ОБ ИСКЛЮЧЕНИИ ОШИБОК ИСХОДНЫХ ДАННЫХ ПРИ УРАВНИВАНИИ

Embed Size (px)

Text of ОБ ИСКЛЮЧЕНИИ ОШИБОК ИСХОДНЫХ ДАННЫХ ПРИ УРАВНИВАНИИ

  • This article was downloaded by: [Southern Taiwan University of Science andTechnology]On: 22 October 2014, At: 04:30Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,UK

    Geodezijos DarbaiPublication details, including instructions forauthors and subscription information:http://www.tandfonline.com/loi/tgac18

    . . a , Jonas Skeivalas & JonasSkeivalasa Published online: 27 Sep 2012.

    To cite this article: . . , Jonas Skeivalas & Jonas Skeivalas (1976) ,Geodezijos Darbai, 8:1, 13-19, DOI: 10.1080/13921843.1976.10553157

    To link to this article: http://dx.doi.org/10.1080/13921843.1976.10553157

    PLEASE SCROLL DOWN FOR ARTICLE

    Taylor & Francis makes every effort to ensure the accuracy of all theinformation (the Content) contained in the publications on our platform.However, Taylor & Francis, our agents, and our licensors make norepresentations or warranties whatsoever as to the accuracy, completeness,or suitability for any purpose of the Content. Any opinions and viewsexpressed in this publication are the opinions and views of the authors, andare not the views of or endorsed by Taylor & Francis. The accuracy of theContent should not be relied upon and should be independently verified withprimary sources of information. Taylor and Francis shall not be liable for anylosses, actions, claims, proceedings, demands, costs, expenses, damages,and other liabilities whatsoever or howsoever caused arising directly orindirectly in connection with, in relation to or arising out of the use of theContent.

    This article may be used for research, teaching, and private study purposes.Any substantial or systematic reproduction, redistribution, reselling, loan,sub-licensing, systematic supply, or distribution in any form to anyone is

    http://www.tandfonline.com/loi/tgac18http://www.tandfonline.com/action/showCitFormats?doi=10.1080/13921843.1976.10553157http://dx.doi.org/10.1080/13921843.1976.10553157

  • expressly forbidden. Terms & Conditions of access and use can be found athttp://www.tandfonline.com/page/terms-and-conditions

    Dow

    nloa

    ded

    by [

    Sout

    hern

    Tai

    wan

    Uni

    vers

    ity o

    f Sc

    ienc

    e an

    d T

    echn

    olog

    y] a

    t 04:

    30 2

    2 O

    ctob

    er 2

    014

    http://www.tandfonline.com/page/terms-and-conditions

  • GEODEZIJOS DARBAI, Vlll t., 76

    528.115

    . .

    .

    , n

    .

    [ IJ .

    w 2 , , - i

  • ,

    n

    -1 = ~ -1 j ""'" ' 1 1 m

    -1- :-1 -1 -~1

    ,

    11 .

    , ro rox, . ,

    .

    . ,

    i"1 [ 1] .

    .

    :

    (4)

    v- - , - , -

    , N =- 1- , - .

    (2), :

    (5)

    ;1 - , = _1 _ 1

    +Pu , - ,

    ; = 1.

    ro :

    ro = Auu +, (6)

    Au- ( , -

    ), u- - . , (5)., (6), :

    x=x-P-1ATN-1Ex(Auu+Ax) = (E-Q)x-Qtl, (7)

    - Q=P 1-ATN-1ExA, Qu=P- 1ATN- 1ExA11 .

    14

    Dow

    nloa

    ded

    by [

    Sout

    hern

    Tai

    wan

    Uni

    vers

    ity o

    f Sc

    ienc

    e an

    d T

    echn

    olog

    y] a

    t 04:

    30 2

    2 O

    ctob

    er 2

    014

  • (7). (7) :

    = (E-Q)Mx-QuMu,

    - .

    (8)

    :

    ........ ....., ........ ,....,

    - ={(-) (-)}, (9)

    - .

    , (9) (7) (8), :

    ={ ( -Q)~-Qu~} { (E-Q)~-Qu~u} =

    ={ ( -Q)~-Qu~u} {~ (E-Q)T -~~Q~}, ( 10)

    ~=-, ~u=-Mu.

    - = (-Q)(~~) (E-Q)T-QuM(~u~) (-Q)' -

    - (E-Q)M (~~~)Q~ +QuM(~u~~)Q~ = (E-Q) ( -Q)T-

    -- 2QuBu, x(E-Q)T+QuBuQ~. ( 11 )

    tl

    Bu,x=O ( n ). (11) :

    ( 12)

    ( 12) . , ,

    u .

    II n

    x=x+v=x-P- 1ATN- 1{Au(u+vu) +}, ( 13)

    Vu- - n . n Vu n

    u 1111

    , . .

    V --P-ITN-1,_, u- u 11 u UIU t ( 14)

    Pu- ( Bu), Au- , Nu = AuP;;-1 :,- .

    N;;-1 , 11 .

    15

    Dow

    nloa

    ded

    by [

    Sout

    hern

    Tai

    wan

    Uni

    vers

    ity o

    f Sc

    ienc

    e an

    d T

    echn

    olog

    y] a

    t 04:

    30 2

    2 O

    ctob

    er 2

    014

  • ( 14) :

    vu =- ;;- 1 ~ N;;-1 Euw =- -;;- 1 ~ N;;-1 Eu (u +), ( 15)

    -1

    ~ u- = _ 1 _ 1 - + Pu

    , ; .'ISI -

    =.

    ( 13)1 ( 15) .:

    x=x-P-1ATN-11A u-A p-tATN-1 E ( +)+l 1 ll u ll ll ll u u . J

    AuP;;-1 ~= Nu. t :

    = (E-P-1ATN-1A+P-1ATN-1E11A)x-

    - (P-1ATN- 1A11 - P- 1ATN-- 1E11A11 ) t1. ( 16)

    x={E-P- 1ATN-1(E-E11 )A}x-{P-- 1ATN- 1 (1:::-)}tt. (17)

    l:::x =- Eu, - , (16) 11 ( 17) (7).

    1 111

    1 :

    x=x+v=x- P-1ATN- 1w=x- P-IATN- 1 ( 11 tt +)=

    = (E-P- 1ATN-1A)x-P- 1ATN- 1Aut1. (18)

    ( 18) ( ( 12)) :

    ( 19)

    Q'=P-1ATN-1A, Q~=P- 1 ATN-1Au. .'! ( 16) ( 18) ,

    (P-1ATN-1Au- p-IATN- 1 E 11A11 )< (P-IATN-'Au). (21)

    (- 1 N- 1 ) (P-1ATN-'EuA11 ) .

    (21) , (20). , 11 ,

    (- 1 ATN- 1 11 11 ) (),

    16

    Dow

    nloa

    ded

    by [

    Sout

    hern

    Tai

    wan

    Uni

    vers

    ity o

    f Sc

    ienc

    e an

    d T

    echn

    olog

    y] a

    t 04:

    30 2

    2 O

    ctob

    er 2

    014

  • (P-1ATN-1EuA}. , (12} (- } (19} . (- }, . . (- )< (- ). , -

    , ,

    [ 1], 1t, n 1t .

    ~c::r---+---tr-----~ 2 /2'\

    . 1 1111

    . , . 1.

    :

    (

    -1+1+1 ) = 0-1-1+1 , Au=

    + 1 0+ 1 \ 1

    ( ~ ~ )' +1-1 1,0

    =

    h2

    h U= ( 1 ) =2 - 1 = 2 . 2 . h4

    3,0

    1,0

    2,0 hs 1,0

    2 Gcodczijos skyriaus dnrhai 17

    Dow

    nloa

    ded

    by [

    Sout

    hern

    Tai

    wan

    Uni

    vers

    ity o

    f Sc

    ienc

    e an

    d T

    echn

    olog

    y] a

    t 04:

    30 2

    2 O

    ctob

    er 2

    014

  • 0 - , - - , u-- .

    .

    :

    1 2p-l 2(1,0 ) . u=CJo u =cro 1,0 '

    2 - 2 -1 - 2 ( 0,2 ) . u-cro - 0,2 .

    , ,

    i"l ( 12) (-) 11 ( , . . ):

    0,72 0,97

    1. D-=(B-)11=CJ2 0,62

    0,86 0,66

    0,54 0,64

    2. D-x=(Bx:);i=CJ~ 0,60 0,59

    0,56

    J.;.'l

    (19) (-) 11 ( oGI\IIIICXox !le J.;):

    0,88 1,28

    1. D =( )11=~ 0,64 1,10

    0,80

    0,56 0,64

    2. D = ( ) = ~ 0,60 0,61

    0,58

    1. D-x D , , 1

    18

    Dow

    nloa

    ded

    by [

    Sout

    hern

    Tai

    wan

    Uni

    vers

    ity o

    f Sc

    ienc

    e an

    d T

    echn

    olog

    y] a

    t 04:

    30 2

    2 O

    ctob

    er 2

    014

  • 30% ( , . . ). ,

    1 11 , -

    ' \l D- D ( ) ..

    2. (2), ,

    11 = ~ >8, -

    10% .

    l .

    .

    i1 rrr r

    4.VI.\975

    1. . . 1 i'r r IICXOIIX BCIIIIII. J1JB. . feoiJeII 11 ,\IQ, I. 6, \967.

    APIE PRADINII) DUOMENI) KLAIDI) ELIMINAVIMJ\ ISLYGINANT

    Jonas S k i v 1 s

    REZIUM~

    Darbe analiztjamas islygint dydzi tikslmas tam atvejtti, kai pradini dttomcn klaidos climinttojamos pagal mctodPateikiamas praktinis pavyzdys.

    OF ELIMINATION OF INIIAL DATA ERRORS IN ADJUSTMENT

    Jonas S k i v 1 s

    SUMMARY

    The of adjsted valttcs when initial data errors are elimi-nated the mcthod [ 1] is analyscd in the . The adjstment results are proved to of higher precision in tl1is case than thosc oblained without climinating the crrors in thc initia\ data.

    An actual examplc is submittcd.

    19

    Dow

    nloa

    ded

    by [

    Sout

    hern

    Tai

    wan

    Uni

    vers

    ity o

    f Sc

    ienc

    e an

    d T

    echn

    olog

    y] a

    t 04:

    30 2

    2 O

    ctob

    er 2

    014