56

Click here to load reader

第六章 化学平衡常数

Embed Size (px)

DESCRIPTION

第六章 化学平衡常数. [ 基本要求 ] 1 .掌握化学平衡和平衡常数的概念。 2 .掌握标准平衡常数和吉布斯能变的关系;熟悉多重平衡规则。 3. 熟练运用 K 进行有关的计算。 4 .掌握浓度、压力、温度对化学平衡移动的影响 。. 6-1 化学平衡状态 一、 化学反应的可逆性和可逆反应 反应的 可逆性 :一定条件下,一个反应可以从左向右进行,又可以从右向左进行的性质。 正反应 :从左向右进行的反应。 逆反应 :从右向左进行的反应。 1 、 可逆反应 :在一定条件下,既能向正反应方向进行又能向逆反应方向进行的反应。. 可逆反应的 定性描述 : - PowerPoint PPT Presentation

Citation preview

Page 1: 第六章    化学平衡常数

第六章 化学平衡常数第六章 化学平衡常数

[ 基本要求 ] 1 .掌握化学平衡和平衡常数的概念。 2 .掌握标准平衡常数和吉布斯能变的关系;熟悉多重平衡规则。3. 熟练运用 K 进行有关的计算。 4 .掌握浓度、压力、温度对化学平衡移动的影响 。

Page 2: 第六章    化学平衡常数

6-1 化学平衡状态

一、化学反应的可逆性和可逆反应

反应的可逆性:一定条件下,一个反应可以从左向右进行,又可以从右向左进行的性质。

正反应:从左向右进行的反应。

逆反应:从右向左进行的反应。

1 、 可逆反应:在一定条件下,既能向正反应方向进行又能向逆反应方向进行的反应。

Page 3: 第六章    化学平衡常数

可逆反应的定性描述:可逆程度:逆反应进行的程度。

● 绝大多数化学反应都有一定可逆性

CO(g) + H2O(g) ⇋ CO2(g) + H2(g) ( 水煤气 )

N2(g) + 3 H2(g) ⇋ 2 NH3(g) 可逆性显著

Ag+ (aq) + Cl- (aq) ⇋ AgCl (s) 可逆程度小

● 只有极少数反应是“不可逆的”(单向反应)

2 KClO3 (s) = 2 KCl(s) + 3 O2(g)

Page 4: 第六章    化学平衡常数

2 、可逆反应的特征(1 )可逆程度大小取决于反应本性 不同反应可逆程度不同。

( 2 )同一反应在不同条件下可逆程度也不同。

如: 2H2 + O2 = 2H2O

在 873-1273K 时,正反应占绝对优势,可逆程度很小;但在 4273-5273K 时,逆反应占绝对优势,可逆程度很大。

Page 5: 第六章    化学平衡常数

( 3 )可逆反应的进行,必然导致化学平衡状态的实现。

二、化学平衡及特征

1 、化学平衡

化学平衡状态是一个热力学概念。

封闭体系,等温条件:

Page 6: 第六章    化学平衡常数

反应开始阶段 A + B → C + D

开始的自由能 GA GB 0 0

自由能递降

自由能递降

自由能递增

自由能递增

反应中途的自由能 GA’ + GB’ > GC’ + GD’

降低

降低

递增

递增

达平衡的自由能 GA” + GB” = GC” + GD”

反应平衡阶段 A + B ⇋ C + D

达平衡以前 △ G= ∑G’ (产物) -∑G’ (反应物)

Page 7: 第六章    化学平衡常数

= ( G’C+G’D ) - ( G’A+G’B )

△G < 0 ,所以反应将继续进行。达平衡时,△ G= ∑G” (产物) -∑G” (反应物)

= ( G”C+G”D ) - ( G”A+G”B )

=0

< 0

即 △ G=0 ,这是达平衡的条件。

Page 8: 第六章    化学平衡常数

化学平衡:反应物和产物的自由能不在随时间变化的这种状态,叫做此反应的化学平衡。或化学平衡是反应向正逆两个方向进行的“推动力”都等于零的状态。△rG=0 时达到平衡

或可逆反应在一定条件下,正反应速率等于逆反应速率时,反应体系所处的状态,称为“化学平衡”。

2 、化学平衡特征 :

Page 9: 第六章    化学平衡常数

⑴ 、化学平衡建立的前提: 封闭体系、等温条件,可逆反应

⑵ 、达到平衡条件 : △ rG=0

(正逆反应速度相等)

⑶ 、平衡标志:平衡状态是封闭系统中可逆反应进行的最大限度。产物和反应物浓度不再随时间变化 ( 保持定值 ) 时达到平衡 .

⑷ 、平衡的实质: 化学平衡是有条件的动态平衡

Page 10: 第六章    化学平衡常数

三、 勒夏特列原理

勒夏特列(Le Chatelier H,1850-1936) 法国无机化学家,巴黎

大学教授 .

内容: 如果改变平衡系统的条件之一(浓度、压力和温度),平衡就向能减弱这种改变的方向移动 .

a. Le Chatelier 原理适用于处于平衡状态的体系,也适用于相平衡体系 .

注意:

Page 11: 第六章    化学平衡常数

b 、对条件的限制 . Le Chatelier 原理对维持化学平衡状态的因素的改变才是有效的 .若改变的是不维持化学平衡状态的因素 ,无效 .

c 、讨论内容是平衡被破坏时反应自发进行的方向 ( 化学平衡的移动 ) 。

6-2 平衡常数

一、化学平衡常数 :

1. 定义:

Page 12: 第六章    化学平衡常数

在一定温度下,可逆反应达到平衡时,产物浓度以其化学计量系数为次方的乘积与反应物浓度以其化学计量系数为次方的乘积之比为一常数,称为“平衡常数”。

符号: K 这一规律称为“化学平衡定律”

可逆反应 aA bB dD eE

在一定温度下达平衡时

[ ] [ ]

[ ] [ ]

d e

a b

D EK

A B

Page 13: 第六章    化学平衡常数

2 、影响 K 的因素

( 1 ) K与反应物或产物的起始浓度无关。 ( 2 ) K与催化剂无关。

( 3 )平衡常数只是温度的函数 。注意:平衡常数不涉及时间概念,不涉及反应速率。

2SO2(g) + O2(g) = 2SO3(g) K =3.6 1024 (298K)

K 很大,但反应速率很小

Page 14: 第六章    化学平衡常数

二、书写 K 关系式时应注意:

2 、平衡常数的书写形式和数值与方程式的书写形式有关 。

1 、 K式中的物质浓度或分压都是平衡时的值。

例: 673K N2(g) + 3 H2(g) = 2 NH3(g) 2

1 231 3

2 2

[ ]0.507( )

[ ][ ]c

NHK mol L

N H

½ N2(g) + 3/2 H2(g) = NH3(g)

312 2

1 132

2 2

[ ]0.712( )

[ ] [ ]C

NHK mol L

N H

Page 15: 第六章    化学平衡常数

2NH3(g)=N2{g)+3H2(g)

31 22 2

3 23

[ ][ ]1.97( )

[ ]c

N HK mol L

NH

2 11 2 3c c cK K K

1KK

逆正

3 、反应中纯固体、纯液体以及稀溶液中的水不写在平衡常数表达式中

Page 16: 第六章    化学平衡常数

Cr2O72- + H2O = 2 CrO42- + 2 H+

K = ([CrO42-]2 [H+]2) / [Cr2O72- ]

例: 2HgO(s) =2Hg(l) +O2(g)

Kc=[O2] Kp=PO2

三、各种平衡常数

但非水溶剂中进行的反应 C2H5OH + CH3COOH = CH3COOC2H5 + H2O

K= [CH3COOC2H5] [H2O]/ ( [ C2H5OH][ CH3COOH] )

Page 17: 第六章    化学平衡常数

1 、标准平衡常数 Kθ (热力学平衡常数)

(1) 化学反应等温式

封闭体系,等温等压条件的反应:

△rGm(T)= △rGmθ(T) +RTlnJ

在一定温度下,反应达平衡时

△rGm(T)=0

此时: △ rGmθ(T) +RTlnJeq=0

△rGmθ(T)= -RTlnJeq

平衡时 Jeq=Kθ

△rGmθ(T)= -RTlnKθ

Page 18: 第六章    化学平衡常数

θ θr mln ( ) /K G T RT

例:已知 ΔfG θ(NH3,g)= -16.45KJ·mol-1

求 N2(g) + 3 H2(g) = 2 NH3(g) 在 298K 时的 K θ 值 .

解 : △rGmθ=2 ΔfG θ(NH3,g)= 2×(-16.45)

=-32.98KJ·mol-1

lnKθ=-(-32.98) ×103/8.314×298

Kθ=5.83×105

Page 19: 第六章    化学平衡常数

D Ej

i

A B

d eC CC CC

c a bC eq C CC C eq

K

气相反应

液相反应

气 -液反应

J=[∏(pi/pθ)υi ×∏(ci/cθ)υj]eq

D Ei

i

A B

d ep pp pp

P a bp eq p pp p

eq

K

( 2 ) Kθ 的 物理意义:

Page 20: 第六章    化学平衡常数

注意:

a 、 Kθ 随温度而变; b、 Kθ表达式中没有固体、溶剂等浓度不发生变化的物质 (纯液体 ) 。c、 Kθ量纲等于 1(没有单位 ) 。d、反应的 Kθ越大,正反应进行趋势越大。 当反应的计量系数相同时, Kθ 值较大的反应有较大的反应趋势。 例 [6-1] [6-2] P249

Page 21: 第六章    化学平衡常数

2 、实验平衡常数(经验平衡常数)

(1) 概念:实验得到的平衡常数。

例见书 251页表 6-1 。

符号及表达式:

气体反应: Kc=∏(ci)υi

Kp=∏(pi)υi

溶液反应: Kc=∏(ci)υi

Page 22: 第六章    化学平衡常数

(2)Kc与Kp

的关系及单位:

A 、关系 :可逆反应(设为理想气体):a A(g) + b B(g) ⇋ d D(g) + e E(g)

在一定温度下达平衡时

Kc = ∏(ci)υi = [D]d[E]e/([A]a[B]b)

Kp= ∏(pi)υi = PDd.PEe/(PA

a.PBb)

Pi = (ni/V)RT=CiRT 代入 Kp表达式

Page 23: 第六章    化学平衡常数

Kp = (pdDpeE)/(pa

ApbB) = {([D]d[E]e)/([A]a[B]b)}(RT)(d+e)-(a+b)

= Kc(RT)(d+e)-(a+b) = Kc (RT)Συ

Kp = ∏(ciRT)υi=(RT)Συ∏(ci)υi

=Kc (RT)Συ

例 H2 ( g)+I2(g)=2HI(g)

Kp = Kc (RT)0 = Kc

Page 24: 第六章    化学平衡常数

例 N2H4(l)=N2(g)+2H2(g)

Kp = Kc (RT)3-0= Kc (RT)3 B、 Kc与 Kp 的单位:

Kc : (mol.L-1)∑υ ; Kp : ( 压力单位 )∑υ Συ=0 时, Kc 、 Kp 无量纲

注意: a 、实验平衡常数 K 的单位由计算导出。

Page 25: 第六章    化学平衡常数

Kp : (atm)∑υ R:0.08206atm ·L·mol-1·K-1

Kp : (Pa)∑υ R: 8314Pa·L·mol-1·K-1

Kc (mol.L-

1)∑υ

例 :已知反应 N2(g) + 3 H2(g) = 2 NH3(g) 在 673K 时的 Kc=0.507,求 Kp 和 Kθ

b、 R取值的单位应与p一致。

Page 26: 第六章    化学平衡常数

解 : Kp=Kc (RT)∑υ

Kp=0.507 (mol.L-1) -2×(0.08206atm·L·mol-1·K-1× 673K)-2

=1.62×10-4atm-2

Kp=0.507 (mol.L-1) -2×(8314Pa·L·mol-1·K-1× 673K)-2

=1.62×10-14Pa-2

或 Kp =1.62×10-4atm-2×(105Pa·atm-

1)-2

=1.62×10-14Pa-2

Page 27: 第六章    化学平衡常数

3 2 22 3

/NH N HP P Pp P P P

K

3

2 2

22

3

2

NH

N H

P

PP

P P

K P

214 2 5

4

1.62 10 10

1.62 10

Pa Pa

C 、同一反应的 Kc 、 Kp与 Kθ换算

故: KPθ=Kp (pθ)-∑υ

Page 28: 第六章    化学平衡常数

同一反应, Kc与 Kcθ 数值相同 ,但

Kc 有单位 . Kp与 Kpθ 可能不同。

Kp与 Kpθ , Pi 以 atm为单位时, Kp

与 Kpθ 数值相同,但 Kp 有单位 ,Kp

θ 无单位 .Kp与 Kp

θ , Pi 以 Pa 为单位时, ∑ υ≠

0, Kp与 Kpθ 数值不相同 .

注意 :

Kc θ= Kc ( C θ ) -∑υ= Kc

Page 29: 第六章    化学平衡常数

3 、 偶联反应的平衡常数

偶联反应:两个化学平衡组合起来,形成一个新的反应。

若 反应 1+ 反应 2= 反应 3

则: △ rG1θ+ △rG2

θ =△rG3θ

把△ rGθ = - RT ln Kθ 代入

得: K1θ× K2

θ= K3θ

若 反应 1- 反应 2= 反应 3

则: △ rG1θ- △rG2

θ =△rG3θ

K3θ= K1

θ/ K2θ

Page 30: 第六章    化学平衡常数

例 . SO2+ ½ O2 = SO3 (1) K1

θ= 2.8 ×1012

NO2 = NO + ½ O2 (2) K2

θ= 6.3×10-7

方程 (1) + (2) : SO2+ NO2 = NO + SO3 Kθ Kθ = K1

θ K2θ = 1.8 ×106

注意:偶联反应并不一定代表反应机理。

两个反应方程式相加(相减)时,所得反应方程式的平衡常数等于原两个反应方程式平衡常数之积(之商)——多重平衡规则。

Page 31: 第六章    化学平衡常数

平衡常数的物理意义:

⊕K 是一定温度下某反应的特征常数

⊕ K 是可逆反应进行程度的标志

⊕K 可用来判断在一定温度下体系达平衡的条件

表示在一定条件下,可逆反应所能进行的极限。

K愈大,反应进行得愈完全 .K 愈小,反应进行得愈不完全 .

通常: K >107 ,正反应单向 ; K <10-7 ,逆反应单向 ; K = 10-7 107 ,可逆反应。

Page 32: 第六章    化学平衡常数

封闭体系,等温等压条件的反应:

△rGm(T)= △rGmθ(T) +RTlnJ

因: △ rGmθ(T)=-RTlnKθ

则:△ rGm(T)= -RTlnKθ+RTlnJ

得:△ rGm(T)= RTln(J/Kθ)

a 、当 J<Kθ ,△ rGm(T)<0 ,正反应自发进行。

b 、当 J>Kθ ,△ rGm(T)>0 ,逆反应自发进行。

c 、当 J=Kθ ,△ rGm(T)=0 ,化学平衡状态。

Page 33: 第六章    化学平衡常数

6-3 浓度对化学平衡的影响

1 、化学平衡的移动

因外界条件改变而使可逆反应从一种平衡状态转变到另一种平衡状态 .

旧的平衡破坏了,又会建立起新的平衡 .

Page 34: 第六章    化学平衡常数

具体方法:增加反应物的浓度或降低 生成物的浓度。

b 、改变浓度使 Jc>Kθ ,平衡向逆反应方向移动。

具体方法:增加生成物的浓度或降低反应物的浓度。

与勒沙特列原理一致。

2 、浓度对化学平衡的影响

可逆反应在封闭体系、等温等压条件下达到平衡时: Jc=Kθ

a 、改变浓度使 Jc<Kθ ,平衡向正反应方向移动。

Page 35: 第六章    化学平衡常数

已知: K =6.72×1024 ,

p(SO3)=1×105Pa , p(SO2)=0.25×105Pa,

p(O2)=0.25×105Pa , 反应向什么方向进行?

J θ

[p(SO3)/p ]2

[p(SO2)/p ]2

[p(O2)/pθ] J=

例:反应 2SO2+O2==2SO3 在 25℃时向什么

方向进行?

Page 36: 第六章    化学平衡常数

例: C2H5OH + CH3COOH = CH3COOC2H

5 + H2O 若起始浓度 c (C2H5OH) = 2.0 mol·L-1, c (CH3COOH ) = 1.0 mol·L-1 ,室温测得经验平衡常数 Kc =4.0, 求平衡时 C2H

5OH 的转化率 α。 解:反应物的平衡转化率

( 反应物起始浓度 - 反应物平衡浓度 )

反应物起始浓度× 100α% =

Page 37: 第六章    化学平衡常数

  C2H5OH + CH3COOH = CH3COOC2H5 + H2O

起始浓度 / 2.0 1.0 0 0

平衡浓度 / 2.0- 1.0-

Kc = 2 / [(2.0- ) (1.0- )] = 4.0

 解方程,得 = 0.845 mol·L-1 C2H5OH 平衡转化率

α% = ( 0.845 / 2.0) × 100 = 42 或: α= ( 0.845 / 2.0) × 100 % = 42 %

Page 38: 第六章    化学平衡常数

若起始浓度改为:

c (C2H5OH) = 2.0 mol·L-1 , c (CH3COOH ) = 2.0 mol·L-1 ,

求同一温度下, C2H5OH 的平衡转化率

同法, α% = 67

计算可知:如果增加一反应( CH3COOH )的浓度,将使平衡向生成物方向移动,其结果:

Page 39: 第六章    化学平衡常数

( 1 )生成物的浓度皆增大

( 2 )增加浓度的那种反应物的浓度将比原平衡浓度大,但比刚加入时浓度小,而另一种反应物浓度将减小

( 3 )增大一种反应物的浓度,这种反应物的转化率降低, 使另一种反应物( C2H5OH )的转化率增大注意:温度不变, Kc 值亦不变。

Page 40: 第六章    化学平衡常数

6-4 压力对化学平衡的影响

1 、分压对化学平衡的影响

由: pi=ciRT 在一定温度下,

pi与 ci成正比。

分压对化学平衡的影响与浓度对化学平衡的影响一致。

2 、总压对化学平衡的影响

分压与总压的关系: pi=xi×p

总压变化时 Kp 不变: Kp=∏(pi)υi

代入: Kp=∏(xi×p)υi

Page 41: 第六章    化学平衡常数

得: Kp=p∑υ×∏(xi)υi

令: Jx= ∏(xi)υi

则: Kp=p∑υ× Jx

a 、当∑ υ=0 时,表明反应前后气体分子总数没有变化。

此时: Kp=Jx

表明压力的改变不会移动平衡。

b 、当∑ υ<0 时,表明反应前后气体分子总数减小。

总压减小 (p∑υ 增大 ) , Jx 将减小,平衡向逆方向移动。

Page 42: 第六章    化学平衡常数

总压增大 (p∑υ 减小 ) , Jx 将增大,平衡向正方向移动。

结论:增加总压,平衡向气体分子数减小的方向移动;减小压力,平衡向气体分子数增加的方向移动。

∑υ>0 时的讨论结论相同。例: N2O4按下列方程离解为 NO2 , N2O4(g)=2NO2(g)

实验测定 325K , 105Pa 时 ,Kp=1.33,有 50﹪的 N2O4离解为 NO2,计算此温度下 ,在 2×105Pa,N2O4 的离解百分率 .

Page 43: 第六章    化学平衡常数

解 :设增加总压时 ,N2O4 的离解百分率为α N2O4(g)= 2NO2(g)

起始 Pi 0平衡 Pi(1-α) 2Piα

Pi(1-α) + 2Piα=P

∴ Pi=P/(1+α)

2

2

1NOp P

2 4

1

1N Op P

Page 44: 第六章    化学平衡常数

11.33 1pK K p atm atm

=1.33

525

52 4

5

2 22 2 10

1 10

1 2 101 10

1.33

NO

N O

P

P

P

P

α=0.378

Page 45: 第六章    化学平衡常数

例 6-6(书 255页 ) :

2NO2(g)=N2O4(g)

1 、由: △ rGmθ(T)=-RTlnKθ

求出 298.15K 时: Kθ=6.74

由: Kθ=[p(N2O4)/pθ]×[p(NO2)/pθ]-2

得: [p(N2O4)]×[p(NO2)]-2=6.74×10-5Pa-1

考虑总压等于标准压力:

p(N2O4)+p(NO2)= 1.0×105Pa

解得: p(N2O4)=68.2kPa ; c=0.0275mol.L-

1

p(NO2)=31.8kPa ; c=0.0128mol.L-1

Page 46: 第六章    化学平衡常数

2 、体积减小一半,总压增大一 倍,平衡向正反应方向移动。

2NO2(g)=N2O4(g)

起始分压 /kPa : 63.6 136.4

反应掉 x /kPa : -2x x

新平衡分压 /kPa : 63.6-2x 136.4+x

代入: Kθ=[p(N2O4)/pθ]×[p(NO2)/pθ]-2

得: Kθ=[(136.4+x)/pθ]×[(63.6-2x)/pθ]-2

解得: x=8.62kPa 得: p(N2O4)=145kPa ; c=0.058mol.L-1

p(NO2)=46.36kPa ; c=0.019mol.L-1

Page 47: 第六章    化学平衡常数

3 、 惰性气体的影响

▲ 对恒温恒压下已达到平衡的反应,引入惰性气体,总压不变,体积必定增大 ,反应物和生成物分压减小,如果 Σi≠0 ,平衡向气体分子数增大的方向移动 . (Σ i =0 ,平衡不移动 .)

▲ 对恒温恒容下已达到平衡的反应,引入惰性气体,反应体系的总压增大,但反应物和生成物 pB 不变,即 Jp= Kp

θ ,因此平衡不移动 .

Page 48: 第六章    化学平衡常数

6-5 温度对化学平衡的影响

由: △ rGmθ(T)=-RTlnKθ

△rGmθ(T)=△rHm

θ(298)-T△rSmθ(298)

得: lnKθ=△rSmθ(298)/R-△rHm

θ(298)/(RT)

T1 : lnK1θ=△rSm

θ(298)/R-△rHmθ(298)/(RT1)

T2 : lnK2θ=△ rSm

θ(298)/R-△ rHmθ(298)/(RT2)

两式相减得:

2 2 1

1 1 2

ln ( )r mK H T T

K R TT

Page 49: 第六章    化学平衡常数

可见,对于吸热反应,温度升高, K 增大;对于放热反应,温度升高,K 减小 .

分析 :① △rHθ<0 放热反应,平衡时 ,J=K1θ,

若升温 T2>T1 , K2θ<K1

θ 则 J > K 2θ, △rGmθ

> 0 平衡逆向移动 ,即向吸热方向移动 . ② △rH θ>0 吸热反应,平衡时 ,J=K1

θ, 若升温 T2>T1 , K2

θ>K1θ 则 J < K2

θ, △rGmθ

< 0,平衡正方向移动 ,即向吸热方向移动 .           

Page 50: 第六章    化学平衡常数

例 6-7(P 258)

例 6-8( P259) :

白磷: P4(s)=P4(g)

查表计算:△ rHmθ(298)=58.91kJ.mol-1

△rSmθ(298)=115.62J.mol-1.K-1

计算:△ rGmθ(298)=24.43kJ.mol-1

由: △ rGmθ(T)=-RTlnKθ

得: Kθ(298) =5.25×10-5

由: Kθ(298) =p(P4)/pθ

得: p(P4) =5.25Pa

Page 51: 第六章    化学平衡常数

反应 NO2 ( g ) +NO ( g ) =N2O3 ( g )的 △rHmθ=-40.5kJ.mol-1

下列因素中可使平衡逆向移动的是( )

A 、 T一定, V一定,通入 Ar

B、 T一定, V变小

C 、 V一定, P一定, T升高

D 、 T一定, P一定通入 Ar答案: C 、 D

Page 52: 第六章    化学平衡常数

化学平衡原理在生产中的应用

一、确定生产条件的一般原则1. 浓度的确定①尽可能提高反应物浓度 . 气体 : 压缩气体 ;固体 :粉碎 ,配合搅拌

②有几种反应物参与反应时 ,其中过量一种反应物 .

A廉价易得 , 如二氧化硫转化为三氧化硫 ,过量空气 ;

B易从产物中分离出来 , 再循环使用 , 如合成氨 .

过量太多 ,会使另一种浓度变得太小 , 影响反应速度和产量 .

CO + H2O = CO2+ H2 (H2O过量约 4倍 )

CO2 + NH3 = NH2CONH2+ H2O (NH3过量约一倍 )

Page 53: 第六章    化学平衡常数

③如果可能 , 最好把产物从反应体系中及时分离出 .

3H2 + N2 = NH3 CaCO3=CaO+CO2

2. 压力的确定

①气体分子数减少反应 ,采用高压 (考虑能耗 )

A 减少体积 (采用高压泵 ) B加入惰气 ( 如氮气 )

合成尿素 20260KPa 油脂氢化 40050-10130KPa

②气体分子数不变的反应 ,采用加压 (考虑到速度及设备 )

CO + H2O = CO2+ H2 2530KPa

Page 54: 第六章    化学平衡常数

3. 温度的确定①吸热反应 :采用高温 (考虑能耗 )

②放热反应 :先高温 , 再适当降温 (兼顾速度和转化率 )

CO + H2O = CO2+ H2 先 773-793k转化率 80%

再 683-703k转化率 >96%

4.     选用高活性催化剂 选用原则 :活性高 ,价廉 , 不易中毒 ,易再生 .

Page 55: 第六章    化学平衡常数

1.硫酸工业 SO2 +1/2 O2 = SO3

①空气过量 2-3倍SO2:7% O2:11%( N2:82%) 多次转化 ,多次吸收 .②V2O5催化剂 ( 速度增大 约一亿倍 )

③开始 T=850K 后 700K④采用常压

二、几个工业生产实例

Page 56: 第六章    化学平衡常数

2.合成氨生产 N2 +3 H2 =2NH3

① H2:N2 =3:1 及时分离氨

②673k-773k③15195-20260KPa④铁触媒

作业 (260) : 4 、 5、 6、 7、 8、9、 10 、 17、 22 、 23