К ЗАДАЧЕ СТАБИЛИЗАЦИИ ДВИЖЕНИЙ МЕХАНИЧЕСКИХ СИСТЕМ, СТЕСНЕННЫХ ГЕОМЕТРИЧЕСКИМИ И КИНЕМАТИЧЕСКИМИ СЕРВОСВЯЗЯМИ

Embed Size (px)

Text of К ЗАДАЧЕ СТАБИЛИЗАЦИИ ДВИЖЕНИЙ МЕХАНИЧЕСКИХ СИСТЕМ,...

  • 4 (12), 2009 - .

    27

    531.31+62-50 . .

    ,

    . , . , , . : , ()-, -, , , , , , , . Abstract. In work the equations of motion of the mechanical systems constrained by geometrical and kinematical constraints of the first and second sort are deduced. The obvious kind of forces of reactions of servo constraints is received, and also ques-tions of stability of system under the relation of the variety defined by servo con-straints are considered. Keywords: servo constraint, (A)-moving, parametrical clearing, compulsions of re-actions, high-speed parameters, clearing parameters, quasicoordinate, quasispeed, the stability, not indignant movement.

    - . [1]. , . , - . [2], . [3], . . - [4], . . [5], . . [6, 7], . . [8], . . [9, 10] . -, , . - , - , , , , [1, 2, 9, 10].

    -, - , . . . [11]. - [12] [13], . . , - , - [9, 10]. [14], - . . .

    . . [9, 10]. -

  • .

    28

    , -.

    , , - .

    , q1, , qn, -

    1

    0n

    i ii

    b q b

    ( = 1, , b), (1)

    [1]

    1 , , ..., 0nt q q ( = 1, , a);

    1 1, , ..., , , ..., 0n nt q q q q ( = 1, , c), (a + c = ). (2) , , -

    (1), ,

    2 11

    , ,..., 0n

    i n ii

    a t q q q

    (2 = 1, , ), (3)

    [6]. ,

    [9, 10],

    * 1 1 2, , ..., , , , ..., 0n a t q q , * 1 1 1, , ..., , , ..., , , ..., 0n n ct q q q q (4) ( = 1, , ; = 1, , ; + = ),

    , , - (2). - , ,p (2) - . , , (2), - [14].

    Np P , - , , ,

    p pN (p = 1, , a);

    P ( = 1, , c). (5)

    ,

    1 1,

    a c

    p pp

    N P

  • 4 (12), 2009 - .

    29

    2

    1 1 1

    n a c

    i p pii p

    A R q N P

    . (6)

    , ()- [6] , . (6) -

    p = 0; = 0 (p = 1, , a; = 1, , c).

    (2), (4) - q1, , qa 1, , a. , (1) (4), [15] ev:

    1

    n

    i iv v iv b

    Z d e d

    (i = 1, , n),

    i iZ (i = 1, , a), i iZ q (i = a + 1, , n), + = - ev , . (3) [15]

    2 2

    1 10

    n n

    i iv v v vi v b

    a d a

    (2 = 1, , ), (7)

    v , ev. [15]

    10

    n

    vvv b

    Se

    ()- (7) -

    2 2

    2 1v v

    v

    S Q ae

    (v = b + 1, , n), (8)

    S ; 2 .

    p px , = xa + , p = xk + ,

    Np = pU , cP U

    (5)

    x Ax BU , (9)

  • .

    30

    a

    O O

    O O

    E O O

    ,

    a

    c

    E O

    E

    O O

    ,

    1

    1

    c

    xx

    x

    , 1U

    UU

    ,

    Ea , c1 = 2a + c. (9) [16, 17], -

    . - , , [9, 10]

    3U K x ,

    K3 (k1), - = 0

    3x A BK x . (1), (2) .

    1 1

    12

    n n

    ij i ji j

    T A q q

    , (10)

    ev (10) -

    1 111 1

    12

    n n

    vv v vv b v b

    T A e e

    ,

    1 1

    1 1

    n n

    vv ij jv vii j

    A A C C

    ,

    S [15]

    1 1 1 21 1 2

    1 21 1 1 1 1

    1 , ,2

    n n n n n

    vv v v v v vv b v b v b v b v b

    S A e e v v v e e e

    .

    (8) [16]:

    1) 11

    , , 11 1 1 1 1

    , ,a c n b a a

    p p a pp p

    A A A e p

    11

    11 1 1 1

    , , , ,a c a n b

    p pp p

    p a p e

  • 4 (12), 2009 - .

    31

    1 1 1 1

    , , , ,c c c n b

    a a a e

    1 2 21 2

    11 1 1

    , ,n b n b

    e e Q a

    ( = 1, , );

    2) 1 1

    1

    , , ,1 1 1

    a c n b

    p p a a ap

    A A A e

    11

    11 1 1 1

    , , , ,a a a c

    pp

    p a a a

    11

    11 1 1 1

    , , , ,a c a n b

    a a a a e

    1 1

    , ,c n b

    a a e

    111 1

    , ,n b n b

    a e e

    2 22

    ,1

    a aQ a

    ( = 1, , );

    3) , 1 11

    , ,1 1 1 1 1

    , ,p

    a c n b a a

    p ap p

    A A A e p

    11

    11 1 1 1

    , , , ,a c a n b

    p pp p

    p a p e

    11

    11 1 1 1

    , , , ,c c c n b

    a a a e

    1 21 2

    2 11 1

    , ,n b n b

    e e

    2 2

    2

    ,1

    Q a

    ( = 1, , n b). (11)

    , , (1), , , -, (3) .

  • .

    32

    (11) 2 22 , , aR R R

    11

    21

    1 1, ,

    n b n bo oR e e Q

    ' " ,1 1

    a c

    p p p p ap

    ( = 1, , a);

    1

    21

    1 1, ,

    n b n bo o

    aR a Q

    ' ", , ,1 1

    a a

    a p p a p p a ap

    ( = 1, , c);

    1 21 2

    21 2

    1 1, ,

    n b n bo oR e e Q

    ( = 1, , n b),

    (11) :

    1) 111 1

    1 1

    , ,1 1 1 1

    a a c ao o

    p p p a ap

    A A A A

    11 1

    01 1

    1 1 1 1, , , ,

    a n b c n bo

    pp

    p e a

    1 111 1 2

    1 2,1 1 1 1

    , ,a n b n b n b

    ppa

    pe Q A e

    1 2 ' 2 2 2, , 0p p p pe e Q X ( = 1, , a);

    2) , , ,,1 1 1 1

    c a a apo o

    a a p p a p a p pa ap p

    A A A A

    11 11 1 1

    1 1 11 1 1 1

    , , , ,c n b a n b

    o oaa

    pa a e Q p a

    11 1 2

    1 2,1 1 1 1

    , ,a n b n b n b

    ppp a a

    pe A e a

  • 4 (12), 2009 - .

    33

    1 2 ' 2 2 2, , 0p p a p pae e Q X ( = 1, , c);

    3) , , , ,1 1 1 1

    c a c ao p o

    p p p a ap p

    A A A A

    11 1

    1 1,1 1 1 1

    , , ,a n b c n b o

    pp

    p e a

    1 1 11 1 11

    , ,1 1

    n b ap pa pe Q A e A e Q

    1 21 2

    1 21 1

    , ,n b n b

    ppe e

    ' 2 2 2, , 0p pX ( = 1,, n b), (12) ' 2 2 2 ' 2 2 2 ', , , , , ,p p a p pX X X - 2 2 2, ,p p .

    c n b (12), e , (12),

    , ,1 1 1 1

    a c a c

    p p a p p ap p

    A B C D

    2 2 21

    , , 0a

    p p p pp

    E

    ( = 1, , a);

    , , , ,1 1 1 1

    a c a c

    p p a a a p p a ap p

    A B C D

    ,1

    0a

    a p p ap

    E

    ( = 1, , c), (13)

    1

    11 1

    1

    ,1 1 1

    ,

    1a n b n bo op p p To

    A A A AA

  • .

    34

    1212 2

    1

    ,, ,

    1

    ao

    p pA A A

    ;

    21, , ,,

    1 1 1,

    1a n b n bpo oa a pa Top

    B A A AA

    22

    ,,,

    1

    apo

    paap

    A A A

    ;

    pC pC 1 2 11

    1 ,1 1 1

    ,

    1, ,n b n b n b

    o oTo

    p e AA

    2 11

    ,1 2

    1, ,

    n bA p e

    ;

    11 1

    , 11

    ,

    1, ,n b

    o aa To

    D a e QA

    2 3 21 3

    ,, 3 2

    1 1 1, ,

    n b n b n bo aA A a e Q

    ;

    111 1 2

    1 2,1 1 1

    , ,n b n b n b

    ppp A e

    1 2 1,

    1 1, 1

    1 n b n bp oTo

    e e Q AA

    231 3 2

    3

    ,,

    1

    n bp pA A e Q

    3 43 4

    3 41 1

    , ,n b n b

    p e e

    ;

    21, , , ,

    1 1 1,

    1a n b n bo oa p a p a p aTo

    A A A AA

  • 4 (12), 2009 - .

    35

    22 2

    ,, ,

    1

    ao

    p pA A A

    .

    = , p a px , = + (p = 1, , a), ( = 1, , c)

    (13)

    2 2 2 2 2 22 1 1 , 1... , , ...,i i i n n i ndx P t x P t x t x xdt (i2 = 1, , n2 = 2a + c), (14)

    1 1 11 1 1

    1 1

    1 1

    1 1

    1 1

    , ,,

    1 1 1

    , ,

    , ,, ,

    ,

    1 1

    , ,

    , ,, ,

    p

    a c ap p p

    a

    p pa a

    a a a aa p a p

    a ca

    p

    p pa a

    a a a aa p a p

    E O O

    A C A D A E

    A AB BB BA AP

    A C A

    A AB BB BA A

    1

    1

    1

    ,

    ,,

    ,,

    1

    ,

    ,,

    p a

    a aa p

    aa a

    a

    p a

    a aa p

    A BBA

    A E

    A BBA

    , (14) - . , (2) , - [17].

    22 2 2 21 1 ...

    ii i n n

    dxd x d x

    dt (i2 = 1, , n2 = 2a + c), (15)

    2 2 21, ...,i i nd d (i2 = 1, , n2 = 2a + c) -

    [17]. , 2i -

    2

    2

    2,2 2 2

    1,1211

    2221 2,

    2,1 ,

    .....

    .....0................... ..... ......

    .....

    n

    n

    nn n n

    ddddd d

    dd d

  • .

    36

    (15)

    1 1e iR (1 > 0; i1 = 1, , 2a).

    (15) , .

    2 2 2 22 2

    2 2

    1 1

    a c a c

    i j i ji j

    w x C x x

    2 2 2 22 2

    2 2

    1 1

    a c a c

    i j i ji j

    x a x x

    ,

    15

    d w xdt

    .

    15

    ddt

    ,

    (15), 2 2i ja 2 2 2, 1, ...,i j n

    2 2 2 22 2

    2 2

    1 1

    a c a c

    i j i ji j

    x a x x

    2 2 2 7 7 2 2 7 7 27

    2

    1

    a c

    i j i j j iK

    C a d a d

    2 2i ja 2 2 2, 1, ...,i j n . , -

    2 2

    ,i