    (%) - : Gumbel (Max)

    9

    9

    ,

    9

    %

    9

    9

    ,

    5

    %

    9

    8

    %

    9

    5

    %

    9

    0

    %

    8

    0

    %

    7

    0

    %

    6

    0

    %

    5

    0

    %

    4

    0

    %

    3

    0

    %

    2

    0

    %

    1

    0

    %

    5

    %

    2

    %

    1

    %

    ,

    5

    %

    ,

    2

    %

    ,

    1

    %

    ,

    0

    5

    %

    40

    38

    36

    34

    32

    30

    28

    26

    24

    22

    20

    18

    16

    14

    12

    10

    8

    6

    4

    2

    0

    Weibull Gumbel Max

    (%) - : Gumbel (Max)

    9

    9

    ,

    9

    %

    9

    9

    ,

    5

    %

    9

    8

    %

    9

    5

    %

    9

    0

    %

    8

    0

    %

    7

    0

    %

    6

    0

    %

    5

    0

    %

    4

    0

    %

    3

    0

    %

    2

    0

    %

    1

    0

    %

    5

    %

    2

    %

    1

    %

    ,

    5

    %

    ,

    2

    %

    ,

    1

    %

    ,

    0

    5

    %

    50

    48

    46

    44

    42

    40

    38

    36

    34

    32

    30

    28

    26

    24

    22

    20

    18

    16

    14

    12

    10

    8

    6

    4

    2

    0

    Weibull Gumbel Max

    (%) - : Gumbel (Max)

    9

    9

    ,

    9

    %

    9

    9

    ,

    5

    %

    9

    8

    %

    9

    5

    %

    9

    0

    %

    8

    0

    %

    7

    0

    %

    6

    0

    %

    5

    0

    %

    4

    0

    %

    3

    0

    %

    2

    0

    %

    1

    0

    %

    5

    %

    2

    %

    1

    %

    ,

    5

    %

    ,

    2

    %

    ,

    1

    %

    ,

    0

    5

    %

    90

    85

    80

    75

    70

    65

    60

    55

    50

    45

    40

    35

    30

    25

    20

    15

    10

    5

    0

    Weibull Gumbel Max

    (%) - : Gumbel (Max)

    9

    9

    ,

    9

    %

    9

    9

    ,

    5

    %

    9

    8

    %

    9

    5

    %

    9

    0

    %

    8

    0

    %

    7

    0

    %

    6

    0

    %

    5

    0

    %

    4

    0

    %

    3

    0

    %

    2

    0

    %

    1

    0

    %

    5

    %

    2

    %

    1

    %

    ,

    5

    %

    ,

    2

    %

    ,

    1

    %

    ,

    0

    5

    %

    105

    100

    95

    90

    85

    80

    75

    70

    65

    60

    55

    50

    45

    40

    35

    30

    25

    20

    15

    10

    5

    0

    Weibull Gumbel Max

    (%) - : Gumbel (Max)

    9

    9

    ,

    9

    %

    9

    9

    ,

    5

    %

    9

    8

    %

    9

    5

    %

    9

    0

    %

    8

    0

    %

    7

    0

    %

    6

    0

    %

    5

    0

    %

    4

    0

    %

    3

    0

    %

    2

    0

    %

    1

    0

    %

    5

    %

    2

    %

    1

    %

    ,

    5

    %

    ,

    2

    %

    ,

    1

    %

    ,

    0

    5

    %

    14013513012512011511010510095908580757065605550454035302520151050

    Weibull Gumbel Max

    (%) - : Gumbel (Max)

    9

    9

    ,

    9

    %

    9

    9

    ,

    5

    %

    9

    8

    %

    9

    5

    %

    9

    0

    %

    8

    0

    %

    7

    0

    %

    6

    0

    %

    5

    0

    %

    4

    0

    %

    3

    0

    %

    2

    0

    %

    1

    0

    %

    5

    %

    2

    %

    1

    %

    ,

    5

    %

    ,

    2

    %

    ,

    1

    %

    ,

    0

    5

    %

    15014514013513012512011511010510095908580757065605550454035302520151050

    1 h 2 h 6 h

    12 h 24 h 48 h

  • This image cannot currently be displayed.

    tbaitaitbahtah

    b

    b

    ln*)1(lnln*ln*lnln*

    1

    )ln(*ln*lnln*)(* dtbTcahTdtah cb

    )ln(*ln*lnln*)(* 11 dtbTcaiTdtaicb

    ,

    h (mm)

    t (hr)

    T ()

    20

    1

    2

    30

    1

    5

    60

    1

    50

    40

    1

    10

    80

    1

    100

    30

    2

    2

    40

    2

    5

    70

    2

    50

    50

    2

    10

    90

    2

    100

    80

    24

    2

    100

    24

    5

    120

    24

    50

    140

    24

    10

    170

    24

    100

    ........

    ........

    ........

  • V10 mm

    10 mm/h MY 1h

    V

    5 mm/h MY 2h

    V

    3.33 mm/h MY 3h

    D (hr)

    D+1 (hr)

    D+2 (hr)

    V=10mm* A

  • 1

    tp hrQp m3/stb hrA km2

    m

    3

    /

    s

    , hr

    tp

    Qp

    tb

    tb =2.52*tp10 mm*A km2=0.5*tb hr*Qp m3/sQp m3/s =0.01 m *A*106 m2/(0.5*2.52*tp*3600 s) Qp=2.2*A/tp

    tb =7 hr A =100 km2

    V=10 mm*100 km2= 1 *106 m3

    V=0.5*tb hr*Qp m3/s Qp m3/s = 1 *106 m3 /(0.5*7*3600 s) Qp= 79.4 m3/s

  • kt)(exp)f(fff c0c

    f

    f

    0

    c

  • ,

    i

    (

    m

    m

    /

    h

    r

    )

    (hr)

    ,

    Q

    (

    m

    3

    /

    s

    )

    (hr)

    V=Q*t

    V=A*(i-)*tA:

  • 0

    100

    200

    300

    0 1 2 3 4 5 6

    (

    m

    3

    /

    s

    )

    0

    100

    200

    300

    0 1 2 3 4 5 6

    (

    m

    3

    /

    s

    )

    0

    100

    200

    300

    0 1 2 3 4 5 6

    (

    m

    3

    /

    s

    )

    0

    100

    200

    300

    400

    500

    600

    0 1 2 3 4 5 6 7 8

    (

    m

    3

    /

    s

    )

    0

    100

    200

    300

    0 1 2 3 4 5 6

    (

    m

    3

    /

    s

    )

    U*i3/10

    Qt=Ut*i1/10+Ut-1*i2/10+Ut-2*i3/10

    U*i1/10

    U*i2/10

    Q1=U1*i1/10+U0*i2/10Q2=U2*i1/10+U1*i2/10+U0*i3/10Q3=U3*i1/10+U2*i2/10+U1*i3/10Q4=U4*i1/10+U3*i2/10+U2*i3/10Q5=U5*i1/10+U4*i2/10+U3*i3/10Q6=U6*i1/10+U5*i2/10+U4*i3/10Q7=U6*i2/10+U5*i3/10Q8=U6*i3/10

    i1 i2 i3

    Q0=U0*i1/10

    0

    100

    200

    300

    0 1 2 3 4 5 6

    (

    m

    3

    /

    s

    )

    0

    100

    200

    300

    0 1 2 3 4 5 6

    (

    m

    3

    /

    s

    )

    0

    100

    200

    300

    0 1 2 3 4 5 6

    (

    m

    3

    /

    s

    )

    0

    100

    200

    300

    400

    500

    600

    0 1 2 3 4 5 6 7 8

    (

    m

    3

    /

    s

    )

    0

    100

    200

    300

    0 1 2 3 4 5 6

    (

    m

    3

    /

    s

    )

    U*i3/10

    Qt=Ut*i1/10+Ut-1*i2/10+Ut-2*i3/10

    U*i1/10

    U*i2/10

    Q1=U1*i1/10+U0*i2/10Q2=U2*i1/10+U1*i2/10+U0*i3/10Q3=U3*i1/10+U2*i2/10+U1*i3/10Q4=U4*i1/10+U3*i2/10+U2*i3/10Q5=U5*i1/10+U4*i2/10+U3*i3/10Q6=U6*i1/10+U5*i2/10+U4*i3/10Q7=U6*i2/10+U5*i3/10Q8=U6*i3/10

    i1 i2 i3

    Q0=U0*i1/10

    -

  • 1

    (,)

    (2000/60)://(riverbasins)

    ()

    (GameTheory):(nash equilibrium)(pareto optimal)

  • 2 ,

    ,

    (

    ) (z=(Xi-

    )/) :R

    n

    )()( xXPxFX

    dxxdFXf

    xFxXPF

    XX

    XX

    )()(

    )(1)(1

    FFT 1

    11

    1

    0

    200

    400

    600

    800

    1000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

    (

    m

    m

    )

    NnxF xX )(

    z=1

  • ;

    ();

  • : ,,!

    ,

    Rt

    KQt

    St

  • .

    ().

    .

    ,()

  • ;

    ()

    / ()

  • :(VN)

    , .().

    .

  • :,(V)

    () . .

    () , .

  • :(V)

    .

    . (free board) .

  • :,(),

    :,,,

  • :Rippl

    (massdiagramanalysis)

    :

    ,.

    : ==

  • ( ):

    tt dIC 0

    t

    iit tIC

    1,

  • =(R(t,s))

    : Qt == I

    t: s:

  • Rt,s : ().

  • 1(Rippl)

    Inflows SUM[I] R SUM[R]SUM(I)SUM(R)

    7 7 4 4 33 10 4 8 25 15 4 12 31 16 4 16 02 18 4 20 25 23 4 24 16 29 4 28 13 32 4 32 04 36 4 36 0

    MaxSur 3MaxDef 2Storage: 5

    0

    5

    10

    15

    20

    25

    30

    35

    40

    1 2 3 4 5 6 7 8 9 10

    S[I]

    S[R]

  • 2(Rippl)I R RI SUM(RI)**

    7 4 3 03 4 1 15 4 1 01 4 3 32 4 2 55 4 1 46 4 2 23 4 1 34 4 0 3

    0

    1

    2

    3

    4

    5

    6

    1 2 3 4 5 6 7 8 9 10

    S(RI)**

    S(RI)**

    : -

  • (Rippl)(.1),.

    .

    :()/() ()()

    H

    TT

    t

    dtI

    dtQa

    0

    0

    /

  • :Sequent Peak

    :(t):tR(t):(release) tQ(t):t

    (0)=0:(t)=R(t) Q(t) +(t1) ((t)>0,0)

    (t)

  • :

    :[1,3,3, 5,8,6,7,2,1]:3.5()

    :()10;

    (0)=0

  • :[1,3,3, 5,8,6,7,2,1]a) ;b) 7,5;

    (b)(a);

    70%(: FF1)?

  • ()

    (F1):p=m/(n+1)m: n:

    ():8 1:1/(9+1)=1/10=0.1=10%7 26 35 43 53 62 71 81 9:9/(9+1)=9/10=0.9 =90%

    :F=1 F1 ;

    0

    200

    400

    600

    800

    1000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

    (

    m

    m

    )

    ;

  • (storageyield)

    (.SequentPeak)

    () Sequent

    Peak

    :[1,3,3, 5,8,6,7,2,1]

    ()K=10;

  • (1) t,;(!)

    !!()

    R(t,s), ().

  • (2) Rt,ss.

    sRs

    Rt,s (/). 7.53.5(!)

  • ;

    /; .

  • :

    :Xt[X(t)]t

    :, x(t)X(t),t.

  • (/).

    (discrete) (continuous).

  • .

    .

  • ().

    .

    /.

    ,.

  • ,.

    , : =365

  • :

    .

  • =208.6 /182.06 =/

    1 196 188 192 164 140 120 112 140 160 168 192 200 1972 164,332 200 188 192 164 140 122 132 144 176 168 196 194 2016 168,003 196 212 202 180 150 140 156 144 164 186 200 230 2160 180,004 242 240 196 220 200 192 176 184 204 228 250 260 2592 216,00

    208,5 207 195,5 182 157,5 143,5 144 153 176 187,5 209,5 221 2185 182,08 1,15 1,14 1,07 1,00 0,86 0,79 0,79 0,84 0,97 1,03 1,15 1,21 12

  • (persistence) ,

    ()

    ,

    .

    :

    Hurst (1965),1050

    (variability),

    ,

  • .,

    ;

  • (!)

    ..,,

    :xt =a0+a1t+a2t2++aptp()

  • :()

    ():(movingaverages)

  • 2100 2250 2180

    3 :

    2176 3218022502100

  • (MovingAverageMA)

    750

    800

    850

    900

    950

    1000

    1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

    Days

    V

    a

    l

    u

    e

    DataMA(5)MA(10)MA(30)

  • (40)

  • ; ()

    .

    (stationary)(nonstationary).

    ,.

  • :

    1 )x(P t n

    n .

    !

  • :

    :

  • ..

    :X = E[X(t)]()2 = Var[X(t)](:)

    t

  • Markov()

    t+1 () t

    X1 X2 X3 X4 X5

    :,

    (.k=1)

  • Markov

    Markov (Markovchains):Markov.

    ()

  • (t) 40%(t+1)

    60% (t+1)

    (t) 20%(t+1)

    80% (t+1)

    Markov:

    8.02.06.04.0

    P:(.(i) 1)

  • : :[,,,]

    :[,?,,]

    10;(simulation &!)

  • 90%

    80%

    8.02.01.09.0

    P: , ;

  • Pr[? ]=Pr[ ]+ Pr[ ]=0.2 * 0.9 + 0.8 * 0.2 = 0.34

    66.034.017.083.0

    8.02.01.09.0

    8.02.01.09.02P

    8.02.01.09.0

    P

  • ;

    .,;

    562.0438.0219.0781.0

    66.034.017.083.0

    8.02.01.09.03P

  • 2( 3) 0 20

    0 11

    1 5

    2 03

    2

    BA

    1 1 = 1 , 1

    :

    63

    0 12

    1

    2 0 2 0 0 1

    15

    0

    BA

    12=1,2

  • t,

    :

    P p

  • 55

    week - i

    P

    r

    [

    X

    i

    =

    ]

    2/3

    31323132 8.02.01.09.0

  • 3 (

    ) Rippl (massdiagram),

    SequentPeak(!)

    . Excel(sequent

    peak)

    ()(): p=m/(n+1)

    ;

    ;

  • 3

    : ;

    :,(!),,,

    Markov(

    )

    750

    800

    850

    900

    950

    1000

    1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

    Days

    V

    a

    l

    u

    e

    DataMA(5)MA(10)MA(30)

  • Markov()

    t+1 () t

    X1 X2 X3 X4 X5

    :,

    (.k=1)

  • Markov

    Markov (Markovchains):Markov.

    ()

  • (t) 40%(t+1)

    60% (t+1)

    (t) 20% (t+1)

    80% (t+1)

    Markov:

    8.02.06.04.0

    P:(.(i) 1)

  • :

    :[,,,]

    10;(simulation &!)

  • 90%

    80%

    8.02.01.09.0

    P: , ;

  • Pr[? ]=Pr[ ]+ Pr[ ]=0.2 * 0.9 + 0.8 * 0.2 = 0.34

    66.034.017.083.0

    8.02.01.09.0

    8.02.01.09.02P

    8.02.01.09.0

    P

  • ;

    .,;

    562.0438.0219.0781.0

    66.034.017.083.0

    8.02.01.09.03P

  • t,

    :

    P p

  • 13

    week - i

    P

    r

    [

    X

    i

    =

    ]

    2/3

    31323132 8.02.01.09.0

  • : .

    ( :,)

    .

  • :

    : R(p) (q) R(p,q)(BoxJenkins)

    : R(p,d,q),().

    FFGN (fastfractionalgaussiannoises),.

  • (),.

    (,)

    : M:

    (Box Jenkins,1970).

    ttt xxx 1:xt:x1,x2,...,xn,:

    ,

  • :

    !

  • AutoregressiveMarkovModels(AR)

    R(1)Fiering qi ( ;):

    iii )q(q 11 i qi

    . qi i

    .

  • Fiering ti

    (.),:

    )1()( 2111 iii tqq

    ,, 1,.

  • Fiering

    Markov(AutoregressiveModel):.:.

    qi., 0.

  • ,:, .

    q(0)= ti:=0=1

    2111 1 (t)q(q iii

  • m m:m ().

    m:mm+1 .

    qm,y=my..

    ti:=0=1

    )1())(( 21,11,1 mmimymm

    mmmym tqq

  • ...

    ::q=ln(Q)q()qQ=eq

  • Excelrand() [0,1]

    Hnormsinv(rand()) (0,1).

    . Seeds, Box-Buller

  • :()

    Lag= (>50)

    n

    tt

    n

    ttt

    xx

    xxxxr

    1

    2

    1

    )(

    ))((

  • Excel

    EXCEL,CORREL(S1,S1).

    2,(Lag).

    1

  • ,()

    ,..50100.

    ().

  • ;

    (100),!!

    .

  • ,..Fiering 15

    m ,..100100

    Vi,(.SequentPeak).

  • :()

    m Vi,i=1,2,...,m (),:

    %Vi =v=

    T, P,:

    : m=. =

    ;

    1NmP%

  • (.) .

    (=20%),.

    (=90%).

    ; //

    / .

    VV2V1

    1

    2

  • :

    VV2V1

    1

    2

    V

    ?

  • .

    Vm , 11Hurst .

    (

  • , ',%.

    () ,.

  • ;;(97%)

    ;(99%,97%,95%)

    VV2V1

    1

    2

    =1

    VV2V1

    1

    2

    =2=1

  • (V)

    ; ; ; ;

  • :

  • , (!)

    :

    , ,, :,

    () ,,

    ..

    ,,

    ,,

  • (sedimentyield):()(/)

    (sedimentdischarge): (/)

    .

    (soilloss): .,().(/)

    http://www.bcb.uwc.ac.za/Envfacts/facts/erosion.htm

    Tech. Chron. A, Greece, 1987, Vol. 7, No 3

  • :

    :,

  • /

    (Lane(1941),Einstein(1964), Kennedy (1895))

    , () (

    ()) (DuBoys (1879),Schoklitsch (1934),Einstein(1942,1950),MeyerPeter Mller (1948))

  • :,

    :

    : (,,)

    , . , . II: . ,2006.

    !!! 525%

  • ( )

    ([])

    /(,)

    1. :

    Bryce Canyon National Park, US

  • . . ,

    2.

  • 3.

    :~100

  • (:!!)

    [(),(/,)]

    ,/.

  • (..,, )

  • 1. ():()()

    (,1960)().

    USLE:,.

    ,.

    , .

  • (UniversalSoilLossEquation USLE)

    :[kg/m2] R: K: (

    ) L: S: C: [0,011(

  • 2. :

    .

    ( ,1987):

    PeG 315

    G: [t/km2] P: [m] : i: pi: ,

    332211 ppp 1=1 ()2=0,5()3=0,1()

  • ; ()

    : (3) ()

    19621989

    Q(m3/sec) M(kg/sec)

    20/11/1965 35,47 23

    24/11/1965 37,94 29,26

    30/11/1965 61,31 50

    3/12/1965 63,24 25,63

    27/12/1965 71,03 30,78

    18/1/1966 61,56 30

    20/1/1966 183,87 190

    24/1/1966 94,34 54,09

    26/1/1966 72,75 10,43

    12/2/1966 118,06 65,25

    14/2/1966 141,31 147,25

    16/2/1966 110,87 46,01

    7/3/1966 221,76 320

    8/3/1966 167,72 146,96

    10/3/1966 149,5 69,49

    26/3/1966 106,71 69,7

    28/4/1966 69,23 48,91

    30/4/1966 107,24 80,93

    2/5/1966 92,92 28,72

  • Disclaimer: !

    y=12.166e0.0145xR=0.7667

    0

    50

    100

    150

    200

    250

    300

    350

    0 50 100 150 200 250

    M

    (

    k

    g

    /

    s

    e

    c

    )

    Q(m3/sec)

    QSCurve

    M(kg/sec)

    Expon.(M(kg/sec))

    ;

  • :,..

  • ()

    : (tn/m3):

    (tn/y) (m3))

    :i),,, ii)

    II (.. ) III ( ) IV

  • )(lb/ft3)

    =WcPc +WmPm +WsPs

    ) W T (lb/ft3)

    K=cc+mm+ss

    c,m,s :% (clay), (silt) (sand)Wc,Wm, Ws,c,m,s :,

    )(ft3)

    VN =(G/WT) G (lb/yr)

    1143430 )T(lnTTK,WT

    Wc Wm Ws c m s

    26 70 97 16 5.7 0 35 71 97 8.4 1.8 0 40 72 97 0 0 0IV 60 73 97 - - -

    1lb = 0,454kg1kg = 2,2 lb1 tn = 2200 lb1ft=0,305m1ft3=0,0284m3

    1lb/ft3=16kg/m3=0.016t/m3

  • ():1.

    (.,)

    2. ()(..)

    3. (,...),,.

    4. ()

    :

  • ()

    ( II), 35% , 45% 20% .

    :1.

    =50 106 tn/yr

    2. O 10 20%

    3. 10 20% .

  • II :

    1. =WcPc +WmPm +WsPs =35*0,2+71*0,45+97*0,35=72,9lb/ft31,166tn/m3

    K=cc+mm+ss =8,4*0,2+1,8*0,45+0*0,35=2,49

    W 50:=76,14lb/ft31,218tn/m3

    2. G =0,9*1060,8*106VN(50) =36,9*106 m3 VN(50) =32,8*106

    3. G =0,9*1060,8*106VN(50) =41*106 m3 =56W56 =1,22tn/m3 =63W63 =1,222tn/m3

    1)50(ln1505049,2*4343,09,7250W

    36

    3

    6

    )50( 10*4150218,1

    10myr

    mtnyrtn

    TWGVT

  • V;(!)

    (): 12

    13

  • Morris,GregoryL.andFan,Jiahua.1998.ReservoirSedimentationHandbook,McGrawHillBookCo.,NewYork

  • 6

  • : http://greek-energy.blogspot.com

  • : http://kpe-kastor.kas.sch.gr/energy1/alternative/hydrauliki.htm

    1

    CO2, SO2 /

    ( ) / CO2, NOx

    / CO2

    1

    /

  • : http://greek-energy.blogspot.com/2008/09/blog-post_07.html

  • (W)

    (GWh)

    : , 1985, , 2006, , ,

  • 05

    10

    15

    20

    25

    30

    35

    1

    9

    5

    8

    1

    9

    6

    0

    1

    9

    6

    2

    1

    9

    6

    4

    1

    9

    6

    6

    1

    9

    6

    8

    1

    9

    7

    0

    1

    9

    7

    2

    1

    9

    7

    4

    1

    9

    7

    6

    1

    9

    7

    8

    1

    9

    8

    0

    1

    9

    8

    2

    1

    9

    8

    4

    1

    9

    8

    6

    1

    9

    8

    8

    1

    9

    9

    0

    1

    9

    9

    2

    1

    9

    9

    4

    1

    9

    9

    6

    1

    9

    9

    8

    2

    0

    0

    0

    2

    0

    0

    2

    2

    0

    0

    4

    2

    0

    0

    6

    2

    0

    0

    8

    2

    0

    1

    0

    (

    %

    )

    `

  • 1961-1983 1984-2005

    : , 1985, , 2006, , ,

  • , .

    .

    .

    , .

    : http://kpe-kastor.kas.sch.gr/energy1/alternative/hydrauliki.htm

  • , . ()

    : , , 2011

  • ;

    : http://kpe-kastor.kas.sch.gr/energy1/alternative/hydropower.htm

    .

    , .

    () . .

    ( ).

    .

  • ;

    : http://kpe-kastor.kas.sch.gr/energy1/alternative/hydropower.htm

    , .

    .

  • : ..,

    ( )

  • . . :

    : . (Pelton): (Francis Kaplan). .

    Francis (10-150 m) . O Kaplan .

  • Pelton ( > 150 m)

    : . , , , .: ( 20 22), , . : .

  • Jostedal, Sogn og Fjordane (GE Hydro)

    Pelton ( > 150 m)

  • Kaplan ( < 15 m)

    ( 315 m) . , , . , .

  • Francis ( < 150 m)

    . 10 150 m. , . , . .

  • ()

    I: (W) : 1000 kg/m3g: 9.81 m/s2

    I = * g * Q * H * n

    Q: m3/sH: m n: 85%

    I (kW) = 9.81 * Q (m3/s) * H (m) * n: , , 2011

  • . . .

    :

    _ (KW), Q = ( .)

    : = 8760 (KWh)

    )(81.9 HQI

  • . () . :

    = 20 30%

    ( ) ( , .. ). 0

    0 20 80% 5 25%

  • (0) , , 0 ( ) ( ) .

    0

  • () 0 . .

    Q , . n (n < 100 %) :

    I = 9.81 QH n (KW)

    t :

    E = 9.81 QH n t (KWh)

    n , .

  • Q= 50 m3/s, . 100 m 3000 hr.

    I: (W) : 1000 kg/m3g: 9.81 m/s2

    I = * g * Q * H * nQ: m3/sH: m, n: 90 %

    I = 1000 * 9.81 * 50 * 100 * 0.9= 44.145.000 W = 44.1 MW

    E= 44.145.000 W * 3.000 hr = 132.4 GWh

  • -

    1. ( ) .

    2. ( , ).

    3. , . .

  • (firm) () .

    ( .). .

    W, .

    : .

    Vmin . .

    : ( ). ( ).

  • (W,E).

    : W, E , . : W, E ( ).

    Markov

    (.. 50 100 ) 1 2 ( )

    50-100 ( , )

  • : t = (.. )Vt = t = t = Rt = ETt = W = () at = Wqt = Nt= .

    tttttttt1t NqWaETRPIVV

    12

    1)1(

    tta

    tmax,tmin VVV maxttmin QqWaQ

    tt EEb Et = KQt H{(Vt + Vt+1)/2} t

    :

    12

    1)1(

    ttb :

    Markov

  • t , t : n Rt , ETt , Nt , qt : (W,) (Vt, Et) . (W,E). (W,E).

    tttttttt1t NqWaETRPIVV

    (W*,E*) .

    , (.. ) .

    Mimikou, M. and Kanelopoulou, S., 1987

  • .

    Q D

    Q.

    , .

  • - () : Q = abD+cD2-dD3 11 5 :

    4

    -Mimikou, M. and Kaemaki, S., 1985

  • :

    :

  • , ( )

    ( ) ( )

  • , (~0,5% ) ( 35% ) (, , , , ) , ,

    : , , 2011

  • : , , , , , , .

    : ( ), , ( , ).

    , : - , , .

    : , , 2011

  • .

    (.. / ).

    .

    : http://kpe-kastor.kas.sch.gr/energy1/alternative/hydrauliki.htm

  • (MW)

    (km2)

    Three Gorges 2011 18.300-22.500

    632

    Itaipu

    2003 14.000 1350

    Guri (Simn Bolvar)

    1986 10.200 4250

    Tucurui 1984 8.370 3014

    4

  • Tucurui dam Guri (Simn Bolvar)

    Itaipu Three Gorges

    : , , 2011

  • (553,9 MW)

    (925,6 MW)

    (500 MW)

    (879,3 MW)

    (129,9 MW)

    (70 MW)

    : , , 2011

    3.060 MW 4.000-5.000 GWh 8-10% . (437 MW), (384 MW) (375 MW) .

  • 25

    (1954-0,035) (1954- 3,8) (1955- 46,2) (1960- 300) (1966- 2805) (1969- 53) (1969- 0,46) (1974- 1020) (1981- 303) (1985-10) (1985-16) (1989-11) (1990-145) (1997-570) (1999- 3,6) (1999- 12)

    (1927) (1929) (1929) (1931) . (1931) (1988) (1988) (1992) . (2008) (2008) (2010)

    16 ( -

    hm3)11

  • : , , 2011

    (16) , 3.060 W ( 22% ). , , 6.400 GWh . , 4.000 5.000 GWh ( 10% ). : 5.300 m3. 30% , o , , .

  • 4 109.3 Francis 437.2 848 22

    4 80 Francis 320 598 21

    2 75 Francis 150 237 17

    1 6.2 Tube-S type 6.2 16

    3 43.3 Pelton 129.9 198 17

    3 125 Francis 375 420 13

    () 3 105 Francis-pump 315 380 14

    2 54 Francis 108 130 14

    3 3.6 Caplan 10.8 30 32

    2 0.75 Francis 1.5 6 46

    2 25 Francis 50 35 8

    1 19 Francis 19 25 15

    (MW)

    I (MW) (GWh)

    (%)

    : , , 2011

  • 2 105 Pelton 210 165 9

    3 100 Francis 300 235 9

    2 16 bulb

    1 1.6 S units 33.6 45 15

    2 2.5 Francis

    1 5.3 Francis 10.3 50 55

    () 3 128Francis-pump 384 440 13

    2 58 Francis 116 240 24

    2 35 Francis 70 260 42

    1 8.5 Francis 8.5 40 54

    1 1.3 Pelton

    1 2.4 Francis 3.7 11.4 35

    (MW)

    I (MW) (GWh)

    (%)

    : , , 2011

  • YHE

    ( ), (

    )

  • 0500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    5000

    5500

    6000

    65001

    9

    5

    0

    1

    9

    5

    5

    1

    9

    6

    0

    1

    9

    6

    5

    1

    9

    7

    0

    1

    9

    7

    5

    1

    9

    8

    0

    1

    9

    8

    5

    1

    9

    9

    0

    1

    9

    9

    5

    2

    0

    0

    0

    2

    0

    0

    5

    2

    0

    1

    0

    (

    M

    W

    )

    ,

    (

    G

    W

    h

    )

  • , 2020 ( 2001/77)

    ()

  • () (, , ,

    )

    : , , , ,

    ( )

    ,

  • (< 20 m) (20 - 150 m) (> 150 m)

    micro (< 0.1 W)mini (0.1-1 W) (1-10 W)

  • ( )- (intake) (desilter) (forebay)

    (penstock). (, , , , , )

    (power house). (/) (, , )

    : , , 2011

  • : Project

  • : Project

  • ( )

  • : Project

  • ( )

  • (Kalmoni - 200 kW in Assam, India)

  • - ()

  • 02

    4

    6

    8

    10

    12

    14

    0 10 20 30 40 50 60 70 80 90 100 (%)

    (

    m

    3

    /

    s

    )

    0

    2

    4

    6

    8

    10

    12

    14

    0 365 730 1095 1460 1825 2190 2555 2920 3285 3650

    (1/10/1971-30/9/1981)

    (

    m

    3

    /

    s

    )

  • . , ..., , , ( ): 30% - 50% 30 lt/sec .

    , 2008

    : ,

    : ( )

  • . (900 kW)

  • (, 2009)

    53,2 (31)9 (11)

    14,9 (9) .+3 (4)

    5,0 (3) 7 (9)

    96,9 (57)61 (76)

    MW (%) (%)170,1 (100)80 (100)31,5 (19)10 <

  • (, 2009)

    157,7 (100)110 (100)

    0 (0)10 <

  • -

    : , , 2011

  • 0500

    1.0001.5002.0002.5003.0003.5004.0004.5005.0005.5006.0006.500

    1

    9

    8

    5

    1

    9

    9

    0

    1

    9

    9

    5

    2

    0

    0

    0

    2

    0

    0

    5

    2

    0

    1

    0

    (

    G

    W

    h

    )

    0

    5

    10

    15

    20

    25

    30

    35

    40

    1

    9

    8

    5

    1

    9

    9

    0

    1

    9

    9

    5

    2

    0

    0

    0

    2

    0

    0

    5

    2

    0

    1

    0

    :

    [

    /

    ]

    (

    %

    )

    : , , 2011

  • - (315 W) ( ) 266 GWh 394 GWh

    - (384 MW) ( ) 440 GWh 615 GWh

    ~ 30%

    : , , 2011

  • 0100

    200

    300

    400

    01-86 07-86 01-87 07-87 01-88 07-88 01-89 07-89 01-90 07-90 01-91 07-91 01-92 07-92 01-93 07-93 01-94 07-94 01-95 07-95

    h

    m

    3

    0

    10

    20

    30

    40

    50

    60

    01-86 07-86 01-87 07-87 01-88 07-88 01-89 07-89 01-90 07-90 01-91 07-91 01-92 07-92 01-93 07-93 01-94 07-94 01-95 07-95

    G

    W

    h

    (GWh) (GWh)

    (1986-1995)

  • - Kazunogawa

    2001 Yamnashi-Ken , 1600 MW. 2 19.2 18.4 hm3 685 m. 500 m 5 3 km.

    : , , 2011

  • 1999 Okinawa . T - . 30 MW 140 m 26 m3/s.

    - Okinawa

    : , , 2011

  • - Okinawa

    :

    : , , 2011

  • , .

    : , , 2011

  • . : 1 hm3 2 ( ) , (0.08 hm3)2 , 1050 3100 kW 4 2400 kW 4 1835 kW 2000 kW : , , 2011

  • :

  • :

  • , . , . , , . , . 4MW 10 MW . . : () () , . 23 EURO 11 GWh.

    : , , 2011

  • ,

    ( )

    : , , 2011

  • :(system):,: ,

    (),

    (Mays&Tung,1992).

  • (systemsanalysis): , .

  • ?

    ,,

    ,,...

    ;

  • ,I ,Q

    ,

    ,

    Q(t) = (, ) * I(t)

    -

  • (,?,) (,,) (,,,)

  • /

  • ()[Hall Fagan,1956][Flood Jackson,1993].

    ,,[Ashby,1953]

    ,(whole)[von Bertalanffy,1968]

  • :,,.

    .

    : . :

    :

  • :,.

    /:,:

    :

    :.

  • :

    ,.

    .

    .

    ,.

    The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

  • ().

    .

  • :

    E.

    .

    .

    , ,.

  • .

    ,.

    :., .

  • .

    .

    ,.

  • :

    DownwardCausation

    .

    (whole) ()

    UpwardCausation ,

    (.)

  • ().

    This image cannot currently be displayed.

  • ()

    ()(): (stateequations), (parameters) .

    ()()

    (),,,,...(constraints)..

  • : .Heisenberg,,.

  • :OckhamsRazor

    WilliamofOckham(12901349):(),

  • ;

    ???

  • Ockham:

    !

  • ...

  • (.)

  • ()

  • dayDuFRE n 2m

    kg *)(**

    Penman ( )

    daynSrSn 20 m

    kj )*55.0cos*29.0(**)1(

    Sn

    ChPa

    )3.237(*4098

    o2 Tes

    dayneLn 2

    5.04

    mkj )*9.01.0(*)*09.056.0(**

    Ln

    es:

    hPa 718.2*11.6 237.3T17.27*Tse

    ChPa 67.0 o

    dayuuF 22 m

    kg )*54.01(*26.0)(

    F(u)

    dayLSR nnn 2mkj

    Rn

    hPa eeD s

    D

    u2: 2 m (m/sec): (

    oC)

    hPa 100

    * Uee se:

    U: (%)

    dayk 426

    mkj 10*9.4

    : Stefan-Bolzmann

    r: (lbedo)

    0

  • y=12.166e0.0145xR=0.7667

    0

    50

    100

    150

    200

    250

    300

    350

    0 50 100 150 200 250

    M

    (

    k

    g

    /

    s

    e

    c

    )

    Q(m3/sec)

    QSCurve

    M(kg/sec)

    Expon.(M(kg/sec))

  • (, )

    /

    )

  • ()

    ():i.

    (!)

    ii.

  • :1

    )(

    )

  • :2

    )

  • ()

  • :,

    :,

    0: ,

  • ;

    : :

    ;

    ()

    (;..)

  • :.

    ,!(./)

  • ()

    .

  • ..

    ()

    ,().

  • (extrapolation)

    ,

    y=0,000000193x2,652796317R=0,735585973

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    3,5

    4,0

    0 100 200 300 400 500 600t

    n

    /

    s

    m3/s

    (): 19621982. 19621992

  • :

  • (,) (.) (

    )

  • Xt=k*xt1*(1xt1)Xt:

    X1o=0.660001 X2o=0.66

    :

    1t,X2t

    1tX2t

  • ...

    ;

    ();

    ;

    GCMs;

    ();

  • ,().

    ()[,],.,.

    : Vollenweider

    P(mg/m3), L(mg/m2a),q(m/a),z(m).

  • ()L = 680

    mg/m3, q=10.6m/a,z=84m,P=16.8mg/m3. P10mg/m3.

    20mg/m3.

    tornado

  • (.)

    ,.

    2(()()).

    .[][] V

    =1

  • MonteCarlo a b a
  • MonteCarlo

    K.

    (1000;)

    ...

  • :LatinHypercubeSampling

    .

    .

    ()

    .

    .

  • :

  • ( ) :

    1. ;2.

    3.

    ( )

  • 1

    p(xa+xb+30=

  • 23;

    excel

  • =RAND()

    =IF(C14+D14

  • =RAND()

    =NORMINV(B14;$B$4;$C$4)

    =IF(C14+D14

  • =RAND()

  • =RAND()

    =1-B14

    ( )

  • ;a)

    ;b)

    c) ()

  • ;

    ():Var[X+Y]=Var[X]+Var[Y]+2Cov[X,Y]

    ;

  • ()

  • 1

    :

  • 1

    20.

    : (Vmin)(Vmax)

    .

  • 2

    SequentPeak

  • 3

    % (Fiering)10050.

  • ThomasFiering(1962)

    Markov(AutoregressiveModel):.:.

    qi., .

  • ,:,.

    q(0)= ti:=0=1

    2111 1 (t)q(q iii

  • m m:m ().

    m:mm+1 .

    qm,y=my..

    ti:=0=1

    )1())(( 21,11,1 mmimymm

    mmmym tqq

  • ...

    ::q=ln(Q)q()qQ=eq

  • NORMINV()

    NORMINV(probability,mean,standard_dev)

    RAND()0and1 ()

    RAND().

    :NORMINV(RAND(),mean,standard_dev) mean,standard_dev

    : (Box-Muller)=SQRT(-2*LN(RAND()))*SIN(2*PI()*RAND())

  • Lag= (>50)

    n

    tt

    n

    ttt

    xx

    xxxxr

    1

    2

    1

    )(

    ))((

  • EXCEL,CORREL(S1,S1).2,(Lag).

    1

  • :

    ,..R(1)15

    m ,..100100

    Vi,(.SequentPeak)

  • ()

    T, P,:

    : m=. =

    1NmP%

  • (.) .

    (=20%),.

    (=90%).

    .

    VV2V1

    1

    2

  • 4

    ;

    VV2V1

    1

    2

    Vc

    ?

  • (bonus!)

    (excel(MATLAB))35%,10050 :V(t+1)=V(t)+QR.

    ;...

  • :2

    ,()

  • 802000

    11240001379000

    1831000

    2540000

    3027000 30710003163000

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    1

    9

    2

    7

    2

    8

    1

    9

    3

    1

    3

    2

    1

    9

    3

    5

    3

    6

    1

    9

    3

    9

    4

    0

    1

    9

    4

    3

    4

    4

    1

    9

    4

    7

    4

    8

    1

    9

    5

    1

    5

    2

    1

    9

    5

    5

    5

    6

    1

    9

    5

    9

    6

    0

    1

    9

    6

    3

    6

    4

    1

    9

    6

    7

    6

    8

    1

    9

    7

    1

    7

    2

    1

    9

    7

    5

    7

    6

    1

    9

    7

    9

    8

    0

    1

    9

    8

    3

    8

    4

    1

    9

    8

    7

    8

    8

    1

    9

    9

    1

    9

    2

    1

    9

    9

    5

    9

    6

    1

    9

    9

    9

    0

    0

    2

    0

    0

    3

    0

    4

    2

    0

    0

    7

    0

    8

    (

    h

    m

    3

    )

    //

    ()

    ()

  • (99%,).

    () .

    (=) (,) .

    ()().

    (),()().

    () 1.0 m3/s (,).

  • ,

    ().(S)(V)V =a(S Smin)b,Smin .,.:L=L+(S S0).

    400hm3,20hm3 ().

    ,19792008(excel)

    0,086 0,074 0,073 0,074 0,074 0,077 0,075 0,088 0,091 0,103 0,093 0,092

    (m) 320 40(m) 384 43,5(m) 435 79,8

    0,00061,898

    7

    b 2,96721,559

    5L0(hm3/) 0,07 26,6S0(hm3) 320 0 0,012 0,545(hm3/) 35 20(/m3) 0 0,05(m) 410 60

  • : ,

    . (flowchart)/(pseudo

    code),.

    ((%)),(,).

    .

    ,:()()o

  • ... 43,4,55

    ..

    (.) (+/ 20%):Tornado

    5: .(400hm3)

    0.7%, 15%.

    6./.

  • :

    ();

    ;

    ().;

  • ().

  • :OckhamsRazor

    WilliamofOckham(12901349)

  • ()

  • ()

    ():i.

    (!)

    ii.

  • ()

    .

  • :

  • .

    ().

  • : ( !)

    .

    ()

    (Loops)

  • VBA(Excel) MATLAB(www.mathworks.com) C,C#,Delphi,Fortran

  • :

    (MATLAB?Fortran?)

    (.,).

    ().

  • n

    :n1 .:

    fori:=1tonsum:=sum+list[i]product:=product*list[i]

    end

  • ,,,,

    Begin/End

    DataInitialization

    Decision

    Action

    Connector

  • time=0fortime=1:10

    ComputevelocityPrintvelocity

    end

  • /

    IFconditionStatement1Statement2

    End

  • ;

  • :

    (.);

  • (.

    ) .

    ().

    :,.

    (),().

    ,,.

    (Excel,1013).

  • : () (trialanderror) (

  • 2: ()

    ()

    2(2)

  • :..,x

    :..,f(x)=3x+2 (.)

    :..,5x24,x0 .

  • :,

    Max(0.6x[]+0.4x[])100

    ;

    ;

    x !!!

    . 2042 km2, 278 hm3

    -

    424 km2, 17 hm3

    / /

    +204.4 +223.0 m, 31 hm3

    +43.5 +79.8 m, 585 hm3

    120 km2, 14 hm3

    +384.0 +435.0 m, 630 hm3

    588 km2, 235 hm3

    +458.5 +505.0 m, 112 hm3

    352 km2, 278 hm3

    -

    (

    < 27 m

    3 /s)

    Y

    (

    1

    8

    m

    3

    /

    s

    )

    (7.5 m3/s)

    . 2042 km2, 278 hm3

    -

    424 km2, 17 hm3

    / /

    +204.4 +223.0 m, 31 hm3

    +43.5 +79.8 m, 585 hm3

    120 km2, 14 hm3

    +384.0 +435.0 m, 630 hm3

    588 km2, 235 hm3

    +458.5 +505.0 m, 112 hm3

    352 km2, 278 hm3

    -

    (

    < 27 m

    3 /s)

    Y

    (

    1

    8

    m

    3

    /

    s

    )

    (7.5 m3/s)

  • :

    .

    ,.

    .

  • :,,.

    :,.

    ,(=,curseofdimensionality).

  • ..

    ,,,,,.

    302:230=109 (1sec=30)

    .

  • maxf=0Forj=1ton

    x2=rand[]x3=rand[]x1=10x2x3Calculate:f(x1,x2,x3)IFf(x1,x2,x3)>maxf

    maxf=f(x1,x2,x3)maxx1=x1maxx2=x2maxx3=x3

    endNextj

    n:

    ( )

  • Shuffledcomplexevolution

  • ()

  • 1

    :

  • 1

    20.

    : (Vmin)(Vmax)

    .

  • 2

    SequentPeak

  • 3

    % (Fiering)10050.

  • ThomasFiering(1962)

    Markov(AutoregressiveModel):.:.

    qi., .

  • ,:,.

    q(0)= ti:=0=1

    2111 1 (t)q(q iii

  • m m:m ().

    m:mm+1 .

    qm,y=my..

    ti:=0=1

    )1())(( 21,11,1 mmimymm

    mmmym tqq

  • ...

    ::q=ln(Q)q()qQ=eq

  • NORMINV()

    NORMINV(probability,mean,standard_dev)

    RAND()0and1 ()

    RAND().

    :NORMINV(RAND(),mean,standard_dev) mean,standard_dev

    : (Box-Muller)=SQRT(-2*LN(RAND()))*SIN(2*PI()*RAND())

  • Lag= (>50)

    n

    tt

    n

    ttt

    xx

    xxxxr

    1

    2

    1

    )(

    ))((

  • EXCEL,CORREL(S1,S1).2,(Lag).

    1

  • :

    ,..R(1)15

    m ,..100100

    Vi,(.SequentPeak)

  • ()

    T, P,:

    : m=. =

    1NmP%

  • (.) .

    (=20%),.

    (=90%).

    .

    VV2V1

    1

    2

  • 4

    ;

    VV2V1

    1

    2

    Vc

    ?

  • (bonus!)

    (excel(MATLAB))35%,10050 :V(t+1)=V(t)+QR.

    ;...

  • :2

    ,()

  • (,Ockham!)

  • 802000

    11240001379000

    1831000

    2540000

    3027000 30710003163000

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    1

    9

    2

    7

    2

    8

    1

    9

    3

    1

    3

    2

    1

    9

    3

    5

    3

    6

    1

    9

    3

    9

    4

    0

    1

    9

    4

    3

    4

    4

    1

    9

    4

    7

    4

    8

    1

    9

    5

    1

    5

    2

    1

    9

    5

    5

    5

    6

    1

    9

    5

    9

    6

    0

    1

    9

    6

    3

    6

    4

    1

    9

    6

    7

    6

    8

    1

    9

    7

    1

    7

    2

    1

    9

    7

    5

    7

    6

    1

    9

    7

    9

    8

    0

    1

    9

    8

    3

    8

    4

    1

    9

    8

    7

    8

    8

    1

    9

    9

    1

    9

    2

    1

    9

    9

    5

    9

    6

    1

    9

    9

    9

    0

    0

    2

    0

    0

    3

    0

    4

    2

    0

    0

    7

    0

    8

    (

    h

    m

    3

    )

    //

    ()

    ()

  • (99%,).

    () .

    (=) (,) .

    ()().

    (),()().

    () 1.0 m3/s (,).

  • (Koutsoyiannis et al.)

  • 1. 2. ;3.

    ;4. ;5. ;

    ;6.

    ;;7. ;

    ;8. ;

    ;9.

    ;;10. ;

    ;

  • ,():

    (),.

    :,, (..,),(....=?).

    ; ;

  • :

  • :

  • ;

  • :

    ; ( (. 2000/60);)

  • ,

    ().(S)(V)V =a(S Smin)b,Smin .,.:L=L+(S S0).

    400hm3,20hm3 ().

    ,19792008(excel)

    0,086 0,074 0,073 0,074 0,074 0,077 0,075 0,088 0,091 0,103 0,093 0,092

    (m) 320 40(m) 384 43,5(m) 435 79,8

    0,00061,898

    7

    b 2,96721,559

    5L0(hm3/) 0,07 26,6S0(hm3) 320 0 0,012 0,545(hm3/) 35 20(/m3) 0 0,05(m) 410 60

  • : ,

    . (flowchart)/(pseudo

    code),.

    ((%)),(,).

    .

    ,:()()o

  • ... 43,4,55

    ..

    (.) (+/ 20%):Tornado

    5: .(400hm3)

    0.7%, 15%.

    6./.

  • :

    ();

    ;

    ().;

  • FlowChart

  • : 2

    , ( )

  • (, Ockham!)

  • 802000

    11240001379000

    1831000

    2540000

    3027000 30710003163000

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    1

    9

    2

    7

    2

    8

    1

    9

    3

    1

    3

    2

    1

    9

    3

    5

    3

    6

    1

    9

    3

    9

    4

    0

    1

    9

    4

    3

    4

    4

    1

    9

    4

    7

    4

    8

    1

    9

    5

    1

    5

    2

    1

    9

    5

    5

    5

    6

    1

    9

    5

    9

    6

    0

    1

    9

    6

    3

    6

    4

    1

    9

    6

    7

    6

    8

    1

    9

    7

    1

    7

    2

    1

    9

    7

    5

    7

    6

    1

    9

    7

    9

    8

    0

    1

    9

    8

    3

    8

    4

    1

    9

    8

    7

    8

    8

    1

    9

    9

    1

    9

    2

    1

    9

    9

    5

    9

    6

    1

    9

    9

    9

    0

    0

    2

    0

    0

    3

    0

    4

    2

    0

    0

    7

    0

    8

    (

    h

    m

    3

    )

    //

    ()

    ()

  • (99%,).

    () .

    (=) (,) .

    ()().

    (),()().

    () 1.0 m3/s (,).

  • (Koutsoyiannis et al.)

  • 1. 2. ;3.

    ;4. ;5. ;

    ;6.

    ; ;7. ;

    ;8. ;

    ;9.

    ; ;10. ;

    ;

  • , () : () , . : , , (.. , ), ( .... = ?).

    ; ;

  • :

  • :

  • ;

  • :

    ; ( (. 2000/60);)

  • ,

    (). (S) - (V) V = a(S Smin)b, Smin . , . - : L = L + (S S0).

    400 hm3, 20 hm3 ().

    , 1979 2008 ( excel)

    0,086 0,074 0,073 0,074 0,074 0,077 0,075 0,088 0,091 0,103 0,093 0,092

    (m) 320 40(m) 384 43,5(m) 435 79,8

    0,00061,898

    7

    b 2,96721,559

    5L0(hm3/) 0,07 26,6S0(hm3) 320 0 0,012 0,545(hm3/) 35 20(/m3) 0 0,05(m) 410 60

  • :

    , . (flow-chart) /

    (pseudo-code) , .

    ( (%)) , ( , ).

    .

    , : () () o

  • ... 4 3, 4, 5 5

    - . .

    (. ) ( +/- 20%): Tornado

    5 : . ( 400 hm3)

    0.7% , 15%.

    6. /.

  • : ( ) ;

    ;

    ( ) . ;

  • Flow Chart

  • 1:

  • ;

    Maximum

    Minimum

  • : 50% :

    7000 km! ; ; ; ; ; ; ;

  • (scheduling)

    ; ; ;

    Low Zone SR Levels

    184.00

    184.50

    185.00

    185.50

    186.00

    186.50

    187.00

    187.50

    05:00

    :0006

    :30:00

    08:00

    :0009

    :30:00

    11:00

    :0012

    :30:00

    14:00

    :0015

    :30:00

    17:00

    :0018

    :30:00

    20:00

    :0021

    :30:00

    23:00

    :0000

    :30:00

    02:00

    :0003

    :30:00

    T

    o

    t

    a

    l

    H

    e

    a

    d

    (

    m

    )

    Peak Tariff

    St Trinians Booster Pump

    0.00

    10.00

    20.00

    30.00

    40.00

    50.00

    60.00

    05:00

    :0007

    :00:00

    09:00

    :0011

    :00:00

    13:00

    :0015

    :00:00

    17:00

    :0019

    :00:00

    21:00

    :0023

    :00:00

    01:00

    :0003

    :00:00

    F

    l

    o

    w

    (

    L

    /

    s

    )

  • ( )

    0

    20,000

    40,000

    60,000

    80,000

    100,000

    120,000

    Inc. pipediameter

    Pipestorage

    Nodestorage (2

    nodes)

    Baseline Nodestorage

    SUDs SUDs (2nodes &swales)

    Inc. pipediameter(3 pipes)

    Pipestorage (3

    pipes)

    Mitigation Option

    F

    l

    o

    o

    d

    D

    a

    m

    a

    g

    e

    (

    )

    0246810121416

    F

    l

    o

    o

    d

    C

    o

    n

    s

    e

    q

    u

    e

    n

    c

    e

    Flood DamageFlood Consequence

  • ; ( ) :

  • : , ,

    SC3

    SC5

    SC4

    SC6

    SC7

    SC2

    SC1

    Activated Sludge Treatment:Primary Clarifier, Aerator,

    Secondary Clarifier

    Storm Tank

    River

    Sewer network

    WastewaterTreatment

    Plant

    CSO

  • 0 10 20 30 km

    -

    (,

    , )

    (, , )

  • /H

    0 10 20 30 km

    (, , )

    (, )

  • ()

    ( , )

    ,

    . NashSutcliffe

  • :

    (robust solution)

    O

    b

    j

    e

    c

    t

    i

    v

    e

    (

    M

    a

    x

    )

  • /

    ; (;)

    John Snow: Broad StreetPump as a source of a water borne disease

    Formulas: GP vs. EPR

    6.5

    7.0

    7.5

    8.0

    8.5

    9.0

    9.5

    10.0

    10.5

    6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

    dimensionless Chzy resistance coefficient - formulas

    d

    i

    m

    e

    n

    s

    i

    o

    n

    l

    e

    s

    s

    C

    h

    z

    y

    r

    e

    s

    i

    s

    t

    a

    n

    c

    e

    c

    o

    e

    f

    f

    i

    c

    i

    e

    n

    t

    -

    o

    b

    s

    e

    r

    v

    e

    d

    (GP)(EPR)

    )GP(6863.20ln0973.1ln534.01

    SRhs

    hs2R

    gC hs

    ds

    )EPR(146.18ln100508.4ln39728.02ln6489.01

    2

    32

    RdsS

    dsS

    dshs

    hsds

    dsRCad

  • -

  • :

    min/max f(x) = f(x1, x2, , xn)s.t. gj(x1, x2, , xn) , , = 0, j = 1, , k

    ximin xi ximax , i = 1, , n ( ) :

    ( ) ( ) (

    ) :

    =

    ( )

  • x1

    x2

    x1min

    x2min

    x2max

    x1max

    ,

    x1

    x2

    x1

    x2

    x1

    x2

    ,

    ,

    ,

  • (f(x))

    -

    0

    .

    0

    5

    0

    .

    0

    5

    0

    .

    1

    5

    0

    .

    2

    5

    0

    .

    3

    5

    0

    .

    4

    5

    0

    .

    5

    5

    0

    .

    6

    5

    0

    .

    7

    5

    0.04

    0.18

    0.33

    0.48

    0.63

    0.78

    -0.020

    0.020.040.060.080.1

    0.120.140.160.180.2

    0.22

    -

    0

    .

    0

    5

    0

    .

    0

    5

    0

    .

    1

    5

    0

    .

    2

    5

    0

    .

    3

    5

    0

    .

    4

    5

    0

    .

    5

    5

    0

    .

    6

    5

    0

    .

    7

    5

    0.04

    0.08

    0.13

    0.18

    0.23

    0.28

    0.33

    0.38

    0.43

    0.48

    0.53

    0.58

    0.63

    0.68

    0.73

    0.78

    0.83

    0.2-0.22

    0.18-0.2

    0.16-0.18

    0.14-0.16

    0.12-0.14

    0.1-0.12

    0.08-0.1

    0.06-0.08

    0.04-0.06

    0.02-0.04

    0-0.02

    -0.02-0

    x1x2

    f(x1, x2)

  • ( )

    f(x) Rn . , x* :

    f(x*) = grad f(x*) = 0 (stationary).

    , f ( ). , (f(x*) = 0) , () x*. , , .

  • -

    5

    .

    0

    -

    3

    .

    5

    -

    2

    .

    0

    -

    0

    .

    5

    1

    .

    0

    2

    .

    5

    4

    .

    0

    -5.0

    -3.0

    -1.0

    1.0

    3.0

    5.0

    05

    1015202530354045

    50

    -0.05

    0.15

    0.35

    0.55

    0.75

    0

    .

    0

    4

    0

    .

    1

    3

    0

    .

    2

    3

    0

    .

    3

    3

    0

    .

    4

    3

    0

    .

    5

    3

    0

    .

    6

    3

    0

    .

    7

    3

    0

    .

    8

    3

    f(x1, x2) = x12 + x22

    f(x1, x2) = 0.5(1.1x1 x2)4 + 0.5(x1 0.5)(x2 0.5)

    (x1*, x2*) = (0, 0), f* = 0

    (x1*, x2*) =(0.314, 0.705), f* = -0.011

    (x1*, x2*) =(0.618, 0.371), f* = -0.003

  • f(x), k g(x) := [g1(x), ..., gk(x)]T 0. x* f = (1, ..., k) :

    , , Kuhn-Tucker. Kuhn-Tucker f, .

    , :

    (x, ) = f(x) + T g(x), x Rn i gi(x*) = 0 i, (x, ) f(x), (x*, *) = f(x*). x ( Lagrange).

    i gi(x*) = 0 i = 1, , k df(x*)

    dx + T dg(x

    *)dx = 0

    T

    ( )

  • , :

    ( Kuhn-Tucker) ,

    x* * ( ) .

    , (penalty functions). , , :

    min (x) = f(x) + i = 1

    k pi(x)

    pi(x) 0 , pi(x) = 0 gi(x) 0, pi(x) > 0 gi(x) > 0. : pi(x) ( pi(x) 0

    , pi(x) >> 0 ).

  • 1:

  • ;

    Maximum

    Minimum

  • :

    (robust solution)

    O

    b

    j

    e

    c

    t

    i

    v

    e

    (

    M

    a

    x

    )

  • :

    min/max f(x) = f(x1, x2, , xn)s.t. gj(x1, x2, , xn) , , = 0, j = 1, , k

    ximin xi ximax , i = 1, , n ( ) :

    ( ) ( ) (

    ) :

    =

    ( )

  • (x)

    x1

    x2

    x1min

    x2min

    x2max

    x1max

    ,

    x1

    x2

    x1

    x2

    x1

    x2

    ,

    ,

    ,

  • (f(x))

    -

    0

    .

    0

    5

    0

    .

    0

    5

    0

    .

    1

    5

    0

    .

    2

    5

    0

    .

    3

    5

    0

    .

    4

    5

    0

    .

    5

    5

    0

    .

    6

    5

    0

    .

    7

    5

    0.04

    0.18

    0.33

    0.48

    0.63

    0.78

    -0.020

    0.020.040.060.080.1

    0.120.140.160.180.2

    0.22

    -

    0

    .

    0

    5

    0

    .

    0

    5

    0

    .

    1

    5

    0

    .

    2

    5

    0

    .

    3

    5

    0

    .

    4

    5

    0

    .

    5

    5

    0

    .

    6

    5

    0

    .

    7

    5

    0.04

    0.08

    0.13

    0.18

    0.23

    0.28

    0.33

    0.38

    0.43

    0.48

    0.53

    0.58

    0.63

    0.68

    0.73

    0.78

    0.83

    0.2-0.22

    0.18-0.2

    0.16-0.18

    0.14-0.16

    0.12-0.14

    0.1-0.12

    0.08-0.1

    0.06-0.08

    0.04-0.06

    0.02-0.04

    0-0.02

    -0.02-0

    x1x2

    f(x1, x2)

  • ( )

    f(x) Rn . , x* :

    f(x*) = grad f(x*) = 0 (stationary).

    , f ( ). , (f(x*) = 0) , () x*. , , .

  • -

    5

    .

    0

    -

    3

    .

    5

    -

    2

    .

    0

    -

    0

    .

    5

    1

    .

    0

    2

    .

    5

    4

    .

    0

    -5.0

    -3.0

    -1.0

    1.0

    3.0

    5.0

    05

    1015202530354045

    50

    -0.05

    0.15

    0.35

    0.55

    0.75

    0

    .

    0

    4

    0

    .

    1

    3

    0

    .

    2

    3

    0

    .

    3

    3

    0

    .

    4

    3

    0

    .

    5

    3

    0

    .

    6

    3

    0

    .

    7

    3

    0

    .

    8

    3

    f(x1, x2) = x12 + x22

    f(x1, x2) = 0.5(1.1x1 x2)4 + 0.5(x1 0.5)(x2 0.5)

    (x1*, x2*) = (0, 0), f* = 0

    (x1*, x2*) =(0.314, 0.705), f* = -0.011

    (x1*, x2*) =(0.618, 0.371), f* = -0.003

  • f(x), k g(x) := [g1(x), ..., gk(x)]T 0. x* f = (1, ..., k) :

    , , Kuhn-Tucker. Kuhn-Tucker f, .

    , :

    (x, ) = f(x) + T g(x), x Rn i gi(x*) = 0 i, (x, ) f(x), (x*, *) = f(x*). x ( Lagrange).

    i gi(x*) = 0 i = 1, , k df(x*)

    dx + T dg(x

    *)dx = 0

    T

    ( )

  • , :

    ( Kuhn-Tucker) ,

    x* * ( ) .

    , (penalty functions). , , :

    min (x) = f(x) + i = 1

    k pi(x)

    pi(x) 0 , pi(x) = 0 gi(x) 0, pi(x) > 0 gi(x) > 0. : pi(x) ( pi(x) 0

    , pi(x) >> 0 ).

  • :

    . 10 hm3, , , 6 hm3. 2 hm3 1 hm3 .

    , . :

  • : (x1), (x2) (x3).

    (= , ):

    : : x1 + x2 + x3 = 10 : x2 +

    x3 6 :

    : x1 2 : x2 1 : x3 1

  • , ?

    , ;

  • ; Pareto : (i)

    /

    (ii) /.

    . - (. )

    - : PARETO

  • .

    (Random Search) , (hill

    climbing) , .

    , .

    (.. ), .

  • (.. 1 hm3), .

    , 113 = 1331 , .

    , .

  • n = 10 = 0.001 hm3: 1040

    : 103 104

  • maxf=0For j=1 to n

    x2=rand[]x3=rand[]x1=10-x2-x3Calculate: f(x1,x2,x3)IF f(x1,x2,x3) > maxf

    maxf= f(x1,x2,x3)maxx1=x1maxx2=x2maxx3=x3

    endNext j

    n:

    ( )

  • (gradient or hill-climbing methods)

    ,

  • 3 ( ).

    j= 1, 2 and 3 xj R ( )

    ; (jNBj(xj).

    . NBj(xj), xj j, :

    ;

    x1, x2, x3 R:

  • (- gradients)

    ( : df/dx=0)

    dNB(x1)/dx1 =0 x1= 3 (x2=2.33, x3=8) : 13.33 6; ( 13.33

    ).

  • Hill Climbing . Q

    Q Q

    Q.

    : .

  • hill climbing

    R:

  • ( Qmax=8, R=2)

    Q,

    dNB/dx

    -

  • Q

  • ;

    ?

  • Lagrange

    Bj(xj), .

    , . pj,

    j xj, .

    Pj(xj) , pj, j xj.

    ( : = xj, dPj(xj)/dxj, ).

  • :

  • :

  • () :

    :

  • p1=3.2, p2=4.0, p3=3.9 8.77, 13.96, 18.23 155.75. x1=10.2, x2=13.6 x3=14.5 = 38.3 .

    ; :

  • Lagrange

    , Kuhn-Tucker: i gi(x*) = 0 i, (x, ) f(x), (x*, *) = f(x*).

  • 10 10 :

    ;

    (f(x*)=0)

  • (. 1-2 ) Q

    http://www.lindo.com/

  • :

    ( )

    ( df/dx=0),

  • , .

    - (hill-climbing Lagrange).

    ( ) .

    () .

  • () .

    , .

    .

    ().

    .

    .

    . ( (Optimality Principle))

  • () , .

    .

    .

  • ( ).

    (coding)!

  • 3 ( ).

    j= 1, 2 and 3 xj.

    ; (j NBj(xj). Q = 10.

  • / ( .

    : ( ) ( )

    x1=0:2, x2=3:5 x3=4:6

  • x1=0:2, x2=3:5 x3=4:6 ( !)

  • (backward dynamic programming, BDP)

  • : [1,4,5]

  • (forward dynamic programming, FDP)

    FDP .

    , Stage.

  • (state variables). 1: .

    , .

    . m , n (. ) mn (stage).

    (curse of dimensionality).

  • 3 xj, j :

    R(x1) = (12x1 x12), R(x2) = (8x2 x22) R(x3) = (18x3 3x32). max

    (TotalR(X)) () 3, () 4.

  • :

    : , ,

    : ;

  • C(st, xt) st, xt, t, (Dt). :

    :

    (.. )

  • () (t).

    st+1 ( ).

    .

    ft (st+1) st+1 t

  • f0(s1) = 0

  • g(x, t) .

    y x

  • () 23

    ;

    ;

    ;

  • Simplex

  • , .

  • : 10 20 3. 60 1 2. 10 2.

    . 3

  • (GeneticAlgorithms)

    (EvolutionaryProgramming)

    (SimulatedAnnealing)

  • :;

    ()().

  • The Gene is by far the most sophisticated program around.

    - Bill Gates, Business Week, June 27, 1994

  • (C.Darwin,1858) =

    ()

    ,():

  • :

    *

  • .

    . ( )

    .

    .

    .

  • :

    . ..

    .

    ()

  • :;

    ()(fitnessevaluation )

    : , (), .

    .

    .

  • :;

    ::

    :.

    :.

  • ...:;

    ..:

  • :()

    (11,6,9)101101101001

    220

    ..100101 =[(1) 25]+[(0) 24]+[(0) 23]+[(1) 22]+[(0) 21]+[(1) 20]=37

    1000=?10001=?

  • :

    )()()Pr( j j

    ii xf

    xfx

  • 1001111010110010 10111110

    10010010

    10011110 10011010

  • :

    ()

  • (Holland,1975) (Schema)=0,1

    *(dontcare)

    ..

    ()

    L 2L .,.

    1 * * 01 1 1 01 1 0 01 0 1 01 0 0 0

  • :

    F(x)=x2

    x [1,31].

  • :

    31,5 .

    (32=?)

  • :

    (4):

    1 =01101 =13102 =11000 =24103 =01000 =8104 =10011=1910

  • :

    F(1)=132 =169F(2)=242=576F(3)=82 =64F(4)=192=361

    :1170:293

  • :

    A1

    A2 A3

    A4

    : .

    P(A1) = 0.14

    P(A2) = 0.49

    P(A3) = 0.06

    P(A4) = 0.31

  • :

    :

    1 =01101

    2 =11000

    3 =11000

    4 =10011

    :1=011012=110003=010004=10011

  • ::1 2 43 4 2:

    1 = 0 1 1 0 | 12 = 1 1 0 0 | 0

    3 = 1 1 | 0 0 04 = 1 0 | 0 1 1

    1 = 0 1 1 0 | 02 = 1 1 0 0 | 1

    3 = 1 1 | 0 1 14 = 1 0 | 0 0 0

  • :

    :

    1 = 0 1 1 0 02 = 1 1 0 0 13 = 1 1 0 1 14 = 1 0 0 0 0

    1 = 0 1 1 0 02 = 1 1 0 0 13 = 1 1 0 1 14 = 1 0 0 1 0

  • :

    1 =01100=1210=>F(12)=1442 =11001=2510 =>F(25)=6253 =11011=2710 =>F(27)=7294 =10010=1810 =>F(18)=324

    :1822(1170):455.5(293)

  • :peak

    z=f(x,y)=3*(1x)^2*exp((x^2) (y+1)^2)10*(x/5 x^3 y^5)*exp(x^2y^2)1/3*exp((x+1)^2 y^2).

  • 5 10

  • ; :

    :

    P(mutation)0

  • .fitness().

    .

    ()(). ().

    .

    :.

  • :

    3 5 =6

  • ()

    [3,1,2]x1=3,x2=1,andx3=2.

    [1,0,1] 2.

  • ?

  • :

    ().

    0.30.

    30% .

    312 101:302and111.

  • :

    ( 01).

    ,1()05,21).

    112102.

    312 101 301 102.

    (30116.5&10219.0)

  • :

    35.5. 30116.5/35.5= 0.4710219/35.5=0.53

    [0to1],0to0.47 301.102.

    .

  • (Genetic Programming - GP)

    :

    /() :

    :(),,

    :EPR(Giustolici andSavic,2006)

  • .(datafitting)

  • aij, (Wi), Cj,Qj,j.

    Cj=iWiaij/Qj

    ;()

    ;

  • (SimulatedAnnealing)

    (annealing) (..).,.,.,, .

    : (dE),,Boltzman:

    (k:)

  • (SimulatedAnnealing)

    , .

    ,,,.

    .,,,

  • Metropolis:

    P(dx)=exp(dx/T)>r

    :dx: T:r: [0,1]

    .

    .

    =0,(: hillclimbing)

    =

    ,

    ()

  • :

    AntColonyOptimisation

    ParticleSwarmOptimisation a

  • ;

    :,

    ,,.

    : ,,.

    :,,

    :

    ,.

    : ,.

    :,.

  • : ,,.

  • :(),.

    :,, (.)

    :,(,),.

    :,(.).

  • ;

    (Duanetal.,1992):

    (effectiveness),()

    (efficiency),(,).

    (..,,(hillclimbing)).

    . ,

    .

    Domi_Ma8hmatos.pdfLesson_2_Hydro-Statistics.pdfLesson_3_Reservoirs.pdfLesson_4_More_Reservoirs.pdfLesson_6_Hydroelectric_works.pdfLesson_6_Systems-Models-Simulation-Uncertainty_1.pdfLesson_6_Systems-Models-Simulation-Uncertainty_2.pdfLesson_7_Algorithms_Flowchart_Thema.pdfOptimisation_1_2013.pdfOptimisation_1_2013_PartB.pdfOptimisation_Advanced.pdf