К АЛЬТЕРНАТИВНОЙ ТЕОРИИ МНОЖЕСТВ

• View
229

0

Embed Size (px)

Transcript

• 35

510.22.. , ..

. .

- . : - , . : - , - .

. , - .

- . , - . - .

.

[1] - , . - - - [2], , , , - .

- , , - , .

.

: , . - . - ( ).

- , , . - ( , , ) , . . , - ( , , -), , - . - , , , , - . - .

[2]. , , - , [1]. - , - , . , , .

1.

N - ( ). , .

N. PF(A) . :

0 1( ) ,..., ( ) ( )n n nW N N W N W PF W+= = ,

1

( ) ( )nn

W N W N

=

= . - ( )nW N n- W(N).

N :

0 1( ) ,... ( ) ( )n n nV N N V N V P V+= = ,

1( ) ( )n

nV N V N

=

= , P(A) A. ,

( ) ( )n nW N V N ( n N ), ( ) ( )W N V N . F N.

( ),A V N *A A F.

1* ( ) * ( ),n

nW N W N

=

= 1

* ( ) * ( ).nn

V N V N

=

= *N -

(* ).V N , [4], j * ( )V N (* ).V N *W(N) .

, * ( )V N - j . * ( )V N j-. , j - - F - - .

, :* ( ) * ( ),* ( ) * ( ).n nV N W N V N W N

2. , ,

U(N) - * ( ).W N

*W(N) -, U(N) . , - , .

• 36

. N . -

[0, ] { | 0 }.n N n =

W(N) ([0, ] ( )).v N W N : * ([0, ] * ( )v N W N , [0, ] { * | 0 }.n N n = , [0, ] .

A B , - : ,f A B (* )f V N . - , , * ( )f V N , . -, , -.

, N, , -, .

A *N , A [0, ].

-.

, ( )A W N . - k ( )A W N . - A .N - ( )W N , s N , ( )kA W N - : [0, ], ( ).sf A f W N

,( ) ( )k sA W N N f W N

(f A [0, ]).

- .

* ( ) * * ( )k sA W N N f W N (f A [0, ]).

, - [0, ] A - f, , A - .

- r, - - .

, -, .

[0, ],* \N N , *N -

[6]. , *N . -

(0,1) [0, ]: ( ) [ ],f r r= (0,1),r [x] x.

1 2r r< ,

2 1 2 1 2 1 2 1( ) ( ) [ ] [ ] 1 ( ) 1.f r f r r r r r r r = =

, 2 1( ) ( )f r f r . -, 2 1( ) ( ).f r f r , f (0, 1) [0, ]. [0, ] .

, *N [5], [0, ] *N . , - [0, ] .

. A .

[0, ], *N , , [6], A [0, ] *N . -, A .

, -. ( )N U N , N ., N .

-. , .

* \N N . [0, ]N [0, ] , N . A , - *N : .

, , .

- .

, A -. A * ( )f W N - [0, ] A. , * \N N , A - .

[0, ]N , B N f A. , B - , A.

. , A, B -

. , A [0, ] , B - 1[0, ] , 1, * \N N . [0, ] , * \N N , [6]. -, A B.

-.

A (, , -) .

: , (* )f N A f V N . , ( ) (* ).A f N V N= n ,

(* )nA V N . A , * ( )A W N . -, * ( )nA W N .

, A . ,

, . ,

N *W(N).

• 37

1. . . .: ,1983. 2. Proceedings of the 1st symposium Mathematics in the internal Set Theory. Bratislava, USFR, 1989. 3. Mattes J. Axiomatic approaches to nonstandard analysis. Jahrbuch der Kurt Gdel Geselschaft, 1992. . 61 79. 4. Robinson A. and Zakon E. A set-theoretical characterization of enlargements, in Applications of Model Theory to Algebra, Analysis and prob-ability / W. A. J. Luxemburg (ed.). New York: Holt, Rinehart and Winston, 1969. . 109 122.

5. Chang S.S. and Keisler H.G. Model theory. North-Holland, Amsterdam, 1990. 6. .. *N // .-. . . , 1994. . 74.

- , 18 2005 .