48
フフフフフフフフフフフ フフフフフフフフフフフフ 1 フフ フフフ フフフ フフ ・・・

フクシマで何が起きたか 原発の未来について考える

Embed Size (px)

DESCRIPTION

フクシマで何が起きたか 原発の未来について考える. 小掠 ・上村・近藤・鈴木. 原子力発電とは?. 原子力を利用した発電のこと。 現代の原発の多くは原子核分裂時に発生する熱エネルギーで高圧の水蒸気を作り、蒸気タービンとこれと同軸接続された発電機を回して発電させます。 原発には沸騰水型軽水炉、加圧水型軽水炉の二種類があります。 http ://www.asahi.com/special/10005/TKY201103300517.html.   タービン. 流体の運動エネルギーを、機械の回転運動エネルギーへ変換する流体機械。 - PowerPoint PPT Presentation

Citation preview

Page 1: フクシマで何が起きたか 原発の未来について考える

フクシマで何が起きたか原発の未来について考え

1

小掠・上村・近藤・鈴木

Page 2: フクシマで何が起きたか 原発の未来について考える

原子力を利用した発電のこと。 現代の原発の多くは原子核分裂時に発生する熱エネルギーで高圧の水蒸気を作り、蒸気タービンとこれと同軸接続された発電機を回して発電させます。

原発には沸騰水型軽水炉、加圧水型軽水炉の二種類があります。

http://www.asahi.com/special/10005/TKY201103300517.html

2

原子力発電とは?

Page 3: フクシマで何が起きたか 原発の未来について考える

流体の運動エネルギーを、機械の回転運動エネルギーへ変換する流体機械。

蒸気タービンは、発電の他にも大型船舶のエンジンとしても使われています。

3

  タービン

Page 4: フクシマで何が起きたか 原発の未来について考える

沸騰水型軽水炉( BWR)のしくみ

4

Page 5: フクシマで何が起きたか 原発の未来について考える

5

加圧水型軽水炉( PWR)のしくみ

http://www1.kepco.co.jp/bestmix/contents/15.html

Page 6: フクシマで何が起きたか 原発の未来について考える

発電時に CO₂が出ない

安定した電気供給量

発電時に酸性雨や光化学スモッグなどといった大気汚染の原因となる酸化物を排出しない

事故が起きなければ国の技術力の高さの証明になる

6

原発のメリット

Page 7: フクシマで何が起きたか 原発の未来について考える

放射能は人体に悪影響

通常運転でも微量に放射性物質が出ている

老朽化などで原発を廃炉にする際は建設費用以上に廃炉費用が掛かる

廃炉にすると周囲が汚染される場合がある

7

原発のデメリット

Page 8: フクシマで何が起きたか 原発の未来について考える

放射能で汚染された土地などは数百年から数千年、最悪の場合数万年元に戻らない

大事故を起こした時のリスクの大きさが発電に見合わない

小規模の事故は頻繁に起きている

原発運転時に出る温排水は地球温暖化の原因

8

原発のデメリット

Page 9: フクシマで何が起きたか 原発の未来について考える

放射性廃棄物が出る

処理方法がないため溜まっていく

溜めておく場所がない

放射性廃棄物の放射能が無くなるのに10万年から100万年無くならない

9

原発のデメリット

Page 10: フクシマで何が起きたか 原発の未来について考える

日本国内でウラン燃料はほぼ入手できない

ウランは50~80年で枯渇の危機

出力の調整が難しいため、電力の余る深夜は無駄な揚水発電が必要である

数ある発電方法の中で一番高コスト

10

原発のデメリット

Page 11: フクシマで何が起きたか 原発の未来について考える

日本で最初の原子力発電が行われたのは 1963年(昭和 38年) 10月 26日で、茨城県東海村に建設された動力試験炉である JPDRが初発電を行い成功。

これを記念して毎年 10月 26日は原子力の日となっている。

廃止措置技術の実証のために 1996年 3月に廃止措置完了。

http://www.aec.go.jp/jicst/NC/about/hakusho/hakusho10/siryo2092.htm

11

日本で初の原発

Page 12: フクシマで何が起きたか 原発の未来について考える

東日本大震災発生と原発事故

12

Page 13: フクシマで何が起きたか 原発の未来について考える

13

東日本大震災発生

発生時刻: 2011年 3月 11日 14時 46分

震源位置:三陸沖(北緯 38度 06.2分、東経 142 度51.6分、深さ 24 ㎞)

規模(マグニチュード): 9.0(モーメントマグニ

チュード) 最大震度: 7(宮城県栗原

市)出典:気象庁 HP

Page 14: フクシマで何が起きたか 原発の未来について考える

14

・津波波高11.8m(岩手県大船渡市)・津波浸水高18.3m(岩手県釜石市)・津波遡上高40.032 m(岩手県大船渡市)・福島第一原発の津波浸水高: 14~15ⅿ

遡上高 14.5ⅿ

津波の規模

Page 15: フクシマで何が起きたか 原発の未来について考える

運転開始  1971年3月26日(1号機) 建設費    5000億円以上 立地     福島県双葉郡大熊町 面積     約350万平方メートル(東京

ドーム約75個分)

15

福島第一原子力発電所

Page 16: フクシマで何が起きたか 原発の未来について考える

福島第一原発において発生した事故について

・国会事故調査委員会

・政府事故調査委員会

・民間事故調査委員会

・東電事故調査委員会による4つの委員会によってそれぞれ出された事故調査報告書がある。ほとんどの報告書が津波による電源の喪失を主要因に挙げているが・・・

16

事故の要因

Page 17: フクシマで何が起きたか 原発の未来について考える

・国会事故調査委員会 事故の直接的原因を津波のみに限定することには疑念を呈し、「安全上重要な機器の地震に

よる損傷はないとは確定的には言えない」としている。

17

はたして電源喪失は津波だけの影響なのか・・・

ということは・・・

Page 18: フクシマで何が起きたか 原発の未来について考える

国会事故調が、地震による損傷の可能性を指摘する 6 点の理由。① 平成 18 年の耐震設計審査指針に照らした耐震チェックと耐震補強が未了であったことから、発電所設備が今回の地震動に耐えられない可能性があること② 地震直後に大規模な「冷却材喪失事故」は確認されていないが、小さな配管破断とそれによる炉心損傷や炉心溶融の可能性があること③ 1 号機の非常用交流電源喪失が津波到着前に生じていること

18

原発の地震への備えは万全だったのか?

Page 19: フクシマで何が起きたか 原発の未来について考える

④ 地震発生当時、 1 号機の建屋 4 階の作業員数人が原因は特定できないものの出水を目撃していること⑤ 1 号機の運転員は、地震直後の非常用復水器( IC )操作にあたって、配管の冷却材の漏れを気にしていたこと⑥ 主蒸気逃がし安全弁( SR 弁)が、 2 号機・ 3 号機には開閉記録があるものの、1 号機にはないため、作動しなかった可能性を否定できないこと。

19

Page 20: フクシマで何が起きたか 原発の未来について考える

事故により、原子炉内の水位が下がるなどの理由で冷やされなくなった核燃料が過熱し炉心の燃料棒や制御棒が溶け出すこと。

放射性物質大量漏えいの危機!!20

炉心溶融(メルトダウン)とは

Page 21: フクシマで何が起きたか 原発の未来について考える

21

1号機のトラブルについて

出典:東京電力HP

東電のホームページでは強力な冷却・減圧性能がバッテリー切れのために作動しなかったとある。( 1号機には非常用復水器という装置があった。)それが原因だとしても問題だが、国会事故調査委員の報告書の内容をみると地震の揺れによって電源系にトラブルがあったのでは?と思えてくる。

Page 22: フクシマで何が起きたか 原発の未来について考える

22

原子炉の圧力が上昇した場合に、原子炉の蒸気を導いて水に戻し、炉内の圧力を下げるための装置であり、福島第一原子力発電所では、1号機のみに設置されていたもので

ある。

非常用復水器とは?

Page 23: フクシマで何が起きたか 原発の未来について考える

大災害への対策において、政府と東電の両方に大きな問題があったことは東電事故調以外の 3 つの報告書に共通している認識。

東電事故調も事故前の備えが結果的に不十分であったことは認めている。

23

ずさんな危機管理が大事故を招いた要因なのでは

ないか?

Page 24: フクシマで何が起きたか 原発の未来について考える

24

国会事故調は、必要な規制や安全対策が先送りされ、「地震にも津波にも耐えられる保証がない脆弱な状態」で、福島第一原子力発電所は東日本大震災を迎えたと推定している。

Page 25: フクシマで何が起きたか 原発の未来について考える

福島第一原発の危険性については事故の前から国政の場で指摘されることがあった。

地震と津波の影響で電源と冷却機能が失われる可能性を2006年3月1日の衆議院予算委員会で吉井英勝議員(日本共産党)が指摘。

25

Page 26: フクシマで何が起きたか 原発の未来について考える

「大規模地震によってバックアップ電源の送電系統が破壊されるということがあり、循環させるポンプ機能そのものが失われるということも考えなきゃいけない。その場合には、炉心溶融という心配もでてくることをきちんと頭に置いた対策をどう組み立てるのか」と指摘している。

事故の二年前には IAEAから日本の原発の安全対策に対する警告があった。

26

Page 27: フクシマで何が起きたか 原発の未来について考える

電気会社、政府、地元自治体などはもちろん原発を稼働させることのリスクは意識していたはずであるが。各々認識の甘さ、想定をはるかに超えるレベルの災害により事故は起きてしまった。

しかし原発を運営する上において危機管理のためには第 2、第 3の予備の対策、最悪の事態に備えた対策をしなければならないが、今回の事故ではそういった面の意識が希薄だったのではと調べていて感じた。

27

原発のリスクに対する意識

Page 28: フクシマで何が起きたか 原発の未来について考える

28

福島原発の事故後

・平成23年3月11日同時に福島第一原子力発電所では、地震によって送電線等からの電力供給などの外部電源が失われた。

運転中の原子炉はすべて自動停止。

※原子炉の自動停止機能は、一切の電源を要することなく作動する。

福島第一原子力発電所 1号機から3号機、

福島第二原子力発電所 1号機から4号機、                                      が運転中。

・同日14時46分

東北地方太平洋沖地震が発生。

非常用ディーゼル発電機は起動したため、原子炉の安全維持に必要な電源が確保された。また、福島第二原子力発電所では、外部電源の喪失には至らなかった。

Page 29: フクシマで何が起きたか 原発の未来について考える

29

福島原発の事故後

⇒ 6号機以外

運転中の非常用ディーゼル発電機が停止。全交流電源喪失の状態となる。交流電源を用いる全ての冷却機能が失われた。

⇒ 1号機から3号機

直流電源喪失が起こる。交流電源を用いない炉心冷却機能までも順次停止していった。

第一原子力発電所では、多くの電源盤が被水・浸水した。

冷却用海水ポンプが冠水。» 原子炉内部に残る熱を海水へ逃がすための機能を喪失した。

・地震直後の大きな津波の影響

Page 30: フクシマで何が起きたか 原発の未来について考える

30

福島原発の事故後

《結果》・1号機から3号機原子炉圧力容器への注水ができない事態が一定時間継続した。

各号機の燃料が水に覆われずに露出。燃料棒被覆管が損傷し、燃料棒内にあった放射性物質が原子炉圧力容器内に放出される。

・冷却機能喪失を請けて

消防車を用いた消火系ラインによる淡水及び海水の代替注水に努めた。

燃料棒被覆管と水蒸気の化学反応により大量の水素が発生。

Page 31: フクシマで何が起きたか 原発の未来について考える

31

福島原発の事故後

放射性物質や水素が原子炉圧力容器から蒸気とともに格納容器内へ主蒸気を逃がし安全弁等を経て放出される。

・1号機と3号機ベント操作によって格納容器の圧力低下が確認された。

※ 格納容器破損によって放射性物質の放出をコントロールできない事態を招き被害を拡大させることを避けることを目的に、格納容器内の気体を大気放出する操作。

そこで、格納容器ベント 1    を行うことを数回試みた…。

・冷却機能喪失を請けて

⇒ 格納容器の内圧が上昇した。・2号機ベントによる格納容器の圧力低下は確認されていない。

Page 32: フクシマで何が起きたか 原発の未来について考える

32

福島原発の事故後

・1号機と3号機

格納容器から水素が漏えいしたことが原因と考えられる爆発が発生。

⇒ それぞれの原子炉建屋上部が破壊。

・4号機

燃料はすべて使用済燃料プールへ。

燃料の冠水が維持されていたが、3号機ベントから流入してきた水素によって原子炉建屋上部で爆発が発生した。

Page 33: フクシマで何が起きたか 原発の未来について考える

33

福島原発の事故後

・5号機と6号機

6号機の非常用D/Gが機能を維持していた。

・福島第二原子力発電所

外部電源が機能を維持できた。

津波の規模が福島第一原子力発電所ほど大きくなかったことなど、非常用海水系の仮設電源の復旧などの迅速な対応。・5号機、6号機ともに炉心への注水。・原子炉内部に残った熱を海水へ逃がすための機能を回復することで冷温停止に成功。⇒ 全号機冷温停止に成功している。

⇒ その電力を5号機へ融通する。

Page 34: フクシマで何が起きたか 原発の未来について考える

34

福島原発の事故後

・1号機から3号機

事故が連鎖的に拡大。甚大な原子力災害に発展した。

・福島第一原子力発電所

各号機及び共用の使用済燃料プールは事故対応が良く迅速であった。

注水及び冷却機能を回復することができた。

Page 35: フクシマで何が起きたか 原発の未来について考える

福島原発事故における放射能被害・風評被害について

35

Page 36: フクシマで何が起きたか 原発の未来について考える

東日本大震災における被害額

36

Page 37: フクシマで何が起きたか 原発の未来について考える

農業・水産業への影響

37

東日本大震災における農林水産関係の被害額は2兆 4,268 億円(農林業関係が1兆1631億円、水産業関係が1兆2637億円)

原発事故の影響のため輸出が減り、風評被害もあり多額の被害を出した。

Page 38: フクシマで何が起きたか 原発の未来について考える

漁業の被害

・放射能により海面漁業試験操業の実施にとどまり養殖業も再開されていない。

・福島県沖における操業自粛は継続しており、 漁業者は働くことができていない。

・一部魚種について出荷制限が継続しており、海から水揚げできないという状況が続いている。

38

Page 39: フクシマで何が起きたか 原発の未来について考える

農業の被害・出荷にあたって安全性を充分確認しても、福島県産というだけで消費を敬遠されてしまう。・海外への輸入停止や放射性物質の検査証明書等の提出要求、輸入国による検査の強化といった輸入規則措置がとられて輸出額の低下。

・価格面では一部の野菜や果物が“安値圏”で推移。 全体的に震災直後の大幅な価格下落。

39

Page 40: フクシマで何が起きたか 原発の未来について考える

東日本大震災がれき問題

・東日本大震災の被災地(岩手・宮城・福島の3県)では合計約 2,250万トンのがれきが発生した。

岩手県では11年分 宮城県では19年分

・阪神淡路大震災の時には兵庫県で約1,450万トンのがれきが発生した。           40

Page 41: フクシマで何が起きたか 原発の未来について考える

・日本政府は被災 3県以外の都道府県で震災がれきを代わりに処理する「広域処理」の提案を打ち出し、各地方自治体に協力を要請した。原発の事故による放射能汚染により、震災がれきは放射能を帯びている可能性があり、これを問題視して震災がれきの「広域処理」に対する反発が各地で起こった。

東日本大震災がれき問題41

Page 42: フクシマで何が起きたか 原発の未来について考える

沿岸市町村の災害廃棄物処理の進捗状況 ( 被災三県・県ベース・ 2013年 3月 31日時点 )(万トン )42

Page 43: フクシマで何が起きたか 原発の未来について考える

・被災県内のみでは迅速な処理ができず、県外での広域処理が欠かせない。

広域処理問題

43

がれきから微量の放射能が検出された為広域処理できず復興できていない。

Page 44: フクシマで何が起きたか 原発の未来について考える

今後の課題・「放射能は拡散させない」という原則があり、住民の不安や問題点を払拭し震災がれきの広域処理をいかにどう認めてもらうか。

・広域処理以外の処理や利活用の工程とその安全性確保を、これまで以上に拡大・推進すること。

44

・日本全国に大量の瓦礫を運び回ることは、余分なエネルギーを使い、 CO2を余分に排出し、処理コストも割高となる問題点がある。

Page 45: フクシマで何が起きたか 原発の未来について考える

45

原発事故が起きてしまうと・・・・放射性物質が広範囲にばら撒かれる

・汚染により住み慣れた故郷からの避難を強いられ、自然も壊される

・原発を廃炉にするのに何十年とかかる

Page 46: フクシマで何が起きたか 原発の未来について考える

私たちが選択すべきエネルギーはなにか?

・太陽光、風力、地熱などの再生可能なエネルギーを利用した発電。

46

経済効率性だけを求めず、環境や地球の未来を考えたエネルギーを改めて見直す時期なのです。

Page 47: フクシマで何が起きたか 原発の未来について考える

ご清聴いただきありがとうございまし

た。

47

Page 48: フクシマで何が起きたか 原発の未来について考える

http://www.tohoku-epco.co.jp/electr/genshi/shiryo/system/03.html http://www.tohoku-epco.co.jp/electr/genshi/gaiyo/2_c_11.html http://www.tohoku-epco.co.jp/electr/genshi/shiryo/system/04.html http://www9.plala.or.jp/hirakawa-nen-h/denki.html http://moon-rabbit.livedoor.biz/archives/4231451.html http://ja.wikipedia.org/wiki/%E6%97%A5%E6%9C%AC%E3%81%AE

%E5%8E%9F%E5%AD%90%E5%8A%9B%E7%99%BA%E9%9B%BB%E6%89%80#.E6.AD.B4.E5.8F.B2

http://www.geocities.jp/tobosaku/kouza/sikumi.html http://www.snm.co.jp/j/recruit/lecture/turbines.html

48

参考資料