165

កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

Embed Size (px)

DESCRIPTION

សៀវភៅគណិតវិទ្យា ដោនឡូត

Citation preview

Page 1: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់
Page 2: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

0 1

1

x

y

Page 3: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

- i -

គណះកមម ករនពន្ឋិ នង េរៀបេរៀងិ

េ ក លម ផលគនឹ ុ

េ ក ែសន ពសដ្ឋិ ិ

គណះកមម ករ្រតួតពនតយបេចចកេទសិ ិ

េ ក លម ឆនុឹ េ ក អងុ សំ ងឹ

េ ក្រស ទយុ រី ី េ ក ទតយ េម៉ងិ

េ ក នន ់សខុ េ ក ្រពម សនុតយឹ ិ

គណះកមម ករ្រតួតពនយអកខ វរុទ្ឋិ ិ

េ ក លម មគកសរឹ ិ ិ

ករយកំុពយទ័រិ ូ រចនទព័ំរ នង ្រកបិ

េ ក អងុ សំ ងឹ េ ក ្រពំ ម៉

កញញ ល គុ ្ណ កី

Page 4: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

- ii -

រមភកថ

sYsþImitþGñksikSa CaTIemRtI ! ! esovePA កំែណលំ ត់គណតវិទយិ ថន ក់ទី12 kMritx<s;EdleyIgxJMú)an eroberogenH rYmmanR)aMCMBUkFM² Edl)andkRsg;ecjBIesovePAKNitviTüa fñak;TI12kMritx<s; rbs;RksYgGb;rM yuvCn nigkILa . kñúgCMBUknImYy²eyIgxJMú)ansegçbemeron nig dkRsg;lMhat;kñúgemeronénCMBUk nImYy²mkeFIVdMeNaHRsayy:agek,aHk,ay EdlGacCaCMnYys μartIdl;GñksikSa kñúgRKb;mCÆdæan . eTaHCay:agNak¾eday karbkRsaynUvral;lMhat;kñúgesovePA enHvaminl¥hYseKhYsÉg TaMgRsugenaHeT . kMhusqÁgnana TaMgbec©keTs nig GkçraviruTæR)akdCaekItmanedayGectna BMuxaneLIy GaRs½yehtuenH eyIgxJMúrg;caMCanic©nUvmtiriHKn;EbbsßabnaBIsMNak; GñksikSakñúgRKb;mCÆdæan edIm,IEktRmUvesovePAenH[kan;EtmansuRkitüPaB EfmeTot . CaTIbBa©b; eyIgxMJúGñkeroberog sUmCUnBrdl;GñksikSaTaMgGs; TTYl)aneCaKC½ykñúgCIvit nig mansuxPaBl¥ . )at;dMbgéf¶TI 8 Ex ]sPa qñaM 2010 Gñkeroberog lwm plÁún

Page 5: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

- iii -

matikaerOg

TMB½r CMBUkTI1 lImIténsVIút 01 CMBUkTI2 Gnuvtþn_edrIevénGnuKmn_ 27 CMBUkTI3 emeronTI1 GnuKmn_ GsniTan 53 emeronTI2 GnuKmn_RtIekaNmaRtcRmuH 65 CMBUkTI4 emeronTI1 GaMgetRkalkMNt; 83 emeronTI2 maDsUlId nig RbEvgFñÚ 96 CMBUkTI5 emeronTI1 smIkarDIepr:g;EsüllMdab;TI1 115 emeronTI2 smIkarDIepr:g;EsüúllIenEG‘lMdab;TI2 136

Page 6: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

CMBUkTI1

emeronsegçb lImIténsVúIt

RbmaNviFIelIlImIt eKmansVIút nig Edlman )a( n )b( n Malim nn

=+∞→

nig eK)an Nblim nn=

+∞→

k> M.kkalim nn=

+∞→

x> NM)ba(lim,NM)ba(lim nnnnnn−=−+=+

+∞→+∞→

K> N.M)ba(lim nnn=

+∞→

ebI enaH 0N ≠NM

balim

n

nn

=+∞→

lImItsVIútFrNImaRtGnnþ k>ebI enaH ehIy CasVI1r > +∞=

+∞→

n

nrlim nr ú útrIkeTArk ∞+

x>ebI enaH CasIVútefrehIy . 1r = )r( n 1rlim n

n=

+∞→

K>ebI enaH CasIVútefrehIy . 0r = )r( n 0rlim n

n=

+∞→

X>ebI enaHsIVú CasIVútqøas; ehIykalNa 1r −≤ )r( n +∞→n

- 1 -

Page 7: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

eKminGackMNt;lImItén )aneT . )r( n

sVIútFrNImaRtGnnþEdlrYm ³ sVIút smmUl )r( n 1r1 ≤≤−

es‘rIrYm nig es‘rIrIk ³ k-ebIes‘rI ∑

∞ Caes‘rIrYmenaH =1n

n )a( 0alim nn=

+∞→

x-ebIsIVút minrYmrk 0 eTenaH )a( n ∑∞

=1nn )a( Caes‘rIrIk .

PaBrYmnigrIkénes‘rIFrNImaRtGnnþ ³ RKb;es‘rIFrNImaRtGnnþ ...ar....ararara 1n32 ++++++ − Edl Caes‘rIrYm b¤ rIkeTAtamkrNIdUcxageRkam ³ 0a ≠

k-ebI 1|r| < enaHes‘rIrYmeTArk r1

a−

. x-ebI 1|r| ≥ enaHes‘rIrIk .

- 2 -

Page 8: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

lMhat; !>etIsVIút EdlmantYTUeTAdUcxageRkam CasVIútrYm b¤ rIk ? )U( n

k> x>1n5n3U 2n ++=

5n2nnU 2

2

n ++

=

K> nn 5n2sinU = X>

5nn3

3nn2U 2

3

n ++

+=

g>1nnsinnU 2n +

= c>n

4n32Un +−=

@>KNnalImIténsVIútxageRkam k>

1nn81n3nlim 2

2

n +−−+

+∞→ x>

1nnnnn5lim 2

23

n −+−+

+∞→

K>( )n

n3

n 1n)1(n5lim

−+−+

+∞→ X>

ncosn5nsinnlim 2

2

n π++

+∞→

g> c>)ncosn(lim 22

nπ−

+∞→( )[ ]3n3

nn1n5lim −+−

+∞→

#> KNnalImIténsVIútxageRkam k> ( )n1nlim

n−+

+∞→ x> ( )n3nnlim

n−−

+∞→

K> ( )11nnlim 2

n−+

+∞→

X> ( ) ⎟⎠

⎞⎜⎝

⎛+−

−++∞→3

n2

!n!1n!nlim

n .

- 3 -

Page 9: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

$>eKmansVIútEdlkMnt;cMeBaHRKb; INn∈ mantYTUeTAdUcxageRkam³

!n2V,

2nU

n

nn

3

n == Edl 1...)1n(n!n ××−= k>KNna

n

1nn U

Ulim +

+∞→ nig

n

1nn V

Vlim +

+∞→

x>KNna 3

3n

n n!nn2lim

++

+∞→

%>KNnalImIténsVIút ( )na EdleKsÁal;tYdUcxageRkam³ k> 3a

21a,2a n1n1 +== +

x> 5a2a,3a n1n1 −== + K>

34a

31a,1a n1n1 +== + .

^>Binitües‘rIxageRkamenH etICaes‘rIrIk rW rYm? k>∑

=⎟⎠⎞

⎜⎝⎛

0n

n

23.3 x> ( )∑

=0n

n055.11000

K>∑∞

= −+

1n3 1n2

nn X>∑∞

=−

+1n

1n

n

212

g> ...12881

3227

89

232 ++++ c> ( )∑

=−−+

1n1n21n2

- 4 -

Page 10: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

- 5 -

&>rkplbUkénes‘rIxageRkam³ k> ...001.001.01.01 ++++ x>∑

= −1n2 1n42

K> ( )( )∑∞

= +−1n 1n21n21 X>∑

=⎟⎠⎞

⎜⎝⎛ π

0n

n

3cos2

g> ( )n

n

1n 415 −

∑∞

= c> ...

32

32

32 32

+⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛+

*>KNna k> ⎟

⎠⎞

⎜⎝⎛ −⎟

⎠⎞

⎜⎝⎛ −

+∞→ 22n n11...

211lim

x> ⎟⎟⎠

⎞⎜⎜⎝

+++

++

++∞→ nnn...

2nn

1nnlim

444n

!@>KNna ( ) ( ) ( ) ( )[ ]1nn1n222

nqqq...qqq1qlim −−

+∞→−++−+−

Edl 21

2q = . (> eK[sVIút ( )na kMNt;eday nn q2

1a+

= Edl . 1q −≠

sikSalImIténsVIút ( )na kalNa +∞→n . !0>cMeBaHRKb; eKman INn∈

( )( ) ( )( )∑= ++

=+−

++×

=n

0pn 3p21p2

21n21n2

2...53

231

2S

Page 11: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

- 6 -

k>KNna CaGnuKmn_én n edayeRbI nS ( )( )3p21p22

++

CaTRmg; ( ) ( )3p2b

1p2a

++

+.

x>KNna . nnSlim

+∞→

!!>eKmanes‘rIGnnþmYy

( ) ( )...

1r

r...1r

r1r

rr 1n2

2

22

2

2

22 +

+++

++

++ − bgðajfaes‘rIGnnþ

enaHrYmcMeBaHRKb;témø r . !@>kMNt;es‘rIxageRkam etIes‘rImYyNarYm mYyNarIk? ebICaes‘rIrYm cUrrkplbUk. k>∑

=⎟⎠⎞

⎜⎝⎛ π

1n

n

3cos2 x>∑

=⎟⎠⎞

⎜⎝⎛ π

1n

n

4tan

K>∑∞

= +1n 5n2n X> ( )

∑∞

=

−1n

n

n

415 .

!&>eKman mYymanRklaépÞesμInwg 6 Ékta. ABCΔ

sg; ; eday nig CacMnuckNþalénRCug . 'C'B'AΔ 'B,'A 'C

cUrkMNt;plbUk ...SSSS 321 +++= .

Page 12: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

dMeNaHRsay !> etIsVIút EdlmantYTUeTAdUcxageRkam CasVIútrYm b¤ rIk ? )U( n

k> x>1n5n3U 2n ++=

5n2nnU 2

2

n ++

=

K> nn 5n2sinU = X>

5nn3

3nn2U 2

3

n ++

+=

g>1nnsinnU 2n +

= c>n

4n32Un +−=

dMeNaHRsay sikSaPaBrYm b¤ rIkénsVIút k> 1n5n3U 2

n ++=

eKman )1n5n3(limUlim 2

nnn++=

+∞→+∞→

+∞==

⎥⎦⎤

⎢⎣⎡ ++=

+∞→

+∞→

)n3(lim

)n1

n53(nlim

2

n

22

n

dUcenH CasIVúrIkxiteTArk )U( n ∞+ . x>

5n2nnU 2

2

n ++

=

eKman 21

n2nlim

5n2nnlimUlim 2

2

n2

2

nnn==

++

=+∞→+∞→+∞→

- 7 -

Page 13: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

dUcenH CasIVútrYmxiteTArk )U( n 21 .

K> nn 5n2sinU =

eKman 1n2sin1 ≤≤− naM[ nnn 51U

51

≤≤− eday 0

51lim nn=

+∞→ enaH 0Ulim nn

=+∞→

. dUcenH CasIVútrYmxiteTArk 0 . )U( n

X>5n

n33n

n2U 2

3

n ++

+=

eKman ⎟⎟⎠

⎞⎜⎜⎝

⎛+

++

=+∞→+∞→ 5n

n33n

n2limUlim 2

3

nnn

+∞=+=

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

+∞→

+∞→

)n32(limnn3

nn2lim

n

2

3

n

dUcenH CasIVútrIkxiteTArk )U( n ∞+ . g>

1nnsinnU 2n +

= eKman 1nsin1 ≤≤− naM[

1nnu

1nn

2n2 +≤≤

+−

eday 01n

nlim 2n=

++∞→ enaH 0Ulim nn

=+∞→

. dUcenH CasIVútrYmxiteTArk 0 . )U( n

- 8 -

Page 14: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

c>n

4n32Un +−=

eKman ⎟⎠⎞

⎜⎝⎛ +−=

+∞→+∞→ n4

n32limUlim

nnn

¬eRBaH 2= 0n

4limn3lim

nn==

+∞→+∞→¦

dUcenH ) CasIVútrYmxiteTArk . U( n 2

@>KNnalImIténsVIútxageRkam k>

1nn81n3nlim 2

2

n +−−+

+∞→ x>

1nnnnn5lim 2

23

n −+−+

+∞→

K>( )n

n3

n 1n)1(n5lim

−+−+

+∞→ X>

ncosn5nsinnlim 2

2

n π++

+∞→

g> c>)ncosn(lim 22

nπ−

+∞→( )[ ]3n3

nn1n5lim −+−

+∞→

dMeNaHRsay KNnalImIténsVIútxageRkam k>

1nn81n3nlim 2

2

n +−−+

+∞→

81

n8nlim 2

2

n==

+∞→

x>1nnnnn5lim 2

23

n −+−+

+∞→

+∞===+∞→+∞→

n5limnn5lim

n2

3

n

- 9 -

Page 15: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

K>( )n

n3

n 1n)1(n5lim

−+−+

+∞→

+∞===+∞→+∞→

2

n

3

nn5lim

nn5lim

X>ncosn5

nsinnlim 2

2

n π++

+∞→

2

2

n

nncos5

nnsin1

limπ

+

+=

+∞→

eday enaH 1nsin1 ≤≤− 222 n1

nnsin

n1

≤≤− ehIy 0

n1

2 → kalNa +∞→n enaH 0n

nsinlim 2n=

+∞→

dUcKñaEdr 1)ncos(1 ≤π≤− enaH 222 n1

n)ncos(

n1

≤π

≤− ehIy 0

n1

2 → kalNa +∞→n enaH 0n

)ncos(lim 2n=

π+∞→

dUcenH 51

ncosn5nsinnlim 2

2

n=

π++

+∞→ .

g> )ncosn(lim 22

nπ−

+∞→

+∞=⎥⎦

⎤⎢⎣

⎡ π−=

+∞→)

nncos1(nlim 2

22

n

eRBaH 0n

ncoslimn1

nncos0 2

2

n22

2

⇒≤π

≤+∞→

.

- 10 -

Page 16: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

#> KNnalImIténsVIútxageRkam k> ( )n1nlim

n−+

+∞→ x> ( )n3nnlim

n−−

+∞→

K> ( )11nnlim 2

n−+

+∞→

X> ( ) ⎟⎠

⎞⎜⎝

⎛+−

−++∞→3

n2

!n!1n!nlim

n .

dMeNaHRsay KNnalImIténsVIútxageRkam k> ( )n1nlim

n−+

+∞→

0

n1n1lim

n1nn1nlim

n

n

=++

=

++−+

=

+∞→

+∞→

x> ( )n3nnlimn

−−+∞→

23

n2nlim3

nnnlim3

n3nnlim3

n3n)n3n(nlim

n

n

n

n

−=−=

+−=

+−−=

+−−−

=

+∞→

+∞→

+∞→

+∞→

- 11 -

Page 17: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

K> ( )11nnlim 2

n−+

+∞→

+∞=+=

⎥⎦⎤

⎢⎣⎡ −+=

+∞→

+∞→

1nnlim

)n11n(nlim

2

n

2

n

X> ( ) ⎟⎠

⎞⎜⎝

⎛ +−−++∞→

3n2

!n!1n!nlim

n

33

n1lim3

n2

n1lim

3n2

!n)1n(!n!nlim

nn

n

=⎟⎠⎞

⎜⎝⎛ +−=⎟

⎠⎞

⎜⎝⎛ +−=

⎥⎦

⎤⎢⎣

⎡+−

−+=

+∞→+∞→

+∞→

$>eKmansVIútEdlkMnt;cMeBaHRKb; INn∈ mantYTUeTAdUcxageRkam³

!n2V,

2nU

n

nn

3

n == Edl 1...)1n(n!n ××−= k>KNna

n

1nn U

Ulim +

+∞→ nig

n

1nn V

Vlim +

+∞→

x>KNna 3

3n

n n!nn2lim

++

+∞→

dMeNaHRsay k>KNna

n

1nn U

Ulim +

+∞→ nig

n

1nn V

Vlim +

+∞→

eKman !n

2V,2nU

n

nn

3

n == Edl 1...)1n(n!n ××−=

- 12 -

Page 18: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

eK)an 33

3

n

3

1n

3

n

1n )n11(

21

n2)1n(

2n

2)1n(

UU

+=+

=

+

=+

+

eK)an 21

UUlim

n

1nn

=+

+∞→ .

ehIy 1n

2

!n2

)!1n(2

VV

n

1n

n

1n

+=+=

+

+

eK)an 01n

2limV

Vlimnn

1nn

=+

=+∞→

+

+∞→

x>KNna 3

3n

n n!nn2lim

++

+∞→

eK)an )

!nn1(!n

)2n1(2

limn!nn2lim 3

n

3n

n3

3n

n+

+=

++

+∞→+∞→

+∞==+∞→ !n

2limn

n

- 13 -

Page 19: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

%>KNnalImIténsVIút ( )na EdleKsÁal;tYdUcxageRkam³ k> 3a

21a,2a n1n1 +== +

x> 5a2a,3a n1n1 −== + K>

34a

31a,1a n1n1 +== + .

dMeNaHRsay KNnalImIténsIVút )a( n

k> 3a21a,2a n1n1 +== +

KNnatYTUeTAénsIVút 3a21a n1n +=+

smIkarsmÁal;énsIVútKW 6r3r21r =⇒+=

tagsIVútCMnYy 6ab nn −= eK)an )6a(

2163a

216ab nn1n1n −=−⎟

⎠⎞

⎜⎝⎛ +=−= ++

eKTaj n1n b21b =+ enaH CasIVútFrNImaRtman )b( n 2

1q = nigtY 4626ab 11 −=−=−= eK)an

1n

n 214b

⎟⎠⎞

⎜⎝⎛×−= naM[

1n

n 2146a

⎟⎠⎞

⎜⎝⎛−=

dUcenH . 6alim nn=

+∞→

- 14 -

Page 20: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

x> 5a2a,3a n1n1 −== + edaHRsaydUcxagelIeK)an nig n

n 25a −= −∞=+∞→ nn

alim . K>

34a

31a,1a n1n1 +== + .

edaHRsaydUcxageleK)an 1n

n 312a

⎟⎠⎞

⎜⎝⎛−= nig 2alim nn

=+∞→

^>Binitües‘rIxageRkamenH etICaes‘rIrIk rW rYm? k>∑

=⎟⎠⎞

⎜⎝⎛

0n

n

23.3 x> ( )∑

=0n

n055.11000

K>∑∞

= −+

1n3 1n2

nn X>∑∞

=−

+1n

1n

n

212

g> ...12881

3227

89

232 ++++ c> ( )∑

=−−+

1n1n21n2

dMeNaHRsay sikSaPaBrYm b¤ rIkénes‘rI k>∑

=⎟⎠⎞

⎜⎝⎛

0n

n

23.3

plbUkedayEpñkrbs;es‘rIKW

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛−−=

⎟⎠⎞

⎜⎝⎛−

×=⎟⎠⎞

⎜⎝⎛=

+

=

+

∑1nn

0k

1n

k

n 2313

231

231

3233S

- 15 -

Page 21: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

- 16 -

eKman +∞=⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛−−=

+

+∞→+∞→

1n

nnn 231lim3Slim

dUcenH ∑∞

=⎟⎠⎞

⎜⎝⎛

0n

n

23.3 Caes‘rIrIk .

x> Caes‘rIrIkeRBaH (∑∞

=0n

n055.11000 ) 1055.1r >= .

K>∑∞

= −+

1n3 1n2

nn Caes‘rIrYm .

X>∑∞

=−

+1n

1n

n

212

eKman 022

12lim2

12lim 1nn1n

n

n≠=⎟

⎠⎞

⎜⎝⎛ +=

+−+∞→−+∞→

dUcenH ∑∞

=−

+1n

1n

n

212 Caes‘rIrIk .

g> ...12881

3227

89

232 ++++

plbUkedayEpñk 1n

n 432...

89

232S

⎟⎠⎞

⎜⎝⎛++++=

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛−=

⎟⎠⎞

⎜⎝⎛−

×=n

n

4318

431

431

2

eday ⎥⎥⎦

⎢⎢⎣

⎡=⎟

⎠⎞

⎜⎝⎛−=

+∞→+∞→8

431lim8Slim

n

nnn enaHvaCaes‘rIrYm .

Page 22: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

- 17 -

c> ( )∑∞

=−−+

1n1n21n2

manplbUkedayEpñk ( ) 11n21k21k2S

n

1kn −+=−−+= ∑

=

eday ( ) +∞=−+=

+∞→+∞→11n2limSlim

nnn

dUcenH ( )∑∞

=−−+

1n1n21n2 Caes‘rIrIk .

&>rkplbUkénes‘rIxageRkam³ k> ...001.001.01.01 ++++ x>∑

= −1n2 1n42

K> ( )( )∑∞

= +−1n 1n21n21 X>∑

=⎟⎠⎞

⎜⎝⎛ π

0n

n

3cos2

g> ( )n

n

1n 415 −

∑∞

= c> ...

32

32

32 32

+⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛+

dMeNaHRsay rkplbUkénes‘rI ³ k> ...001.001.01.01 ++++ eyIgeXIjfa Caes‘rIFrNImaRtGnnþEdl ...,01.0,1.0,1

nig . 1a = 1.0r =

Page 23: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

dUcenH 9

101.01

1...001.001.01.01 =−

=++++ . x>∑

= −1n2 1n42

eKman 1k2

11k2

1)1k2)(1k2()1k2()1k2(

1k422 +

−−

=−+−−+

=−

eK)an

1n2n2

1n211

1k21

1k21

1k42 n

1k

n

1k2 +

=+

−=⎟⎠⎞

⎜⎝⎛

+−

−=⎟

⎠⎞

⎜⎝⎛

− ∑∑==

kalNa enaH +∞→n 11n2

n2→

+

dUcenH 11n4

21n

2 =−∑

=

K> ( )( ) 21

1n21n21

1n=

+−∑∞

=

X> 4

3cos1

23

cos20n

n

−=⎟

⎠⎞

⎜⎝⎛ π∑

=

g> ( ) 4

411

154

15n

n

1n=

+×=

−∑∞

=

c> 2

321

1.32...

32

32

32 32

=−

=+⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛+

- 18 -

Page 24: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

*>KNna k> ⎟

⎠⎞

⎜⎝⎛ −⎟

⎠⎞

⎜⎝⎛ −

+∞→ 22n n11...

211lim

Binitü k

1kk

1kk

1kk11 2

2

2+

×−

=−

=− eK)an ∏∏∏

===⎟⎠⎞

⎜⎝⎛ +

×⎟⎠⎞

⎜⎝⎛ −

=⎟⎠⎞

⎜⎝⎛ −

n

2k

n

2k

n

2k2 k

1kk

1kk11

n2

1n2

1n.n1 +

=+

= dUcenH >

21

n21nlim

n11...

211lim

n22n=

+=⎟

⎠⎞

⎜⎝⎛ −⎟

⎠⎞

⎜⎝⎛ −

+∞→+∞→

x> ⎟⎟⎠

⎞⎜⎜⎝

+++

++

++∞→ nnn...

2nn

1nnlim

444n

cMeBaHRKb; n...,,2,1k = eKman

1nn

knn

nnn

nnkn1n

nnkn1n

444

444

444

+≤

+≤

+

+≤+≤+

+≤+≤+

eKTaj ∑∑∑=== +

≤+

≤+

n

1k4

n

1k4

n

1k4 1n

nkn

nnn

n

1n

nkn

nnn

n4

2n

1k44

2

+≤

+≤

+∑=

eday 11n

nlimnn

nlim4

2

n4

2

n=

+=

+ +∞→+∞→

- 19 -

Page 25: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

eKTaj 1kn

nlimn

1k4n

=+

∑=+∞→

.

dUcenH 1nn

n...2n

n1n

nlim444n

=⎟⎠

⎞⎜⎝

⎛+

+++

+++∞→

(>KNna ( ) ( ) ( )( )[ ]1nn1n222

nqqq...qqq1qlim −−

+∞→−++−+−

Edl 21

2q = . dMeNaHRsay

( ) ( ) ( )( )[ ]1nn1n222

nqqq...qqq1qlim −−

+∞→−++−+−

+∞=−−

−=

−−−

=

−=

−=

+∞→

+∞→

=

+∞→

=

−−

+∞→

)12(21

21lim

)1q(q1q1lim

)1q(qlim

)qq(qlim

21

23

2n3

n

3

n3

n

n

1k

3k3

n

n

1k

1kk)1k(2

n

eRBaH +∞=+∞→

2n3

n2lim .

- 20 -

Page 26: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

- 21 -

!0> eK[sVIút ( )na kMNt;eday nn q21a+

= Edl . 1q −≠

sikSalImIténsVIút ( )na kalNa +∞→n . dMeNaHRsay sikSalImIténsVIút eK)an nnnn q2

1limalim+

=+∞→+∞→

-ebI enaH 1q > 0q2

1limalim nnnn=

+=

+∞→+∞→

-ebI enaH 1q =13

q21limalim nnnn

=+

=+∞→+∞→

-ebI enaH1q1 <<−21

q21limalim nnnn

=+

=+∞→+∞→

-ebI enaH 1q −<21

q21limalim nnnn

=+

=+∞→+∞→

!!>cMeBaHRKb; eKman INn∈

( )( ) ( )( )∑= ++

=+−

++×

=n

0pn 3p21p2

21n21n2

2...53

231

2S

k>KNna CaGnuKmn_én n edayeRbI nS ( )( )3p21p22

++

CaTRmg; ( ) ( )3p2b

1p2a

++

+.

x>KNna . nnSlim

+∞→

Page 27: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

- 22 -

dMeNaHRsay k>KNna CaGnuKmn_én n nS

( )( )3p21p22

++ ( ) ( )3p2b

1p2a

++

+= .

b¤ )1p2(b)3p2(a2 +++= b¤ ba3p)b2a2(2 +++= eKTaj

⎩⎨⎧ naM[

=+=+2ba30b2a2

1b,1a −==

eK)an 3p2

11p2

1)3p2)(1p2(

2+

−+

=++

ehIy ∑= ++

=n

0pn )3p2)(1p2(

2S

3n2)1n(2

3n211

3p21

1p21n

0p

++

=+

−=

⎟⎠

⎞⎜⎝

⎛+

−+

= ∑=

dUcenH 3n2)1n(2Sn +

+= .

x>KNna nnSlim

+∞→

eKman 3n2

11Sn +−=

dUcenH 1)3n2

11(limSlim

nnn=

+−=

+∞→+∞→ .

Page 28: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

!@>eKmanes‘rIGnnþmYy ( ) ( )

...1r

r...1r

r1r

rr 1n2

2

22

2

2

22 +

+++

++

++ −

bgðajfaes‘rIGnnþenaHrYmcMeBaHRKb;témø r . dMeNaHRsay bgðajfaes‘rIGnnþrYmcMeBaHRKb;témør eKman

( ) ( )...

1r

r...1r

r1r

rr 1n2

2

22

2

2

22 +

+++

++

++ −

plbUledayEpñkrbs;es‘rIenHKW ∑=

−+=

n

1k1k2

2

n )1r(rS

b¤ ∑=

−+=

n

1k1k2

2n )1r(

1rS

⎥⎦

⎤⎢⎣

⎡+

−+=

+−

+−

×= n22

2

n22

)1r(11)1r(

1r11

)1r(11

r

kalNa enaH +∞→n 0)1r(

1n2 →

+ cMeBaHRKb; r .

eK)an naM[es‘rIxagelICaes‘rIbRgYm . 1rSlim 2nn

+=+∞→

!#>kMNt;es‘rIxageRkam etIes‘rImYyNarYm mYyNarIk? ebICaes‘rIrYm cUrrkplbUk. k>∑

=⎟⎠⎞

⎜⎝⎛ π

1n

n

3cos2 x>∑

=⎟⎠⎞

⎜⎝⎛ π

1n

n

4tan

- 23 -

Page 29: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

K>∑∞

= +1n 5n2n X> ( )

∑∞

=

−1n

n

n

415 .

dMeNaHRsay sikSaPaBrIk rYmrbs;es‘rI

k>∑∞

=⎟⎠⎞

⎜⎝⎛ π

1n

n

3cos2 Caes‘rIrYmxireTArk 2

3cos1

3cos2

π

eRBaHvaCaes‘rIFrNImaRtGnnþman 121

3cos|r| <=

π= .

x>∑∞

=⎟⎠⎞

⎜⎝⎛ π

1n

n

4tan

eday 114

tana nn

n ==⎟⎠⎞

⎜⎝⎛ π

= ehIy 01alim nn≠=

+∞→

dUcenH ∑∞

=⎟⎠⎞

⎜⎝⎛ π

1n

n

4tan Caes‘rIBRgIk .

K>∑∞

= +1n 5n2n eday

5n2nan +

= manlImIt

21

5n2nlimalim

nnn=

+=

+∞→+∞→ naM[ ∑

= +1n 5n2n Caes‘rIBRgIk .

X> ( )∑∞

=

−1n

n

n

415 Caes‘rIrYmxiteTArk 4

411

5−=

+

eRBaHvaCaes‘rIFrNImaRtGnnmanþ 141|

41||r| <=−= .

- 24 -

Page 30: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

- 25 -

!$>eKman mYymanRklaépÞesμInwg 6 Ékta. ABCΔ

sg; ; eday nig CacMnuckNþalénRCug 'C'B'AΔ 'B,'A 'C

. cUrkMNt;plbUk ABCΔ ...SSSS 321 +++= . dMeNaHRsay kMNt;plbUk ...SSSS 321 +++= tag CaRCug c,b,a ABCΔ EdlmanépÞRkLa 6S1 = nigknøHbrimaRt

2cbap ++

= tag CaRkLaépÞ2S 'C'B'AΔ CaRkLaépÞ 3S ''C''B''AΔ --------------------------------

A

B C 'A

'B'C ''A

'B ''C

Page 31: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI1 lImIténsVIút

eday CacMNuckNþalén enaH 'C,'B,'A AB,CA,BC

2c'B'A,

2b'C'A;

2a'C'B === nig

2p'p =

eK)an 12 S41)

2c

2p)(

2b

2p)(

2a

2p(

2pS =−−−=

dUcKñaEdreKTaj .....,S41S;S

41S 134123 ==

eK)an 8

411

6q1

S.....SSS 121 =

−=

−=++= .

- 26 -

Page 32: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

CMBUkTI2

emeronsegçb edrIevénGnuKmn_

eK[GnuKmn_ f kMNt;nigCab;ehIymanedrIevelI I . ebImanBIrcMnYnBit m nig EdlcMeBaHRKb; M

M)x('fm:Ix ≤≤∈ enaHRKb;cMnYnBit Ib,a ∈ Edl ba < eK)an )ab(M)a(f)b(f)ab(m −≤−≤− . eK[GnuKmn_ f manedrIevelIcenøaH . ebImancMnYn M ]b,a[

EdlRKb; M|)x('f|:]b,a[x ≤∈ enaHeK)an ³ |ab|M|)a(f)b(f| −≤− .

ebIf CaGnuKmn_Cab;elIcenøaH manedrIevelIcenøaH ]b,a[ )b,a(

nig enaHmancMnYn mYyy:agticEdl

)b(f)a(f =

)b,a(c∈ 0)c('f = ebIf CaGnuKmn_Cab;elIcenøaH manedrIevelIcenøaH ]b,a[ )b,a(

enaHmancMnYn mYyy:agticEdl)b,a(c∈ab

)a(f)b(f)c('f−−

= .

- 27 -

Page 33: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

lMhat; !>rk nig ydy,y,dy Δ−Δ

ydyΔ

énGnumn_xageRkam

k> cMeBaH 4x3xy 2 +−= 2.0x,3x =Δ= x> x512y −= cMeBaH 07.0x,2x =Δ= .

@>eRbIDIepr:g;Esül edm,IrktémøRbEhléncMnYnxageRkam³ k> 37 x> 65 K> 3 26 X> 3 126 g> 4.50 c> 5.79 q> 3 3.62 C> 3 6.218 #> Rkumh‘unplitsmÖar³eRbIR)as;mYy)anTTYlR)ak;cMnUlsrubBIkar lk; smÖar³ x eRKOgEdl[tamGnuKmn_

30xx20)x(R

2

−= KitCamWunerolEdl 600x0 ≤≤ . edayeRbIDIepr:g;)a:n;sμantémøRbEhlénkMeNInR)ak;cMNUl ebI smÖar³ lk;ERbRbYlBI 150 eRKOg eTA 160 eRKOg . $> eragcRkplitsmÖar³eRbIR)as;mYy)ancMNayR)ak;srubkñugkar

- 28 -

Page 34: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

plitsmÖar³ x eRKOgEdl[tamGnuKmn_ 2x2.0x15930)x(C ++= Ban;erol .

edayeRbIDIepr:g;)a:n;sμantémøRbEhlénkMeNInR)ak;cMNayebIsmÖar³ Edl)anplitekInBI eRKOg eTA 62 eRKOg . 60

%>shRKasplitsmÖar³eGLicRtUnicmYy )ancMNayR)ak;srubkñúg

- 29 -

xmYyExsRmab;plitsmÖar³ eRKOgEdl[tamGnuKmn_ 200x4x1.0)x(C 2 ++= KitCaBan;erol . ehIyshRKas)an

TTYlR)ak;cMNUlmkvij[tamGnuKmn_ 2x3.0x54)x(R −= KitCaBan;erol .

k>sresrGnuKmn_R)ak;cMeNj )x(P

x>edayeRbIDIepr:g;)a:n;s μantémøRbEhlénkMeNInR)ak;cMeNj ebIbrimaNsmÖar³Edl)anlk;ekInBI 40 eRKOg eTA 44 eRKOg . ^>tamkarGegátrbs;Gñksßiti)an[dwgfa cMnYnRbCaBlrdæenAkñugTIRkug mYyryHeBl tqñaMeTAmuxeTot mankarekIneLIgEdl[tamGnuKmn_

t160)t240(10)t(P 2 −+= ¬nak;¦ . edayeRbIDIepr:g;EsüledIm,I)a:n;sμankMeNInRbCaBlrdækñúgTIRkugenaH

Page 35: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

ebI t ERbRbYlBI 6 eTA qñaM . 25.6

&>)aLúgmYymanragCaEsV‘ . eRbIDIepr:g;EsüledIm,IKNnatémø RbEhlénkMeNInmaD)aLúg ebIeBlRtUvkMedAéf¶)aLúgrIkmaDEdl kaMrbs;vaERbRbYlBI eTA . m2 m15.2

*>eK[GnuKmn¾ f manedrIevelI ( )∞− ,2 Edl ( ) 2xxf += . k>rktMélGmén ( )xf cMeBaHRKb; [ ]2,1x −∈ . x>bgðajfa cMeBaHRKb; [ ]2,1x −∈ eK)an

23x

212x

45x

41

+≤+≤+ . (>eK[GnuKmn¾ f kMNt;elI ⎟

⎠⎞

⎢⎣⎡ π

2,0 Edl ( ) xtanxf = .

bgðajcMeBaHRKb;cMnYnBit a nig b Edl 2

ba0 π≤≤≤

eK)an bcosabatanbtan

acosab

22−

≤−≤− .

!0>eK[GnuKmn¾ f kMNt;elIcenøaH . eRbIRTwsþIbTr:Ul ¬ebIGac¦ I

rkRKb;témø kñúgcenøaH I Edl c ( ) 0c'f = ³ k> ( ) ( )2,2c,x4xxf 3 −∈−= x> ( ) ( )( )( ) ( )3,1c,3x2x1xxf ∈−−−=

- 30 -

Page 36: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

K> ( ) ( )3,1c,2x

3x2xxf2

−∈+

−−=

X> ( ) ( )1,1c,x

1xxf2

−∈−

= g> ( ) ⎟

⎠⎞

⎜⎝⎛ ππ

∈=3

,6

c,x2sinxf

c> ( ) ( )0,1c,6xsin

2xxf −∈

π−= .

!!>eK[GnuKmn¾f kMNt;elIcenøaH I. eRbIRTwsþIbTtémømFüm rkRKb;témø ( )b,ac∈ Edl ( ) ( ) ( )

abafbfc'f

−−

= ³ k> ( ) ( )1,2c,xxf 2 −∈= x> ( ) ( ) ( )1,1c,2xxxxf 2 −∈−−= K> ( ) ( )1,0c,xxf 3 ∈= X> ( ) ⎟

⎠⎞

⎜⎝⎛ −∈

+= 2,

21c,

1xxxf

!@>shRKasplitsmÖar³eGLicRtUnicmYy)ancMnayR)ak;srubkñúg mYyéf¶sMrab;plitsmÖar³ eRKOgEdl[GnuKmn¾ x

( ) 2x02.0x282400xC ++= KitCaBan;erol. k>kMnt;R)ak;cMNaysrubkñúgkarplitsmÖar³ 10eRKOg eRKOg nig 30eRKOg. 20

- 31 -

Page 37: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

x>)a:n;sμantémøRbEhlénR)ak;cMNaykñúgkarplitsmÖar³eRKOgTI 11 eRKOgTI nig eRKOgTI . 21 31

!#>eragBum<e)aHBum<TsSnavdþImYy)ancMNaysrubkñúgmYyExsRmab;

- 32 -

xe)aHBum<TsSnavdIþ c,ab; Edl[tamGnuKmn¾ ( ) 465xx0001.0xC 2 ++= KitCaBan;erol ehIyeragBum<)anlk;

ecjvij TsSnavdIþ 1c,ab;éfø ( ) x0002.04xDP −== Ban;erol. k>sresrGnuKmn¾R)ak;cMnUlsrub ( )xR . x> sresrGnuKmn¾R)ak;cMenjsrub ( )xP . K>KNnaR)ak;cMenjsrubebIkñúg mYyExeragBum<lk;Gs; 3000 c,ab; c,ab; nig c,ab;. 3500 4000

X>>)a:n;s μantémøRbEhlénR)ak;cMenjEdl)anBIkarlk; TsSnavdIþc,ab;TI 3001 c,ab;TI nigc,ab;TI 4001. 3501

!$> shRKasplitsmÖar³eRbIR)as;mYy)ancMnayR)ak;srubkñúgkar plitsmÖar³ xeRKOg [tamGnuKmn¾ ( ) 2x1.0x26480xC −++= Ban;erol. k>kMNt;GnUKmn¾R)ak;cMNaymFüm ( )xC .

Page 38: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

x>KNnaR)ak;cMNaymFümbEnßm kalNa 70x,50x,30x === . !%> shRKasplitsmÖar³eGLicRtUnicmYy)ancMnayR)ak;srubkñúg karplitsmÖar³ eRKOg Edl[GnuKmn¾ x

( ) 2x3.0x421080xC ++= Ban;erol. kMNt;brimaNsmÖar³Edl shRKasRtUvplitedIm,I[R)ak;cMNaymFümmankMritGb,brma ebI . 90x0 ≤≤

!^>Rkumh‘unplitsmÖar³eRbIR)as;mYy)ancMNaysrubkñúgkarplit smÖar³ eRKOg[yamGnuKmn¾ x ( ) 1050x20xxC 2 ++= Ban;erol ehIyRkumh‘un)anlk;ecjvijTTYl)anR)ak;cMNUlsrub [tamGnuKmn¾ Ban;erol. kMNt;tMrit ( ) 2x5.0x140xR −=

brimaNsmÖar³EdlRkumh‘unRtUvplitniglk;edIm,I[Rkumh‘unTTYl)an R)ak;cMenjGtibrima ebI 70x0 ≤≤ .

- 33 -

Page 39: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

dMeNaHRsay !>rk nig ydy,y,dy Δ−Δ

ydyΔ

énGnumn_xageRkam

k> cMeBaH 4x3xy 2 +−= 2.0x,3x =Δ= x> x512y −= cMeBaH 07.0x,2x =Δ= . dMeNaHRsay

rk nig ydy,y,dy Δ−Δy

dyΔ

énGnumn_xageRkam k> cMeBaH 4x3xy 2 +−= 2.0x,3x =Δ= eK)an dx).3x2(dx'.ydy −== eday dx2.0x,3x ≈=Δ= eK)an 2.0)2.0)(322(dy =−×= . ehIy )x(f)xx(fy −Δ+=Δ

[ ] [044.0)2.0)(2.2()2.0(3)2.0)(2.5(4)3(3)3(4)2.3(3)2.3(

)3(f)2.3(f)3(

]

f)2.03(f

22

==−=+−−+−=

−=−+=

ehIy 156.0044.02.0ydy =−=Δ− nig 54.4044.02.0

ydy

==Δ

.

- 34 -

Page 40: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

x> x512y −= cMeBaH 07.0x,2x =Δ= . eK)an dx.

x51225dx'.ydy−

−==

123.0

2235.0

)07.0(10122

5

−=−=

−−=

ehIy )2(f)07.02(fy −+=Δ

13.0414.1284.1265.1

)2(512)07.2(512

−=−=−=

−−−=

ehIy 007.013.0123.0ydy =+−=Δ− nig 946.0y

dy=

Δ.

@>eRbIDIepr:g;Esül edIm,IrktémøRbEhléncMnYnxageRkam³ k> 37 x> 65 K> 3 26 X> 3 126 g> 4.50 c> 5.79 q> 3 3.62 C> 3 6.218 dMeNaHRsay eRbIDIepr:g;Esül edIm,IrktémøRbEhléncMnYnxageRkam³ k> 37

- 35 -

Page 41: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

eKman dx).x('f)x(f)xx(f +=Δ+ tagGnuKmn_

x21)x('fx)x(f =⇒=

yk dx1x;36x ==Δ= eK)an 08.6

12161

36213637 =+=×+= .

x> 65 eKman dx).x('f)x(f)xx(f +=Δ+ tagGnuKmn_

x21)x('fx)x(f =⇒=

yk dx1x;64x ==Δ= eK)an 06.8

16181

64216465 =+=×+= .

K> 3 26 eKman dx).x('f)x(f)xx(f +=Δ+ tagGnuKmn_

3 231

3

x31)x('fxx)x(f =⇒==

yk dx1x;27x =−=Δ= eK)an 96.2

2713

27312726

3 233 =−=−= .

- 36 -

Page 42: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

X> 3 126 eKman dx).x('f)x(f)xx(f +=Δ+ tagGnuKmn_

3 231

3

x31)x('fxx)x(f =⇒==

yk dx1x;125x ==Δ= eK)an 013.5

7515

12531125125

3 233 =+=+= .

g> 099.74.50 = c> 916.85.79 = q> 964.33.623 = C> 023.66.2183 =

- 37 -

Page 43: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

#> Rkumh‘unplitsmÖar³eRbIR)as;mYy)anTTYlR)ak;cMnUlsrubBIkar lk; smÖar³ x eRKOgEdl[tamGnuKmn_

30xx20)x(R

2

−= KitCamWunerolEdl 600x0 ≤≤ . edayeRbIDIepr:g;)a:n;sμantémøRbEhlénkMeNInR)ak;cMNUl ebI smÖar³ lk;ERbRbYlBI 150 eRKOg eTA 160 eRKOg . dMeNaHRsay edayeRbIDIepr:g;)a:n;sμantémøRbEhlénkMeNInR)ak;cMNUl tag

30xx20)x(Ry

2

−== ebI smÖar³lk;ERbRbYlBI 150 eRKOg eTA 160 eRKOgenaH 10x =Δ eK)an Et dx).x('R)x(dR =

15x20)x('R −=

enaH 10010).15

15020()x(dR =−= ¬KitCamWunerol¦ . $> eragcRkplitsmÖar³eRbIR)as;mYy)ancMNayR)ak;srubkñugkar plitsmÖar³ x eRKOgEdl[tamGnuKmn_ Ban;erol . 2x2.0x15930)x(C ++=

- 38 -

Page 44: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

edayeRbIDIepr:g;)a:n;sμantémøRbEhlénkMeNInR)ak;cMNayebIsmÖar³ Edl)anplitekInBI eRKOg eTA 62 eRKOg . 60

dMeNaHRsay edayeRbIDIepr:g;)a:n;sμantémøRbEhlénkMeNInR)ak;cMNay ebIsmÖar³Edl)anplitekInBI 60 eRKOg eTA 62 eRKOgenaH . 2x =Δ

eday enaH 2x2.0x15930)x(C ++= x4.015)x('C +=

eK)an 78)2)(604.015(dx).x('C)x(dC =×+== ¬Ban;erol¦ %>shRKasplitsmÖar³eGLicRtUnicmYy )ancMNayR)ak;srubkñúg mYyExsRmab;plitsmÖar³ xeRKOgEdl[tamGnuKmn_ KitCaBan;erol . ehIyshRKas)an 200x4x1.0)x(C 2 ++=

TTYlR)ak;cMNUlmkvij[tamGnuKmn_ KitCaBan;erol . 2x3.0x54)x(R −=

k>sresrGnuKmn_R)ak;cMeNj )x(P

x>edayeRbIDIepr:g;)a:n;s μantémøRbEhlénkMeNInR)ak;cMeNj ebIbrimaNsmÖar³Edl)anlk;ekInBI 40 eRKOg eTA 44 eRKOg .

- 39 -

Page 45: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

dMeNaHRsay k>sresrGnuKmn_R)ak;cMeNj )x(P

eK)an )x(C)x(R)x(P −= 200x4x1.0x3.0x54)x(P 22 −−−−=

dUcenH . 200x50x4.0)x(P 2 −+−=

x>edayeRbIDIepr:g;)a:n;s μantémøRbEhlénkMeNInR)ak;cMeNj ebIbrimaNsmÖar³Edl)anlk;ekInBI 40 eRKOg eTA 44 eRKOg enaH 44044x =−=Δ eRKÓg . eK)an dx).x('P)x(dP =

eday 50x8.0)x('P +−= eK)an 72)4)(50408.0()x(dP =+×−= ¬KitCaBan;erol¦ ^>tamkarGegátrbs;Gñksßiti)an[dwgfa cMnYnRbCaBlrdæenAkñugTIRkug mYyryHeBl tqñaMeTAmuxeTot mankarekIneLIgEdl[tamGnuKmn_ ¬nak;¦ . t160)t240(10)t(P 2 −+=

edayeRbIDIepr:g;EsüledIm,I)a:n;sμankMeNInRbCaBlrdækñúgTIRkugenaH ebI t ERbRbYlBI eTA qñaM . 6 25.6

- 40 -

Page 46: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

dMeNaHRsay edayeRbIDIepr:g;EsüledIm,I)a:n;sμankMeNInRbCaBlrdækñúgTIRkugenaH ebI t ERbRbYlBI eTA qñaMenaH 6 25.6 25.0625.6t =−=Δ qñaM eKman t160)t240(10)t(P 2 −+=

eK)an 160)t240(40)t('P −+= ehIy dt).t('P)t(dP =

[ ] 480)25.0(160)6240(40 =−×+= ¬nak;¦ &>)aLúgmYymanragCaEsV‘ . eRbIDIepr:g;EsüledIm,IKNnatémø RbEhlénkMeNInmaD)aLúg ebIeBlRtUvkMedAéf¶)aLúgrIkmaDEdl kaMrbs;vaERbRbYlBI eTA . m2 m15.2

dMeNaHRsay eRbIDIepr:g;EsüledIm,IKNnatémøRbEhlénkMeNInmaD)aLúg tag CamaDrbs;)aLúg ehIy CakaMrbs;)aLúg )r(V r

eKman 23 r4)r('Vr3

4)r(V π=⇒π

= eday r ERbRbYlBI eTA enaH m2 m15.2 m15.0r =Δ ehIy dr).r('V)r(dV =

- 41 -

Page 47: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

32 m536.7)15.0)(214.34( =××=

*>eK[GnuKmn¾ f manedrIevelI ( )∞− ,2 Edl ( ) 2xxf += . k>rktMélGmén ( )x'f cMeBaHRKb; [ ]2,1x −∈ . x>bgðajfa cMeBaHRKb; [ ]2,1x −∈ eK)an

23x

212x

45x

41

+≤+≤+ . dMeNaHRsay k>rktMélGmén ( )xf cMeBaHRKb; [ ]2,1x −∈

2x21)x('f2x)x(f+

=⇒+= eKman 42x12x1 ≤+≤⇒≤≤− b¤ 22x1 ≤+≤ eKTaj

21

2x21

41

≤+

≤ dUcenH

21)x('f

41

≤≤ . x>bgðajfa

23x

212x

45x

41

+≤+≤+ cMeBaHRKb; [ ]2,1x −∈ tamvismPaBkMeNInmankMNt;cMeBaHGnuKmn_ f kñúg [ ]2,1x −∈ eK)an )1x(

21)1(f)x(f)1x(

41

+≤−−≤+ Et 1)1(f =−

21x

2112x

41x

41

+≤−+≤+

- 42 -

Page 48: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

dUcenH 23x

212x

45x

41

+≤+≤+ . (>eK[GnuKmn¾ f kMNt;elI ⎟

⎠⎞

⎢⎣⎡ π

2,0 Edl ( ) xtanxf = .

bgðajcMeBaHRKb;cMnYnBit a nig b Edl 2

ba0 π<≤≤

eK)an bcosabatanbtan

acosab

22−

≤−≤− .

dMeNaHRsay bgðajcMeBaHRKb;cMnYnBit a nig b Edl

2ba0 π≤≤≤

eK)an bcosabatanbtan

acosab

22−

≤−≤−

eKman xcos

1)x('fxtan)x(f 2=⇒= cMeBaH

2ba0 π<≤≤ ebI bxa ≤≤ enaH acosxcosbcos ≤≤

b¤ bcos

1)x('facos

122 ≤≤

edayGnuvtþn_vismPaBkMeNInmankMNt;eTAnwgGnuKmn_ f cMeBaH eK)an ]b,a[x∈

)ab(bcos

1)a(f)b(f)ab(acos

122 −≤−≤−

dUcenH bcosabatanbtan

acosab

22−

≤−≤− .

- 43 -

Page 49: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

!0>eK[GnuKmn¾ f kMNt;elIcenøaH . eRbIRTwsþIbTr:Ul ¬ebIGac¦ I

rkRKb;témø c kñúgcenøaH I Edl ( ) 0c'f = ³ k> ( ) ( )2,2c,x4xxf 3 −∈−= x> ( ) ( )( )( ) ( )3,1c,3x2x1xxf ∈−−−= K> ( ) ( )3,1c,

2x3x2xxf

2

−∈+

−−=

X> ( ) ( )1,1c,x

1xxf2

−∈−

= g> ( ) ⎟

⎠⎞

⎜⎝⎛ ππ

∈=3

,6

c,x2sinxf

c> ( ) ( )0,1c,6xsin

2xxf −∈

π−= .

dMeNaHRsay rkRKb;témø c kñúgcenøaH I Edl ( ) 0c'f = ³ k> ( ) ( )2,2c,x4xxf 3 −∈−= eKman CaGnuKmn_BhuFaCab;RKb; )x(f )2,2(x −∈ ehIy . tamRTwsþIbTr:UlmancMnYn 0)2(f)2(f ==− )2,2(c −∈

Edl . eKman 0)c('f = 4c3)c('f 2 −=

- 44 -

Page 50: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

ebI 3

32c,3

32c04c30)c('f 212 =−=⇒=−⇒=

x> ( ) ( )( )( ) ( )3,1c,3x2x1xxf ∈−−−= eKman CaGnuKmn_BhuFaCab;RKb; )x(f )3,1(x∈ ehIy . tamRTwsþIbTr:UlmancMnYn 0)3(f)1(f == )3,1(c∈ Edl . 0)c('f =

eKman 6x11x6x)3x)(2x)(1x()x(f 23 −+−=−−−=

eK)an 11x12x3)x('f 2 +−=

ebI 011c12c30)c('f 2 =+−⇒=

3

36c,3

36c033336' 21+

=−

=⇒>=−=Δ .

K> ( ) ( )3,1c,2x

3x2xxf2

−∈+

−−=

eKman CaGnuKmn_BhuFaCab;RKb; )x(f )3,1(x −∈ ehIy . tamRTwsþIbTr:UlmancMnYn 0)3(f)1(f ==− )3,1(c∈

Edl . 0)c('f =

eKman 2

2

)2x()3x2x()2x)(2x2()x('f

+−−−+−

=

- 45 -

Page 51: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

2

2

2

22

)2x(1x4x

)2x(3x2x4x2x4x2

+−+

=

+++−−−+

=

ebI 0)2c(

1c4c)c('f 2

2

=+

−+= naM[ 01c4c2 =−+

52c,52c0514' −=+=⇒>=+=Δ 21 dUcenH 52c,52c 21 −=+= . !!>eK[GnuKmn¾f kMNt;elIcenøaH I. eRbIRTwsþIbTtémømFüm rkRKb;témø ( )b,ac∈ Edl ( ) ( ) ( )

abafbfc'f

−−

= ³ k> ( ) ( )1,2c,xxf 2 −∈= x> ( ) ( ) ( )1,1c,2xxxxf 2 −∈−−= K> ( ) ( )1,0c,xxf 3 ∈= X> ( ) ⎟

⎠⎞

⎜⎝⎛ −∈

+= 2,

21c,

1xxxf

dMeNaHRsay rkRKb;témø ( )b,ac∈ Edl ( ) ( ) ( )

abafbfc'f

−−

= ³ k> ( ) ( )1,2c,xxf 2 −∈= eKman x2)x('f =

- 46 -

Page 52: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

eK)an 12141

)2(1)2(f)1(fc2)c('f −=

+−

=−−−−

==

eKTaj 21c −= .

x> ( ) ( ) ( )1,1c,2xxxxf 2 −∈−−= eKman 2x2x3)x('fx2xx)x(f 223 −−=⇒−−=

eK)an 12

02)1(1

)1(f)1(f2c2c3)c('f 2 −=−−

=−−−−

=−−=

eKTaj 1c,31c01c2c3 21

2 =−=⇒=−− eday dUcenH )1,1(c −∈

31c −= .

K> ( ) ( )1,0c,xxf 3 ∈= eKman 2x3)x('f =

eK)an 33c1

01)0(f)1(fc3)c('f 2 ±=⇒=

−−

==

eday dUcenH )1,0(c∈33c = .

X> ( ) ⎟⎠⎞

⎜⎝⎛ −∈

+= 2,

21c,

1xxxf

eKman 2)1x(1)x('f+

=

- 47 -

Page 53: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

eK)an 32

25

132

)21(2

)21(f)2(f

)1c(1)c('f 2 =

+=

−−

−−=

+=

eKTaj 231c,

231c 21 −−=+−= .

!@>shRKasplitsmÖar³eGLicRtUnicmYy)ancMnayR)ak;srubkñúg mYyéf¶sMrab;plitsmÖar³ xeRKOgEdl[GnuKmn¾ KitCaBan;erol. ( ) 2x02.0x282400xC ++=

k>kMnt;R)ak;cMNaysrubkñúgkarplitsmÖar³ 10eRKOg eRKOg nig 30eRKOg. 20

x>)a:n;sμantémøRbEhlénR)ak;cMNaykñúgkarplitsmÖar³eRKOg TI 11eRKOgTI 21 nig eRKOgTI . 31

dMeNaHRsay k>kMnt;R)ak;cMNaysrubkñúgkarplitsmÖar³ 10 eRKOg eRKOg nig eRKOg 20 30

eKman ¬KitCaBan;erol¦ ( ) 2x02.0x282400xC ++=

-R)ak;cMNaysrubkñúgkarplitsmÖar³ 10 eRKOgKW 268222802400)10(C =++= Ban;erol .

- 48 -

Page 54: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

-R)ak;cMNaysrubkñúgkarplitsmÖar³ 20eRKOgKW 296885602400)20(C =++= Ban;erol . -R)ak;cMNaysrubkñúgkarplitsmÖar³ 30eRKOgKW 2958185402400)10(C =++= Ban;erol . x>)a:n;sμantémøRbEhlénR)ak;cMNaykñúgkarplitsmÖar³eRKOg TI 11eRKOgTI 21 nig eRKOgTI 31

eKman ¬KitCaBan;erol¦ ( ) 2x02.0x282400xC ++=

eK)an x04.028)x('C +=

-témøRbEhlénR)ak;cMNaykñúgkarplitsmÖar³eRKOgTI 11KW 44.281104.028)11('C =×+= Ban;erol. -témøRbEhlénR)ak;cMNaykñúgkarplitsmÖar³eRKOgTI 21KW 84.282104.028)21('C =×+= Ban;erol . -témøRbEhlénR)ak;cMNaykñúgkarplitsmÖar³eRKOgTI 31KW 24.293104.028)31('C =×+= Ban;erol. !#>eragBum<e)aHBum<TsSnavdþImYy)ancMNaysrubkñúgmYyExsRmab; e)aHBum<TsSnavdIþ c,ab; Edl[tamGnuKmn¾ x

( ) 465xx0001.0xC 2 ++= KitCaBan;erol ehIyeragBum<)anlk;

- 49 -

Page 55: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

ecjvij TsSnavdIþ 1c,ab;éfø ( ) x0002.04xDP −== Ban;erol. k>sresrGnuKmn¾R)ak;cMnUlsrub ( )xR . x> sresrGnuKmn¾R)ak;cMenjsrub ( )xP . K>KNnaR)ak;cMenjsrubebIkñúg mYyExeragBum<lk;Gs; 3000 c,ab; c,ab; nig c,ab;. 3500 4000

X>>)a:n;s μantémøRbEhlénR)ak;cMenjEdl)anBIkarlk; TsSnavdIþc,ab;TI 3001 c,ab;TI nigc,ab;TI 4001. 3501

dMeNaHRsay k>sresrGnuKmn¾R)ak;cMnUlsrub ( )xR eK)an 2x0002.0x4x)x0002.04(xP)x(R −=−=×=

x> sresrGnuKmn¾R)ak;cMenjsrub ( )xP eK)an )x(C)x(R)x(P −=

465x3x0003.0

465xx0001.0x0002.0x42

22

−+−=

−−−−=

K>KNnaR)ak;cMenjsrubebIkñúg mYyExeragBum<lk;Gs; 3000 c,ab; c,ab; nig c,ab; 3500 4000

-ebI c,ab; 3000x =

- 50 -

Page 56: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

enaH 465)3000(3)3000(0003.0)3000(P 2 −+−=

Ban;erol . 5835=

-ebI c,ab; 3500x =

enaH 465)3500(3)3500(0003.0)3500(P 2 −+−=

Ban;erol . 6360=

-ebI c,ab; 4000x =

enaH 465)4000(3)4000(0003.0)4000(P 2 −+−=

Ban;erol . 6735=

X>)a:n;s μantémøRbEhlénR)ak;cMenjEdl)anBIkarlk; TsSnavdIþc,ab;TI 3001 c,ab;TI nigc,ab;TI 4001. 3501

eKman 465x3x0003.0)x(P 2 −+−=

eK)an 3x0006.0)x('P +−= -témøRbEhlénR)ak;cMenj)anBIkarlk; TsSnavdIþc,ab;TI 3001 KW 2.13)3000(0006.0)3000('P =+−= Ban;erol . -témøRbEhlénR)ak;cMenj)anBIkarlk; TsSnavdIþc,ab;TI 3501

- 51 -

Page 57: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI2 edrIevénGnuKmn_

KW 9.03)3500(0006.0)3500('P =+−= Ban;erol . -témøRbEhlénR)ak;cMenj)anBIkarlk; TsSnavdIþc,ab;TI 4001 KW 6.03)4000(0006.0)4000('P =+−= Ban;erol .

- 52 -

Page 58: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GefrPaBnigRkabénGnuKmn¾

CMBUkTI3 emeronTI1

GnuKmn¾GsniTan

>GnuKmn_ baxy += Edl 0a ≠ EdnkMNt; ³ GnuKmn_mann½ykalNa 0bax ≥+ -ebI enaH 0a >

abx −≥ ehIy ),

ab[D ∞+−=

-ebI enaH 0a <abx −≤ ehIy ]

ab,(D −−∞=

edrIev bax2

a'y+

= -ebI enaH 0a < 0'y < naM[GnuKmn_cuHCanic©elIEdnkMNt;. -ebI enaH 0a > 0'y > naM[GnuKmn_ekInCanic©elIEdnkMNt; . >GnuKmn_ cbxaxy 2 ++= man ac4b2 −=Δ EdnkMNt; ³ GnuKmn_mann½ykalNa 0cbxax2 ≥++

-krNI 0a >

Rkabén manGasIumtUteRTtBIrKW cbxaxy 2 ++=

k-ebI enaH +∞→x )a2

bx(ay += CaGasIumtUteRTt .

- 52 -

Page 59: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GefrPaBnigRkabénGnuKmn¾

k-ebI enaH −∞→x )a2

bx(ay +−= CaGasIumtUteRTt -krNI 0a <

RkabénGnuKmn_ cbxaxy 2 ++= K μanGasIumtUteT . edrIev

cbxax2bax2'y

2 ++

+= mansBaØadUc bax2 +

-ebI GnuKmn_manGtibrmamYyRtg; 0a <a2

bx −= . -ebI GnuKmn_manGb,brmamYyRtg; 0a >

a2bx −= .

- 53 -

Page 60: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GefrPaBnigRkabénGnuKmn¾

- 54 -

lMhat; !>rkGasIumtUteRTtrbs;GnuKmn¾ 1xx43x2y 2 ++−+= .

drIevénGnuKmn¾xageRkam³ @>rke k> ( ) 4x3x3x2y 2 +−−=

x> 32

x5x6xy 2 ++++= . 2

SaGefrPaB nig sg;Rk ¾xageRkam³ #>sik abénGnuKmn k> 1x2x3y −+−= x> 2x3xxy += 2 +−

;Rkab énGnuKmn¾ 2x$>k>sikSaGefrPaB nig sg ( )C 9y −= . dm = x>rkcMnucnwg EdlbnÞat; mx: 0m43y− + −

K>eRbIRkab kat;tamcMeBaHRKb;tMél m .

BiPakSatamtémø GtßiPaBénb¤srbs;smIkar m ( )C

. 03m4mxx9 2 =−+−−

%>eK[GnuKmn¾ 1xmmxy 22 +++= .

Page 61: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GefrPaBnigRkabénGnuKmn¾

- 55 -

asIumtUteRTtxagsþaMrbs;RkabxagelI b:Hnwg

ikSaGefrPaBnigs Rkab rbs;GnuKmn¾xagelI.

k>RsaybBa¢ak;fa G )a:ra:bUlnwgmYy. x>ebI 1m = s g; C^> eK[GnuKmn¾ ( )x4x2y −= . k>sikSaGefrPaB nig sg;Rkab C rbs;GnuKmn¾. x>eRbIRkab BiPakSatamtémø GtßiPaBénb¤srbs;smIkar C m

( ) m522mxxx4x2 −+− = . &>k>kMNt;témø m edIm,I[smIkar m1x2 2 =x + + m

edIm,I[vismIkar anb¤s. manb¤s. x>kMNt;témø m mx2x 2 1 <+ +

*> eK[GnuKmn¾ 1x2x4x)x(fy 2 +++== . n¾.

témø edIm,I[vismIkar k>sikSaGefrPaB nig sg;RkabénGnuKm

x>eRbIRkabrk m xm1x2x4 2 −≤++

manb¤s. (>eK[GnuKmn¾ 2x312

21

2x)x(fy −+== .

k>sikSaGefrPaB nig sg;Rkab énGnuKmn¾. C

x>RsaybBa¢ak; 4x312x2 2 ≤−≤− .

Page 62: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GefrPaBnigRkabénGnuKmn¾

K>edaHRsaysmIkar rYcepÞopÞat;lT§plén x4x312 2 −=−

smIkaredayRkabénGnuKmn¾xagelI.

- 56 -

!0> eK[GnuKmn¾ 1x2xy 2+= m+ anRkab . rb ;Rkab .

mø m mIkar

C k>rkGasIumtUteRTt s C x>tamRkabrkté edIm,I[s m12x2x =++ !!>KUb C

manb¤s.mYy ABCDEFGH manrgVas;RCug a . acMnuckNþalén I

[ ]AB ehIy J CacMnuckNþalén [ ]EH . cMnuc M mYyrt;enAelIRCug énKUb. rkcMgayxøIbMputEdl rt;BI eTA .

M I J

Page 63: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GefrPaBnigRkabénGnuKmn¾

- 57 -

dMeNaHRsay

bs;GnuKmn¾

!>rkGasIumtUteRTtr 1xx43x2y 2 ++−+= .

tUteRTt dMeNaHRsay rkGasIum

eKman 1xx43x2y 2 ++−+=

eK)an )x(|81x|43x2y ε++−+= Edl 0)x(lim

x=ε

±∞→

-ebI x +∞→

enaH 4

11)81x(23x2y =+−+= CaGasIumtUtedkrbs;Rkab .

−∞→ -ebI x

413x4 enaH )

81x(23x2y +++= += CaGasIumtUteRTt .

drIevénGnuKmn¾xageRkam³ @>rke k> ( ) 4x3x3x2y 2 +−−=

x> 32

x5x6xy2

2 ++++= .

Page 64: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GefrPaBnigRkabénGnuKmn¾

- 58 -

edrIevénGnuKmn¾xageRkam³ dMeNaHRsay rkk> ( ) 4x3x3x2y = 2 +−− eK)an )3x2()'4x3x(4x3x)'3x2('y 22 −+−++−−=

4x3x225x24x8

4x3x29x12x416x12x44x3x2

)3x2(4x3x2

2

2

2

22

2

22

+−

+−=

+−

+−++−=

+−

−++−=

32

x5x6x> xy =2

2 ++++ eK)an x

5x6x26x2'y

2+

++

+=

5x6x5x6xx3x

x5x6x

3x

2

2

2

++

++++=

+++

+=

dUcenH 5x6x

5x6xx3x'y2

2

++

++++= .

Page 65: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GefrPaBnigRkabénGnuKmn¾

- 59 -

SaGefrPaB nig sg;Rk ¾xageRkam³ #>sik abénGnuKmn k> 1x − x> 2x3xxy 2 +−+= 2x3y +−=

dMeNaHRsay sikS abaGefrPaB nig sg;Rk énGnuKmn¾xageRkam³ k> 1x2 −+ x3y −=

EdnkMNt; ,1[D )+= ∞ e rPaB TisedAG f

-edrIev 1x

1'y2

3−

+= eK)an -cMeBaHRKb; x > naM[ y CaGnuKmn_ekIn. 1 0'y >

KNnalImIt ³ +→

limx

+∞=−+−∞

)1x2x3( . taragG rP

x 1 ef aB

+ ∞ 'y

y

+

∞+

0

Page 66: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GefrPaBnigRkabénGnuKmn¾

sMNg;Rkab

- 60 -

x> 2x3xxy 2 +−+=

2 3 4 5 6 7-1-2

2

3

4

5

6

-1

0 1

1

x

y

1x2x3y:C −+−=

2 5

2

3

4

-1

3 4-1-2

y

1

0 1 x

Page 67: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GefrPaBnigRkabénGnuKmn¾

- 61 -

kab$>k>sikSaGefrPaB nig sg;R ( )C énGnuKmn¾ 2x9y −= . dm = x>rkcMnucnwg EdlbnÞat; mx: 0m43y− + −

K>eRbIRkab kat;tamcMeBaHRKb;tMél m .

BiPakSatamtémø GtßiPaBénb¤srbs;smIkar m ( )C

03m4mxx9 2 −+−− =

rPaB nig sg;Rkab dMeNaHRsay

énGnuKmn¾ 2x9y −= k>sikSaGef ( )C

EdnkMNt; 3[D −= ]3, TisedAGefrPaB

22 x9x

x92x2 'y

−−=

− =

ebI 0x0'y =⇒= KW 3)0(y == GnuKmn_manGtibrmaeFobRtg; 0x =

taragGefrPaB x 3 − 0 3

' y

y

+

3

Page 68: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GefrPaBnigRkabénGnuKmn¾

- 62 -

sMNg;Rkab x>rkcMnucnwg EdlbnÞat; 0m43ymx:dm =−+−

2 3 4 5 6

kat;tamcMeBaHRKb;tMél m eKGacsresr x(m3 )4y −=− smIkare Þat;Canic©RKb; mnHepÞógp smmUl 3y,4x == dUcenH );4(I CacMnucnwg . 3

K>eRbIRkab ( )C BiPakSatamtémø mGtßiPaBénb¤srbs;smIkar 039 m4mxx2 =−+− CasmIkarGab;sIuscMNucRbsBV −

rvag 2x9y:)C( −= nwg 3m4mxy:dm +−= tamRkahVikeK)an ³

-1-2-3-4-5

-

2

3

4

5

1

1

0 1 x

y

I

Page 69: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GefrPaBnigRkabénGnuKmn¾

- 63 -

= -cMeBaH smIkarmanb¤sDúb xx 21 . 0m = 0=

-cMeBaH 73m = smIkarmanb¤sEtmYyKt;KW 3 . x −=

smIkar . -cMeBaH manb¤sEtmYyKt;KW 3x = 3m = -cMeBaH )3,

73m∈ ( smIkarmanb¤sEtmYyKt;KW 3x3 <<− b¤ smIkarKμanb¤s . -cMeBaH m > 3 0m <

%>eK[GnuKmn¾ 1xmmxy 22 +++= . k>RsaybBa¢ak;fa GasIumtUteRTtxagsþaMrbs;RkabxagelI b:Hnwg

ngmYy. )a:ra:bUl w eKman 1xmmxy 22 +++= y 0)x( =ε

±∞ )x(|x|mmx 2 ε+++= Edl

++=+ GasIumtUtxag s;Rkabtag

limx

eKTaj 2mxy += Ca2 mx)1m(xm

sþaMrb 1xm 22 ++ . mxy +=

++ Ca)a:ra:bUlnwgRtUvrk IkarGab;sIus m(cbxax ++=++

b( smIkar manb¤sDubRKb; luHRtaEt

yk axy:P 2= cbx

sm 1 22 mx)

b¤ 0cx)1max 22 =−+−−+ (m )E

)E( m IRm0 ∈∀=Δ

Page 70: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GefrPaBnigRkabénGnuKmn¾

)mc(a4)1mb( 22 −−−−=Δ

- 64 -

ebI

ac4)1b(m)b22(m)a41(

am4ac41m2mb2mb2b

am4ac4)1m()1m(b2b

22

222

222

−−+−++=

+−+++−−=

+−+++−=Δ

smmUl ⎪⎪

⎪⎪

==

−=

0c1b

41a

IRm0 ∈∀=Δ

eK)an x4x

+−= . y:P2

= sikSaGefrPaBnigsg;Rkab rbs;GnuKmn¾xagelI c

x>ebI m 1 C

MeBaH 1m = eK)an 1x1xy 2 +++=

0 1

1

y

1x1xy:C 2 +++=

x

Page 71: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH >cMNucsMxan;²sRmab;sikSaGnuKmn_RtIekaNmaRt -EdnkMNt; -xYbénHnuKmn_ -PaBKUessénGnuKmn_ -TisedAGefrPaBénGnuKmn_ >xYbénGnuKmn_ -xYbénGnuKmn_ )axsin(y = KW

|a|2π

-xYbénGnuKmn_ )axcos(y = KW |a|

>PaBKUessénGnuKmn_ -GnuKmn_ )x(f CaGnuKmn_esselI I kalNa Ix,Ix ∈−∈∀ ehIy )x(f)x(f −=− . -GnuKmn_ )x(f CaGnuKmn_KUelI I kalNa Ix,Ix ∈−∈∀ ehIy )x(f)x(f =− .

- 65 -

Page 72: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

lMhat; !>sikSaGefrPaB nig sg;RkabénGnuKmn¾ . x2sin.cosy 2=

@> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> xcos3xsin2y −= x> xcosxsin5y += . #>sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> x3cosx2cosy −= x> xsinx2cosx2y −= . $>sikSaGefrPaB nig sg;RkabénGnuKmn¾ k> x2sinxsin2y −= x> . xsinxxcosy 2 +=

%> sikSaGefrPaB nig sg;RkabénGnuKmn¾ k>

xcosxsin1y −

= x>xsin

1xcosy −= .

^> rkbrimaénGnuKmn¾ xcos2

xsiny+

= elIcenøaH [ ]2,0 . &>eRbIRkabén xsin3x2siny −= edaHRsaysmIkar

0xsin3x2sin =− ebI π≤≤π− 2x2 . *> eK[GnuKmn¾ xsinx2sinay += . sikSaGefrPaB nig sg;RkabcMeBaH 1a = .

- 66 -

Page 73: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

(>eK[GnuKmn¾ xcosa

1xcosxsinay −−= .

sikSaGefrPaB nig sg;RkabcMeBaH 1a = . lMhat;CMBUk 3 !> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> 5x3y −= x> x47y −= . @> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> 3x2x2y 2 −−+= x> 2x282y −+= . #> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> 5x31x2y −−−= x> 2x41xy −−+= . $> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> ( )

2xsin2xsinxfy +== x> ( )

1xcos21xcosxfy+−

== . %> sikSaGefrPaB nig sg;RkabénGnuKmn¾ ( ) xcosxsin3xfy +== ^>eK[GnuKmn¾ 1xmx2y 2 ++−= k>sikSaGefrPaB nig sg;RkabcMeBaH 4m = . x>rktémø m edIm,I[GnuKmn¾K μantémøbrma.

- 67 -

Page 74: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

dMeNaHRsay !>sikSaGefrPaB nig sg;RkabénGnuKmn¾ . x2sin.xcosy 2=

dMeNaHRsay sikSaGefrPaB nig sg;Rkab x2sin.xcosy 2=

>EdnkMNt; IRD = >xYb ³ eKman x2sin)x2cos1(

21x2sinxcosy 2 +==

GnuKmn_manxYb π=p eRBaH )x22sin()]x22cos(1[

21)x(f +π+π+=π+

)x(fx2sin)x2cos1(21

=+= >PaBKUess ³

)x(f CaGnuKmn_esseRBaH )xsin()x(cos)x(f 2 −−=−

)x(f

xsinxcos2

−=−=

dUcenHeKsikSaEtkñúgcenøaH ]2

,0[ π

- 68 -

Page 75: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

>TisedAGefrPaB edrIev )x2cos1()'x2(sin

21x2sin)'x2cos1(

21)x('f +++=

)1x2)(cos1x2cos2(

1x2cosx2cos2

x2cosx2cosx2cos1

)x2cos1(x2cosx2sin

2

22

2

+−=−+=

+++−=

++−=

edayRKb; 1x2cos1:IRx ≤≤−∈ enaH 01x2cos ≥+

naM[ )x('f mansBaØadUc 1x2cos2 − -ebI

21x2cos01x2cos2 =⇒=− b¤

6x

3x2 π

=⇒π

= -ebI

21x2cos01x2cos2 >⇒>− b¤

6x0 π<<

-ebI 21x2cos01x2cos2 <⇒<− b¤

2x

<<π

taragGefrPaB x 0

)x('f +

- 69 -

)x(f

)6

(f π

0 0

Page 76: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

kñúgcenøaH )2

,0( π GnuKmn_manGtibrma8

33)6

(f =π .

cMeBaH 2

x π= eK)an 0)

2('f =π nig 0)

2(f =π .

dUcenHRtg; 2

x π= Rkab manGkS½ CabnÞat;b:H . )c( )ox(

- 70 -

0 1

1

x

y

x2sinxcosy:)c( 2=

Page 77: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

@> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> xcos3xsin2y −= x> xcosxsin5y += . dMeNaHRsay sikSaGefrPaB nig sg;Rkab k> xcos3xsin2y −=

0 1

1

x

y

x> xcosxsin5y +=

0 1

1

x

y

- 71 -

Page 78: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

#>sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> x3cosx2cosy −= x> xsinx2cosx2y −= . dMeNaHRsay k> x3cosx2cosy −=

- 72 -

x> xsinx2cosx2y −=

0 1

1

x

y

0 1

1

x

y

Page 79: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

$>sikSaGefrPaB nig sg;RkabénGnuKmn¾ k> x2sinxsin2y −= x> . xsinxxcosy 2 +=

dMeNaHRsay k> x2sinxsin2y −=

- 73 -

0 1

1

x

y

x> xsinxxcosy 2 +=

0 1

1

x

y

Page 80: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

%> sikSaGefrPaB nig sg;RkabénGnuKmn¾ k>

xcosxsin1y −

= x>xsin

1xcosy −= .

dMeNaHRsay k>

xcosxsin1y −

=

- 74 -

x>

xsin1xcosy −

=

0 1

1

x

y

0 1

1

x

y

Page 81: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

^> eK[GnuKmn¾ xsinx2sinay += . sikSaGefrPaB nig sg;RkabcMeBaH 1a = . dMeNaHRsay sg;RkabcMeBaH 1a =

eK)an xsinx2siny +=

0 1

1

x

y

&>eK[GnuKmn¾ xcosa

1xcosxsinay −−= .

sikSaGefrPaB nig sg;RkabcMeBaH 1a = . dMeNaHRsay sg;RkabcMeBaH 1a =

eK)an xcos

1xsin1xcos

1xcosxsiny −+−=

−−=

- 75 -

Page 82: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

0 1

1

x

y

- 76 -

Page 83: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

lMhat;CMBUk3 nigdMeNaHRsay !> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> 5x3y −= x> x47y −= . dMeNaHRsay sikSaGefrPaB nig sg;RkabénGnuKmn_ k> 5x3y −= >EdnkMNt; ),

35[D ∞+=

>TisedAGefrPaB edrIev

5x323'y−

= cMeBaH

35x > eK)an 0'y > naM[vaCaGnuKmn_ekInelI ),

35( ∞+

lImIt +∞=−+∞→

5x3lx

im

x

- 77 -

taragGefrPaB 3

5 ∞+

'y y

+

0

∞+ 0 1

1

x

y

Page 84: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

x> x47y −= >EdnkMNt; ]

47,(D −∞=

>TisedAGefrPaB edrIev

x472'y−−

= cMeBaH

47x < eK)an 0'y < naM[vaCaGnuKmn_cuHelI )

47,(−∞

lImIt +∞=−−∞→

x47limx

taragGefrPaB

x ∞− 47

'y

- 78 -

y ∞+ 0

0 1

1

x

y

Page 85: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

@> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> 3x2x2y 2 −−+= x> 2x282y −+= . dMeNaHRsay sikSaGefrPaB nig sg;RkabénGnuKmn_ k> 3x2x2y 2 −−+=

0 1

1

x

y

2y =

x> 2x282y −+=

0 1

1

x

y

2y =

- 79 -

Page 86: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

#> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> 5x31x2y −−−= x> 2x41xy −−+= . dMeNaHRsay sikSaGefrPaB nig sg;RkabénGnuKmn_ k> 5x31x2y −−−=

0 1

1

x

y

x> 2x41xy −−+=

0 1

1

x

y

- 80 -

Page 87: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

$> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> ( )

2xsin2xsinxfy +== x> ( )

1xcos21xcosxfy+−

== . dMeNaHRsay sikSaGefrPaB nig sg;RkabénGnuKmn_ k> ( )

2xsin2xsinxfy +==

0 1

1

x

y

x> ( )

1xcos21xcosxfy+−

==

0 1

1

x

y

- 81 -

Page 88: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI3 GnuKmn¾RtIekaNmaRtcRmuH

%> sikSaGefrPaB nig sg;RkabénGnuKmn¾ ( ) xcosxsin3xfy +== dMeNaHRsay sikSaGefrPaB nig sg;RkabénGnuKmn¾ ( ) xcosxsin3xfy +==

0 1

1

x

y

- 82 -

Page 89: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

- 83 -

CMBUkTI4 emeronTI1

GaMgetRkalkMNt; >niymn½y CaGnuKmn_Cab;elIcenøaH . f ]b,a[

GaMgetRkalkMNt;BI a eTA b én )x(fy = kMNt;eday Edl )a(F)b(Fdx).x(f

b

a

−=∫ )x(f)x('F = .

>épÞRkLaénEpñkbøg; -ebIGnuKmn_ )x(fy = Cab;elIcenøaH enaHépÞRkLaénEpñkbøg; ]b,a[

EdlxNÐedayExSekag GkS½Gab;sIus bnÞat;Qr bx,ax == kMNt;eday ebI ∫=

b

a

dx).x(fS 0)x(f ≥

S

AB

a b

y

x

)x(fy:C =

Page 90: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

- 84 -

-ebIGnuKmn_ )x(fy = Cab;elIcenøaH enaHépÞRkLaénEpñkbøg; ]b,a[

EdlxNÐedayExSekag GkS½Gab;sIus bnÞat;Qr bx,ax == kMNt;eday ebI ∫−=

b

a

dx).x(fS 0)x(f ≤ .

-ebI f nig g CaGnuKmn_Cab;elI enaHeK)anépÞRkLaenAcenøaH ]b,a[

ExSekagtagGnuKmn_TaMgBIrkMNt;eday [ ]dx.)x(g)x(fSb

a∫ −=

Edl )x(g)x(f ≥ RKb; ]b,a[x∈ .

a b

x

A B

S

y

)x(fy:)C( =

AB

CD

a b x

y

Page 91: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

lMhat; !>edayeRbIniymn½yKNnaGaMetRkalxageRkam³ k> x> ∫ ∫

20 xdx3 4

2 xdx4

K> X>∫20

2dxx ( )dxx5x20

2∫ − g> . ∫

21

2dxx

@>KNnatémøRbEhlénépÞRklaEdlxN½ÐedayRkabtag ( )xfy = nigGk½S elIcenøaH ox'x [ ]b,a Edl³ k> Edl ( ) 2x9xf −= [ ] [ ] 5n,2,3b,a =−= x> ( )

2x1xf+

= Edl [ ] [ ] 4n,3,1b,a =−= #>KNnaRklaépÞxN½ÐedayRkabnigGk½SGab;sIuselIcenaøHEdl[³

k> Edl ( ) 2xxf = [ ]3,1x∈ x> Edl ( ) 3x2xxf 2 −+= [ ]3,1x∈ K> Edl ( ) 3x2xf −= [ ]2,3x −−∈ X> ( )

1x23xf+

= Edl [ ]2,0x∈ .

- 85 -

Page 92: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

$>KNnaRklaépÞxN½ÐedayRkabtagGnuKmn¾TaMgBIr³ k> nig ( ) 2xxf 2 += ( ) [ ]5,2x,xxg ∈=

x> nig ( ) 2xxf = ( ) [ ]1,0x,xxg 3 ∈= K> ( ) 1x2xf += nig ( ) [ ]2,0x,2x3xg ∈+= X> nig ( ) 1xexf −= ( ) [ ]4,1x,xxg ∈= %> KNnaRklaépÞxN½ÐedayExSekagtagGnuKmn¾ nig 2yx = 2xy −= . ^> KNnaRklaépÞxN½ÐedayExSekagtagGnuKmn¾ ( )xfy = nig ( ) x2xgy −== nig . ox'x

&> KNnaRklaépÞxN½ÐedayExSekagtagGnuKmn¾ ( )

1x1xfy+

== nig ( ) x7.0exgy == nig [ ]4,0x∈ .

- 86 -

Page 93: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

dMeNaHRsay !>edayeRbIniymn½yKNnaGaMgetRkalxageRkam³ k> x> ∫ ∫

20 xdx3 4

2 xdx4

K> X>∫20

2dxx ( )dxx5x20

2∫ − g> . ∫

21

2dxx

dMeNaHRsay k> 606

2x3xdx3

2

0

22

0=−=⎥

⎤⎢⎣

⎡=∫

x> [ ] 24832x2xdx442

24

2=−==∫

K>38x

31dxx

2

0

32

02 =⎥⎦

⎤⎢⎣⎡=∫

X> ( )3

22)2

2038(x

25x

31dxx5x

2

0

232

02 −=−=⎥⎦

⎤⎢⎣⎡ −=−∫

g>37

31

38x

31dxx

2

1

32

12 =−=⎥⎦

⎤⎢⎣⎡=∫ .

- 87 -

Page 94: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

@>KNnaRklaépÞxN½ÐedayRkabnigGk½SGab;sIuselIcenaøHEdl[³ k> Edl ( ) 2xxf = [ ]3,1x∈ x> Edl ( ) 3x2xxf 2 −+= [ ]3,1x∈ K> Edl ( ) 3x2xf −= [ ]2,3x −−∈ X> ( )

1x23xf+

= Edl [ ]2,0x∈ . dMeNaHRsay KNnaRklaépÞ

k> Edl ( ) 2xxf = [ ]3,1x∈

0 1

1

x

y

eK)an ∫=3

1

2dxxS

3

2631

327

x31 3

1

3

=−=

⎥⎦⎤

⎢⎣⎡=

dUcenH 326S = ¬ÉktaépÞ¦

- 88 -

Page 95: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

x> Edl ( ) 3x2xxf 2 −+= [ ]3,1x∈

0 1

1

x

y

eyIg)an ∫ −+=

3

1

2 dx).3x2x(S

332)

35(9

x3xx31 3

1

23

=−−=

⎥⎦⎤

⎢⎣⎡ −+=

dUcenH 332S = ÉktaépÞ

K> Edl ( ) 3x2xf −= [ ]2,3x −−∈ eK)an dx).x2(S

2

3

3∫−

−=

473

4812

)4816()44(

4xx2

2

3

4

=+−=

−−−−−=

⎥⎦

⎤⎢⎣

⎡−=

- 89 -

Page 96: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

X> ( )1x2

3xf+

= Edl [ ]2,0x∈ . eK)an

0 1

1

x

y

∫ +=

2

0 1x2dx3S

5ln

23

|1x2|ln213

2

0

=

⎥⎦⎤

⎢⎣⎡ +=

dUcenH 5ln23S = ÉktaépÞ

#>KNnaRklaépÞxN½ÐedayRkabtagGnuKmn¾TaMgBIr³

k> nig ( ) 2xxf 2 += ( ) [ ]5,2x,xxg ∈= x> nig ( ) 2xxf = ( ) [ ]1,0x,xxg 3 ∈= K> ( ) 1x2xf += nig ( ) [ ]2,0x,2x3xg ∈+= X> nig ( ) 1xexf −= ( ) [ ]4,1x,xxg ∈=

- 90 -

Page 97: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

dMeNaHRsay KNnaRklaépÞ k> nig ( ) 2xxf 2 += ( ) [ ]5,2x,xxg ∈= eyIg)an

0 1

1

x

y

∫ −+=5

2

2 dx).x2x(S

5

2

23 x21x2x

31

⎥⎦⎤

⎢⎣⎡ −+=

2

693

146

235=−=

dUcenH ÉktaépÞ 5.34S =

x> nig ( ) 2xxf = ( ) [ ]1,0x,xxg 3 ∈= eK)an

0 1

1

x

y

( ) dx.xxS1

0

32∫ −=

121

41

31

x41x

31 1

0

43

=−=

⎥⎦⎤

⎢⎣⎡ −=

dUcenH 121S = ÉktaépÞ

- 91 -

Page 98: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

K> ( ) 1x2xf += nig ( ) [ ]2,0x,2x3xg ∈+=

0 1

1

x

y

eyIg)an ( ) dx.1x22x3S2

0∫ +−+=

35531

)310()

312510(

)1x2(31x2x

23

2

0

23

2

−=

−−−=

⎥⎥⎦

⎢⎢⎣

⎡+−+=

dUcenH 3

5531S −= .

- 92 -

Page 99: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

X> nig ( ) 1xexf −= ( ) [ ]4,1x,xxg ∈= eK)an

0 1

1

x

y

217e

)211()8e(

x21e

dx).xe(S

3

3

4

1

21x

4

1

1x

−=

−−−=

⎥⎦⎤

⎢⎣⎡ −=

−=

−∫

dUcenH 2

17e2S3 −

= .

- 93 -

Page 100: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

$> KNnaRklaépÞxN½ÐedayExSekagtagGnuKmn¾ nig 2yx = 2xy −= . dMeNaHRsay KNnaRklaépÞ

0 1

1

x

y

0 1

1

x

y

eKman 2xy −= naM[ 2yx += eK)an ∫

−+=2

1

2 dy).y2y(S

29

6212320)

312

21()

386(

y31y2y

21 2

1

32

=−+−

=+−−−=

⎥⎦⎤

⎢⎣⎡ −+=

- 94 -

Page 101: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

%> KNnaRklaépÞxN½ÐedayExSekagtagGnuKmn¾ ( )

1x1xfy+

== nig ( ) x7.0exgy == nig [ ]4,0x∈ . dMeNaHRsay KNnaRklaépÞ

0 1

1

x

y

dx).

1x1e(S

4

0

x7.0

+−= ∫

45.20)1xln(e7.0

1 4

0

x7.0 =⎥⎦⎤

⎢⎣⎡ +−=

dUcenH ÉktaépÞ . 45.20S =

- 95 -

Page 102: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

CMBUkTI4 emeronTI2

maRtsUlItnigRbEvgFñÚ

ebIGnuKmn_ f viC¢manehIyCab;elIcenøaH enaHmaDénsUlId ]b,a[

brivtþn_)anBIrgVilCMuvijGkS½Gab;sIusénépÞEdlxNÐedayRkabtag GnuKmn_ )x(fy = GkS½Gab;sIus bnÞat;Qr nig ax = bx = kMNt;eday . [ ]∑ ∫

=+∞→π=Δπ=

n

1k

2b

ak

2

ndx).x(fx).x(flimV

maDénsUlIdbrivtþkMNt;)anBIrgVilCMuvijGkS½ énépÞxNÐeday )ox(

Rkab )x(fy = nig )x(gy = elIcenøaH Edl]b,a[ )x(g)x(f ≥ kMNt;eday . [ ]∫ −π=

b

a

22 dx.)x(g)x(fV

GnuKmn_ F EdlkMNt;elIcenøaH eday ]b,a[ ∫=x

a

dt).t(f)x(F

ehAfaGnuKmn_kMNt;tamGaMgetRkalkMNt; . témømFümén f kMNt;Cab;elI KW ]b,a[ ∫−

=b

am dx).x(f

ab1y

RbEvgFñÚénRkabtagf elI KW]b,a[ dx.)x('f1Lb

a

2∫ +=

- 96 -

Page 103: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

- 97 -

lMhat; !>k>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S ox'x

énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ 1x2y += Gk½S ox'x

bnÞat;Qr nig 1x = 3x = . x>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S ox'x

énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ Gk½S 1xy 2 += ox'x

bnÞat;Qr nig 0x = 3x = . K>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S ox'x

énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ 3xy −= Gk½S ox'x

bnÞat;Qr eTA 4x = 9x = . @>k>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S ox'x

énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ ( ) 2xxf = nig . ( ) 2xx4xg −=

x>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S ox'x

énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ ( ) 3x2xxf 2 +−= nig ( ) x9xg . −=

Page 104: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

#>cMeBaHGnuKmn¾ . KNna ( ) ∫ π= x1 tdtsinxF

k> ( )1F − x> ( )0'F K> ⎟

⎠⎞

⎜⎝⎛

21'F X> ( )x"F .

$>épÞRkla xNÐedayRkabtagGnuKmn¾ A 2t44)t(g −= nig

Gk½SGab;sIuselIcenaøH[ ]x,1 kMNt;eday ( ) ∫ ⎟⎠⎞

⎜⎝⎛ −= x

1 2 dtt44xA .

k>KNna ACaGnuKmn¾én . etIRkabGnuKmn¾ A mansmIkar x

GasIumtUtedk rW eT? x>rksmIkarGasIumtUteRTténRkabtagGnuKmn¾ g. %> KNna ( )x'F ebI k> x>( ) ( )∫

+ += 2xx dt1t4xF ( ) ∫−= x

x3dttxF

K> ( ) ∫= xsin0 dttxF X> ( ) ∫=

2x2 2 dt

t1xF

g> c>( ) ∫=3x

0 dttsinxF ( ) ∫ += 0

xsin dtt2

1xF . ^>k>bgðajfaebI ( )tf CaGnuKmn¾ess enaH ( ) ( )∫= x

a dttfxF RKb; IRx∈ CaGnuKmn¾essEdrrWeT?

- 98 -

Page 105: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

&>eKe)aHdMusársUkULa)anTTYlvik½yb½RtcMnYn 1200 erogral; 30éf¶mþg. sársUkULaRtUv)anlk;bnþ[Gñklk;rayeday GRtaefrnig x Caéf¶bnÞab;BITTYlvik½yb½Rtmkdl; ehIybBa¢ITUTat; kMNt;eday ( ) x401200xI −= . KNnamFümRbcaMéf¶énkarTUTat;. KNnamFümRbcaMéf¶énlk;sársUkULa ebIsársUkULamYyRKb;éfø 300 erol. *>k>KNnaRbEvgFñÚénRkabtagGnuKmn¾

x41

3xy

3

+= BI eTA . 1x = 3x =

x>]bmafa ( ) ( )xx ee21xf −+= . bnÞat;CYbGk½SGredaenRtg; B

ehIyb:HnigRkabtag f Rtg;cMnuc ( )( )af,aA Edl . 0a >

eRbobeFobRbEvgénGgÁt; AB nigRbEvgFñÚrénRkabtag f enAbenøaHbnÞat;Qr 0x = nig ax = . (>rképÞRkla S énEsV‘rEdlmankaM r .

- 99 -

Page 106: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

- 100 -

lMhat;CMBUk4 !>KNnaGaMgetRkalxageRkam³ k> x>( )( )∫ +−2

2n2 dxx2x4 ∫ +−

86 2 dx

8x6xx

K> ∫ −−10 2

2

dx2xx

x X ∫−3

1 dxx1x

g> c>∫π0 nxdxcosmxcos ∫ +

10 2 dx

x31x

q> ∫π

+2

0 2 dxxcos3

x2sin C> ∫π2

022 xdxcosx .

@>KNna k> (∫

π − ≠02at 0adt

2tcose ) x> ( )

dxx

xlnsine1∫

π K> ∫

++−

6ln0 xx

dx2ee

x22 X> ( )∫ −−−1

022 dxx1x4

g> ∫−

10 2x4

dx c> ∫ −a0

2dxxax2

q> ( )∫ +a0

23

22 dxax C> ∫ +−10 2 dx

1xxx2

#>KNnamaDsUlItbivtþkMNt;)anBIrgVilCMuvijGk½S énépÞRkla ox'x

xNÐedayRkaPictagGnuKmn¾ ( ) 6xxf += nig ( ) 2xxg =

elIcenøaH [ ]3,2x −∈ .

Page 107: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

$> KNnamaDsUlItbivtþkMNt;)anBIrgVilénépÞRklaxNÐedayRkaPic tagGnuKmn¾ x3y −= nig Gk½S ( )2x1,ox'x ≤≤− CMuvijGk½S . ox'x

%> KNnamaDsUlItbivtþkMNt;)anBIrgVilcMnYn CMuvijGk½S 0360

Gab;sIusénépÞRklaxNÐedayRkaPictagGnuKmn¾ nig 2x1y −=

Gk½S [ ]1,1x,ox'x −∈ . ^> KNnamaDsUlItbivtþkMNt;)anBIrgVilCMuvijGk½S énépÞRkla ox'x

xNÐedayRkaPictagGnuKmn¾ ( ) 2x2xf = nig ( ) 2xx4xg −= . &> KNnamaDsUlItbivtþkMNt;)anBIrgVilCMuvijGk½S énépÞRkla ox'x

xNÐedayRkaPictagGnuKmn¾ ( ) 2x2xf −= nig ( ) xxg = elIcenøaH [ ]1,0x∈ . *> KNnamaDsUlItbivtþkMNt;)anBIrgVil cMnYn CMuvijGk½S 0180 ox'x

énépÞRklaxNÐedayRkaPictagGnuKmn¾ ( ) 2x8xf −= nig ( ) 2xxg = .

(>KNnaépÞRklaEdlxNÐedayRkabtagGnuKmn¾ x2

siny π= nig

4xy = .

- 101 -

Page 108: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

!0> KNnaépÞRklaEdlxNÐedayRkabtagGnuKmn¾ nig xsiny 3=

xcosy 3= enAcenøaH 4

x π= nig

45x π

= . !!> KNnaépÞRklaEdlxNÐedayRkab nig GnuKmn¾ 1C 2C

( )π≤≤= x0,xsiny nig ( )π≤≤= x0,x3siny !@>BinitüRkab x2siny = nig xcosy = Edl . π≤≤ x0

k>rkkUGredaencMNucRbsBVénRkabTaMgBIr. x>rképÞRkla S EdlxNÐedayRkabTaMgBIr. !#>C CaRkabtag ( ) ( )1xlnxf += nig LCabnÞat;b:Hnwg CEdl manemKuNR)ab;Tises μ Inwg

21 .

k>rksmIkarbnÞat;b:H L. x>KNnamaDsUlItbivtþkMNt;)anBIrgVilCMuvijGk½S én ox'x

épÞRklaxNÐedayRkab nig Gk½SGredaen. L,C

!$>tag C CaRkab 1x2ey −= nig CabnÞat;b:Hnwg CRtg;cMnuc L

( )e,1P . k> rksmIkarbnÞat; L. x>rképÞRkla S EdlxNÐedayRkabC bnÞat; nigGk½SGredaen. L

- 102 -

Page 109: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

!%> tag C CaRkab CabnÞat;b:H C EdlKUs 21x L,L,xey =

ecjBIcMnuc ⎟⎠⎞

⎜⎝⎛ 0,

21 .

k>rksmIkarbnÞat;b:H . 21 L,L

x>rképÞRkla S EdlxNÐedayRkab nig bnÞat;b:HEdlmankñúg C

sMnYrTI !.

- 103 -

Page 110: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

dMeNaHRsay !>k>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S ox'x

énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ 1x2y += Gk½S ox'x

bnÞat;Qr nig 1x = 3x = . x>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S ox'x

énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ Gk½S 1xy 2 += ox'x

bnÞat;Qr nig 0x = 3x = . K>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S ox'x

énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ 3xy −= Gk½S ox'x

bnÞat;Qr eTA 4x = 9x = . dMeNaHRsay k>KNnamaDsUlIt

2 3 4 5 6-1-2-3

2

3

4

5

6

7

-1

0 1

1

x

y

dx.)1x2(V3

1

2∫ +π=

[ ]

3158)27343(

6

)1x2(6

31

3

π=−

π=

=

¬ ÉktamaD ¦ .

- 104 -

Page 111: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

x>KNnamaDsUlItbrivtþ

4165

xx32x

41

dx)1x2x(

dx)1x(V

3

0

34

3

0

24

3

0

22

π=

⎥⎦⎤

⎢⎣⎡ ++π=

++π=

+π=

0 1

1

x

y

dUcenH 4

165V π= ¬ÉktamaD ¦ .

K>KNnamaDsUlItbrivtþ

eyIg)an dx)9x6x(dx)3x(V9

4

9

4

2 +−π=−π= ∫∫

2 3 4 5 6 7 8 9 10-1-2

2

-1

-2

-3

0 1

1

x

y

2

3x9x42x

9

4

232 π

=⎥⎥⎦

⎢⎢⎣

⎡+−π= ¬ÉktamaD ¦ .

- 105 -

Page 112: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

@>k>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S ox'x

énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ ( ) 2xxf =

nig . ( ) 2xx4xg −=

x>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S ox'x

énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ nig ( ) 3x2xxf 2 +−= ( ) x9xg −= . dMeNaHRsay k>KNnamaDsUlItbrivtþ

2 3 4 5-1-2

2

3

4

-1

0 1

1

x

y

eyIg)an [ ] dx.)x()xx4(V

2

0

2222∫ −−π=

- 106 -

Page 113: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

3

32x2x

316

V

dx)x8x16(V

2

0

43

2

0

32

π=⎥⎦

⎤⎢⎣⎡ −π=

−π= ∫

dUcenH 3

32V π= ¬ÉktamaD ¦ .

x>KNnamaDsUlItbrivtþ

2 3 4 5 6 7 8 9 10 11 12-1-2-3-4-5

2

3

4

5

6

7

8

9

10

11

12

13

-1

-2

0 1

1

x

y eK)an [ ]dx)3x2x()x9(V

3

2

222∫−

+−−−π=

bnÞab;BIKNnaeK)an π= 250V ¬ÉktamaD ¦ .

- 107 -

Page 114: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

#>cMeBaHGnuKmn¾ . KNna ( ) ∫ π= x1 tdtsinxF

k> ( )1F − x> ( )0'F K> ⎟

⎠⎞

⎜⎝⎛

21'F X> ( )x"F .

dMeNaHRsay eKman ( ) ∫ π= x

1 tdtsinxF

π

−ππ

−=

⎥⎦⎤

⎢⎣⎡ π

π−=

1xcos1

tcos1 x

1

k> ( )1F − eK)an 01)1(1)1(F =

π−−

π−=− .

x> ( )0'F eKman xsin)x('F π= eK)an 0)0('F =

K> ⎟⎠⎞

⎜⎝⎛

21'F

eK)an 12

sin)21

('F =π

= . X> ( ) xcosx"F ππ= .

- 108 -

Page 115: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

$>épÞRkla xNÐedayRkabtagGnuKmn¾ A 2t44)t(g −= nig

Gk½SGab;sIuselIcenaøH[ ]x,1 kMNt;eday ( ) ∫ ⎟

⎠⎞

⎜⎝⎛ −= x

1 2 dtt44xA .

KNna ACaGnuKmn¾én x. etIRkabGnuKmn¾ mansmIkar A

GasIumtUtedk rW eT? dMeNaHRsay k>KNna ACaGnuKmn¾én x

( ) ∫ ⎟⎠⎞

⎜⎝⎛ −=

x

1 2 dt.t44xA

8x4x4

t4t4

x

1−+=⎥⎦

⎤⎢⎣⎡ +=

dUcenH x48x4)x(A +−= .

eday +∞=+−=+∞→+∞→

)x48x4(lim)x(Alim

xx .

naM[RkabGnuKmn¾ A K μansmIkarGasIumtUtedkeT .

- 109 -

Page 116: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

%> KNna ( )x'F ebI k> x>( ) ( )∫

+ += 2xx dt1t4xF ( ) ∫−= x

x3dttxF

K> ( ) ∫= xsin0 dttxF X> ( ) ∫=

2x2 2 dt

t1xF

g> c>( ) ∫=3x

0 dttsinxF ( ) ∫ += 0

xsin dtt2

1xF . dMeNaHRsay KNna ( )x'F ebI k> ( ) ( )∫

+ += 2xx dt1t4xF

eK)an [ ] 2xx

2 tt2)x(F+

+=

[ ]

10x8xx22x8x8x2

)xx2(2x)2x(222

22

+=−−++++=

+−+++=

dUcenH . 8)x('F =

x> ( ) ∫−= xx

3dttxF

eK)an 0t41)x(F

x

x

4 =⎥⎦⎤

⎢⎣⎡=

dUcenH . 0)x('F =

- 110 -

Page 117: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

K> ( ) ∫= xsin0 dttxF

eK)an xsin32t

32)x(F 2

3xsin

0

23

=⎥⎥⎦

⎢⎢⎣

⎡=

dUcenH xsinxcos)x('F = X> ( ) ∫=

2x2 2 dt

t1xF

eK)an 21

x1

t1)x(F 2

x

2

2

+−=⎥⎦⎤

⎢⎣⎡−=

dUcenH 3x2)x('F = .

g> ( ) ∫=3x

0 dttsinxF

eK)an [ ] 1xcostcos)x(F 3x0

3+−=−=

dUcenH 32 xsinx3)x('F =

c> ( ) ∫ += 0

xsin dtt2

1xF . eK)an [ ] |xsin2|ln2ln|t2|ln)x(F 0

xsin +−=+=

dUcenH xsin2

xcosxsin2)'xsin2()x('F

+−=

++

−= .

- 111 -

Page 118: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

^>k>bgðajfaebI ( )tf CaGnuKmn¾ess enaH ( ) ( )∫= xa dttfxF

RKb; IRx∈ CaGnuKmn¾essEdrrWeT? dMeNaHRsay sikSaPaBKUessénGnuKmn_ )x(F

man ( ) ( )∫= xa dttfxF

eK)an ∫−

=−x

a

dt).t(f)x(F

tag dtdutu −=⇒−= cMeBaH enaH at = au −= ehIy xt −= enaH xu =

eK)an ∫∫−

−=−−=−a

x

x

a

du)u(f)du()u(f)x(F

b¤ ∫∫−−

=−=−a

x

a

x

dt)t(fdt)t(f)x(F eRBaH ( )tf CaGnuKmn¾ess

b¤ ∫−

−=−x

a

dt)t(f)x(F

-ebI enaH nig 0a = ∫=x

0

dt)t(f)x(F ∫−=−x

0

dt)t(f)x(F

eK)an enaH CaGnuKmn_ess . )x(F)x(F −=− )x(F

-ebI enaH minEmnCaGnuKmn_esseT . 0a ≠ )x(F

- 112 -

Page 119: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

- 113 -

&>k>KNnaRbEvgFñÚénRkabtagGnuKmn¾ x4

13

xy3

+= BI eTA . 1x = 3x =

x>]bmafa ( ) ( )xx ee21xf −+= . bnÞat;CYbGk½SGredaenRtg; B

ehIyb:HnigRkabtag f Rtg;cMnuc ( )( )af,aA Edl . 0a >

eRbobeFobRbEvgénGgÁt; AB nigRbEvgFñÚrénRkabtag f enAbenøaHbnÞat;Qr 0x = nig ax = . dMeNaHRsay k>KNnaRbEvgFñÚ tamrUbmnþ dx.'y1L

3

1

2∫ +=

eday x4

13

xy3

+= eK)an 2

2

x41x'y −=

653

x41x

31

dx.)x41x(

dx.)x41x(1L

3

1

3

3

1

22

2

3

1

22

2

=⎥⎦⎤

⎢⎣⎡ −=

+=

−+=

0 1

1

x

y

Page 120: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI4 GaMgetRkalkMNt;

x>AB nigRbEvgFñÚrénRkabtag f enAcenøaHbnÞat; nig 0x = ax = smIkarbnÞat; T b:HRkabtag )ee(

21)x(f xx −+= KW

0 1

1

x

y

A

B

)ax)(a('f)a(fy:T −=− Edl )ee(21)a('f aa −−=

ebI )a(f)a('afy0x +−=⇒= enaH ))a(f)a('af,0(B +− eK)an )a('f1a)a('faaAB 2222 +=+= )ee(

2a)ee(

411a aa2aa −− +=−+=

ehIy ∫∫ −− +=−+=a

0

xxa

0

2xx dx).ee(21dx.)ee(

411L

[ ] )ee(21ee

21 aaa

0xx −− −=−= .

- 114 -

Page 121: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

CMBUkTI5 emeronTI1

smIkarDIepr:g;EsüllMdab;TI1 smIkarDIepr:g;EsüllMdab;TI ! manragTUeTA > )x(f

dxdy

= mancemøIyTUeTA cdx).x(fy += ∫

> )x(fdxdy).y(g = mancemøIyTUeTA C)x(F)y(G +=

Edl . ∫= dy).y(g)y(G

> 0ay'y =+ b¤ 0aydxdy

=+ mancemøIyTUeTA axe.Ay −= Edl CacMnYnefr . A

> )x(pay'y =+ mancemøIyTUeTA pe yyy += Edl ey

CacemøIyénsmIkar 0ay'y =+ nig CacemøIyBiessmYy py

énsmIkar )x(pay'y =+ .

- 115 -

Page 122: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

lMhat; !>edaHRsaysmIkarDIepr:g;Esül³ k> x>1xx2'y 2 +−= x2e'y −= K>

1xx2'y 2 +

= X>

1xx'y 2 −

= kMNt;elI ( )1,1− g> 1'xy = kMNt;elI ( )∞+,0 . @> edaHRsaysmIkarDIepr:g;EsültamlkçxNÐEdl[³ k> e

2y,xcos

y'y

=⎟⎠⎞

⎜⎝⎛ π= x> ( ) 50y,e'y x2 ==

K>( ) ( ) 41y,6'y2x3 2 ==− X> ( ) 00y,1xtan

'y==

#>edaHRsaysmIkarDIepr:g;EsüllIenEG‘lMdab;TI! k> 0y2

dxdy

=+ x> 0ydxdy3 =+

K> 0y3'y2 =− X> 02y'y =+ .

- 116 -

Page 123: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

$> edaHRsaysmIkarDIepr:g;EsüllIenEG‘lMdab;TI!tamlkçxNÐ Edl[³ k> ( ) 23y,0y2'y −==+− x> ( )

514lny,0y'y2 ==+

K> ( ) 4e7y,0y4'y7 −==+ X> ( ) 31y,0y5'y2 −==− %>cUrbgðajfaGnuKmn¾nimYy²cxageRkamenHCacMelIyénsmIkar DIepr:g;EsülenAxagsþaM³ k> x1y'y,exy x −=−+=

x> 2x3y3'y,1xey x3 +=−−−=

K> xcos2y'y,xcosxsiny =++= X> xln1y'xy,xlnxy −=−+= . ^>eKmansmIkarDIepr:g;Esül ( ) 2xy2'y:E =+ . k>kMNt;BhuFa gmandWeRkTI@ EdlCacMelIyBiessén ( )E . x>tag hCaGnuKmn¾Edl ( ) ( ) ( )xgxfxh −= . ebI h EdlCa cMelIyBiessénsmIkarDIepr:g;Esül 0y2'y =+ enaHbgðajfa f CacMelIyTUreTAén ( )E .

- 117 -

Page 124: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

- 118 -

&> eKmansmIkarDIepr:g;Esül ( ) x2e12y2'y:E −+

−=− .

k>edaHRsaysmIkarDIepr:g;Esül 0y2'y =− EdlepÞogpÞat; ( ) 10y = . x>tag f CaGnuKmn¾manedrIev IR Edl ( ) (xgexf x2= ) . KNna ( )x'f CaGnuKmn¾én ( )xg nig ( )x'g . K>bgðajfaebI f CacemøIyén luHRtaEt )E( x2

x2

e1e2)x('g −

+−

= X>TajrkkenSam )x(g rYc )x(f Edl f CacemøIyén . )E(

*>edaHRsaysmIkarDIepr:g;Esül k> x3ey

dxdy

=− x>1e

1ydxdy

x2 +=+

K> 1y'y =+ X> xsiny'y =+ (>edaHRsaysmIkarDIepr:g;EsültamlkçxNÐedIm k> 1)0(y,1y'y ==− x> 0)0(y,1y2'y ==+ !0>edaHRsaysmIkarDIepr:g;Esül k> x5sin

dxdy

= x> 0dyedx x3 =+

K> x2dxdyex = X> 6x

dxdy)1x( +=+

Page 125: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

- 119 -

lMhat; nig dMeNaHRsay !>edaHRsaysmIkarDIepr:g;Esül³ k> x>1xx2'y 2 +−= x2e'y −= K>

1xx2'y 2 +

= X>

1xx'y 2 −

= kMNt;elI ( )1,1− g> 1'xy = kMNt;elI ( )∞+,0 . dMeNaHRsay edaHRsaysmIkarDIepr:g;Esül³ k> 1xx2'y 2 +−=

eK)an ∫ +−= dx).1xx2(y 2

dUcenH cxx21x

32y 23 ++−=

x> x2e'y −= eK)an dxey x2∫ −=

dUcenH ce21y x2 +−= −

Page 126: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

K>1x

x2'y 2 +=

eK)an dx.1x

x2y 2∫ +=

dUcenH C)1xln( 2 ++=

X>1x

x'y 2 −= kMNt;elI ( )1,1−

eK)an dx1x

xy 2∫ −=

C|1x|ln21|1x|ln

21

1xdx

21

1xdx

21

dx.1x

11x

121

+−++=

−+

+=

⎟⎠⎞

⎜⎝⎛

−+

+=

∫∫

dUcenH C)1x)(1x(ln21y +−+=

g> 1'xy = kMNt;elI ( )∞+,0 . eK)an ∫ +==⇒= C|x|ln

xdxy

x1'y

dUcenH C|x|lny += .

- 120 -

Page 127: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

@> edaHRsaysmIkarDIepr:g;EsültamlkçxNÐEdl[³ k> e

2y,xcos

y'y

=⎟⎠⎞

⎜⎝⎛ π= x> ( ) 50y,e'y x2 ==

K>( ) ( ) 41y,x6'y2x3 2 ==− X> ( ) 00y,1xtan

'y==

dMeNaHRsay edaHRsaysmIkarDIepr:g;Esül k> e

2y,xcos

y'y

=⎟⎠⎞

⎜⎝⎛ π=

eK)an ∫∫ = xdxcosdxy'y

cxsineycxsinyln +=⇒+= cMeBaH 0cee)

2(y

2x c1 =⇒==

π⇒

π= +

dUcenH . xsiney =

x> ( ) 50y,e'y x2 ==

eK)an ∫ +== ce21dxey x2x2

cMeBaH eK)an 0x =29c5c

21)0(y =⇒=+=

dUcenH 29e

21y x2 +=

- 121 -

Page 128: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

K>( ) ( ) 41y,x6'y2x3 2 ==− eK)an C|2x3|ln

2x3xdx6y 22 +−=−

= ∫ ebI 4C)1(y1x ==⇒= dUcenH 4|2x3|lny 2 +−=

X> ( ) 00y,1xtan

'y==

eK)an C|xcos|lnxdxtany +−== ∫

ebI 0Cy0x ==⇒= dUcenH |xcos|lny −= . #>edaHRsaysmIkarDIepr:g;EsüllIenEG‘lMdab;TI! k> 0y2

dxdy

=+ x> 0ydxdy3 =+

K> 0y3'y2 =− X> 02y'y =+ . dMeNaHRsay edaHRsaysmIkarDIepr:g;Esül k> 0y2

dxdy

=+ eday 2a = enaHcemøIyTUeTArbs;smIkar KW Edl CacMnYnefr . x2e.Ay −= A

- 122 -

Page 129: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

x> 0ydxdy3 =+ b¤ 0y

31

dxdy

=+

eday 31a = enaHcemøIyTUeTArbs;smIkarKW x

31

e.Ay−

= Edl A CacMnYnefr . K> 0y3'y2 =− b¤ 0y

23'y =−

eday 23a −= enaHcemøIyTUeTArbs;smIkarKW x

23

e.Ay = Edl A CacMnYnefr . X> 02y'y =+ eday 2a = enaHcemøIyTUeTArbs;smIkarKW x2e.Ay = Edl A CacMnYnefr . $> edaHRsaysmIkarDIepr:g;EsüllIenEG‘lMdab;TI!tamlkçxNÐ Edl[³ k> ( ) 23y,0y2'y −==+− x> ( )

514lny,0y'y2 ==+

K> ( ) 4e7y,0y4'y7 −==+ X> ( ) 31y,0y5'y2 −==− dMeNaHRsay edaHRsaysmIkarDIepr:g;Esül

- 123 -

Page 130: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

k> ( ) 23y,0y2'y −==+− smIkarGacsresr 0y2'y =− eday enaHcemøIyTUeTArbs;smIkarKW 2a = x2Aey =

ebI 66 e2A2Ae)3(y3x −−=⇒−==⇒=

dUcenH . 6x2e2y −−=

x> ( )514lny,0y'y2 ==+

smIkarGacsresr 0y21'y =+

eday 21a = enaHcemøIyTUeTArbs;smIkarKW x

21

Aey−

=

ebI 52A

51Ae)4(lny4lnx

4ln21

=⇒==⇒=−

dUcenH x21

e52y

−= .

K> ( ) 4e7y,0y4'y7 −==+ .smIkarGacsresr 0y74'y =+

eday 74a = enaHcemøIyTUeTArbs;smIkarKW x

74

Aey−

= ebI 1AeAe)7(y7x 44 =⇒==⇒= −− dUcenH x

74

ey−

= .

- 124 -

Page 131: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

X> ( ) 31y,0y5'y2 −==− smIkarGacsresr 0y

25'y =−

eday 25a = enaHcemøIyTUeTArbs;smIkarKW x

25

Aey =

ebI 25

25

e3A3Ae)1(y1x−

−=⇒−==⇒= dUcenH )1x(

25

e3y−

−= . %>cUrbgðajfaGnuKmn¾nimYy²cxageRkamenHCacMelIyénsmIkar DIepr:g;EsülenAxagsþaM³ k> x1y'y,exy x −=−+=

x> 2x3y3'y,1xey x3 +=−−−=

K> xcos2y'y,xcosxsiny =++= X> xln1y'xy,xlnxy −=−+= . dMeNaHRsay karbgðaj

k> x1y'y,exy x −=−+=

man xx e1'yexy +=⇒+=

eK)an Bit x1)ex()e1(y'y xx −=+−+=−

- 125 -

Page 132: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

dUcenH CacemøIyénsmIkarxexy += x1y'y −=− . x> 2x3y3'y,1xey x3 +=−−−=

eKman 1e3'y x3 −=

eK)an Bit 2x33x3e31e3y3'y x3x3 +=++−−=−

dUcenH CacemøIysmIkar 1xey x3 −−= 2x3y3'y +=− . K> xcos2y'y,xcosxsiny =++= eKman xsinxcos'y −= eK)an xcos2xsinxcosxsinxcosy'y =++−=+ Bit dUcenH xcosxsiny += CacemøIysmIkar xcos2y'y =+ . X> xln1y'xy,xlnxy −=−+= eKman 1x'xy

x11'y +=⇒+=

eK)an xln1xlnx1xy'xy −=−−+=− Bit dUcenH CacemøIyrbs;smIkar xlnxy += xln1y'xy −=−

- 126 -

Page 133: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

^>eKmansmIkarDIepr:g;Esül ( ) 2xy2'y:E =+ . k>kMNt;BhuFa gmandWeRkTI@ EdlCacMelIyBiessén ( )E . x>tag hCaGnuKmn¾Edl ( ) ( ) ( )xgxfxh −= . ebI h EdlCa cMelIyBiessénsmIkarDIepr:g;Esül 0y2'y =+ enaHbgðajfa f CacMelIyTUreTAén ( )E . dMeNaHRsay k>kMNt;BhuFa gmandWeRkTI@ EdlCacMelIyBiessén ( )E tag CacemøIyrbs;smIkar cbxax)x(g 2 ++= )E(

eK)an )1(x)x(g2)x('g 2=+

Et bax2)x('g += enaHTMnak;TMng ¬!¦Gacsresr

22

22

xc2bx)b2a2(ax2

x)cbxax(2bax2

=++++

=++++

eKTaj 41c,

21b,

21a =−==

dUcenH 41x

21x

21)x(g 2 +−= .

x> bgðajfa f CacMelIyTUreTAén ( )E . man hCaGnuKmn¾Edl ( ) ( ) ( )xgxfxh −= ebI h CacMelIyBiessénsmIkarDIepr:g;Esül 0y2'y =+

- 127 -

Page 134: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

- 128 -

eK)an 0)x(h2)x('h =+ eday )x('g)x('f)x('h −= enaH 0)x(g2)x(f2)x('g)x('f =−+− )2(0])x(g2)x('g[])x(f2)x('f[ =+−+ yk CYskñúg eK)an )1( )2(

. 22 x)x(f2)x('f0x)x(f2)x('f =+⇒=−+

sRmaybBa¢ak;enHmann½yfa ebI h CacMelIyBiessénsmIkar DIepr:g;Esül 0y2'y =+ enaH f CacMelIyTUreTAén ( )E . &> eKmansmIkarDIepr:g;Esül ( ) x2e1

2y2'y:E −+−

=− . k>edaHRsaysmIkarDIepr:g;Esül 0y2'y =− EdlepÞogpÞat; ( ) 10y = . x>tag f CaGnuKmn¾manedrIev IR Edl ( ) (xgexf x2= ) . KNna ( )x'f CaGnuKmn¾én ( )xg nig ( )x'g . K>bgðajfaebI f CacemøIyén luHRtaEt )E( x2

x2

e1e2)x('g −

+−

= X>TajrkkenSam )x(g rYc )x(f Edl f CacemøIyén . )E(

Page 135: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

dMeNaHRsay k>edaHRsaysmIkarDIepr:g;Esül 0y2'y =− EdlepÞogpÞat; ( ) 10y = ³ eKman Edl CacMnYnefr x2e.Ay0y2'y =⇒=− A

ebI 1A)0(y0x ==⇒= . dUcenH . x2ey =

x>KNna ( )x'f CaGnuKmn¾én ( )xg nig ( )x'g eKman ( ) ( )xgexf x2= eK)an )x('ge)x(ge2)x('f x2x2 +=

dUcenH . x2e)]x('g)x(g2[)x('f +=

K>bgðajfaebI f CacemøIyén luHRtaEt )E( x2

x2

e1e2)x('g −

+−

= ebI f CacemøIyén x2e1

2y2'y:)E( −+−

=− enaHeK)an x2e1

2)x(f2)x('f −+−

=− eday )x(ge)x(f x2=

nig enaHeK)an x2e)]x('g)x(g2[)x('f +=

x2x2x2

e12)x(ge2e)]x('g)x(g2[ −+

−=−+

- 129 -

Page 136: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

eKTaj x2

x2

e1e2)x('g −

+−

= .

müa:geTotebI x2

x2

e1e2)x('g −

+−

= ehIyeday eK)an x2e)]x('g)x(g2[)x('f +=

x2x2

x2

e]e1e2)x(g2[)x('f −

+−

+= x2

x2

e12e)x(g2)x('f −+

−= eday x2e).x(g)x(f =

x2x2 e12)x(f2)x('f

e12)x(f2)x('f −− +

−=−⇒

+−=

dUcenH ebI f CacemøIyén luHRtaEt )E( x2

x2

e1e2)x('g −

+−

= . X>TajrkkenSam )x(g rYc )x(f Edl f CacemøIyén )E(

eKman x2

x2

e1e2)x('g −

+−

=

eK)an dx.e1

)'e1(dx.e1e2)x(g x2

x2

x2

x2

∫∫ −

++

=+

−=

dUcenH C|e1|ln)x(g x2 ++= − . müa:geToteday x2e).x(g)x(f =

dUcenH x2x2x2 e.C)e1ln(.e)x(f ++= − Edl IRC∈ .

- 130 -

Page 137: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

*>edaHRsaysmIkarDIepr:g;Esül k> x3ey

dxdy

=− x>1e

1ydxdy

x2 +=+

K> 1y'y =+ X> xsiny'y =+ dMeNaHRsay edaHRsaysmIkarDIepr:g;Esül k> x3ey

dxdy

=− tag CacemøIyBiessén x3

p key = x3eydxdy

=− nig Ca ey

cemøIyénsmIkar 0ydxdy

=− enaH pe yyy += CacmøIyTUeTA énsmIkar x3ey

dxdy

=− . eK)an 0y

dxdy

=− naM[ Edl xe e.Ay = IRA∈

eday CacemøIyBiessén x3p key = x3ey

dxdy

=− enaHeK)an

x3p

p eydx

dy=− Et x3p ke3

dxdy

= eK)an

21kekeke3 x3x3x3 =⇒=− . eK)an x3

p e21y = .

dUcenH x3x e21e.Ay += Edl CacMnYnefr . A

- 131 -

Page 138: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

x>1e

1ydxdy

x2 +=+

b¤ 1e

1y'y x2 +=+

KuNGgÁTaMgBIrnwg eK)an xe

∫ +

=⇒+

=

+=+

1edxeye

1ee)'ye(

1eeyee'y

x2

xx

x2

xx

x2

xxx

tag dxedtet xx =⇒= eK)an ∫ +=

+= C)tarctan(

1tdtye 2

x b¤ C)earctan(ye xx +=

dUcenH xxx e.C)earctan(ey −− += . K> 1y'y =+ b¤ 01y'y =−+ tag 1yz −= enaH 'y'z = smIkarGacsresr xe.Az0z'z −=⇒=+ eday 1e.A1zy1yz x +=+=⇒−= − Edl IRA∈ . X> xsiny'y =+ cemøIy )xcosx(sin

21e.Ay x −+= − Edl IRA∈ .

- 132 -

Page 139: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

(>edaHRsaysmIkarDIepr:g;EsültamlkçxNÐedIm k> 1)0(y,1y'y ==− x> 0)0(y,1y2'y ==+ dMeNaHRsay edaHRsaysmIkarDIepr:g;EsültamlkçxNÐedIm k> 1)0(y,1y'y ==− eKman 1y'y =− KuNGgÁTaMgBIrnwg xe− eK)an

x

xx

xx

xx

xxx

ke1y

keye

dxeye

e)'ye(

eyee'y

−−

−−

−−

−−−

+−=⇒

+−=⇒

=⇒

=

=−

ebI enaH 0x = 2k1k1)0(y =⇒=+−= dUcenH xe21y −+−= . x> 0)0(y,1y2'y ==+ edaHRsaydUcxagelIEdreK)ancemøIyrbs;smIkarKW x2e

21

21y −−= .

- 133 -

Page 140: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

!0>edaHRsaysmIkarDIepr:g;Esül k> x5sin

dxdy

= x> 0dyedx x3 =+

K> x2dxdyex = X> 6x

dxdy)1x( +=+

dMeNaHRsay edaHRsaysmIkarDIepr:g;Esül k> x5sin

dxdy

= eKTaj Cx5cos

51dx.x5siny +−== ∫

x> 0dyedx x3 =+

eKTaj Ce31dxey x3x3 +−== −−∫

K> x2dxdyex =

eKTaj ∫ −= dxxe2y x

tag 2)x('fx2)x(f =⇒= ehIy xxx edx.e)x(ge)x('g −−− −==⇒= ∫

tamrUbmnþ ∫∫ −= dx).x('f)x(g)x(g)x(fdx).x('g).x(f

eK)an Ce2xe2dxe2xe2y xxxx +−−=+−= −−−− ∫

- 134 -

Page 141: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

dUcenH Ce)1x(2y x ++−= − . X> 6x

dxdy)1x( +=+

eK)an dx.1x6xy ∫ +

+=

C|1x|ln5xy

dx)1x

51(y

+++=+

+= ∫

- 135 -

Page 142: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

CMBUkTI5 emeronTI2

smIkarDIepr:g;EsüllIenEG‘lMdab;TI2 !-smIkarDIepr:g;EsüllIenEG‘lMdab;2 niymn½y smIkarDIepr:g;EsüllIenEG‘lMdab;TI2 GUm:UEsn nigmanemKuNCa cMnYnefrCasmIkarEdlGacsresrCaragTUeTA 0cy'by''ay =++ Edl IRc,b,a,0a ∈≠ . 2-dMeNaHRsaysmIkarDIepr:g;EsüllIenEG‘lMdab;2Gum:UEsn nigmanemKuNCacMnYnefr k>smIkarsmÁal; smIkarsmÁal;énsmIkarDIepr:g;EsüllIenEG‘lMdab;TI2 GUm:UEsn nigmanemKuNCacMnYnefr 0cy'by''ay =++ CasmIkardWeRkTIBIr Edl 0cba 2 =+λ+λ IRc,b,a,0a ∈≠ .

- 136 -

Page 143: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

x>viFIedaHRsaysmIkarDIepr:g;EsüllIenEG‘lMdab;2 ]bmafaeKmansmIkarDIepr:g;EsüllIenEG‘lMdab;@dUcxageRkam³ 0cy'by''y:)E( =++ Edl IRc,b ∈ . smIkar mansmIkarsmÁal; )E( )1(0cb2 =+λ+λ

KNna c4b2 −=Δ

-krNI smIkar manb¤sBIrCacMnYnBitepSgKñaKW 0>Δ )1( α=λ1 enaHsmIkar mancemøIyTUeTACaGnuKmn_rag β=λ 2 )E(

Edl CacMnYnefrmYyNak¾)an . xx e.Be.Ay βα += B,A

-krNI smIkar manb¤sDúbKW 0=Δ )1( α=λ=λ 21 enaHsmIkar mancemøIyTUeTACaGnuKmn_rag )E(

xx e.Be.Axy αα += Edl CacMnYnefrmYyNak¾)an . B,A

-krNI smIkar manb¤sBIrepSgKñaCacMnYnkMupøicqøas;KñaKW 0<Δ )1(

nig β+α=λ .i1 β−α=λ .i2 ¬ IR, ∈βα ¦ enaHsmIkar mancemøIyTUeTACaGnuKmn_rag )E(

xe)xsinBxcosA(y αβ+β= Edl CacMnYnefrmYyNak¾)an . B,A

- 137 -

Page 144: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

3-dMeNaHRsaysmIkarDIepr:g;EsüllIenEG‘lMdab;2minGum:U EsnnigmanemKuNCacMnYnefr ]bmafaeKmansmIkarDIepr:g;EsüllIenEG‘lMdab;TI@minGUm:UEsn )x(Pcy'by''y =++ Edl 0)x(P ≠ . edIm,IedaHRsaysmIkarenHeKRtUv ³ EsVgrkcemøIyBiessminGUm:UEsn tageday rbs;smIkar Py

)x(Pcy'by''y =++ Edl manTRmg;dUc . Py )x(P

rkcemøIyTUeTAtageday énsmIkarlIenEG‘lMdab;TI@GUm:UEsn cy

0cy'by''y =++ . eK)ancemøIyTUeTAénsmIkarDIepr:g;EsüllIenEG‘lMdab;TI@

minGUm:UEsnCaplbUkrvag nig KW Py cy CP yyy += .

- 138 -

Page 145: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

- 139 -

lMhat; !>epÞógpÞat;faGnuKmn_ f CacemøIyénsmIkarDIepr:g;EsülEdl[ k> 0y'y2''y,e)1x2()x(f x =+++= − x> 0y2'y2''y,xsine)x(f x =++= −

K> 0y'y2''y,BxeAe)x(f xx =+−+=

Edl A nig CacMnYnefrNamYyk¾)an . B

@> edaHRsaysmIkar k> 0y'y3''y2 =+− x> 0y2'y7''y4 =++− K> 0'y2''y =− X> 0y3'y3''y =+− g> 0y2'y3''y2 =−+ c> 0y'y3''y =+− #>kñúgkrNInImYy²xageRkam eK[ f CaGnuKmn_kMNt;elI IR . rksmIkarDIepr:g;EsüllIenEG‘lMdab;TIBIr GUm:UEsnEdlman GnuKmn_ f CacemøIy k> x2e)1x()x(f −+= x>f x3x e3e2)x( += −

−= K>f xe)x3sin3x3cos2()x(

Page 146: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

$> edaHRsaysmIkarDIepr:g;EsültamlkçxNÐEdl[³ k> 2)0('y,1)0(y,0y''y −===− x> 1)0('y,2)0(y,0y3'y2''y ===+− K> 2)

2('y,3)

2(y,0y''y =

π=

π=+

X> 3)0('y,1)0(y,0y2'y3''y ===+− . %>eKmansmIkarDIepr:g;Esül 4y2'y4''y =+− k>rkGnuKmn_efr k EdlCacemøIyBiessén )E(

x>edaHRsaysmIkar 4y2'y4''y =+− K>rkcMelIyBiessén ( )E EdlepÞogpÞat;lkçxNÐedIm ( ) ( ) 00'y,220y == .

- 140 -

Page 147: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

dMeNaHRsay !>epÞógpÞat;faGnuKmn_ f CacemøIyénsmIkarDIepr:g;EsülEdl[ k> 0y'y2''y,e)1x2()x(f x =+++= − x> 0y2'y2''y,xsine)x(f x =++= −

K> 0y'y2''y,BxeAe)x(f xx =+−+=

Edl A nig CacMnYnefrNamYyk¾)an . B

dMeNaHRsay epÞógpÞat;faGnuKmn_ f CacemøIyénsmIkarDIepr:g;Esül k> 0y'y2''y,e)1x2()x(f x =+++= − GnuKmn_ xe)1x2()x(f −+= CacemøIysmIkar 0y'y2''y =++ luHRtaEt )x(''f,)x('f,)x(f epÞógpÞat;nwgsmIkareBalKW 0)x(f)x('f2)x(''f =++ cMeBaHRKb; x . eKman xxx e)1x2(e)1x2(e2)x('f −−− +−=+−= nig xxx e)3x2(e)1x2(e2)x(''f −−− −=+−−−= eK)an 0e)1x22x43x2()x(f)x('f2)x(''f x =+++−−=++ − dUcenHGnuKmn_ f CacemøIyénsmIkarDIepr:g;EsülEdl[ .

- 141 -

Page 148: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

x> 0y2'y2''y,xsine)x(f x =++= −

eKman xcosexsine)x('f xx −− +−= b¤ )1(xcose)x(f)x('f x−+−= ehIy xsinexcose)x('f)x(''f xx −− −−−= b¤ )2()x(fxcose)x('f)x(''f x −−−= − bUksmIkar nig eKTTYl)an )1( )2(

)x(f2)x('f)x('f)x(''f −−=+ b¤ 0)x(f2)x('f2)x(''f =++ . dUcenH CacemøIyrbs;xsine)x(f x−= 0y2'y2''y =++ . K> 0y'y2''y,BxeAe)x(f xx =+−+=

Edl A nig CacMnYnefrNamYyk¾)an . B

eKman xxx BxeBeAe)x('f ++=

nig xxx BxeBe2Ae)x(''f ++=

eK)an 0)x(f)x('f2)x(''f =+− Bit dUcenH CacemøIyrbs;smIkarDIepr:g;Esül xx BxeAe)x(f +=

0y'y2''y =+− Edl nig CacMnYnefrNamYyk¾)an . A B

- 142 -

Page 149: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

@> edaHRsaysmIkar k> 0y'y3''y2 =+− x> 0y2'y7''y4 =++− K> 0'y2''y =− X> 0y3'y3''y =+− g> 0y2'y3''y2 =−+ c> 0y'y3''y =+− dMeNaHRsay k> 0y'y3''y2 =+− mansmIkarsmÁal; 0132 2 =+λ−λ eday

21

ac;10cba 21 ==λ=λ⇒=++

dUcenHcemøIyTUeTArbs;smIkarDIepr:gEsülenHKWCaGnuKmn_ x

21

x BeAey += Edl CacMnYnefr . B,A

x> 0y2'y7''y4 =++− mansmIkarsmÁal; 0274 2 =+λ+λ− eday

41

ac;293249 21

2 −==λ=λ⇒=+=Δ dUcenHcemøIyTUeTArbs;smIkarDIepr:gEsülenHKWCaGnuKmn_ x

41

x2 BeAey−

+= Edl CacMnYnefr . B,A

- 143 -

Page 150: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

K> 0'y2''y =− mansmIkarsmÁal; 022 =λ−λ eKTajb¤s 2;0 21 =λ=λ dUcenHcemøIyTUeTArbs;smIkarDIepr:gEsülenHKWCaGnuKmn_ Edl CacMnYnefr . x2BeAy += B,A

X> 0y3'y3''y =+− mansmIkarsmÁal; 0332 =+λ−λ eday

23i

233129 2,1 ±=λ⇒−=−=Δ

eKTaj 23,

23

=β=α . dUcenHcemøIyTUeTArbs;smIkarDIepr:gEsülenHKWCaGnuKmn_ 2

x3

e)x23sinDx

23cosC(y += Edl CacMnYnefr D,C

g> 0y2'y3''y2 =−+ cemøIy x

21

x2 BeAey += − Edl CacMnYnefr . B,A

c> 0y'y3''y =+− cemøIy x

253x

253

BeAey+−

+= Edl CacMnYnefr . B,A

- 144 -

Page 151: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

#>kñúgkrNInImYy²xageRkam eK[ f CaGnuKmn_kMNt;elI IR . rksmIkarDIepr:g;EsüllIenEG‘lMdab;TIBIr GUm:UEsnEdlman GnuKmn_ f CacemøIy k> x2e)1x()x(f −+= x> x3x e3e2)x(f += −

K> xe)x3sin3x3cos2()x(f −=

dMeNaHRsay rksmIkarDIepr:g;EsüllIenEG‘lMdab;TIBI k> x2e)1x()x(f −+= eKman x2x2x2 e)1x2(e)1x(2e)x('f −−− −−=+−= ehIy x2x2 e)1x2(2e2)x(''f −− −−−−= b¤ . x2xe4)x(''f −=

eKman 0e)4x44x8x4()x(f4)x('f4)x(''f x2 =++−−=++ − dUcenH 0y4'y4''y =++ CasmIkarEdlRtUvrk . x> x3x e3e2)x(f += −

cemøIy 0y3'y2''y =−− K> xe)x3sin3x3cos2()x(f −=

cemøIy 0y10'y2''y =+− .

- 145 -

Page 152: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

$> edaHRsaysmIkarDIepr:g;EsültamlkçxNÐEdl[³ k> 2)0('y,1)0(y,0y''y −===− x> 1)0('y,2)0(y,0y3'y2''y ===+− K> 2)

2('y,3)

2(y,0y''y =

π=

π=+

X> 3)0('y,1)0(y,0y2'y3''y ===+− . dMeNaHRsay edaHRsaysmIkarDIepr:g;EsültamlkçxNÐEdl[³ k> 2)0('y,1)0(y,0y''y −===− mansmIkarsmÁal; 012 =−λ eKTajb¤s 1;1 21 −=λ=λ dUcenHcemøIyTUeTArbs;smIkarDIepr:gEsülenHKWCaGnuKmn_ ehIy xx BeAey −+= xx BeAe'y −−= eday 1)0(y = nig 2)0('y −= eK)an

⎩⎨⎧ naM[

−=−=+

2BA1BA

23B,

21A −=−=

dUcenH xx e23e

21y −−−= .

- 146 -

Page 153: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

x> 1)0('y,2)0(y,0y3'y2''y ===+− cemøIy xe)x2sin

22x2(cosy −=

K> 2)2

('y,3)2

(y,0y''y =π

=+ cemøIy xsin3xcos2y +−= X> 3)0('y,1)0(y,0y2'y3''y ===+− cemøIy x2x e2ey +−=

%>eKmansmIkarDIepr:g;Esül 4y2'y4''y =+− k>rkGnuKmn_efr k EdlCacemøIyBiessén )E(

x>edaHRsaysmIkar 4y2'y4''y =+− K>rkcMelIyBiessén ( )E EdlepÞogpÞat;lkçxNÐedIm ( ) ( ) 00'y,220y == . dMeNaHRsay k>rkGnuKmn_efr k EdlCacemøIyBiessén )E(

ebIGnuKmn_ CacemøIy Biessén enaHeK)an ky = )E(

2k4k2

4k2)'k(4')'k(=⇒=

=+−

dUcenH CacemøIyBiessén . 2yp = )E(

- 147 -

Page 154: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

- 148 -

x>edaHRsaysmIkar 4y2'y4''y =+− tag CacemøIyén cy 0y2'y4''y =+− eK)an CacemøIyrbs;smIkarpc yyy += 4y2'y4''y =+− . smIkar 0y2'y4''y =+− mansmIkarsmÁal; 0242 =+λ−λ 22,22224' −=λ+=λ⇒=−=Δ 21 eKTaj x)22(x)22( BeAey −+ += . K>rkcMelIyBiessén ( )E EdlepÞogpÞat;lkçxNÐedIm eKman x)22(x)22( BeAey −+ += eK)an x)22(x)22( Be)22(Ae)22('y −+ −++= eday ( ) ( ) 00'y,220y == enaHeK)an 22B,22A

0B)22(A)22(22BA

+=+−=⇒⎩⎨⎧

=−++

=+

dUcenH x)22(x)22( e)22(e)22(y −+ +++−=

Page 155: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

lMhat;TI1

1>edaHRsaysmIkar ( ) ( ) ( ) ( )E0xg6x'g5x''g =+−

2> kMnt;cMelIy ( )xg mYyénsmIkar ( )E Edl ( ) 00g =

nig ( ) 10'g = .

¬RbFanRbLgqmasTI2qñaM2004¦

dMeNaHRsay

1> edaHRsaysmIkar ( ) ( ) ( ) ( )E0xg6x'g5x''g =+−

mansmIkarsMKal; 06r5r 2 =+−

eday 12425 =−=Δ nMa[manb¤s

32

15r,22

15r 21 =+

==−

=

tamrUbmnþ ( ) IRB,A,e.Be.Axg xrxr 21 ∈+=

dUcenHcMelIysmIkar ( ) IRB,A,e.Be.Axg x3x2 ∈+=

- 149 -

Page 156: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

2> kMnt;cMelIy ( )xg mYyénsmIkar ( )E

eKman ( ) x3x2 e.Be.Axg +=

naM[ ( ) x3x2 e.B3e.A2x'g +=

tambMrab;eKman ( )( )⎩

⎨⎧

==

10'g00g smmUl

⎩⎨⎧

=+=+

1B3A20BA

naM[ ⎩⎨⎧

=−=1B

1A

dUcenH . ( ) x3x2 eexg +−=

lMhat;TI2

edaHRsaysmIkarDIepr:g;Esül ( ) 0y2'y3''y:E =+−

edaydwgfa . ( ) ( ) 00'y,10y ==

dMeNaHRsay

edaHRsaysmIkarDIepr:g;Esül³

( ) 0y2'y3''y:E =+−

- 150 -

Page 157: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

mansmIkarsMKal; 02r3r 2 =+−

eday 0cba =++ naM[ 2acr,1r 21 ===

tamrUbmnþ eK)an xrxr 21 BeAey +=

IRB,A,e.B2e.A'ye.Be.Ay x2xx2x ∈+=+= nig

edaytambMrab;eKman ( )( )⎩

⎨⎧

==

00'y10y b¤

⎩⎨⎧

=+=+

0B2A1BA

naM[ ⎩⎨⎧

−==

1B2A

dUcenH CacMelIysmIkar . x2x ee2y −=

lMhat;TI3

eK[smIkarDIepr:g;Esül

( ) 34x24x4y4'y4''y:E 2 +−=+− k-kMnt;cMnYnBit nig c edIm,I[b,a ( ) cbxaxxy 2

P ++= n

CacMelIyedayBiessmYyrbs;smIkar ( )E .

- 151 -

Page 158: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

x-bgðajfaGnuKmn_ ( ) ( )xyxyy cP += CacMelIyTUeTArbs;

( )E enaHGnuKmn_ ( )xyc CacMelIyrbs;smIkarGUmU:Esn

( ) 0y4'y4''y:'E =+− .

K-edaHRsaysmIkar ( )'E rYcrkcMelIyTUeTArbs;smIkar ( )E .

dMeNaHRsay

k- kMnt;cMnYnBit nig b,a c

( ) 34x24x4y4'y4''y:E 2 +−=+− edIm,I[GnuKmn_ ( ) cbxaxxy 2

P ++= CacMelIyedayBiess

mYyrbs;smIkar ( )E luHRtEtGnuKmn_

( ) ( )x'y,xy pp nig ( )x''y p epÞógpÞat;nwgsmIkar ( )E .

eK)an ( ) ( ) ( ) ( ) 34x24x4xy4x'y4x''y:E 2pPp +−=+−

eday ( )( )( )⎪

⎪⎨

=

+=++=

a2x''y

bax2x'ycbxaxxy

p

p

2P

- 152 -

Page 159: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

eK)an

( ) ( ) ( ) 34x24x4cbxax4bax24a2 22 +−=++++− naM[

( ) ( ) 34x24x4c4b4a2xa8b4ax4 22 +−=+−+−+

eKTaj)an naM[ ⎪⎩

⎪⎨

=+−−=−

=

34c4b4a224a8b4

4a4

⎪⎩

⎪⎨

=−=

=

4c4b

1a

dUcenH 4c,4b,1a −=−==

nig ( ) ( )22P 2x4x4xxy −=+−= .

x-karbgðaj

GnuKmn_ ( ) ( )xyxyy cP += CacMelIyrbs; ( )E

luHRtaGnuKmn_ ''y,'y,y epÞógpÞat;smIkar( )E .

edayeKman ( ) ( )x'yx'y'y cp +=

nig ( ) ( )x''yx''y''y cp += enaHeK)an ³

- 153 -

Page 160: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

- 154 -

[ ] [ ] [ ][ ] [ ] ( )134x24x4y4'y4''yy4'y4''y

34x24x4yy4'y'y4''y''y

2cccppp

2cpcpcp

+−=+−++−

+−=+++−+

tamsRmayxagelIeKman

( ) ( ) ( ) ( )234x24x4xy4x'y4x''y 2pPp +−=+−

¬ eRBaH ( )xyp CacMelIyrbs;smIkar ( )E ¦ .

tamTMnak;TMng ¬! ¦ nig ¬@¦ eKTaj)an ³

[ ] 34x24x4y4'y4c''y34x24x4 22 +−=+−++− cc naM[eKTaj)an ( ) ( ) ( ) 0xy4x'y4x''y ccc =+−

TMnak;TMngenHbBa¢ak;faGnuKmn_ ( )xyh CacMelIyrbs;

smIkar ( ) 0y4'y4''y:'E =+− .

K-edaHRsaysmIkar ( )'E ³ 0y4'y4''y =+−

smIkarsMKal; 04r4r 2 =+− 044', =−=Δ

naM[smIkarmanb¤sDúb 2rrr 021 ===

Page 161: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

dUcenHcMelIysmIkar ( )'E CaGnuKmn_

. ( ) ( ) IRB,A,e.BAxxy x2c ∈+=

TajrkcMelIyTUeTArbs;smIkar ( )E ³

tamsMrayxagelIcMelIysmIkar ( )E KWCaGnuKmn_TMrg;

( ) ( )xyxyy cp +=

edayeKman ( ) ( )2p 2xxy −= nig ( ) ( ) x2

c e.BAxxy +=

dUcenH ( ) ( ) IRB,A,e.BAx2xy x22 ∈++−=

CacMelIyrbs;smIkar ( )E .

- 155 -

Page 162: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

lMhat;TI4

eK[smIkarDIepr:g;Esül ( ) 6x10x4y4'y:E 2 −+−=−

k-kMnt;cMnYnBit nig c edIm,I[b,a ( ) cbxaxxy 2P ++=

CacMelIyedayBiessmYyrbs;smIkar ( )E .

x-bgðajfaGnuKmn_ ( ) ( )xyxyy hP += CacMelIyTUeTArbs;

( )E enaHGnuKmn_ ( )xyh CacMelIyrbs;smIkarGUmU:Esn

( ) 0y4'y:'E =− .

K-edaHRsaysmIkar ( )'E rYcrkcMelIyTUeTArbs;smIkar ( )E .

dMeNaHRsay

k- kMnt;cMnYnBit nig b,a c

( ) 6x10x4y4'y:E 2 −+−=− edIm,I[GnuKmn_ ( ) cbxaxxy 2

P ++= CacMelIyBiess

mYyrbs;smIkar ( )E luHRtEtGnuKmn_

- 156 -

Page 163: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

( ) ( )x'y,xy pp nig ( )x''y p epÞógpÞat;nwgsmIkar ( )E .

eK)an ( ) ( ) ( ) 6x10x4xy4x'y:E 2pP −+−=−

eday ( )( )⎪⎩

⎪⎨⎧

+=++=

bax2x'ycbxaxxy

p

2P

eK)an ( ) ( ) 6x10x4cbxax4bax2 22 −+−=++−+

naM[ ( ) ( ) 6x10x4c4bxa2b4ax4 22 −+−=−+−−−

eKTaj)an ⎪⎩

⎪⎨

−=−−=−

−=−

6c4b10a2b4

4a4 naM[

⎪⎩

⎪⎨

=−=

=

1c2b

1a

dUcenH 1c,2b,1a =−==

nig ( ) ( )22P 1x1x2xxy −=+−= .

x-karbgðaj

GnuKmn_ ( ) ( )xyxyy hP += CacMelIyrbs; ( )E

luHRtaGnuKmn_ 'y,y epÞógpÞat;smIkar( )E .

edayeKman ( ) ( )x'yx'y'y hp += enaHeK)an ³

- 157 -

Page 164: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

- 158 -

( ) ( )[ ] ( ) ( )[ ]( ) ( )[ ] ( ) ( )[ ] ( )16x10x4xy4x'yxy4x'y

6x10x4xyxy4x'yx'y

2hhpp

2hphp

−+−=−+−

−+−=+−+

tamsRmayxagelIeKman

( ) ( ) ( )26x10x4xy4x'y 2pP −+−=−

¬ eRBaH ( )xyp CacMelIyrbs;smIkar ( )E ¦ .

tamTMnak;TMng ¬! ¦ nig ¬@¦ eKTaj)an ³

( ) ( )[ ] 6x10x4xy4x'y6x10x4 22 −+−=−+−+− hh naM[eKTaj)an ( ) ( ) 0xy4x'y hh =− .

TMnak;TMngenHbBa¢ak;faGnuKmn_ ( )xyh CacMelIyrbs;

smIkar ( ) 0y4'y:'E =− .

K-edaHRsaysmIkar ( )'E ³ 0y4'y =−

eday dUcenHcMelIysmIkar 4a = ( )'E CaGnuKmn_

. ( ) IRk,e.kxy x4h ∈=

Page 165: កំនែលំហាត់គណិតវិទ្យា ១២ កំរិតខ្ពស់

CMBUkTI5 smIkarDIepr:g;Esül

TajrkcMelIyTUeTArbs;smIkar ( )E ³

tamsMrayxagelIcMelIysmIkar ( )E KWCaGnuKmn_TMrg;

( ) ( )xyxyy hp +=

edayeKman ( ) ( )2p 1xxy −= nig ( ) x4

h e.kxy =

dUcenH . ( ) IRk,e.k1xy x42 ∈+−=

- 159 -