СИММЕТРИИ И ТОЧНЫЕ РЕШЕНИЯ УРАВНЕНИЙ ДИНАМИЧЕСКОЙ КОНВЕКЦИИ МОРЯ

Embed Size (px)

Text of СИММЕТРИИ И ТОЧНЫЕ РЕШЕНИЯ УРАВНЕНИЙ ДИНАМИЧЕСКОЙ...

  • !"#!"$%#&('*)$+$,!&-.0/1234.65798:2$;?>.

    @ACBEDFGH IJJLKMDN$OHPD

    Q3RTSUSUV9WYXZRTR R W\[]T^`_aVbXZVdc Vd^TR`e fgX(hgi3^TVd^TRTjk RT^ThlSURT]TVmQ3no[j no[^`i3VdnTpTRTR Sq[XCe

    rtsvus6wyx{z x}|}~*osvs*(Cx}|}

    $s&$$&?$$C$&$&L&$$$$&4$

  • y02

  • 6 : y = y + (t), v = v + (t),z = z + ( (t)x + (t)y) + 1

    2(t)(t),

    w = w + ( (t)u+ (t)v + (t)x + (t)y) + 12((t) (t));

    7 : z = z + (t), w = w + (t).@{

  • {X1, X2, X3}0 {aX1 +X2, bX2 +X3}, {X1, cX2 +X3}, {X1, X2} 0 {aX1 + bX2 +X3}, {aX1 +X2}, {X1} d2O. ( &}H+*06 ( & 2 L4 0(L2O 4 4

  • {14, C4 + 25 + 26 + 27 + 28},

    {X1 + C15 + C26 + C37 + C48, X2 + 14},

    {X1 + C1 cos(

    12(c 1)t

    )

    + C2 sin(

    c12t)

    5++C2 cos

    (

    c12t)

    C1 sin(

    c12t)

    6 + C37 + C4et/28, cX2 +X3 + 14},

    {dX1 +X2 + C1 cos(

    12(c 1)t

    )

    + C2 sin(

    c12t)

    5++C2 cos

    (

    c12t)

    C1 sin(

    c12t)

    6 + C37 + C4et/28, fX2 +X3 + 14},

    {aX1 + bX2 + cX3 + C1 cos(

    t2

    )

    C2 sin(

    t2

    )

    5 + C2 cos(

    t2

    )

    + C1 sin(

    t2

    )

    6 + C37 + C48, 14},

    {X1, X2},

    {X1, cX2 +X3},

    {dX1 +X2, fX2 +X3},

    {bX2 +X3 + 17, 27},

    {15 + 17 + 18, 25 + C + 26 + 27 + 28},

    {bX2 + 17 + 18, 27 + 28},

    {X3 + 15 + 7, 25 + C + 26 + 27}.

    (yyygyy /y") /+) )y")3y*)+!AY49&

  • !}

  • ( FI10

  • `&42a(t) =

    q(t)

    2, C() =

    ()

    2.

    AY4.2&.*}$2(9(0

  • ("!} ) #&%y") /+) )y") *

  • - 2 - 1 1

    x

    - 2

    - 1

    1

    y

    y0 *42m0 ( L(2

    ( t0

  • (#3")y")AY4 0 ( 2}20L420(400$} w v=k