92
ГОДИШЕН ОТЧЕТ № 22 2016 ИНСТИТУТ ПО МИНЕРАЛОГИЯ И КРИСТАЛОГРАФИЯ „АКАД. ИВАН КОСТОВ“ БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ

ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

  • Upload
    others

  • View
    17

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

ГОДИШЕН ОТЧЕТ № 222016

ИНСТИТУТ ПО МИНЕРАЛОГИЯ И КРИСТАЛОГРАФИЯ „АКАД. ИВАН КОСТОВ“

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ

Page 2: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

Годишен отчет № 22, 2016Институт по минералогия и кристалография „Акад. Иван Костов“Българска академия на науките

Редакционна колегия:Проф. д-р Росица НиколоваДоц. д-р Владислав Костов-Китин Доц. д-р Росица ТиторенковаДоц. д-р Михаил ТарасовПроф. д-р Борис ШивачевДоц. д-р Желязко ДамяновПроф. д-р Огнян ПетровД-р Яна Цветанова

Адрес:София 1113, ул. „Акад. Г. Бончев“, бл. № 107Факс: (+359 2) 9797056Тел: (+359 2) 9797055E-mail: [email protected]

Web site: http://www.imc.bas.bg

© Институт по минералогия и кристалография „Акад. Иван Костов“, 2016

Page 3: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

III

Съдържание

Въведение ........................................................................................................V1. Проблематика на ИМК ................................................................................VI

1.1. Преглед на изпълнението на целите (стратегически и оперативни) на ИМК, оценка и анализ на постигнатите резултати и на перспективите на ИМК в съответствие с мисията и приоритетите, съобразени с утвърдените научни тематики. .........VI

1.2. Изпълнение на Националната стратегия за развитие на научните изследвания 2020. Извършвани дейности и постигнати резултати по конкретните приоритети. .........................VIII

1.3. Полза за обществото от извършваните дейности ............................XII1.4. Взаимоотношения с институции ....................................................... XIV1.5. Общонационални и оперативни дейности, обслужващи

държавата ........................................................................................... XV1.5.1. Практически дейности, свързани с индустрията,

енергетиката, околната среда, селското стопанство, национални културни институции и др. (относими към получаваната субсидия). ......................................................... XV

1.5.2. Проекти, финансирани от национални институции (без ФНИ) ................................................................................. XVI

2. Резултати от научната дейност през 2016 г. ....................................... XVI2.1. Най-важно научно постижение: ръководител

проф. дхн Станислав Василев ....................................................... XVII2.2. Най-значимо научно-приложно постижение:

ръководител доц. д-р Юрий Кълвачев ........................................... XVIII3. Международно научно сътрудничество .............................................. XIX4. Участие на ИМК в подготовката на специалисти през 2016 г. ........... XX5. Експертна дейност................................................................................... XXI6. Иновационна и стопанска дейност и анализ на нейната

ефективност ............................................................................................ XXII7. Кратък анализ на финансовото състояние на ИМК през 2016 г. ... XXIII8. Издателска и информационна дейност през 2016 г......................... XXIII9. Информация за научния съвет на звеното .......................................XXIV10. Заключение ...........................................................................................XXIV

Page 4: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия
Page 5: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

V

Въведение

Институтът по минералогия и кристалография „Акад. Иван Костов“ (ИМК) през 2016 г. продължава да работи за развитието на минерало-гията и кристалографията, чрез комплексни изследвания на природни, техногенни и експериментално моделирани минерални системи и нови материали, в съответствие със своята мисия, предмет на дейност и нау-чен план.

Институтът убедително защитава получената висока оценка (А/А/А) за цялостната си дейност и продължава да доказва конкурентоспособност в областите на компетентност и научни приоритети.

В съответствие с основната идея на Националната стратегия за разви-тие на научните изследвания 2020, че образованието, научните изследва-ния, технологичното развитие и иновациите са основата за постигане на динамичен и устойчив икономически растеж, през изминалата година учените от ИМК публикуваха резултатите от своите изследвания, органи-зираха и участваха в научни конференции, обучаваха млади специалисти, провеждаха специализирани курсове и търсеха възможности за финансира-не и коопериране в реализацията на научните изследвания.

При нарастваща средна възраст на изследователите и намаляване на състава поради пенсиониране на висококвалифицирани специалисти, една от приоритетните задачи в института е подготовка на докторанти и млади изследователи, които да останат на постоянна работа в звеното. През 2016 г. бяха защитени две докторски дисертации, един редовен док-торант беше отчислен с право на защита и един докторант е зачислен в редовна форма на обучение. Усилията ни да обучаваме млади хора, обаче се обезсмислят, заради неадекватното заплащане на труда на хората, ра-ботещи в областта на науката.

ИМК беше търсен партньор при решаването на научно-приложни и тех-нологични задачи, свързани с добива и ефективното използване на мине-рални ресурси, характеризиране на нови материали и различни продукти на рудодобивната, фармацевтичната, хранително-вкусовата промишленост и тази за строителни материали.

Използвайки взаимно допълващи се аналитични апаратури, високо квалифицираните експерти в института осъществяват детайлна характе-ристика на кристалната структура, структурните особености (дефекти, фа-зови преходи, нееднородности и др.), фазов и химичен състав на практичес-ки всички видове материали. Създаденият в ИМК апаратурен комплекс е ефективен, поддържан от опитни специалисти и уникален, тъй като част от апаратурата е единствена в страната. Поддръжката на апаратурата и обу-чението на специалисти, които да работят с нея, изглежда е отговорност само на БАН и в частност ИМК и се постига с цената на много усилия, фи-нансови икономии и лишения.

Page 6: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

VI

1. Проблематика на ИМК

ИМК притежава модерна изследователска инфраструктура за ком-плексни изследвания в областта на природните науки, мултидисциплина-рен научен капацитет и развито проектно, институционално и кадрово съ-трудничество с български и чуждестранни научни организации от различни области.

Институтът е сред първите в БАН и страната интердисциплинарни зве-на, чийто тематичен обхват преминава отвъд границите на няколко фунда-ментални области на научното познание (минералогия и минерални ресур-си, кристалография, химия и физика), обединени от идеята за комплексно изучаване на природни, техногенни и синтетичните материали, което е предпоставка за тяхното целенасочено и ефективно използване.

Предметът на дейност и основна мисия на ИМК са фундаментални и приложни научни изследвания, консултантска, експертна, обслужваща и аналитична дейност; приложение на научните резултати и подготовка на висококвалифицирани специалисти в областта на минералогията и кристалографията, изследване и моделиране на природни и техногенни минерални системи. Основните приоритети, по които се работи в трите на-правления на института са:

• Изследване на минерали и минерални системи с цел определяне на техния състав, структура и свойства. Разработване на генетични модели за търсене и проучване на находища на минерални суровини;

• Израстване, синтез и характеризиране на моно- и поликристални материали. Модифициране на минерали и материали c цел подобряване на техните сорбционни, каталитични и йонообменни свойства;

• Изучаване на важни за опазването и екологосъобразното използва-не на околната среда природни и техногенни минерални системи.

1.1. Преглед на изпълнението на целите (стратегически и опе-ративни) на ИМК, оценка и анализ на постигнатите резултати и на перспективите на ИМК в съответствие с мисията и прио-ритетите, съобразени с утвърдените научни тематики.

Постигането на основните стратегически цели на ИМК е свързано с осъществяване на научноизследователския план на института, поддър-жане на екип от висококвалифицирани експерти, обучение на млади спе-циалисти, подкрепа на междуинституционално и международно сътруд-ничество, поддръжка и обновяване на лабораторния комплекс.

Научната дейност на института през 2016 г. беше изцяло съобразена с изпълнението на научния план на звеното http://www.imc.bas.bg/bg1/index.php/2012-14. Научно-изследователските задачи са част от три проекта, съ-ответстващи на основните приоритети, свързани с изучаване на природни,

Page 7: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

VII

нови материали и технологии и опазване на околната среда. Една от за-дачите е финансирана по договор с Фонд Научни изследвания. Четири от задачите са частично финансирани от субсидия на БАН, което оказва поло-жително въздействие и създава мотивация за работа на екипите.

Резултатите от научноизследователската дейност на ИМК през 2016 г. са отразени в 46 научни публикации. От тях в списания с импакт-фактор са 31, като 29 са отпечатаните и 2 под печат, 38 от общите публикации са отпечатани в реферирани и индексирани списания, 3 са приети за печат в реферирани, а 5 са отпечатани в нереферирани и индексирани списания и сборници. Из-следователите от института са представили 33 доклада на 8 научни форума. През изминалата година 244 публикации на учени от института са цитирани общо 1012 пъти.

Сравнението на тези данни за последните пет години, показва тенден-ция към намаляване броя на публикациите (особено тези и нереферирани списания) и ръст на цитатите, което има пряка връзка с нарастването на средната възраст на изследователите и нарушената възрастова структура, намаляването на финансирането на задачите и проекти към Фонд „Научни изследвания“, продължителността на процеса на квалификация и израства-не на кадрите в изследователската и научна работа.

Общият брой на изследователите в ИМК към 31.12.2016 г е 29, като от тях 19 са хабилитирани: 5 професори и 14 доценти, и 10 нехабилитирани: 2 главни асистенти, 5 асистенти и 3 специалисти с докторска степен. Един от професорите е доктор на науките, а 25 от изследователите са доктори. Средната възраст на изследователите (хабилитирани и нехабилитирани учени) е 54 години.

През 2016 г. по акредитираната докторска програма „Минералогия и кристалография“ (акредитация от НАОА до 2019 г. с много висока обща оценка 9.79), се обучаваха трима редовни докторанти. От тях един е отчи-слен с право на защита, един е преминал в задочна форма на обучение и един нов докторант е зачислен в редовна форма на обучение. Двама от пе-тимата отчислени защитиха успешно докторските си тези, а един е в проце-дура след предварителна защита. Назначените четирима млади колеги на длъжност асистент продължават да работят като асистенти по финализира-не на докторските си дисертации и по текущи задачи. На фона на негатив-ната тенденция към намаляване броя на младите учени, обнадеждаващо бе, че през 2016 г двама от асистентите и един докторант на ИМК спечелиха финансиране на проектите си по Програмата на БАН за подпомагане на младите учени.

Първият шестмесечен етап на проектите бе отчетен успешно през но-ември, 2016 г.

До момента ИМК е една от най-комплексно и модерно оборудваните и с най-висококвалифициран научен състав и обслужващ персонал научни организации в България в областта на изследванията на структурата, съста-

Page 8: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

VIII

ва, свойствата, поведението и взаимодействията на твърдата материя (не-зависимо от произхода и размерите) и системите, които тя формира. ИМК разполага с 8 съвременни лаборатории и има дялово участие в 3 външни.

През 2016 г. със собствени средства и доброволен труд беше ремон-тирано помещение, в което е разположен новия рентгеново флуоресцентен спектрометър за елементен анализ (WDXRF) SUPERMINI 200 и придружа-ващото оборудване: Автоматична машина за пробоподготовка на стопилко-ви таблети. Апаратурата в останалите лаборатории се поддържа в работно състояние благодарение на квалифицирания персонал, доценти и професо-ри, които не само работят с научната апаратура, но в голяма част от случа-ите сами я поддържат и ремонтират.

Следвайки съвременните тенденции на мултидисциплинарно развитие на науката в света, понастоящем ИМК разполага с екип от опитни, висо-коквалифицирани специалисти в областта на минералогията, минералните суровини, кристалографията, физиката и химията, които са компетентни да осигурят комплексно изучаване на природни, техногенни, експериментално моделирани минерални системи и новосинтезирани материали и решение на сложни проблеми.

1.2. Изпълнение на Националната стратегия за развитие на на-учните изследвания 2020. Извършвани дейности и постигнати резултати по конкретните приоритети.

Научноизследователският план на ИМК е актуализиран през 2014 г. в съответствие с приоритетите на Националната стратегия за научни изслед-вания 2020, Националната програма за развитие: България 2020, и Рамко-вата програма на ЕС за научни изследвания и иновации „Хоризонт 2020“. През изминалата година в института се работеше по трите планови проекта, включващи 32 задачи. По основните приоритети на НСРНИ 2020 през годи-ната са осъществени следните дейности:

Приоритет 1: Енергия, енергийна ефективност и транспорт: раз-витие на зелени и екотехнологии

По този приоритет са задачите, включени в плановия проект „Техноген-ни минерални системи и минерални суровини: характеристика, находища, ефективни и екологосъобразни приложения“

Дейностите през годината са свързани с изследвания върху състава, свойствата на водораслите и проблемите, свързани с приложението им за биогориво, както и изследвания на пепели от ТЕЦ Марица 3 и ТЕЦ Варна за установяване ролята на химичния и минерален състав за улавяне на жива-ка в тези пепели.

Резултатите са представени в 2 публикации и могат да бъдат обоб-щени по следния начин:

Page 9: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

IX

Извършен е критичен анализ на литературни и собствени данни върху състава, свойствата и проблемите, свързани с приложението на водорас-лите като биогориво. Над 135 характеристики на водораслите и техните пе-пели са сравнени с тези на сухоземната растителност, въглищата и техните пепели.

Показано е, че високите съдържания на неорганично вещество с не-благоприятни форми на присъствие на елементите (хлориди, сулфати, кар-бонати, оксалати, нитрати и някои оксихидроксиди, фосфати и аморфен материал) във водораслите и пепелите от водорасли предизвикват най-се-риозните техноложки и еколожки проблеми по време на преработката им за производство на биогорива и особено по време на термохимичната им пре-работка. Установено е, че недостатъците на биогоривата от водорасли до-минират значително над техните предимства, но икономическите, еколожки и социални ползи от използването на тази суровина компенсират техноло-гичните ограничения.

В резултат на изследване на проби от електрофилтрите в ТЕЦ Марица 3 и ТЕЦ Варна, разделени на пет фракции, е изучен техния фазово-мине-раложки състав, съдържанията на 30 редки и разсеяни елементи (РРЕ) и концентрациите на живак (Hg). Резултатите показват, че съществува синер-гичен ефект между концентрациите на кокс и Са сулфат, като анхидритът играе значителна роля за улавянето на Hg в пепелите. Установено е, че ула-вянето на Hg в пепелите от ТЕЦ Варна силно зависи от генерирания от биту-минозни въглища кокс, а минералното вещество няма съществено влия ние. Изследваните пепели нямат високи съдържания на РРЕ, с изключение на Cd, Mo, As, Mn и Ag в пепелите от ТЕЦ Марица 3 и Be, Cd, Cs, Rb, Se и Ag за пепелите от ТЕЦ Варна. Освен живак, коксът и сулфатите в пепелите от ТЕЦ Марица 3 улавят и опасни летливи елементи като Cd, Mo, As.

Приоритет 2: Здраве и качество на живота, биотехнологии и еколо-гично чисти храни

В този приоритет се включват задачи и от трите планови проекта, свър-зани с подобряване качеството на живот.

През годината учени от института работиха и по задачи, свързани с опазване на околната среда в частта, касаеща разработване на нови мате-риали и извличане на ценни компоненти от отпадъчни материали.

Темата на задочния докторант в ИМК „Структурни характеристики на биологичен апатит изследвани с вибрационна (микро-ИЧ и Раманова) спек-троскопия“ съответства на приоритет 2 на НСРНИ 2020, резултатите от коя-то са представени на конференция.

Една от задачите, по които се работи е финансирана от Фонд „Научни изследвания“, проект „Структурна биология и специфика на ДНК Г-квадру-плекси лиганд взаимодействия“ с цел кристализация и определяне на струк-турата на билогични макромолекули (ДНК). Като резултат от работата е ре-

Page 10: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

X

шена кристалната структура на ДНК последователност d(CGTGAATTCACG) при 130K, както и структурата на нов аминофосфонат.

Приоритет 3: Нови материали и технологииГоляма част от задачите и по трите планови проекта, по които работят

учените в ИМК са свързани с този приоритет. Получаването и изследването на нови материали с предварително зададени свойства има пряка връзка и с всички останали приоритети на стратегията, затова част от дейностите и резултатите са посочени в другите три приоритета на НСРНИ 2020.

Дейностите включват израстване на кристали и синтезиране на нови материали (оптични кристали и стъкла, неорганични съединения, метал-ор-ганични съединения, малки органични молекули, зеолити, зеолитоподобни материали, слоисти двойни хидроксиди, и др.), модифициране на природни материали, c оглед подобряване на техните сорбционни, каталитични и дру-ги свойства.

Резултатите са свързани със създаване и характеризиране на по-рести материали с потенциално приложение във важни стопански сфери: изследвани са деформациите на титаносиликатния скелет след йонен об-мен със сребро, цезий, магнезий, барий, манган, никел и мед; уточнени са позициите на Tl+ в каналите на клиноптилолита; синтезирании са морденит и зеолит Х от пепели; синтезирани са микропорести материали от отпадъчен аморфен SiO2; изследвана е трансформацията и йонообменния потенциал на перлит. Определен е фазовия състав, кристална структура, структурни нееднородности, както и различни параметри и свойства на новите и моди-фицирани продукти. Резултатите са представени в публикациите.

Изучени са структурата и нелинейните свойства на телуритни стъкла, подходящи за нелинейно оптично параметрично преобразуване на лазерно-то лъчение и оптични кристали.

Част от работата по тази задача е свързана и с получаване или мо-дифициране на материали за приложение в строителството: хидратиращи цименти с добавка природен зеолит; изследвана е ролята на добавките и термичното поведение на декоративен цимент; предлагане на интегриран подход за третиране на отпадъци с цел получаване на нови материали.

Приоритет 4: Културно-историческо наследствоКъм това направление са задачите, свързани с изследванията на архео-

ложки обекти.Дейностите включват изследване на локални нееднородности и ар-

хеометрични параметри на благороднометални минерализации от метасома-тити и разсипи в Източни Родопи; фазов и химичен състав на архео ложки артефакти за целите на реставрация, консервация и опазване на културното историческо наследство; както и отделни аналитични изследвания на мазил-ки и пигменти от тракийски гробници, съвместно с екипи от археолози. Ко-

Page 11: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

XI

лектив от изследователи участва във финансирания от БАН проект „Траките – генезис и развитие на етноса, културни идентичности, цивилизационни вза-имодействия и наследство от древността“ със задача „Изследване на пигмен-ти от стенописи и пигментирани мазилки от тракийски култови обекти“.

Резултатите по тази задача са свързани с изследване на археолож-ки обекти с национална значимост: златото от древния златодобивен рудник Ада тепе; пигменти и мазилки от стенописи в Червената църква (V-XIV AD) при г. Перущица и тракийската гробница Александрово.

Въпреки че, в посочените в НСРНИ 2020 приоритети няма такива, свързани с геология и полезни изкопаеми, тези изследвания са особено важ ни за изучаването на моделни системи на дълготрайни процеси в гео-ложки времеви период, те имат пряко отношение към суровинната база и енергетиката, както и към създаването и решаването на различни еко-логични проблеми.

Дейности: Изследване на минерали и минерални тела, формиращи литосферата, с оглед дефиниране на техния фазов състав, структурни вза-имоотношения, процеси на образуване и изменение, закономерности.

Резултати: В сътрудничество с колектив от Университета в Загреб е разработен

гео динамичен модел на триаското полиметално рудообразуване в рамките на Алпо-Балкано-Карпато-Динаридната (ABCD) металогенна и геодинамич-на провинция в контекста на който са интерпретирани Fe-Mn-Ba-сулфид-ните стратиформни хидротермално-седиментни находища (Вареш, Креми-ковци) и оловно-цинкови находища (тип „Долината на Мисисипи“ – MVT); направен е обзор на полиметалните находища от Врачанско-Кремиковския руден район, Западна Стара планина, геоложките и структурно-тектонски особености на региона и пространственото им разпределение. Минералого-геохимичните характеристики на главните находища, типове руди и вмест-ващи карбонатни скали са обобщени и е направен преглед на концепциите за произхода на находищата като основа за разработване на общ генетичен модел на триаското рудообразуване.

Изследванията на златни минерализации и находища са представени в няколко публикации. Изучени са индикаторни особености на акцесорни минерали, продукти на магматичен монацит, въз основа на което е направен извода, че формирането на вторични РРЕ фосфатни минерали с отрицател-на цериева аномалия (монацит, рабдофан, аморфни фази) е индикация за наложено нискотемпературно хидротермално събитие, свързано с палео-генската вулканска активност в района. Морфологията и вътрешния стро-еж на акцесорния апатит от Петроханския плутон, Западна Стара планина, показва, че минерала е индикаторен за промените в кристализационната среда. Детайлно са изследвани процесите на мигматизацията на скалите от Огражденската единица на Сръбско-Македонския масив на територията на

Page 12: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

XII

България; геохимията и възрастта на образуване на пегматити от Нигерия; кристалохимията на клинопироксен, както и изоморфно включване на волф-рам в хематит и гьотит.

В института се поддържа музейна сбирка „Минералното разнообразие в България“. Продължава надграждането на библиографската картотека, (над 3700 записа), посветена на изучаването на минералното разнообразие на България – перспективна база данни за изграждане на продукт от типа – Енциклопедия на Минералите в България и тяхната изученост.

1.3. Полза за обществото от извършваните дейности

Осъществените през годината изследователски, образователни, екс-пертни дейности и постигнатите резултати носят за обществото както ди-ректни, така и непреки ползи.

Перспективи за реализиране на готов продукт, при условия на интерес и инвестиции, съществуват в следните приоритетни направления:

Приоритет 1: Енергия, енергийна ефективност и транспорт: раз-витие на зелени и екотехнологии

Резултатите от проекта „Минералогия, геохимия и екологосъобразно приложение на твърди горива и техните отпадни продукти от термична пре-работка“, изпълняван в ИМК-БАН, от групата на проф. дгн С. Василев са от полза за създаването на нови или модифицирането на вече съществуващи-те технологии за производство на биоенергия с цел увеличаване делът на биомасата като възобновяем източник в световния енергиен баланс. Основ-ните ползи от това са: положително влияние върху климатичните промени поради неутралния баланс на CO2 при изгарянето на водорасли; и ограни-чаване изгарянето на изкопаемите горива, което ще доведе до намалява-не на парниковия ефект и съхраняване запасите на изкопаеми горива за бъдещата им по-иновативна употреба. Резултатите от изследванията върху минералогията, геохимията и живачните концентрации на пепели от ТЕЦ Марица 3 и ТЕЦ Варна са от полза за: установяване степента на живачно замърсяване в района на двата изследвани ТЕЦ-а; и механизмът на ула-вяне на живак и съпътстващите го опасни и летливи елементи от пепелите от двата ТЕЦ-а. Изясняване влиянието на кокса и минералното вещество на пепелите върху живачното им съдържание е от полза за създаването на технологии за по-ефикасно улавяне на живака и други летливи и вредни за човека елементи в пепелите от ТЕЦ.

Приоритет 2: Здраве и качество на живота, биотехнологии и еколо-гично чисти храни

Приложение на природни зеолити, перлити и други материали, полу-чени от отпадъчни продукти имат голям потенциал и двоен ефект, както от

Page 13: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

XIII

оползотворяване на отпадъци, така и от реализиране на евтин продукт за имобилизация на вредни за човека и околната реда химични компоненти.

Детайлните изследванията върху структурното състояние и изменение на денталния апатит при различни въздействия ще послужат за прецизира-не на параметрите на третиране и работата на денталните лекари за по-ка-чествено и безопасно лечение.

Особено важно е развиването в ИМК на ново за страната направление в областта на кристалографията (биологична кристалография), свързано с определяне структурата на големи молекули (белтъци, ДНК).

Приоритет 3: Нови материали и технологииПредлагане на екологосъобразни решения за използване на отпадъци

от разнообразни производства като суровина за създаване на нови матери-али с полезни свойства: отпадъци от биомаса като подобрители на почвата; смеси от твърди промишлени и селскостопански отпадъци за получаване на нови материали с различно приложение; смеси глина със сушени рецикли-рани материали и пепел и др.

Проведените изследвания предлагат възможности за преработване на значими по количества биомаси от различни производства като храни-телно-вкусовата промишленост, пречиствателни станции и строителство-то. Оползотворяването им ще има съществен икономически, суровинен и екологичен ефект от намаляване на техните количества, използването им като вторичен суровинен и енергиен ресурс, както ще доведе до нама-ляване на парниковите газове в атмосферата и количеството на използ-ваните невъзобновяеми енергийни източници. Същевременно получените нови композитни материали, активатори и подобрители могат да намерят практическо приложение в строителството, архитектурата и селското сто-панство.

Получаване на порести и слоисти материали и изследването на йоно-обменните процеси е свързано с екологията и индиректно и с ползи за чо-вешкото здраве. Химични елементи като Cs, Tl, Sr и т.н. са особено опасни и превишеното им количество във води и почви трябва да се предотвратява. Количеството на Tl в сравнение с Cd, As, Pb е по-малко и замърсяването с него обикновено е локално, най-често в почвите непосредствено около циментови заводи. Зеолитите основно се използват за пречистване (води, почви и дори организми от токсични и радиоактивни отпадъци) и изучава-нето на подобрените сорбционни, йонообменни и каталитични свойства е необходимо.

Получаване на материали със специфични оптични свойства и прило-жения. Материалите с нелинейни оптични характеристики са подходящи за технологиите, при които се използва лазерно лъчение. Те са атрактивни в области разработващи бърз пренос на данни, оптични компютри, акусто-оптични филтри.

Page 14: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

XIV

Предложен е иновативен подход за екстракция на полезни компоненти от пирометалургична шлака. Изследвани са окислитилните процеси на мед-на шлака в изотермичен и динамичен режим.

Приоритет 4: Културно-историческо наследствоОт национално значение са проведените археоминераложките изслед-

вания, които подпомагат изучаването, съхраняването и популяризирането на културно-историческите ценности на страната. Изследванията на пигмен-ти и мазилки от тракийски гробници ще дадат не само информация за хими-ческия и минерален състав, но ще допринесе за установяване на техноло-гията по която са направени и ще подпомогне работата на реставраторите при възстановяване на важни артефакти. Също много важни за престижа на страната са провежданите археоминераложките изследвания на добива и преработката на злато по нашите земи през бронзовата и желязната епохи, при които е установено (проекти на НАИМ-БАН и на международен екип от Австрия при участие на доц. д-р З. Цинцов), че рудник Ада тепе (Крумов-град) е най-старият рудник в Европа за добив на злато от коренни скали.

Задачите, свързани с изследване на геоложки и минераложки обекти могат да бъдат полезни за целите, например, на по-ефективно търсене и проучване на находища на полезни изкопаеми– чрез задълбочаване на ге-нетично-моделните анализи, сравнения и локални и регионални обобщения върху хидротермално-седиментното рудообразуване и практическото при-ложение на резултатите за търсене и проучване. Изследванията, провеж-дани през предходни години в ИМК (Н. Зидаров, Л. Мачева, Е. Тарасова, Р. Титоренкова, М. Тарасов) върху петрологията, геохимията и минералогията на скалите в Югозападна България (Огражден и Беласица планина), са пос-лужили като основа за последната държавната картировка в М 1: 100 000.

Практически ефект имат значителния брой експертни оценки, направе-ни от служителите на ИМК за нуждите на държавни институции и българския бизнес (ГИ–БАН, Аграрен университет – Пловдив, „Каолин“ АД, „ЕКО КОМ“ ЕООД, „Асарел Медет“ АД, „Дънди Прешъс Металс“, „ЕСДЕНТА-АГПППДМ“ ООД, „Аурубис България“ АД и др.).

Библиографската база на изучените минерали в България се създава с цел съхраняване и обобщаване на пълната информация за минералното разнообразие в страната.

1.4. Взаимоотношения с институции

Научната и научно-приложната дейност на ИМК се извършва в сътруд-ничество с редица български фирми, научни институти, университети и дър-жавни институции.

Page 15: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

XV

По отношение на връзките с бизнеса за отбелязване са установените контакти с предприятие „Родна Индустрия 91“ ЕООД гр. Попово и на пред-приятие „Труд“ АД в гр. Русе. Проектът „Траките – генезис и развитие на етно-са, културни идентичности, цивилизационни взаимодействия и наследство от древността” (март 2016–март 2017) е първият общоакадемичен проект, който обединява 27 научни звена на БАН (22 института и 5 лаборатории) с участие и на университети и научни центрове от Канада, Италия, Германия, Япония и Швейцария. За първи път тракийското наследство се изследва цялостно и комплексно. Проектът се осъществява финансово с дарителски фондове на г-н Петър Манджуков и д-р инж. Добрин Иванов. ИМК участва в частта за характеризиране на мазилки и пигменти от различни тракийски гробници с координатор проф. Радостина Стоянова ИОНХ. От страна на ИМК ангажимент са изследванията с оптична микроско-пия, SEM, Raman Spectroscopy, DTA-TG анализи и екс-пертна оценка на пигменти и подложка от мазилката.

ИМК съдейства и участва в консултациите при издаване от „Български пощи“ ЕАД на пощенско-фи-лателното издание на тема „150 години от рождението на геолога академик Георги Бончев“, който е доайен на българската минералогия и петрография.

Валидирането на марката се състоя на 7 декември в Аулата на Софийския университет по време на Нацио-налната научна конференция „Геонауки 2016“, в която активно участие взеха 15 учени от ИМК с 10 научни док-лада.

1.5. Общонационални и оперативни дейности, обслужващи дър-жавата

1.5.1. Практически дейности, свързани с индустрията, енергетика-та, околната среда, селското стопанство, национални културни ин-ституции и др. (относими към получаваната субсидия).

Потребители на научни продукти, експертен капацитет и аналитични изследвания на ИМК през 2016 г. бяха повече от двадесет държавни инсти-туции, наши и чуждестранни индустриални предприятия и организации.

ИМК е седалище на Българско Кристалографско Дружество (БКД), http://www.bgcryst.com/. Налице е продуктивно и ползотворно взаимодей-ствие между институти на Българска академия на науките и юридическо лице с нестопанска цел. От 10 до 15 учени-изследователи от звеното под-държат редовно или периодично членството си в Дружеството, а останалите членове са колеги от други институти в БАН, Български и чужди универси-тети и научни институции. БКД редовно организира научни форуми (симпо-

Page 16: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

XVI

зиуми, семинари, срещи, школи и пр.), които дават отлична възможност за изява и популяризиране дейността на учените и младите учени в България. През 2016 г. се проведе VI Национален кристалографски симпозиум. Съби-тието предизвика интерес и активност на над 100 регистрирани участници от 7 страни. Инициативата, беше припозната и подкрепена и от Министер-ството на образованието и науката.

Много от учените в ИМК са съпричастни към дейността на Българското геологическо дружество (БГД). Редовни членове на БГД са 24 учени и служи-тели от звеното. В проведената Национална конференция с международно участие „Геонауки 2016“ от ИМК участваха 15учени, които изнесоха 10 на-учни доклада със свои резултати постигнати в областта на минералогията.

ИМК е научно средище на българската минераложка общност, обеди-нена в Българското минералогическо дружество, чиято Интернет страница (http://www.clmc.bas.bg/Minsoc/) е част от нашия уебсайт. В института се про-веждат регулярните сбирки на дружеството, където наши и чужди учени док-ладват и дискутират актуални резултати от научни изследвания в областта на минералогията и минералните ресурси.

ИМК е съхранител на базовата академична колекция „Минералното разнообразие на България“, съдържаща уникални образци от минералното богатство на страната и специализирани работни материали от изследова-телските проекти и задачи на изследователите-минералози от института; активен участник в националните и международните форуми на издигнатата от Националния музей „Земята и хората“ и Софийска инициатива „Съхра-няване на минералното разнообразие“, чиято основна цел е да опази за бъдещите поколения минералното богатство на Земята.

1.5.2. Проекти, финансирани от национални институции (без ФНИ)

През 2016 г. младите изследователи и техните ръководители от ИМК работиха по 3 проекта, финансирани от БАН по програмата за Млади учени.

Поради началото на новия програмен период до 2020 г няма финанси-рани нови проекти по структурните фондове и другите ОП.

Единствено по Проект „Студентски практики“ на МОН, Оперативна програма „Наука и образование за интелигентен растеж“ (ОП НОИР) има сключен договор със СУ за практика на един студент бакалавър, която ще приключи през март 2017 г.

2. Резултати от научната дейност през 2016 г.

Резултатите от научноизследователската дейност на института са от-разени общо в 46. От тях в списания с импакт-фактор са общо 31, като 28 са отпечатаните и 3 под печат, 38 от общите публикации са в реферирани сборници, а 5 са в нереферирани и индексирани списания и сборници. Уче-ните от института са представили 32 доклада на 8 международни научни

Page 17: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

XVII

форума. Очертава се тенденция към намаляване на общия брой публика-ции в сравнение с 2015 г. (за сравнение 67 – 2015 г., 60– 2014 г., 98 – 2013 г., 71 – 2012 г., 103 – 2011 г., 99 – 2010 г., 94 - 2009 г., 100 - 2008 г., 92 – 2007 г.) и на броя публикации с импакт фактор, съответно.

Положителна тенденция е нарастване на броя на цитиранията, които за 2016 г. са 1012, при 244 цитирани източника.

За сравнение съотношението статии/цитати през последните години е: 2015 – 224/875; 2014 г. 176/696; 2013 г. – 230/728; 2012 – 192/567; 2011 – 158/271). Цитатите на учените от института са представени в приложение.

 

Това е един много добър атестат за качеството на нашата на-учна продукция и нейната продължителна актуалност и значимост в професионалните научни общности.

2.1. Най-важно научно постижение: ръководител проф. дхн Ста-нислав Василев

Vassilev, S., Vassileva, C., 2016. Composition, properties and challenges of algae biomass for biofuel application: An overview. Fuel, 181: 1-33. IF 3.611

На базата на критичен анализ на реферирани данни и собствени из-следвания са изучени състава и свойствата на водорасли и са посочени ползи и недостатъци при използва-нето им за биогориво. Над 135 ха-рактеристики, свързани с химичния и фазово-минераложкия състав и свойствата на водораслите и техните

 

Фигура 1. Полета на ниски (<1100°С), средни (1100–1300°С) и високи (>1300°С) температури на начална деформация (DT) на 55 типа пепели от биомаса, според химичната им класификация.

Page 18: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

XVIII

пепели, са изследвани и сравнени с тези на сухоземната растителност, въг-лищата и техните пепели. Установено е, че недостатъците на биогоривата от водорасли доминират значително над техните предимства, но основните икономически, еколожки и социални ползи от използването на водорасли компенсират техноложките и други ограничения, предизвикани от неблаго-приятния им състав и свойства (Фигура 1). Резултатите от изследванията могат да допринесат за създаване на иновативни технологии за производ-ство на биоенергия с цел увеличаване делът на биомасата като възобновя-ем източник в световния енергиен баланс.

2.2. Най-значимо научно-приложно постижение: ръководител доц. д-р Юрий Кълвачев

Kalvachev, Yu., D. Zgureva, S. Boycheva, B. Barbov, N. Petrova, 2016. Synthesis of carbon dioxide adsorbents by zeolitization of fly ash, J. Therm. Anal. and Cal. 124, 101-106. If 1.781

Топлоелектрическите централи, в които се горят въглища, са сред ос-новните източници на емисии на въглероден диоксид и основен генератор на въглищна пепел. Направен е опит да се намери екологично решение на тези проблеми с цел опазване на околната среда. Въглищната пепел която съдържа главно 52,66% SiO2 и 23,37% Al2O3 е подложена на двустадиен

 

Фигура 2. Морфология и адсобционни характеристики на получения материал.

процес на стапяне с алкална основа, последвано от хидротермален синтез в автоклав. Смес от въглищната пепел и NaOH в съотношение 1/2 се стапя в пещ при температура от 550°С. Следва хидротермален синтез, протичащ в продължение на 2 часа при температура от 90°С. Получава се зеолит Х, който е известен с високия адсорбционен капацитет по отношение на въг лероден диоксид. Капацитетът на сорбция на така полученият зеолит Х по отношение на въглероден диоксид е измерен с помощта на термо-

Page 19: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

XIX

гравиметричен метод (Фигура 2). Адсорбционният капацитет на получе-ния образец е определен при постоянна температура от 22°C със скорост на потока от въглероден диоксид от 30 ml/min–1. Изчисленият капацитет е 60 mg СО2 g–1. Капацитетът на сорбция на зеолит Х, синтезиран от въглищ-на пепел е сравнена с тази на референтен зеолит X синтезиран от чисти изходни материали.

3. Международно научно сътрудничество

ИМК си сътрудничи с научни институции извън страната в рамките на съвместни проекти, финансирани в рамките на европейски програми, както и проекти по двустранни спогодби на нивото на БАН. ИМК кани и междуна-родно признати учени, като гост-лектори и консултанти по различни пробле-ми, свързани с осъществяване на научноизследователския план на инсти-тута. Наши изследователи също са канени лектори в чужди университети.

По покана на Key Laboratory of Coal Science and Technology в Taiyuan University of Technology (Тaйюан, Китай), Проф. дгн Станислав Василев гос-тува в Китай като експерт и консултант по проект „Съвместно изгаряне, га-зификация и пиролиза на въглища и биомаса”.

Археометричните изследвания на златото са проведени в сътрудни-чество с НАИМ-БАН, Виенския Университет (Австрия), Институт по източна и европейска археология (Виена), Институт по науки за Земята, Хайделберг (Германия), Католически университет, Льовен (Белгия), и др.

Част от статиите са изработени в тясно сътрудничество с чуждестранни учени: Университет в Загреб, Хърватия (проф. Л. Палинкаш, доц. С. Соста-рич и д-р С. Палинкаш) – статия в съавторство с Ж. Дамянов и И. Маринова; Department of Geology, Obafemi Awolowo University, Ile-Ife, Nigeria (Adetunji A., Olarewaju V.O., Ocan O.O.) – статия в съавторство с Л. Мачева и В. Га-нев; Eberhard Karls University, Faculty of Science, Department of Geosciences, Tübingen, Germany (S. Kreissl, G. Markl), Friedrich Schiller University, Institute of Geosciences, Jena, Germany (R. Bolanz), Karlsruhe Institute of Technology, ANKA Synchrotron Radiation Facility, Germany (J. Göttlicher, R. Steininger) – статия в съавторство с М. Тарасов; Vienna Institute for Archaeological Science, Insitute for Oriental and European Archaeology, Vienna (М. Mehofer) – статия в съавторство със Здр. Цинцов и Н. Петрова.

По двустранните спогодби международно сътрудничество се осъщест-вява с Румънската академия на науките, Институт по макромолекулна хи-мия, Румънска Академия, Яш, Румъния; с Естонската и Чешка Академии на Науките. Изследването на хибридни неорганични-полимерни материали на основата на зеолит-полиимидни вещества се извършва съвместно с Ин-ститут по макромолекулна химия, Яш, Румънска Академия на науките (Зео-лит-полиимидни хибридни материали със зададени свойства). Работата по синтез и характеристика на функционални материали с тетраедрично-ок-

Page 20: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

XX

таедрични структурни скелети се осъществява съвместно с Институт по не-органична химия на Чешка академия на науките, а изследванията по проект „Получаване на органо-минерални подобрители за почви“ съвместно с Естон-ска Академия на науките. През годината за осъществяване на съвместни раз-работки в института гостува колега от Институт по неорганична химия, Прага, в рамките на двустранното сътрудничество с Чешката академия на науките.

Учени от института дългосрочно са гост-професори във факултета „Науки за Земята“ към Хамбургския университет (Faculty of Earth Sciences, University of Hamburg) и Университета Миньо, Гимараеш, Португалия (Department of Physics, University of Minho, Gimaraes, Portugal).

4. Участие на ИМК в подготовката на специалисти през 2016 г.

Общият брой на докторантите през 2016 г. беше 3, като единият от тях беше отчислен с право на защита, единият премина в задочна форма на обучение и един зачислен в редовна форма на обучение. Тематиките на действащите и на защитилите докторанти в института съответстват на при-оритетни направления от НСРНИ2020.

През 2016 г двама от отчислените с право на защита докторанти за-щитиха докторска дисертация. През 2016 г. образователна и научна степен „Доктор“ придобиха асистент Тотка Тодорова с научен ръководител доц. д-р Ю. Кълвачев и Свилен Гечев с научен ръководител Юри Муховски (пенсио-нер) като тематиките на двете докторантури са в приоритетното направле-ние Нови материали.

През 2016 г бяха назначени на работа в института като асистенти два-ма от отчислените с право на защита докторанти.

В института е изградена необходимата материална база за обучение и изследователска дейност на докторантите по специалност „Минералогия и кристалография“. На всеки от тях е осигурено работно място с персонален компютър, свързан в локална мрежа и със скоростен интернет достъп, биб-лиотека с богат набор от научна литература и периодика в областта на ми-нералогията, кристалографията и минералните суровини, както и възмож-ности за ползване на специализирани собствени и чужди бази данни. Наред с това се осигурява достъп до специализираните библиотеки на другите институти на БАН и на Централната библиотека. За всички специалисти и докторанти е обезпечено ползването на лабораторната техника, както и съ-ответните информационни и софтуерни програми за обработка на резулта-тите от изследователската работа. Всички условия за реализация на пла-нираните работи са налице. Центърът за обучение на БАН осигурява чрез своите специфични звена подготовката по чужди езици и по компютърни информационни технологии. ИМК предлага на докторантите си необходима-та презентационна техника и конферентна зала за периодични докладвания на резултатите от тяхната дейност.

Page 21: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

XXI

Педагогическата и образователна дейност, осъществявана в ИМК е в съответствие с основната идея на Национална стратегия за развитие на научните изследвания 2020, че образованието, научните изследвания, тех-нологичното развитие и иновациите са основата за постигане на динамичен и устойчив икономически растеж.

През изминалата година учени от ИМК бяха хонорувани преподаватели по няколко учебни програми за студенти в Минно геоложки университет „Св. Иван Рилски“, Нов Български Университет, Софийски университет „Климент Охридски“.

Проведени са също семинар-обучение по Рентгеноструктурен анализ в катедра Материалознание и технология на материалите на Русенския Уни-верситет; Лекции по инфрачервена и Раманова спектроскопия в минерало-гията в СУ ГГФ студенти бакалаври; Курсове за докторанти към ЦО БАН по Инфрачервена спектроскопия и Термичен анализ.

По време на престоя на проф. дгн Станислав Василев в Китай във връзка с проект „Съвместно изгаряне, газификация и пиролиза на въг-лища и биомаса“ към Key Laboratory of Coal Science and Technology при Taiyuan University of Technology (Тaйюан, Китай) са извършени консулта-ции на десет студенти (магистърска и докторска степен) и на трима уче-ни от Key Laboratory of Coal Science and Technology при Taiyuan University of Technology (Тaйюан, Китай) относно състава и свойствата на въглища и биомаса и тяхната термо-химична преработка и са изнесени поредица от лекции на тема: „Фундаментални и приложни аспекти на минералогията и геохимията на въглища, биомаса и техните пепели“; в Key Laboratory of Coal Science and Technology при Taiyuan University of Technology (Тaйюан, Китай) и в Shenyang University of Chemical Technology (Шенянг, Китай).

Доц. д-р Ж. Дамянов е научен консултант на защитил докторант от Ме-дицински университет – Пловдив, Факултет по дентална медицина.

Изследователи от института бяха научни ръководители на 2 дипломанти от СУ и ХТМУ. В рамките на проект на МОН „Студентски практики“ един сту-дент от СУ провежда практика в ИМК. През 2016 г. учените от ИМК проведоха специализирани курсове общо 48 часа към ЦО–БАН. Участието на учените от ИМК в обучението на студенти и докторанти през 2016 г. е 213 ч. лекции, 68 часа специализирани практически курсове и 195 часа упражнения.

За сравнение в предходните години то е било, както следва: 2015 г. е 205 ч. лекции и 165 ч. упражнения; 2014 г. – 259 ч. лекции и 362 ч. упраж-нения, 2013 г. – 320 ч. лекции и 228 ч. упражнения, 2012 г. – 164 ч. лекции и 68 ч. упражнения, 2011 г. – 355 ч. лекции и 110 ч. упражнения.

5. Експертна дейност

Експертната дейност на учените от ИМК през 2016 г. включваше участия в организационни комитети, управителни органи на дружества и

Page 22: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

XXII

експертни съвети; участие в научни журита членове и председатели; ре-дакционни колегии на престижни международни списания и сборници от конференции; и рецензии на статии към международни списания и проек-ти към ФНИ.

Учени от ИМК председателстват Българското кристалографско друже-ство (БКД), както и Българското геоложко дружество (БГД), а други са избор-ни членове, участващи в ръководството на тези дружества.

Изтъкнати специалисти от ИМК са членове на управителните органи на Международната асоциация по природни зеолити, на Техническа Група Въглища 2 (TGC 2 – „Coal preparation, conversion and upgrading“) към Изсле-дователския Фонд за въглища и стомана (RFCS) на Европейската комисия. Други учени членуват в Националния комитет по геология към Международ-ния съюз по геологически науки (IUGS) и Националния комитет по геодезия и геофизика към Международния съюз по геодезия и геофизика (IUGG), в ръководството Хумболтов съюз в България (НПО).

В редакционните колегии на престижните международни списания Fuel („Elsevier“), Coal Combustion and Gasification Products („Allen Press“), и Waste and Biomass Valorization („Springer“), в изданията на БАН списания „Геохи-мия, Минералогия и Петрология“, „Geologica Balcanica“ – и двете, в нацио-налното списание „Списание на БГД“ и сборника с научни съобщения от на-ционална конференция с международно участие „Геонауки-2016“ участват учени от ИМК.

6. Иновационна и стопанска дейност и анализ на нейната ефективност

Институтът дава под наем помещения в сградата, намираща се на 8 км. Приходите от тази дейност са приложени във финансовия отчет.

ИМК не развива внедрителска и стопанска дейност в чист вид, но е търсен партньор при решаването на сложни научно-приложни и техноло-гични проблеми в областта на добива и ефективното оползотворяване на минерални ресурси, характеризирането на новосинтезирани материали и различни промишлени продукти.

Анализът на потребителите, които търсят услугите на лабораториите в института показва, че индустриалните предприятия и малки частни фирми в страната не могат да се ангажират с дългосрочно сътрудничество с на-учни организации и търсят сътрудничество с нашите специалисти само за неотложни анализи, в случай на временни технологични проблеми или за експертно-консултантска дейност.

Анализи и експертизи, осъществени от изследователите в ИМК за нуждите на държавните организации, ВУЗ (ГИ–БАН, Аграрен университет – Пловдив; МУ – Пловдив; Университет „Професор Асен Златаров“ – Бур-гас); частни фирми и българския бизнес („Аурубис България“ АД; „Dundee

Page 23: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

XXIII

Precious Metals Chelopech“, фирма „Кордеел България“ ЕАД; „Девня Ци-мент“, „Каолин“ АД, „ЕКО КОМ“ ЕООД, „Асарел Медет“ АД, „ЕСДЕНТА-АГПППДМ“ ООД) допринася за ефективното решаване на теоретични, прак-тически и технологични задачи.

7. Кратък анализ на финансовото състояние на ИМК през 2016 г.

Финансовата рестрикция на бюджета на БАН (и респективно на ИМК), започнала още през 2010 г., продължи и през изминалата 2016 г. Бюджет-ната субсидия на ИМК е 530 485 лв. и около 95% от нея бе изразходвана за заплати, стипендии и съответните осигуровки. Единствено собствените приходи на института позволиха да се поемат най-необходимите разходи за издръжка и да се осигурят сравнително нормални условия за изпълнението на изследователските проекти. Средната брутна месечна работна запла-та в ИМК за 2016 г. е 774,00 лв. Цялостната финансова дейност в ИМК е обхваната от системата за финансово управление и контрол както като вътрешноинститутска нормативна база, така и като регулярна управленска и финансово-счетоводна практика. В института са приети и се изпълняват пълен набор от документи, регламентиращи счетоводната политика, доку-ментооборота, правилата за финансовата дейност и нейния контрол, систе-мата за оценка на риска и т.н.

8. Издателска и информационна дейност през 2016 г.

От 1995 г. ИМК издава ежегодно годишен отчет на английски език, в който във вид на резюмета са представени основните резултати от из-следователската дейност през съответната година, пълен библиографски списък на публикуваните статии и изнесените доклади на различни прояви у нас и в чужбина, участието на учените в обучението на докторанти и подготовката на студенти, международното сътрудничество, структурата, апаратурното обезпечение, кадровото развитие на учените и др. От 2015 г. този отчет се публикува само на страницата на ИМК в интернет (www.imc.bas.bg).

Уебстраницата на института се актуализира регулярно и предоставя за информация за организацията, структурата, научните планове и проек-ти, публикационната активност, предоставяните експертни услуги, актуал-ните събития, провежданите обществени поръчки и др., На нея са публи-кувани изданията на английски език на годишните отчети на института от неговото създаване до днес. Чрез сайта се осъществяват онлайн връзки със сродни научни организации и издания в областта на минералогията и кристалографията.

Page 24: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

XXIV

9. Информация за научния съвет на звеното

Списъчен състав на НС към 31.12.2016 г.

№ по

редИме и фамилия Научно звание

и степенОсновна

месторабота

1. Михаил Тарасов – председател доц. д-р ИМК–БАН2. Юрий Кълвачев – зам.-председател доц. д-р ИМК–БАН3. Ирина Маринова – секретар доц. д-р ИМК–БАН4. Росица Николова (директор на ИМК) проф. д-р ИМК–БАН5. Борис Шивачев проф. д-р ИМК–БАН6. Огнян Петров проф. д-р ИМК–БАН7. Станислав Василев проф. дгн ИМК–БАН8. Христина Василева проф. д-р ИМК–БАН9. Владислав Костов доц. д-р ИМК–БАН

10. Диана Нихтянова доц. д-р ИМК–БАН11. Евгения Тарасова доц. д-р ИМК–БАН12. Желязко Дамянов доц. д-р ИМК–БАН13. Здравко Цинцов доц. д-р ИМК–БАН14. Луиза Димова доц. д-р ИМК–БАН15. Надя Петрова доц. д-р ИМК–БАН16. Росица Титоренкова доц. д-р ИМК–БАН17. Вилма Петкова доц. д-р НБУ, ИМК–БАН

10. Заключение

Представените в настоящия отчет данни дават основание да оценим научноизследователската дейност на ИМК за 2016 г. като успешна. Научни-те изследвания се развиваха изцяло в рамките на предмета на дейност и тематичните приоритети на института, както и в съответствие с политиките и програмите за изпълнение на стратегическите цели и приоритетни направ-ления на БАН и Националната стратегия за научни изследвания 2020.

През изминалата 2016 г. учените от ИМК публикуваха резултатите от своите изследвания, организираха и участваха в научни конференции, про-веждаха специализирани курсове и търсеха възможности за финансиране и коопериране в реализацията на научните изследвания. Основен приоритет за учените за поредна година беше подготовката на докторанти и млади из-следователи, които да останат на постоянна работа в звеното. През 2016 г. в института работиха на трудови договори двама студенти, двама докторанти защитиха дисертации, един беше отчислен с право на защита и един беше зачислен в редовна форма на обучение.

Page 25: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

XXV

Усилията ни да обучаваме млади хора обаче се обезсмислят, за-ради неадекватното заплащане на труда на научните работници, защото след като получат квалификация младите хора бързо нами-рат реализация в чужбина. Броят на публикациите, особено тези, публикувани в нереферирани списания, е намалял, но рязко е нарас-нал броят на цитиранията. Тези тенденции съответстват на вече описаната реалност, а именно че научните изследвания, провежда-ни в института, са разпознаваеми в професионалните научни общ-ности и имат необходимото качество, продължителна актуалност и значимост, но с всяка изминала година броят на учените в актив-на възраст намалява.

Директор:(проф. д-р. Р. Николова)

Научен секретар:(доц. д-р. Р. Титоренкова)

Page 26: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия
Page 27: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

ANNUAL REPORT # 222016

INSTITUTE OF MINERALOGY AND CRYSTALLOGRAPHY “ACAD. IVAN KOSTOV”

BULGARIAN ACADEMY OF SCIENCES

Page 28: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

Annual Report # 22, 2016Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences

Editorial Board:Prof. Dr. Rossitsa NikolovaAssoc. Prof. Dr. Vladislav Kostov-KytinAssoc. Prof. Dr. Rossitsa TitorenkovaAssoc. Prof. Dr. Mihail TarassovProf. Dr. Boris ShivachevAssoc. Prof. Dr. Zhelyazko DamyanovProf. Dr. Ognyan PetrovDr. Yana Tzvetanova

Address:Acad. G. Bonchev St., bl. 107, 1113 Sofia, BulgariaFax: (+359 2) 9797056 Phone: (+359 2) 9797055E-mail: [email protected]

Web site: http://www.imc.bas.bg

© Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, 2016

Page 29: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

3

Contents

Introduction ........................................................................................................ 71. Trends of activity ......................................................................................... 13

1.1. Short history ........................................................................................ 131.2. Mission, areas of activities and priorities ......................................... 131.3. Relation with the research policies and programs .......................... 141.4. Research topics and capacity ............................................................ 151.5. Research infrastructure ...................................................................... 151.6. Benefits for Science, Business and Society ..................................... 16

2. Structure and Staff ...................................................................................... 182.1. Short description of the structural units ........................................... 192.2. Staff ...................................................................................................... 21

3. Main Equipment ........................................................................................... 254. Research Topics .......................................................................................... 26

4.1. Mineral Systems and Mineral Genesis .............................................. 26

1. Crystal chemistry of clinopyroxene with a high content of the Ca-Tschermak and esseneite components, Eastern Rhodopes, Bulgaria (Y. Tzvetanova, M. Tarassov, V. Ganev, I. Piroeva) ............ 26

2. Effects of magma mixing on distribution of trace elements in zonal apatite from the Petrohan pluton, Western Balkan, Bulgaria (E. Tacheva, M. Tarassov, E. Tarassova) ............................ 27

3. First data on rhabdophane with а negative Ce anomaly from the Igralishte pluton, Southwestern Bulgaria (E. Anastasova, M. Tarassov, E. Tarassova) ..................................... 29

4. Distribution and mineral associations of alluvial gold in the Panagyurishte copper region, Bulgaria (O. Vitov, I. Marinova) ......... 31

5. Ancient gold mining at the Ada Tepe, East Rhodopes, Bulgaria. Mineralogical examination of Au-containing Fe-oxides/hydroxides in metasomatites – their features and role in ancient gold extracting (Z. Tsintsov, N. Petrova, M. Mehofer) ....................... 32

4.2. Environmental Mineralogy, Archaeomineralogy and Biomineralogy .............................................................................. 33

6. Mineralogy, geochemistry and environmentally safety application of solid fuels and their combustion and pyrolysis products (S. Vassilev, C. Vassileva) .................................................. 33

Page 30: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

4

7. The measurement of benzen, ethylbenzen, toluene and xylene in indoor air in schools in Kardzhali (E. Serafimova, V. Petkova, B. Kostova) ........................................................................................ 35

8. Influence of some factors on the global climate system and needed measures (Y. Pelovski, E. Serafimova, N. Kozarev, A. Petrov, V. Petkova) ....................................................................... 35

9. Integrated wastes treatment as a basis for production of new materials (E. Serafimova, S. Milenkova, V. Petkova, Y. Pelovski) ........................................................................................ 36

10. Preliminary mineralogical study of wall paintings from the Red Church (IV–XIV AD) near the town of Perushtitsa, Bulgaria (E. Tarassova, M. Tarassov, D. Gergova, R. Titorenkova, E. Tacheva) ............................................................. 37

11. Analytical studies of the Alexandrovo Thracian tomb wall paintings (Z. Glavcheva, D. Yancheva, E. Velcheva, B. Stamboliyska, N. Petrova, V. Petkova, G. Lalev, V. Todorov) ....... 40

12. The placer gold from “Stremtsi” occurrence – characteristics and primary sources (Z. Tsintsov, B. Banushev, I. Androlov, I. P. Ivanov)........................... 40

4.3. Modeling and Modification of Mineral Systems ............................... 43

13. Thermal behavior of germanates with olivine structure (I. Koseva, V. Nikolov, N. Petrova, P. Tzvetkov, M. Marychev) .......... 43

14. Powder XRD microstructural analysis of thermally treated synthetic fluor-hydroxylapatite (V. Kostov-Kytin, V. Petkova, T. Kaljuvee) ....................................................................................... 44

15. Carbonation process in cement with mineral additions of natural zeolite and silica fume – early hydration period (minutes) up to 24 hours (V. Lilkov, V., O. Petrov, D. Kovacheva, I. Rostovsky, Y. Tzvetanova, V. Petkova, N. Petrova) ..................................................................... 45

4.4. Synthesis, Composition, Structure, and Properties of Minerals and New Materials ........................................................... 46

16. Deformations of ETS-4 Ti-Si framework after ion exchange and temperature lowering (L. Tsvetanova, R. Nikolova) ................... 46

Page 31: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

5

17. Perlites – attractive low cost raw materials for synthesis of microporous molecular sieves with useful properties (L. Dimitrov, O. Petrov, M. Tarassov, N. Lihareva) ............................ 47

18. Thermal and crystallochemical study of zinc hydroxy-sulfate- hydrate minerals (N. Petrova, Ts. Stanimirova, G. Kirov) .................. 48

19. Thermal behaviour of nitric-acid-treated biomass and chicken litter mixtures (V. Petkova, E. Serafimova, B. Kostova) .................... 50

20. Thermal properties of self-compacting type decorative white cement composites (B. Kostova, V. Petkova, V. Stoyanov, E. Serafimova) .............................................................. 51

21. X-ray powder diffraction study of (Yb0.007,Na0.05)Ca0.72Sr0.223F2 and (Yb0.006Na0.04)Ca0.917Sr0.073F2 crystals (S. Gechev, O. Petrov, V. Ganev, J. Mouhovski) ................................................... 52

4.5. PhD Thesis ........................................................................................... 52

22. Optimization of the synthesis of pentasyle type zeolites (T. Тo dorova) ..................................................................................... 52

23. Crystal growth and characterization of alkaline-earth – rare-earth fluoride systems for broad range of applications (S. Gechev) .......... 54

5. International Cooperation ........................................................................... 576. Visiting Scientists ....................................................................................... 577. Research Topics, Announced for International Partnership

Collaboration ............................................................................................... 588. Publications and Reports at Scientific Forums ........................................ 59

8.1. Published Articles and Reports (indexed in Web of Science, IF or SJR) ............................................. 59

8.2. Published Articles and Reports (not indexed in Web of Science, IF or SJR) ...................................... 61

8.3. Publications in press (indexed in Web of Science, IF or SJR) ........ 628.4. Reports at Scientific Forums ............................................................. 63

Page 32: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия
Page 33: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

7

Introduction

In connection with its mission and basic subject of activity during 2016 the Institute of Mineralogy and Crystallography “Academician Ivan Kostov” (IMC) continued to give impact to the sustainable development of society and enrich-ment of the human knowledge in the fields of mineralogy and crystallography conducting profound multidisciplinary investigations on natural, technogenic, and experimentally modeled mineral systems and new materials.

IMC continues to strongly defend in front of the scientific community and the society as a whole its high evaluation status (A/A/A) for scientific impact and to prove its international competiveness in the sphere of its scientific priorities and fields of competence.

During 2016, the scientists in IMC worked for realization of research pro-jects, publication of the scientific results, participation in scientific conferences, education of young researchers, conducting of specialized workshops, and or-ganization of international summer schools. This activity is in direct correspond-ence with the National Strategy for development of the scientific studies (2020), which considers that education, scientific investigations, technological develop-ment and innovations stay in the background for realizing dynamic and sustain-able economic growth.

Due to the increased mean age of the staff and retirement of high-quality specialists IMC paid special attention during the last years for teaching of young researchers and PhD students. As a result, two of the PhD students were given the right to defend their thesis and were appointed for assistant professors in IMC.

Again, in 2016 IMC was a preferred partner for conducting an application-re-search and technological tasks connected with mining and effective utilization of mineral resources, characterization of new materials and various products from the mining, pharmaceutical, and food industries as well as the industry for build-ing and construction materials.

Combining the available in IMC analytical apparatuses the highly qualified experts realize detailed characteristics of the crystal structure, structural pecu-liarities (defects, phase transitions, heterogeneities, etc.), phase and chemical composition of practically all kinds of materials. The created in IMC laboratory equipment is unique for Bulgaria not only for its effectiveness but also with the fact that part of the equipment is the only one in Bulgaria.

For another consecutive year the maintenance of the laboratory complex, which serves for many institutes in the Bulgarian Academy of Sciences is a re-sponsibility only of IMC. All achieved by the researchers in IMC is with the big price of many efforts, restricted funds and financial shortcomings.

Page 34: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

8

Benefits for Society from the conducted activities in IMCThe impact for Society is directly related to the realized during 2016 inves-

tigations, teaching, and expert activities and the obtained results. Although IMC has not realized products on the market there exist perspectives for some of the achievements to reach such a stage in case of interest and financing. These per-spectives are in the following directions:

Priority 1: Energy, energetic effectiveness, and transport: Development of green ecotechnologies

The results from the project “Mineralogy, geochemistry and environmentally safety application of solid fuels and their combustion and pyrolysis products”, conducted in IMC-BAS by the group of Prof. S. Vassilev are basis for creation of new or modification of existing technologies for production of bio-energy with the purpose to increase the portion of biomass as a renewable source in the world energy balance. The main benefits are: positive influence upon the climatic changes due to the neutral balance of CO2 during combustion of seaweed as well as lowering the amount of burnt fossil fuels, which will lead to diminishing of the greenhouse effect and preservation of the storage reserves of fossil fuels for future utilization in more innovative ways. The results of the studies on the min-eralogy, geochemistry and mercury concentrations in ashes from TEPs Maritsa 3 and TEPs Varna are important for: evaluation of the degree of mercury pollu-tion in the areas of the two studied TEPs as well as the mechanism of capturing mercury and the accompanying harmful and volatile elements in the ashes. The elucidation of the influence of coke and mineral matter of the ashes on the mer-cury content is useful for creation of technologies for more effective capture of mercury and other harmful elements from the TEPs ashes.

Priority 2: Health and quality of life, biotechnologies and ecologically pure food

The utilization of natural zeolites, perlites and other materials obtained from waste products is with great potential and double effect – both for waste recovery as well as for realization of cheap products for immobilization of harmful for man and environment chemical components. The detailed studies on the structural state and the change of the dental apatite upon various treatments is useful for more precise control of the parameters of treatment and helping the work of the dental doctors for qualitative and safety work. Especially important for Bulgaria is the newly devel-oped in IMC new direction of crystallography (biological crystallography) connected with structure determination of large molecules (proteins and DNA).

Priority 3: New materials and technologies

Offering of environmentally friendly solutions for utilization of wastes from different productions as sources for creation of new materials with useful proper-

Page 35: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

9

ties: wastes from biomass for remediation of soils; composites of hard industrial and agricultural wastes for obtaining new materials for different applications; mix-tures of clay with dried recycled materials, ashes, etc. The conducted studies offer possibilities for rework of huge quantities of biomass from various produc-tions, namely food industry, purification stations and construction industry. Their utilization will have considerable economic and ecological effect due to the lower-ing of their quantity, their use as a secondary raw material and energy resource and will result in lowering of the greenhouse effect in the atmosphere and the quantity of of the used non-renewable energy sources. Also, the obtained new composite materials, activators, etc., may find practical application in construc-tion, architecture and agriculture.

The synthesis of porous and layered materials and the investigation of their ion-exchange is connected with ecology and indirectly with benefits for human health. Chemical elements like Cs, Tl, Sr, etc. are very dangerous and their in-creased contents in water and soil must be prevented. The quantity of Tl com-pared to Cd, As, Pb is smaller and the contamination with this element is usually local, most often in the soils around cement factories. Zeolites are mainly used for purification of waters soils and even organisms from toxic and radioactive contaminants and, thus, the study of their ion-exchange, sorption and catalytic properties is needed.

The synthesis of materials with specific optical properties is important for modern applications. The materials with non-linear optical characteristics are suit-able for technological applications which use laser radiation. They are attractive in spheres developing quick transfer of data, computers, acousto-optical filters.

A new innovative approach is offered for extraction of useful components from pyro-metallurgical slag. Studied are the oxidation processes of copper slag in isothermal and dynamic mode.

Priority 4: Cultural-historical heritage

The conducted archaeo-mineralogical studies have national significance and the results support the study, preservation and popularization of the cultural-historical values of Bulgaria. The studies of pigments and plaster of Thracian tombs give not only information for the chemical and mineral composition but also their help in the elucidation the technologies used in past and this will help the work of the restores during restoration of important artefacts. Also, very important for Bulgaria are the conducted archaeomineralogical studies on the mining and processing of gold on our territory during the Bronze and Iron Ages and as a re-sult it was proved that mine Ada Tepe (Krumovgrad) is the oldest mine in Europe for mining of gold from parent rocks (projects of NAIM-BAN with international team from Austria with the participation of Assoc. Prof. Z, Tsintsov from IMC).

Page 36: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

10

Continues the creation of a bibliographic file devoted to the investigation of the mineral diversity of Bulgaria – perspective data base for creation of a product of the type – Encyclopedia of the Minerals in Bulgaria. This data base of the in-vestigated minerals has the purpose to preserve and summarize the full informa-tion of the mineral diversity of Bulgaria.

The tasks connected with study of the geological and mineralogical objects may be useful for purposes like more effective surveying and prospecting of de-posits of raw materials – by using detailed genetic-model analyses, local and regional summaries on the hydrothermal- sedimentary ore formation and practi-cal application of the results. The conducted studies in the last years in IMC (N. Zidarov, L. Macheva, E. Tarassova, R. Titorenkova, M. Tarassov) have served as basis in the last state geological mapping (Scale 1:100 000).

Of practical significance is the considerable number of expert analyses con-ducted by researchers of IMC for the needs of (GI–BAS, Agrarian University – Plovdiv, Kaolin AD, EKO KOM EOOD, Asrel Medet AD, Dundee Precious Metals, ESDENTA-AGPPPDM OOD, Aurubis Bulgaria AD, etc.).

Educational activityThe teaching activity in IMC is in correspondence with the main idea of the Na-

tional strategy for development of the scientific investigations 2020, which empha-sizes on education, scientific studies, technological development and innovations to be the background for achieving dynamic and sustainable economical growth.

During 2016 the number of PhD students in IMC was 3, one of them allowed defending their PhD theses. Two of these students successfully defended their thesis in the scientific field “New Materials”.

The pedagogic and teaching activity conducted in IMCDuring 2016 scientist from IMC have been part-time lecturers in several

teaching programs in the University pf Mining and Geology “St. Ivan Rilski”, New Bulgarian University, Sofia University “St. Kliment Ohridski”.

Also, there was conducted a educational seminar on XRD analysis in “An-gel Kanchev” University of Ruse, lectures on IR and Raman spectroscopy in the Faculty of Geology and Geography – Sofia University, courses for PhD students of BAS on IR spectroscopy and Thermal analysis.

Expert activityThe expert activity of the researchers in IMC during 2016 included participa-

tion in Organizing Committees, Boards of societies and Expert Councils; partici-pation in scientific juries, editorial boards of prestige international journals and proceedings of conferences, and reviews of papers for international journals and projects of the National Fund “Scientific Investigationa”.

Page 37: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

11

Scientists from IMC are Presidents of the Bulgarian Crystallographic Soci-ety and the Bulgarian Geological Society.

Others are members of the Boards of the International Natural Zeolite Asso-ciation, the Technical Group Coals 2 (TGC 2 – “Coal preparation, conversion and upgrading”) of the Investigation Fund (RFCS) of the Europen Commission, Edito-rial Boards of prestige international journals (Fuel (“Elsevier”), Coal Combustion and Gasification Products (“Allen Press”), and Waste and Biomass Valorization (“Springer”), national journals (“Geochemistry, Mineralogy and Petrology”, “Geo-logica Balcanica”).

Results from the scientific activity during 2016The obtained scientific results have been published in 46 scientific papers.

Those with impact factor are 32. The researchers from IMC have participated in 8 international scientific forums with 32 reports. During 2016 the citations of 244 papers of researchers in IMC reached the number 1012.

Counting for the conditions of work and the existing possibilities in BAS and the country as a whole the obtained results are good enough, especially for a small institute like IMC, having 29 academic researchers.

Important fact is the increase of the number of citations for 2016 being 1012. For comparison the ratio papers/citations is: 2015 – 225/875, 2014 – 179/696, 2013 – 230/728, 2012 – 192/567, 2011 – 158/271. This is a very good attestation for our scientific production and its continuing actuality and significance in the professional scientific fields.

Most important scientific achievementCoordinator Prof. Stanislav Vassilev

Vassilev, S., Vassileva, C., 2016. Composition, properties and challenges of al-gae biomass for biofuel application: An overview. Fuel, 181: 1–33. IF 3.611

Based on critical analysis of reference data and personal results there have been investigated the composition and properties of alga. Indicated are useful properties and shortcomings in their use as bio-fuel. More than 135 characteristics of chemical and phase-mineralogical studies of algae and their ashes have been done and compared with the terrestrial vegeta-tion, coal and their ashes. It was found that the shortcomings of the bio-fuels from algae dominate significantly above their advantages, but the main economic, eco-

Fig. 1

Page 38: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

12

logical and social uses compensate the technological and other disadvantages, caused by their unfavorable composition and properties (Fig. 1). The results from these studies can contribute for creation of innovation technologies for production of bio-energy with the purpose to increase the portion of bio-mass as a recover-able source in the world energy balance.

Most important scientific and applied achievement:Coordinator Assoc. Prof. Yuri Kalvachev

Kalvachev, Yu., D. Zgureva, S. Boycheva, B. Barbov, N. Petrova, 2016. Synthesis of carbon dioxide adsorbents by zeolitization of fly ash, J. Therm. Anal. and Cal. 124, 101–106. If 1.781.

The Thermal Electric Power stations which use coal are among the main sources of emissions of carbon dioxide and generators of fly ash. A trial is per-formed to find ecological solution of those problems with the purpose to protect environment. Fly ash containing mainly 52,66% SiO2 and 23.37% Al2O3 was sub-jected to two-stage process of melting with alkaline base, followed by hydrother-mal synthesis in autoclave. A mixture of fly ash and NaOH (ratio 1:2) was melted in an oven at 550°С, followed by hydrothermal synthesis for 2 h at temperature 90°С. Zeolite X is obtained, which is known with its high adsorption capacity in

respect to carbon dioxide. The sorption capacity of the synthesized zeolite X in respect to CO2 was measured thermo-gravimetrically (Fig. 2) at constant temper-ature of 22°C with speed of the CO2 flow of 30 ml/min–1. The calculated capacity is 60 mg СО2 g

–1 is compared with the one of reference zeolite X synthesized from pure starting substances.

Director: (Prof. Dr. R. Nikolova)

Fig. 2

Page 39: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

13

1. Trends of activity

1.1. Short history

The Institute was established in 1984 under the name Institute of Applied Mineralogy of the Bulgarian Academy of Sciences. In 1995 it was transformed into Central Laboratory of Mineralogy and Crystallography (CLMC) which inher-ited the best specialists, the equipment and the most vital scientific themes from the former academic institute. Since 2005 the CLMC was named after the famous Bulgarian mineralogist and crystallographer Academician Ivan Kostov.

From July 1, 2010 the CLMC was renamed to Academician Ivan Kostov In-stitute of Mineralogy and Crystallography after the high overall score (A/A/A) for the five-year (2004–2008) achievements and activities based on the evaluation procedure from the International Science Review Committee.

1.2. Mission, areas of activities and priorities

The IMC mission is to contribute to the sustainable development of socie-ty and enlarging human knowledge in the fields of Mineralogy, Crystallography and Mineral Resources by comprehensive multidisciplinary research of natu-ral, technogenic and experimentally modeled mineral systems and synthesized new materials.

The main areas of activities of IMC include basic studies and applied research, consulting, expertise, service and analytic activities, practical appli-cation of scientific results and training of high qualified specialists in the fields of mineralogy and crystallography, investigation and modeling of natural and technogenic mineral systems.

Based on the outlined areas of activities, the main scientific priorities of IMC are:

Understanding the earth

– Investigation of minerals and mineral systems aiming at determination of their composition, structure, properties, relationships, processes of formation and alteration, and modes of distribution.

– Development of genetic models and criteria for prognosis, prospecting and exploration of mineral deposits.

new Materials and technologies

– Growing, synthesis and characterization of single and polycrystalline ma-terials (optical and laser-grade single crystals, micro- and mesoporous phases, glasses, etc.).

Page 40: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

14

– Modification of minerals and materials aiming at improving their sorption, catalytic and ion-exchange properties as well as searching for possibilities for their optimal application.

environMental Protection

– Investigation of important for environmental protection and ecologically friendly utilization natural and technogenic mineral systems accentuating at coals, ores, and waste products of their processing.

natUre and natUral resoUrces of BUlgaria

– Investigation, analysis, and prognosis of mineral resources of Bulgaria aiming at their effective and environmentally friendly utilization.

– Studying, preservation and collecting of the mineral diversity, geological and landscape natural heritage of Bulgaria through supporting “National Minera-logical Database”, “Heavy Minerals Map of Bulgaria”, and a basic academic col-lection “Mineral Diversity of Bulgaria”.

training and edUcation

– National Program Accreditation for education and training of PhD students in “Mineralogy and Crystallography”.

– Educational programs and training courses for students and specialists from Bulgarian and foreign universities and institutes.

1.3. Relation with the research policies and programs

The IMC Research Plan 2014–2016 was focused in line with the main objectives of the National Strategy of Scientific Research – 2020, the National Development Programme: Bulgaria 2020, and the EU Framework Programme for Research & Innovation – Horizon 2020. The available human, material, financial and information resources were directed to the implementation of the BAS strategic policies “Science as the main driving force in the develop-ment of knowledge-based national society and economy”, “Scientific potential and research infrastructure as a part of the European Research Area” and “National identity and cultural diversity in Europe and in the world”. The IMC participates in the realization of the following basic programs:

– Sustainable development, rational and efficient use of natural resources – Competitiveness of the Bulgarian economy and capacity for scientific

innovation – Informational, expert and operative services to the Bulgarian state and

society – High-quality competitive education

Page 41: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

15

– The history of Bulgaria, Bulgarian lands and Bulgarian people

1.4. Research topics and capacity

Fundamental scientific knowledge on the structure, composition, properties and formation conditions of minerals and materials that mineralogy and crystal-lography give by their powerful methodology and set of most advanced analytical methods, now has an extremely wide range of applications: both in all fields of the Natural Sciences (Earth Science, Materials Science, Life Science, Environmental Science) and in the industry (mining and geology, mineral resources and prod-ucts, environmental protection, pharmaceutical and biomedical industry, etc.)

Following the modern trend of multidisciplinary scientific development world-wide, the Institute currently has a team of high-qualified specialists in the fields of mineralogy, crystallography, mineral resources, physics and chemistry working in leading in Bulgaria and well-recognized abroad Research Groups in:

– Mineralogy, Geochemistry and Utilization of Coal and Coal Products – Characterization and Evaluation of Mineral Raw Materials – Mineral Deposits Modeling, Mapping and Prognosis – Archaeomineralogy and Technological Mineralogy – Ecology and Utilization of Waste Products – Crystal Structure, Composition and Properties of Minerals and Materials – Structural and Chemical Transformations of Minerals and Materials – Natural Zeolites and Microporous Analogs – Synthesis of New Functional and Nanosized Materials – Crystal Growth of Optical Crystals

The productivity and competitiveness of the main research topics, devel-oped in IMC, are internationally proven. During the last years they are gradually adapted to the national and European scientific priorities with emphasis on the efficient utilization of mineral resources, raw materials and wastes, materials sci-ence and nanotechnology, ecology and cultural and historical heritage.

1.5. Research infrastructure

With its own 8 analytical and experimental laboratories (Electron Microsco-py, X-Ray Powder and Single Crystal Diffraction Analysis, Spectroscopy, Ther-mochemistry, Experimental Mineralogy and Crystal Growth, Chemistry, Optical Microscopy, Samples and Preparations) and shares in other 3 external ones (Ra-man, Mossbauer, LA-ICP-MS), IMC is currently the best equipped and with most highly qualified research staff organization in Bulgaria in the field of detail study

Page 42: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

16

of structure, composition, properties, behavior and interactions of solid matter (regardless of its origin and size) and systems it forms.

During the last few years, IMC, as a principal institution, organized consor-tia with leading BAS institutes, Sofia University and University of Chemical Tech-nology and Metallurgy for purchasing modern research infrastructure by budg-et and project financing: new scanning electron microscope SEM EVO 25LS – CARL Zeiss SMT, new thermochemical equipment SETSYS Evolution 24 TGA-DTA/DSC with mass spectrometer OmniStar of Setaram Instrumentation, new infrared microscope Hyperion 2000 of Bruker, new X-ray powder diffrac-tometer D2 Phaser Bruker AXS, new X-ray single crystal diffractometer Oxford Diffraction Supernova A with two X-ray sources and Oxford Cryosystems Co-bra temperature attachment, etc.

Currently IMC has a powerful set of analytical equipment which is capable of ensuring practically the whole research range in the field of materials science.

1.6. Benefits for Science, Business and Society

As a result from the fulfillment of the topics in the research plan for 2016, there have been obtained a series of important for science and national indus-try results, namely: new knowledge about the composition, structure, properties, modes of formation, behavior during technological processing and effective uti-lization of minerals, new materials, mineral resources, natural and technogenic mineral systems from the Bulgarian geo-space; synthesis of a number of new materials with predicted structure and properties and modification of known phas-es for application as ion-exchangers, sorbents, catalysts, membranes, dyes, soil amenders, electronic components, medical and optical products; development of technologies for production of nanosized zeolites; growing of crystals possessing conical refraction suitable for design of lasers with high brightness; upgrade and actualization of national data bases for minerals, mineral resources and newly synthesized crystal phases.

Being a leading public scientific institution in the sphere of mineralogy, mineral resources, crystallography, and materials science, the Institute offers a wide range of research, expert, consulting, and analytical services for business, government administration, and scientific-innovation sector. For many years partners and clients of the expert-consulting services offered by our scientists are tens of companies from various industrial sectors (survey, prospecting, min-ing and processing of mineral raw materials; new materials, pharmaceutics; environmental protection, etc.), scientific research organizations, universities, and museums.

Page 43: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

17

IMC is engaged in the organization and management of a range of activi-ties of particular national importance for the science and society:

– IMC is a scientific center of the Bulgarian mineralogical community united in the Bulgarian Mineralogical Society (http://www.clmc.bas.bg/Minsoc/) the web-page of which is maintained by the Institute. The regular monthly sessions of the Society are held in IMC where Bulgarian and foreign scientists report and discuss new results from their research in the fields of mineralogy and mineral resources.

– IMC is the seat of the Bulgarian Crystallographic Society (http://www.bgcryst.com) with Chairman Prof. Dr. R. Nikolova – Director of the IMC, the or-ganization and core staff of which is dominated by our scientists working in the field of crystallography and mineralogy. The webpage of the Crystallographic So-ciety is also maintained by the IMC. From 5 to 7 October, 2016 in Sofia was held the Sixth National Crystallographic Symposium with International Participation.

– IMC by its scientists is a vigorous member in the organizing and publish-ing activities of the Bulgarian Geological Society and Bulgarian Crystallographic Society.

– IMC is a custodian of the basic academic collection “Mineral Diversity of Bulgaria” including unique samples of the Bulgarian mineral wealth as well as specialized working materials concerned with the scientific projects and problems of the IMC mineralogists.

– IMC is an active member in the national and international conferences of the Sofia initiative “Preservation of Mineral Diversity”, organized by the National Museum “Earth and Man” and devoted on the preservation of the mineral wealth of Earth for the future generations.

Due to the specificity of its scientific capacity the collaboration of the scien-tists from IMC with the national and regional institutions in Bulgaria and Europe is connected, most of all, with the realization of a great number of research pro-jects with external financing as well as with our potentialities for competent ex-pert opinions on problems concerned for example with the effective utilization of natural resources, environmental protection, effect of various natural products on human health, qualification of drug products of the pharmaceutical industry, etc.

Many of our scientists are participants in different forms of the scientific life on a national and international level – chairmen and members of governing councils of scientific societies, members of editorial boards of international and national journals, reviewers of scientific papers, participants in scientific juries in competitions for academic positions, etc.

With its active and multi-component international engagements the IMC de-fends its prestige as a competitive scientific organization and continues to suc-cessfully integrate in the developing European Research Area.

Page 44: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

18

2. Structure and Staff

The whole range of operative activities of IMC is organized in 3 research departments (Mineralogy and Mineral Raw Materials, Experimental Mineralogy and Crystallography, and Structural Crystallography and Materials Science) in-cluding 8 analytical and experimental laboratories as well as in a small group of administrative and support staff.

IMC – Organization chart

Page 45: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

19

2.1. Short description of the structural units

Department “Mineralogy and Mineral Raw Materials”Research Topics– Mineral Systems– Technogenic SystemsResearch Activity– Studying mineral objects formed in natural gradient systems aiming at the

development of genetic models and their practical applications– Studying the phase composition, qualitative characteristics and distribu-

tion of components in technogenic systems formed in using mineral raw materials as well as their impact on the environment

– Creation and actualization of mineralogical data basesMain Research Objects: magmatic and metamorphic rocks; fluorite and bar-

ite deposits; sedimentary exhalative polymetallic deposits; metalliferous sediments from ocean rift zones; coals and products of their combustion; waste products from power engineering, metallurgy and ore dressing; agates; platinum-group minerals; accessory minerals; heavy minerals concentrates; archaeological artifacts.

Department “Experimental Mineralogy and Crystallography”Research Topics– Synthesis and Crystallization of Minerals and Materials– Modeling of Natural Processes and SystemsResearch Activity– Synthesis and crystallization of minerals and materials in model systems– Investigation of products and processes of their formation– Experimental modeling of natural processes in gradient fieldsMain Research Objects: microporous materials, natural zeolites, tungsten

minerals, bentonites, phosphorites, sorbents based on clays and zeolites, ti-tanium and zirconium silicates, basaltic glasses, catalysts, laser optics grade single crystals.

Department “Structural Crystallography and Materials Science”Research Topics– Crystal Chemistry– Physics of MineralsResearch Activity– Determining of the crystal structure, phase and chemical composition and

properties of minerals, single crystals, crystalline and polycrystalline materials

Page 46: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

20

– Synthesizing of new chemical compounds with particular structures and properties

– Completing crystallographic and spectroscopic databases for minerals and materials

Main Research Objects: optical crystals and glasses, new crystalline materi-als, zeolite type materials and thin films.

Analytical and Experimental Laboratories– Laboratory of Electron Microscopy: (i) local investigations of the morpholo-

gy, preferred orientation, phase and chemical composition, textural relationships, structural defects and structure of inorganic natural and synthetic phases, nano-sized materials and thin films using various techniques of transmission electron microscopy; (ii) quantitative and qualitative characterization (morphology, micro-structure, chemical composition, phase and chemical inhomogeneities) of mas-sive, dispersed, polished and non-polished minerals, rocks, synthesized phases, thin films and other materials including biological tissues using scanning electron microscopy and electron microprobe analysis.

– Laboratory of X-Ray Diffraction Analysis: (i) determining unit-cell param-eters, space group symmetry and atom positions in the structure of crystalline phases by X-ray single crystal diffraction analysis; (ii) X-ray powder diffraction analysis with possibilities for: qualitative phase analysis, unit cell parameters re-finement, profile analysis of peaks, structural analysis of polycrystalline phases by the Rietveld method, quantitative analysis of natural and synthetic materials.

– Laboratory of Spectroscopy: measuring spectra of optical absorption in the mid-, near-infrared, visible and ultraviolet regions.

– Laboratory of Thermochemistry: determining phase transition tempera-tures, chemistry of thermal reactions, kinetic and thermodynamic parameters of reactions and phase transitions in TG, DTG, DTA, and DSC regimes.

– Laboratory of Experimental Mineralogy and Crystal Growth: (i) low tem-perature (up to 200 °C) hydrothermal synthesis of microporous and layered mate-rials; (ii) crystal growth by the Flux method; (iii) high temperature electrochemical experiments in melts; (iv) crystal growth (up to 1660 °C) by the Bridgman Stock-barger method (Crystallox); (v) synthesis of ceramic and polycrystalline compos-ites through hot pressing (Crystallox) (up to 1500 °C and to 100 MPa pressure).

– Chemical Laboratory: analyses of rocks, ores, waste waters and techno-genic products by standard analytical methods and atomic absorption analysis.

– Laboratory of Optical Microscopy: study of rocks, ores, minerals and tech-nogenic products in reflected and transmitted light with possibilities for obtaining

Page 47: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

21

digital images by polarizing microscopes Leitz Orthoplan and Jenapol, micro-hardness tester PMT-3 and binocular lenses.

– Laboratory of Samples and Preparations: crushing, milling, sieving analysis, separation, preparation of polished plates and samples, thin and polished sections.

2.2. Staff

The academic staff of IMC comprises 29 scientists: 5 Full Professors, 14 As-sociate Professors, 7 Assistant Professors and 3 Researchers with a PhD degree, including 1 D.Sc. and 25 PhD holders.

The average age of scientists from the academic staff is about 54 years. They are highly qualified specialists in the fields of mineralogy, mineral deposits, crystallography, physics, and chemistry that provides a complex multidisciplinary investigation of the problems concerned with natural, technogenic, and experimen-tally modeled mineral systems and newly synthesized materials. The majority of scientists have specialized in leading scientific institutions in Belgium, Germany (4 fellows of the “Alexander von Humboldt” Foundation), Spain, Russia, USA, Swit-zerland, Japan, etc. In 2016, scientists from the Institute conducted various training programs and specialized courses for undergraduate and PhD students from the University of Hamburg, PhD School of the Bulgarian Academy of Sciences, Sofia University “St. Kliment Ohridski”, University of Mining and Geology “St. Ivan Rilski” and New Bulgarian University.

In addition to the academic staff, 5 Researchers with university degrees work also in the Institute most of which engaged with service and maintenance activities in the 8 analytic and experimental laboratories but part of them have their own re-search topics and areas of specialization within the framework of the main scientific projects. They are encouraged to perform active investigations with potential to be developed further into PhD theses.

IMC has also a small team of high-qualified specialists in the field of admin-istrative, organization, legal, personnel and financial-accounting activities with rich experience in the organization, supply, financial planning, spending and reporting of cash flows as well as experienced supporting, technical and subsidiary staff.

Three PhD students were trained in the Institute in 2016. It should be noted the clear trend in recent years of increased interest in training offered by our PhD program “Mineralogy and Crystallography”. The main reasons for this are highly interdisciplinary nature of the training, using modern analytical and experimental equipment and highly qualified team of tutors and lecturers of specialized courses.

Page 48: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

22

2.2.1. Board

– Director: Dr. Rossitsa Nikolova– Deputy Director: Dr. Vladislav Kostov-Kytin– Scientific Secretary: Dr. Rossitsa Titorenkova

Department “Mineralogy and Mineral Raw Materials”– Head: Dr. Mihail Tarassov– Staff – 13

Department “Experimental Mineralogy and Crystallography”– Head: Dr. Vladislav Kostov-Kytin– Staff – 9

Department “Structural Crystallography and Materials Science”– Head: Dr. Boris Shivachev– Staff – 13

Administration:– Chief: Valeri Genov, MSc.– Chief Accountant: Krasimira Gavrilova– Staff – 6

Support Staff – 5

2.2.2. Scientific Council

Dr. Mihail Tarassov – ChairmanDr. Yuri Kalvachev – Vice ChairmanDr. Irina Marinova – SecretaryDr. Rossitsa Nikolova – Director of IMCDr. Boris ShivachevDr. Ognyan Petrov D.Sc. Stanislav VassilevDr. Christina VassilevaDr. Vladislav Kostov-KytinDr. Diana NihtianovaDr. Eugenia TarassovaDr. Zhelyazko DamyanovDr. Zdravko TsintsovDr. Louisa Dimowa

Page 49: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

23

Dr. Nadia PetrovaDr. Rossitsa TitorenkovaDr. Vilma Petkova

2.2.3. Research Staff

Professors

DSc., Dr. Stanislav VassilevDr. Ognyan PetrovDr. Boris ShivachevDr. Christina VassilevaDr. Rossitsa Nikolova

Associate Professors

Dr. Boryana MihailovaDr. Diana NihtianovaDr. Eugenia TarassovaDr. Irina MarinovaDr. Louisa DimowaDr. Lubomir DimitrovDr. Mihail TarassovDr. Nadia PetrovaDr. Rossitsa TitorenkovaDr. Vilma PetkovaDr. Vladislav Kostov-KytinDr. Yuri KalvachevDr. Zdravko TsintsovDr. Zhelyazko Damyanov

Assistant ProfessorsDr. Elena Tacheva Dr. Valentin GanevDr. Totka Todorova – defended a thesis on 05.12.2016MSc. Krasimir Kossev (self-training PhD student)MSc. Lilia TsvetanovaMSc. Borislav BarbovMSc. Eva Anastasova

Page 50: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

24

ResearchersDr. Nadejda LiharevaDr. Stanislav FerdovMSc. Lachezar PetrovMSc. Lubomira MachevaMSc. Petya IvanovaMSc. Svetlana AngelovaMSc. Valeri GenovDr. Yana Tzvetanova

PhD studentsMSc. Christina SbirkovaMSc. Dimitar VasilevMSc. Zlatka Delcheva

Page 51: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

25

3. Main Equipment

Laboratory of Electron Microscopy– CARL ZEISS SMT SEM EVO LS25 with EDAX Trident system– Philips EM 420T (120kV) with EDAX 9100/70– Philips SEM 515 with WEDAX-3A– Philips SEM 515– various subsidiary and peripheral devices

Laboratory of X-Ray Diffraction Analysis – Oxford Diffraction Supernova A X-ray single crystal diffractometer

with two X-ray sources and Oxford Cryosystems Cobra temperature attachment

– Enraf Nonius 586 CAD 4 X-ray single crystal diffractometer – Bruker AXS – D2 Phaser X-ray powder diffractometer – DRON 3M X-ray powder diffractometer with PC-based system for

phase identification – specialized data processing software, full ICDD database and struc-

ture databases ICSD, CSD, and PDB

Laboratory of Spectroscopy – Bruker FT-IR spectrometer Tensor 37 with HYPERION 2000 FT-IR

microscope – Varian UV-VIS spectrophotometer CARY-100 Scan

Laboratory of Thermochemistry – SETARAM SETSYS 2400 TGA-DTA/DSC system with PFEIFFER

OmniStar mass spectrometer/gas analyzer – Stanton Redcroft differential scanning calorimeter DSC 1500 – Stanton Redcroft differential thermal analyzers STA 781 and DTA 675 – Stanton Redcroft thermomechanical analyzer TMA 790

Laboratory of Experimental Mineralogy and Crystal Growth – Low temperature (up to 150°C), low pressure (up to 5 MPa) hydro-

thermal crystallization – Melt growth by the Bridgman-Stockbarger method (Crystalox) – Flux growth – Hot-pressing (up to 1500°C, up to 100 MPa) (Crystallox) – Furnaces of different type up to 1600°C

Laboratory of X-ray fluorescence spectrometry (XRF)

– SUPERMINI 200 system – wavelength dispersive X-ray fluorescence (WDXRF) spectrometer for elemental analysis

– MIRA Gamma Dose Rate Monitoring System

Page 52: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

26

4. Research Topics

4.1. Mineral Systems and Mineral Genesis

1. Crystal chemistry of clinopyroxene with a high content of the Ca-Tschermak and esseneite components, Eastern Rhodopes, Bulgaria (Y. Tzvetanova, M. Tarassov, V. Ganev, I. Piroeva)

Clinopyroxene with a high content of the Ca-Tschermak and esseneite components occurs in skarn xenoliths (nodules), which are hosted by monzo-nitic rocks of the second intrusive phase of the Zvezdel pluton. It is observed in association with melilite (Gh62.5–33.5, Ak40.6–22.9, Na-Mll16.3–4.0, Fe-Ak10.9–0.1, Na-Fe3+-Mll10.3–0.0), wollastonite-2M, garnets of the grossular-andradite series (Adr96.61–3.10), Ti-rich garnet (TiO2 content of 8.04–13.10 wt%), clinopyroxene of the diopside-hedenbergite series (Di91.17–27.12), plagioclase (Ab100–3.30), epidote, prehnite, calcite, quartz, chlorite, thaumasite and zeolites. Titanite, apatite and magnetite are present as accessory minerals. Clinopyroxene commonly occurs as inclusions in garnet poikiloblasts (Fig. 1a) with wollastonite-2M and melilite or as isolated crystals in a quartz-calcite matrix, which exhibit strongly corroded margins. Optically, it shows quite distinctive pleochroism from yellow-green to brown-green, strong dispersion of the optic axes, r>v, and displays anomalous blue and brown interference colours (Fig. 1c, d) [41, 76].

Fig. 1. a, back-scattered electron image of subsilicic aluminian ferrian diopside (esseneite) in garnet matrix (polished section); b, Q–J diagram for clinopyroxenes with Q value less than 1.62 per formula unit; c–d, anomalous blue and brown interference colours (under crossed polarized transmitted light); e, compositions of the studied clinopyroxenes projected in the system Ca(Mg,Fe2+,Mn)Si2O6–

CaAlAlSiO6–CaFe3+AlSiO6 (according to Cosca, Peacor, 1987, modified by Pascal et al., 2005)

Page 53: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

27

The chemical composition of the studied clinopyroxene is characterized by sig-nificant deficiency of SiO2 33,35–39,77 wt% (Si 1.32–1.50 apfu), Al2O3 ranging from 11.39 to 17.75 wt%, FeO(t) concentrations between 9.67–16.40 wt% (Fe3+ – 0.180–0.487 apfu), CaO 25.70–23.44 wt%, MgO 4.29–8.37 wt%, TiO2 0.7–2.7 wt%, and small amounts of Cr2O3, MnO, V3O4, and Na2O. The calculated numbers of Ca, Mg, Fe2+, and Na (on the basis of six oxygens) in the M sites (M1 and M2) are plot-ted in the Q–J diagram (Fig. 1b). Due to the high content of Al and Fe3+, and the significant deficiency of Si atoms, all our compositions appear close to or less than 1.5 Q value, which correspond to the composition of subsilicic aluminian ferrian diopside from the group of “unusual pyroxenes”. The end-member compositions are demonstrated on the triangular diagram in terms of the components diopside-hedenbergite-johannsenite (Ca(Mg,Fe2+,Mn)Si2O6), esseneite (CaFe3+AlSiO6) and Ca-Tschermak (CaAlAlSiO6). This projection shows the fields corresponding to dominant cation in the M1 site. All the investigated clinopyroxenes fall in the fields of fassaite and esseneite (Fig. 1e). As shown, a significant part of them would qualify as esseneite (43.5–53.8 mol.% esseneite component).

Trace elements of the analysed clinopyroxenes have been normalized to unaltered monzonitic rock, in order to compare the mobility of these elements during skarn process. The clinopyroxenes are enriched in Ti (0.7–2.7 wt%), Zr (324–530 ppm), Hf (8–12 ppm), V (239–313 ppm), Sc (30–64 ppm), Co (24–28 ppm), Ni (20–32 ppm), and Sn (4–9 ppm). All samples are extremely depleted in LIL elements, Pb, U, and Cu. Slight depletion is observed of REE, Nb, Ta, and Th. The ΣREE content ranges from 77.95 to 92.74 ppm and is similar to that in the skarn rocks. The chondrite normalized REE patterns exhibit predominance of LREE over HREE with LaN/YbN ratio from 4.26 to 10.43 and negative Eu anomaly (Eu/Eu* – 0.59–0.78). These observations suggest a relative mobility of Zr, Hf, Ti, V, Sc, Co, and Ni. Their concentration is controlled by the similarity in ionic radii between these elements and major cation in the octahedral sites of the clinopy-roxene crystal structure. The conditions of formation of such rocks, containing subsilicic aluminian ferrian diopside, melilite and wollastonite, are estimated to be at least about 800 °C and a low pressure of CO2.

2. Effects of magma mixing on distribution of trace elements in zonal apatite from the Petrohan pluton, Western Balkan, Bulgaria (E. Tache-va, M. Tarassov, E. Tarassova)

During the previous study, short prismatic, long prismatic and needle-like apatite crystals were found in the rocks of the Petrohan pluton (Western Balkan).

Page 54: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

28

The following effects of magma mixing on the apatite morphology and internal structure were identified in the study: (1) formation of needle-like crystals as re-sult of rapid cooling of the crystallization media after mixing of the mafic magma and the colder and partially solidified granodiotic one; (2) presence of zones with clear signs of growth break and dissolution in a part of long prismatic crystals – in-dication of significant change in the chemical composition of crystallization media associated with the magma mixing. Correlation of the interior zonal structure of accessory apatite crystals and the distribution of trace elements and the plausible mechanisms of isomorphic substitution are studied in the present work [38, 72]. It is shown that the normal growth zoning of apatite (Fig. 1), visible in BSE images in SEM with strongly enhanced contrast, well correlates with the variation in REE, Si, S, Na content.

Well pronounced discontinuous growth zoning is observed in the apatite of the host granodiorite (Gd94-3). The internal darker cores of the crystals show relatively low contents of REE2О3 (0,54–0,81 wt.%) and SiО2 (0,16–0,22 wt.%), relatively high content of SO3 (0,03–0,13 wt.%) and total absence of sodium. Any correlations between the contents of Si and S are not found. The brighter zones of these crystals are characterized by much higher content of REE2O3 (1–1,35 wt.%) and Na2O (0,07–0,32 wt.%) and moderate contents of SO3 (0,06–0,07 wt.%).

Fig. 1. BSE images of apatites from several rock samples: Gd 94-3 (host granodiorite); D 88 (diorite); Gd 96-4 (contact zone between mafic magmatic enclaves (MME) and host granodiorite);

D 93 (hybrid diorite)

Page 55: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

29

Although the apatite crystals with signs of growth break and dissolution are en-countered in the host granodiorite, they are most typical for the contact zone (Gd96-4) between the mafic magmatic enclaves (MME) and host granodiorite. A part of apatite crystals from these zones crystallizes after the magma mixing. Their light cores in BSE images are comparatively rich in REE2O3 (0,89–1,35 wt.%) and poor in SO3 (<0,06 w%). The apatite crystals from hybrid diorite (D93) and mafic magmatic enclaves (MME94-4) are nearly homogeneous with relatively low content of REE2O3 (0,32–0,73 wt.%) and relatively high content of SO3 (0.17–0.25 wt.%). The highest REE contents (1.45–1.73 wt.%) in apatite are estab-lished for the diorite (D88) situated far away from the zones of magma mixing. No correlations between Si, Na and REE are found in these crystals. The content of SO3 varies slightly being 0,07–0,08 wt.%. As a result of overprinted postmag-matic processes, some apatite crystals in this rock demonstrate secondary meta-somatic (patched) zoning with inclusions of secondary monazite-Ce.

It is found, that the studied apatite from the rocks with apparent indications of magma mixing show relatively high content of F (2,9–4,33 wt.%) and rela-tively low content of Cl (0,12–0,8 wt.%). In the rocks located far away from the zones of magma mixing the apatite contains less F (2,06–3,56 wt.%) and more Cl (0,87–1,4 wt.%).

The incorporation of trace elements in the structure of apatite is controlled by the equilibrium melt/phosphate mineral. In the studied apatites, the most im-portant element substitutions confirmed by the established element’s correlations are: REE3+ + Na+ = 2Ca2+ and REE3+ + Si4+ = Ca2+ + P5+. It is shown that the substitution Si4+ + S6+ = 2P5+ is not informative for the studied apatite and for the magma mixing processes in the Petrohan pluton.

3. First data on rhabdophane with а negative Ce anomaly from the Igralishte pluton, Southwestern Bulgaria (E. Anastasova, M. Tarassov, E. Tarassova)

Recently an unusual Ce-depleted forms of secondary monazite (LREEPO4) were found in the rocks of the Igralishte granite pluton (243 Ma), Southwestern Bulgaria. It was also reported that a part of the electron probe microanalyses of the secondary REE products demonstrated totals considerably lower than 100% thus indicating for the possible presence of hydrated REE phosphates as rhabdophane (LREEPO4.H2O). To check this assumption, detailed survey of the secondary REE phases of the Igralishte pluton was undertaken in [30, 48] with application of electron backscattered diffraction (EBSD) method.

Page 56: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

30

It was found that:– The secondary REE phosphate products studied are represented by

monazite, low-crystalline (amorphous) material and rhabdophane, all being Ce-depleted;

– Rhabdophane occurs mainly as fine veinlets and small aggregates (up to several µm) in plagioclase and rarely – as micro- and nanometric grains in the outer zones of strongly altered magmatic monazite. In contrast to Ce-depleted monazite, the rhabdophane only episodically associates with mag-matic monazite.

– In the general case, the secondary REE phosphate products are present-ed by micrometric veins or randomly shaped micrometric aggregates in the host plagioclase. The EBSD analysis shows that the prevailing part of the secondary product is presented by low crystalline (amorphous) material (matrix) with spo-radic grains of rhabdophane.

– Simultaneous presence of Ce-depleted monazite and Ce-depleted rhab-dophane in the secondary REE phosphate products is extremely rare. In these rare cases, the two minerals are not in direct contact being separated by the low crystalline Ce-depleted REE phosphate material (Fig. 1).

Fig. 2. (а) SEM image (BSE) of aggregate of secondary monazite, rhabdophane and amorphous phosphate REE matrix; (b) electron backscatter pattern of monazite; (c) indexed electron backscatter pattern of monazite; (d) electron backscatter pattern of rhabdophane; (e) indexed electron backscatter

pattern of rhabdophane

Page 57: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

31

It was concluded that: – The negative Ce anomaly in the studied secondary REE phosphate (mon-

azite, rhabdophane and low crystalline material) indicates for oxidizing compara-tively low-temperature conditions of alteration of magmatic monazite with prob-able participation of vadose waters. Cerium is known to occur in nature as Ce3+ like the majority of lanthanides, or as Ce4+ in oxidizing conditions.

– The formation of the secondary Ce-depleted REE phosphates in the Igral-ishte pluton is associated with a hydrothermal overprint (300 ± 50 °C) related to the Paleogene volcanism in the region about 36 Ma ago. The presence of rhab-dophane is an evidence for the alteration of magmatic monazite at temperatures below 200 °C.

4. Distribution and mineral associations of alluvial gold in the Panagy-urishte copper region, Bulgaria (O. Vitov, I. Marinova)

We analyzed the spatial and statistical distribution of alluvial gold as well as the composition of the gold-containing stream-sediment pan-concentrated sam-ples taken in the Panagyurishte ore region (Central Srednogorie tectonic and metallogenic zone) (archive 8844 samples) [43, 78].

Gold is found in 984 samples in association with 20 other minerals (Fig. 1a). It displays statistically derived relationships with barite, pyrite, marcasite and lead minerals (Fig. 1b). Barite, marcasite and lead minerals characterize the epither-mal deposits and are generally atypical of the porphyry copper deposits in the

Fig. 1. a) correlogram of gold with other minerals in the samples (black bold lines connect ore minerals): 1 – anatase, 2 – andalusite, 3 – apatite, 4 – barite, 5 – bismutite, 6 – galena, 7 – leucoxene, 8 – magnetite, 9 – marcasite, 10 – minium, 11 – molybdenite, 12 – monazite, 13 – lead, 14 – pyrite, 15 – pyromorphite, 16 – rutile, 17 – titanite, 18 – cerussite, 19 – zircon, 20 - scheelite; b) graph of

statistically connected minerals, based on (a) (Bernoulli test, α<0.001).

Page 58: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

32

region. The statistical relationship gold-molybdenite is consistent with published data that coarse (placer) gold is related to individual porphyry copper-molybde-num deposits like the Elatsite deposit. Samples with gold are displayed on Fig. 2a. The Fourier-modeling of these samples displays a striped gold distribution pattern comprising NW-SE stripes and SW-NE ones and their intersections in the region (Fig. 2b). It is expected that the placer-forming gold have sizes bigger than 0.05 mm and its successful capture by pan-concentrated sampling requires preliminary crush-ing and milling of rocks and ores.

5. Ancient gold mining at the Ada Tepe, East Rhodopes, Bulgaria. Mineralogical examination of Au-containing Fe-oxides/hydroxides in metasomatites – their features and role in ancient gold extracting (Z. Tsintsov, N. Petrova, M. Mehofer)

A geological survey by the company Balkan Mineral and Mining AD (a daughter company of Dundee Precious Metals), which began in 2000 in the re-gion of the Ada Tepe peak, proved the existence of huge volumes of fragmented rock material heaped along all the slopes of the peak, suggesting the existence of

Fig. 2. Distribution of gold in alluvial sediments of the Panagyurishte ore region: a) sampling sites: small black point – sample without gold; color ellipse – gold-bearing sample as the color corresponds to the gold content in ranks increasing from 1 to 10; b) Fourier-model from (a); sites of copper and

gold deposits, occurrences and indications after Maznikov (unpubl. data, National Geofund).

Page 59: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

33

an ancient open-pit gold mine. In close connection with the concession obtained by the company in 2009, yearly rescue excavations were conducted as part of the Bulgarian-German project Iron and Gold. On the Trail of the Metallurgy in Ancient Thrace. In order to clarify all aspects of ancient gold mining at Ada Tepe, an inter-disciplinary study group was added to the core team, which included specialists in the fields of archaeometallurgy, geology, raw materials, mining, physics, etc. Ada Tepe is the oldest known mine for gold mining from host rocks in Europe: this mine has started operation probably around 1500 years B.C. and has continued functioning also during the Early Iron Age up to about VII c. B.C. The sedimentary rocks and the metasomatites in the upper zone of Ada Tepe are usually coloured in grey, yellow, on places in yellow-brown, while the rock pieces in the heaps are most often darker, with red or red-brown colour, which is obviously not connected with the development of the geological processes.

Au-containing grains of goethite and hematite, separated from metasoma-tites with bonanza Au mineralization from the “Upper zone” of Ada Tepe were studied. The phase diagnostic of these grains was performed by ore microscopy and powder XRD analyses, morphological peculiarities were determined by SEM while the thermal behaviour was investigated by DTA-TG method. The majority of the grains have polyphase composition represented by goethite, hematite, schw-ertmannite, Au-Ag alloys, iron ochres, quartz and adularia [40].

4.2. Environmental Mineralogy, Archaeomineralogy and Biomineralogy

6. Mineralogy, geochemistry and environmentally safety application of solid fuels and their combustion and pyrolysis products (S. Vassilev, C. Vassileva)

Algae-based fuels are considered to be the most sustainable, renewable, effective and environment friendly response to climate change and food–feed security, as well as the only renewable energy resource that has the capacity to meet the global demand for fuels in the long-term. Therefore, An extended overview of the composition, properties and challenges of algae biomass for biofuel application was conducted based on reference peer-reviewed data plus own investigations [29]. Initially, some general considerations such as current bioenergy situation and significance of biofuel generations, as well as different aspects related to biomass use as biofuels are discussed. Then, common is-

Page 60: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

34

sues concerning taxonomical classification, habitat environment, carbon reserve capacity, production, use, and main advantages and disadvantages of algae or algae biofuel are addressed. Further, more than 135 characteristics related to the chemical, phase and mineral composition and properties of algae and algae ash are evaluated and compared to those of terrestrial biomass, coal and their ashes. As a result specific benefits and obstacles connected with the composition and properties of algae and algae ash are discussed. The behaviour of organic and inorganic matter during algae combustion is also described. Finally, the ma-jor technological and environmental challenges related to algae-based fuels are emphasized. The present data demonstrate that the high contents of inorganic matter with unfavourable modes of element occurrences (chlorides, sulphates, carbonates, oxalates, nitrates and some oxyhydroxides, phosphates and amor-phous material) in algae and algae ash provoke the most critical technological and environmental challenges during algae processing for biofuel application and especially during algae thermochemical conversion. Another very important challenge addressed is the indefinite availability of sustainable algae resources for production of biofuels and biochemicals and certain recommendations are given. It was found that the disadvantages of algae biofuel application prevail significantly over the advantages; however, the major economic, environmental and social benefits appear to compensate the technological and other barriers caused by the unfavourable composition and properties of algae [29].

The mineralogy and geochemistry of the bulk fly ashes (FA) and FA frac-tions sampled from each row of electrostatic precipitators (ESP) of Maritza 3 and Varna thermoelectric power plants (TPP) in Bulgaria were characterized and the influence of the mineral matter and chemical composition on the FAs mercury capture behaviour was revealed [14]. A separation procedure was conducted on three selected fly ash samples as follows: (1) FAs from the Maritza 3 1st-row ESP; (2) FAs from the Maritza 3 3rd-row ESP; and (3) FA from the Varna 5th-row ESP. Following the sequential separation procedure, five fractions were obtained from each bulk FA sample including water leachate of FA, water-washed FA (FAW), char concentrate (FAC), magnetic fraction (FAM), and FA residue (FAR). Phase-mineralogical composition, the concentration of 30 trace elements, and mercury content of bulk FA samples and separated FA fractions were determined. The data obtained reveal that the phase-mineral composition of the char-rich fly ash fractions isolated from the FAs of the Maritza 3 1st-row ESP consists mainly of char and quartz with lesser contents of anhydrite and hematite; while the FAC fraction derived from the FAs of the 3rd-row ESP in Maritza 3 is highly enriched in

Page 61: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

35

char and anhydrite with insignificant amounts of magnetite-hematite and quartz. The results indicate that there is a synergetic effect between char and Ca sul-phate, and anhydrite could play a significant role in the Hg capture in the fly ashes from Maritza 3. In contrast to the FAC fraction from Maritza 3, the FAC fraction isolated from the FAs of the Varna 5th-row ESP contains almost pure char with insignificant amount of magnetite and quartz. Mercury capture in the FA from the Varna 5th-row ESP is strongly dependent on the bituminous-derived FA char and the mineral matter does not have significant influence on the Hg capture behav-iour. It was established that very high enrichment of trace elements in the studied FAs does not occur, excluding the concentrations of Cd, Mo, As, Mn, and Ag in Maritza 3 FAs, and the contents of Be, Cd, Cs, Rb, Se, and Ag in Varna FAs. The high capture behaviour of Hg by char and sulphates in the Maritza 3 3rd-row ESP is accompanied by simultaneous capture behaviour of hazardous and volatile elements such as Cd, Mo, and As, and probably others when compared with FAs from the 1st-row ESP in the same TPP. This observation indicates that the capture mechanism of such elements tend to be similar to that of mercury [14].

7. The measurement of benzen, ethylbenzen, toluene and xylene in in-door air in schools in Kardzhali (E. Serafimova, V. Petkova, B. Kostova)

Concentrations of BTEX (benzene, toluene, ethylbenzene and xylenes) were monitored at schools in Kardzhali town in Bulgaria, during the July and Oc-tober 2015. The concentrations of all species during the investigation period were below guideline value Studies have shown that pollutants concentrations in in-door environments are always greater than in outdoor environments. Significant seasonal cycles with high values in winter and lower values in summer months could be modelled for indoor concentrations of BTEX. This is in accordance with findings with completely different climate and building characteristics [XXX].

8. Influence of some factors on the global climate system and needed measures (Y. Pelovski, E. Serafimova, N. Kozarev, A. Petrov, V. Petkova)

During last 20 years climate change of our planet became the most often discussed global problem. Many scientists have still different views on the fac-tors and the coming climate changes. On the base of collected data UN as a Global organization adopted special convention with proposed measures to limit the negative tendencies. After Kyoto protocol EU almost a decade is calling for next step Global document and measures to be adopted. This paper presents data available and results from our studies on the problem proposing the missing

Page 62: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

36

successful measures. The methodology used is on the base of the energy and carbon cycle balances, rottenly forgotten in many statements and legal docu-ments. On the base of the evidences available the priority measures needed to minimize climate changes are given for Bulgaria [36].

9. Integrated wastes treatment as a basis for production of new materi-als (E. Serafimova, S. Milenkova, V. Petkova, Y. Pelovski)

Quantities of generated industrial and agriculture wastes during the last century are much more then all the wastes released during human civilizations developments. Utilization of wastes became a global priority on the way to solve global problem with shortage of raw materials and energy resources. Mixtures of solid industrial and agriculture wastes are investigated on the way to produce of new materials with different application. Various techniques are applied during mixtures pre-treatment and final thermal process is used for synthesis of new ma-terials suitable for agriculture or building industry. Thermal processes are studied

Fig. 1. TG-DTA curves of mixtures

Page 63: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

37

using TG-DTA-DSC equipment. On the base of the investigations it is proved that energy for the main thermal treatment are much lower (from 10 to 30%) in comparison with traditionally used technologies. The same time due to the use of waste biomass as a component the released quantities of carbon dioxide are also much less. The obtained results confirm that the carbon dioxide could be about 50% less and natural fuels could be saved. On the base of the results obtained a suitable new materials are developed and proposed for practical use in the build-ing industry and agriculture [37].

10. Preliminary mineralogical study of wall paintings from the Red Church (IV–XIV AD) near the town of Perushtitsa, Bulgaria (E. Tarasso-va, M. Tarassov, D. Gergova, R. Titorenkova, E. Tacheva)

The Late Antique/Early Mediaeval Christian basilica “Holy Mother of God” has been in operation during IV–XIV centuries AD. Today its remains rise nearby the town of Perushitsa, at the northern foot of the Rhodopes Mountains, and are known as the Red Church due to the Roman red breaks constructing the church. From the old and rich in ornament murals, quite little part is preserved to our days – fragments of two layers of wall painting which according to the expert’s opinion have been made between the VI and XI centuries. There is also аn assump-tion that the first layer has been painted at the end of the V – beginning of the VI century, while the second layer – in the XI century. It is historically dated, that at the beginning of the VII century the church has been seriously damaged by the Avar invasions, evidenced by traces of fire and destruction. The church has been rebuilt again in the XI century. In the present communication, the first data on the phase and chemical composition of the two saved original layers of wall painting of the Red Church are presented and compared [39, 73].

Samples from the Red Church (north-western part of the church, portico) for the present study were provided by the Center for Restoration of Art Work (Sofia, Bulgaria). The fragments of murals are colored in blue, green, yellow and black – for the first (lower) layer, and in red, yellow and black – for the second (upper) layer (Fig. 1). The samples are firstly examined on an optical microscope for petrography analysis (Leitz Orthoplan Pol, transmitted light), then on a scan-ning electron microscope for morphology and chemical composition characteri-zation (ZEISS SEM EVO 25LS with an EDAX Trident analytical system), X-Ray powder diffractometer (D2 Phaser BrukerAXS) and micro-Raman spectrometer (LabRAM HR Visible with an optical microscope and a 633 nm He-Ne laser) – for phase analysis.

Page 64: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

38

Plasters. The plaster of the lower layer consist of two coats or sublayers (denoted as 1a and 1b), while the upper plaster is single-layered (denoted as 2). The coats 1а и 2 show distinct similarity. They consist of binding material (60– 70 vol.%) and fillers. The binding material is composed of lime (main constituent) and gypsum (1–7%). The gypsum has been added to the mortar to accelerate solidification of the plaster (Kulev, 2012). A lot of plant residues (straw, hay, plant seeds), rock aggregates (crushed marble), pieces of minerals of about 1 mm (cal-cite crystals, half-burnt calcite, and in small quantities – quartz, feldspar, barite, apatite, muscovite, biotite, chlorite, epidote, amphibole, magnetite, specularite), and charcoal were established in the filler material. The coat 1b is with thickness of 2–5 mm. Typical for this coat are: absence of plant residues, the smaller size of mineral pieces <0.3 mm, lower content of the binding material (about 30 vol.%), although the binder is with the same phase and chemical composition as the binders of the coats 1a and 2.

Wall paintings. The painting techniques used for the layers 1 and 2 are the same: homogeneous mixtures (paints) of pigments, lime, gypsum, and water have been applied over the solidified plasters.

Pigments used in the wall paintings of the layer 1:Blue pigment. Curporivaite (CaCuSi4O10) known also as Egyptian blue has

been used for coloring in blue. The established cuprorivaite crystals are sky-blue with size 50–100 μm. Among its crystals, oxide of tin (cassiterite ?) was also found. The cuprorivaite is rarely occurred mineral, but its synthetic analogue has been effectively produced in the ancient Egypt and later in the Rome Empire.

Fig. 1. (a) The Red Church during the restoration in 2012. Images of the studied mural fragments: upper (second) layer: (b) – red, (c) – black, (d) – yellow; lower (first) layer: (e) – blue, (f) – red,

(g) – green, (h) – black and yellow.

Page 65: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

39

Green pigment. The green coloring optical effect has been achieved by mix-ing cuprorivaite and green minerals of the hydro-mica group, and mainly of glauc-onite (K,Na)(Fe3+,Al,Mg)2(Si,Al)4O10(OH)2. Chlorite as well as tremolite-actinolite amphibole were also found.

Red pigment. Fine crystalline hematite aggregates containing phosphorus has been used for red coloring.

Yellow pigment. Hornesite Mg3(AsO4)2.8H2O was identified as yellow pig-ment. It is known as secondary arsenic minerals resulted from low-temperature oxidation of primary arsenic sulfide ores. In the studied hornesite were found also traces of Cu.

Black pigment. Only carbon and small amounts of oxygen were registered by EDS analysis of the pigment. Raman spectrum of the material shows broad peaks at 1340 and 1590 cm–1 typical for charcoal.

Pigments used in the wall paintings of the layer 2:Red pigment. Similarly to the layer 1, fine crystalline hematite aggregates

containing phosphorus give red coloring in the used paint. Yellow pigment. Mixture of greenockite (CdS) and iron hydroxide (limonite)

has been used for yellow coloring. Among the greenockite crystals, galena (PbS) was found indicating rather natural origin of the pigment. It is known that in the Late Middle Ages, the synthetic greenockite has begun to be used in the paintings.

Black pigment. The black pigment is identical to that in the layer 1 being charcoal.

The obtained results show essential similarity of the two preserved original layers with wall paintings from the Red Church, namely in: (1) the techniques of preparation and applying of paints (pigments in lime-gypsum-water mixture) and the technology of mortar preparation for plasters (ratio of binding material and fillers, lime-gypsum binding material); (2) the usage of similar raw materials (half-burnt calcite crystals in the filler, black (charcoal) and red (fine crystalline hema-tite with phosphorus) pigments can be considered as indicative materials for this similarity). Some apparent differences (the presence of cuprorivaite, glauconite, hornsite in the layer 1, and greenockite – in the layer 2) are due to a small number of samples provided for the investigation. Fundamental similarities in the tech-niques and technologies of the plasters and murals making speak rather in favor of that the wall painting (layer 1 and 2) in the Red Church has been accomplished by one and the same craft studio after the reconstruction of the church in the XI century. The obtained result could be useful for the methodology of restoration activities on the object.

Page 66: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

40

11. Analytical studies of the Alexandrovo Thracian tomb wall paintings (Z. Glavcheva, D. Yancheva, E. Velcheva, B. Stamboliyska, N. Petrova, V. Petkova, G. Lalev, V. Todorov)

A profound study of samples obtained from Thracian tomb wall paintings at Alexandrovo, Bulgaria (dating back to the fourth century BC) were carried out by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and Attenuated Total Reflectance Fourier transform infrared spectroscopy (ATR FTIR), high-resolution transmission electron microscopy (HRTEM) and en-ergy dispersive X-ray spectroscopy (EDS) [9]. The work provides a glimpse of the

 

Thracian tomb wall painting at Alexandrovo, Bulgaria (IV century BC)

ingenious construction and painting techniques used in Thracian tomb at Alex-androvo. The results suggest that beeswax was used as a paint binder and also revealed presence of various nano-materials.

12. The placer gold from “Stremtsi” occurrence – characteristics and primary sources (Z. Tsintsov, B. Banushev, I. Androlov, I. P. Ivanov)

“Stremtsi” object is a phenomenon, which still provokes discussions. Up to 1980 some of the researchers assume that it concerns natural cave complex and

Page 67: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

41

others this is a unique Thracian sanctuary or tomb of a powerful ruler of the Odry-sian Kingdom. The research presents data about the placer gold found in the sedi-ments around “Stremtsi” occurrence and a hypothesis is postulated for its genesis.

The grains of the placer gold in the alluvial depositions around “Stremtsi” oc-currence are mainly represented by fraction 0.100–0.125 mm (52.4%). In the rest fractions these grains are distributed irregularly and their grain size quantitatively lower in the following order: 125–0.160→0.160–0.200→0.80–0.100→0.200–0.250→0.250–0.315→ >5 mm. No one of the fractions exceeds 10% from the total weight. The placer gold pieces in fraction >5 mm are exception from this trend and they have weight of n.100 mg each and some of them reach size of 9 mm along their long axis.

The morphology of the grains falls in a wide spectrum of forms. The most represented are those with irregular kidney-like, isometric, or an-isometric form. The grains display rounded uniform rims and well polished in the placer surfaces. They comprise about ¾ of the total quantity of samples. Also found are crystals, twinnings, dendrites (formed as aggregates). The natural surfaces of the grains (including the crystallites as well) when using enhanced magnifications look coarse and irregular with differing in form and size caverns and fissures. They have yellowish color and apparent metal luster. The dendrites and crystallites do not display any mechanical processing traces during transportation in the placer while the rest grains are weakly influenced by this transport. The parts of the dendrites formed along the boundaries of their building components (stems and crystals) are often filled by hydrothermal mineralization – quartz, rarely adularia and much more rarely by Fe-sulfides, the latter in hydrothermal conditions being transformed to oxides/hydroxides or some-times formed as mechanical depositions in the placer (Fig. 1a-e).

The dendrites are composed most often by not well developed single or multiple stems covered by many crystal forms forming a column along some of their surfaces. Depending on their structure the dendrites under study are flat, single or multiple stemmed and rarely non-stemmed. The single stemmed den-drites are represented by one rare and attractive form – non-finished scepter in the terminal part. The crystals participating in the construction of the dendrites are represented are represented in a quantitatively lowering order by forms with indices o{111}→a{100}→d{110}. Some of the faces show peculiarities, which give reason to assume also the presence of e{210}; m{311}; and others but there is need of specialized studies for proving them.

The polished surfaces of the majority of grains are homogeneous without dis-turbances or inclusions (Fig. 1f). The SEM studies show that some of them display

Page 68: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

42

non-homogeneous structure in different parts of the same grain. While the inner parts are disturbed by many chaotically oriented caverns and fissures with vary-ing form and size towards the periphery this tendency lowers or almost is missing. These morphological differences of the polished surfaces have not been influenced by differences in the chemical composition. The inner parts of the grains are built predominantly by Au and Ag and in some samples Cu is also registered.

The periphery of the grains is composed only by Au, which determines it as a quite high probe cover with thickness of 5 to 52 mm (Fig. 1g). Excluding this cover, which is insignificant part of the volume of grains, in the main volume the two compositional elements are with probe quality in the range 663–862. These

 

Fig. 1. Placer gold dendrites from “Stremtsi” occurrence (explanations see in the text)

Page 69: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

43

values classify the placer gold in “Stremtsi” occurrence in the categories low- grade to relatively high-grade one.

The data from the conducted studies on the placer gold in the sediments of “Stremtsi” occurrence give reason for comparison with the native gold from the bedrocks (including the native gold in the artificial concentrates) of the occur-rence and also for some interpretations concerning the genesis and the primary sources. The obtained results in this study about the chemical composition corre-spond to the data for the chemistry of the primary gold (our unpublished results).

The well preserved dendrites and crystals of the placer gold indicate that after release from the primary sources practically it has not undergone mechani-cal transport. These are autochthonic placers formed at place on the account of neighboring rocks.

The sizes of the grains of native gold from the primary sources and the plac-ers are commensurable.

1. The placer gold in the primary sources are found among quartz and quartz-adularia matrix or in Fe-oxides/hydroxides. It rarely associates with barite as well. Relics of those minerals are found on the placer gold, which supports the statement about their close association in the primary sources.

2. The polished surfaces of the primary gold very often display mosaic char-acter, which corresponds to its specific morphology (dendrites and crystals).

3. The two types of gold show similar chemical composition, which varies in the range low-grade to relatively high-grade ones.

4. The obtained results give as reason to consider that the placer gold around gold “Srtremtsi” occurrence comes from bedrocks in the region (silicified sandstones, irregularly loaded with Fe-oxide/hydroxide ores). Its genesis is con-nected with low-temperature hydrothermal processes. The development of ana-logical quartz-adularia association accompanied by splendid Au-Ag ore formation and Fe-oxides/hydroxides has been proved and studied in detail for the region of Krumovgrad town in the boundaries of “Khan Krum” deposit [46].

4.3. Modeling and Modification of Mineral Systems

13. Thermal behavior of germanates with olivine structure (I. Koseva, V. Nikolov, N. Petrova, P. Tzvetkov, M. Marychev)

A series of germanates with olivine structure: Me2GeO4 (Me = Mg, Ca); Li2MeGeO4 (Me = Mg, Zn); LiMeGeO4 (Me = Sc, In, Y), and the compound

Page 70: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

44

Li4GeO4 were obtained by solid-state synthesis. Their thermal behaviour was studied from the viewpoint of the possibilities of growing single crystals as ma-trices doped with Cr4+ for lasers. By means of X-ray and DTA/TG analysis data are obtained about the melting temperatures, the type of melting (with or with-out decomposition), the substances during melting with decomposition, as well as the temperatures of the polymorphic transitions for some of the germanates. Most of the data reported in this work are novel. It is found that owing to the rather high melting temperatures and the decomposition or polymorphic transitions dur-ing the melting, the germanates with olivine structure do not allow single crystal growth from their own melts, but the flux method from appropriate high tempera-ture solutions should be applied [13].

14. Powder XRD microstructural analysis of thermally treated synthet-ic fluor-hydroxylapatite (V. Kostov-Kytin, V. Petkova, T. Kaljuvee)

Samples of nano-sized synthetic Fluor-hydroxylapatite (SFHA) heated with-in the temperature range 400–910 °C are studied by powder X-ray diffraction (PXRD) analysis. Description of the microstructural characteristics at different temperatures as well as their evolution during the thermal treatment is in the fo-cus of the investigations. The analysis of diffraction-line broadening is performed using Rietved refinement and applying various size and strain models to handle the distinct anisotropy observed in certain crystallographic directions. Trends and consistencies of patterns in terms of domain sizes and microstrain have emerged

Page 71: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

45

for the studied material upon heating. The obtained results are explained and interpreted in the light of the up-to-date views and theories on crystal growth and imperfections and modern PXRD microstructural approaches.

15. Carbonation process in cement with mineral additions of natural zeolite and silica fume – early hydration period (minutes) up to 24 hours (V. Lilkov, V., O. Petrov, D. Kovacheva, I. Rostovsky, Y. Tzvetanova, V. Petkova, N. Petrova)

The carbonation of cement with additions of clinoptilolite and silica fume during the first minutes up to the 24th hour of hydration is studied. The crystal-lization of calcite on the surface proceeds directly between the calcium ions from the solution and CO2 from air without formation of portlandite and ettringite. The figure demonstrates the quantitative analysis of calcite formation in the test pe-riod based on the intensity measurement of the calcite XRD peaks at 3.85 Å and 3.03 Å. Up to the 24th h of hydration there is observed a steady increase of the

Fig. 1. Quantification of calcite formation in the test period (calcite XRD peak at 3.03 Å).

calcite quantity in all the studied cement composites.The crystallite size of calcite up to 120 min is about 50–60 nm and then to 480 min it lowers (20–30 nm). The mixture with clinoptilolite displays slowed process of gypsum dissolution. The thermal reactions in the range 480–700 °С are related to dehydration–decar-

Page 72: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

46

bonation of the unstable, imperfectly crystallized Ca-carbonates. In the range 700–850 °С the main event is decomposition of stable carbonate phases [17].

4.4. Synthesis, Composition, Structure, and Properties of Minerals and New Materials

16. Deformations of ETS-4 Ti-Si framework after ion exchange and temperature lowering (L. Tsvetanova, R. Nikolova)

Crystal structures of Na-K-ETS-4 and ion-exchanged of Ag-, Cs,- Mg-, Ba-, Mn-, Ni- Cu- samples are solved from single-crystal X-ray diffraction data. Experi-ments are carried out on the same sample at room (RT-290K) and low (LT-150K) temperature.

The results show that ion-exchange and temperature lowering cause de-formations of the channel systems formed by 6-, 7- and 8-membered rings. The deformations are evaluated by comparing geometrical parameters of the rings for the as synthesized Na-K-ETS-4 and the ion-exchanged samples and for the RT and LT structures. The ion exchange affects the rings shape without changing the area of their cross sections. Thus the unit cell volume for the as synthesized and ion-exchanged samples remains almost the same. The only exception is Ba-ETS4 which volume is reduced by about 5%. The 6- and 8-membered rings alternate along [100] and their deformations at this direction compensate each other, whereas the 7-membered rings are is in another orientation (Fig. 1).

The temperature lowering reduces the pores size in most of the studied samples with the exception of Ba-ETS4. The highest degree of deformation is realized in Ni-ETS-4. The Ti-Si framework behavior upon ion-exchange and tem-

Fig. 1. Deformation directions of the 6-, 7-, and 8- membered rings of ETS-4after the ion exchange

Page 73: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

47

perature lowering is discussed in terms of ETS-4 structure peculiarities and the specific features of the exchanged cations [75].

17. Perlites – attractive low cost raw materials for synthesis of mi-croporous molecular sieves with useful properties (L. Dimitrov, O. Petrov, M. Tarassov, N. Lihareva)

The possibility for hydrothermal transformation of two perlite samples from different deposits with different phase compositions into highly added value mi-croporous materials was investigated. Perlites from Schupenata planina deposit (East Rhodopes, Bulgaria) and Numinbah deposit (Qeensland, Australia) were used and the properties of the obtained crystalline phases were inspected.

The performed phase analyses on both perlites are based on the powder XRD patterns demonstrated on Figs. 1 and 2.

Fig. 1. Powder XRD patterns of perlite from Schupenata planina

Fig. 2. Powder XRD patterns of perlite from Numinbah

Apart from the glassy material (~75%), the Bulgarian perlite contains quartz (~ 10–15%), sanidine (~ 5–10%), plagioclase (<5%). The Numinbah perlite is totally glassy.

The successfully synthesized merlinoite from Schupenata planina perlite is demonstrated on Fig. 3 (powder XRD pattern and Fig. 4 (SEM morphology).

Phillipsite was obtained from Numinbah perlite after 72 h of hydrothermal treatment at 90 °C (Figs. 5 and 6). The XRD phase analysis gives: zeolite phil-lipsite as major component and zeolite wairakite as subordinate one.

Page 74: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

48

The phillipsite sample was tested as ion-exchanger with solutions contain-ing K+, Cs+ and Sr2+ for simulated fixation of radioactive analogues of these ions. Cation-exchange effectiveness was also tested for Cs+ and Sr2+ solutions, con-taminated with nonionic surfactant Pluronic 123. The obtained distribution coef-ficients for K+, Cs+ and Sr2+ ions for the phillipsite sample are comparable or better than the ones, reported in the literature for synthetic titanium octahedral molecular sieve [31, 50].

18. Thermal and crystallochemical study of zinc hydroxy-sulfate-hy-drate minerals (N. Petrova, Ts. Stanimirova, G. Kirov)

The objects of the study were three structurally and chemically close com-pounds:

Fig. 3. Powder XRD patterns of perlite and the as-synthesized merlinoite at 120 °C for 40 h

and 70 h

Fig. 4. SEM image of merlinoite crystal intergrowths obtained at 120 °C for 40 h;

bar – 10 μm

Fig. 5. Powder XRD pattern of microporous phase(s) synthesized from Numinbah perlite

Fig. 6. SEM image of phillipsite, obtained via hydrothermal treatment of Numinbah perlite

Page 75: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

49

Zn4(OH)6SO4.4H2O,NaZn4(OH)6SO4Cl.6H2O and CaZn8(OH)12(SO4)2Cl2.9H2O. The first two compounds are known under the mineral names, namely

namuwite and gordaite. The compound containing calcium has also been found in natural conditions, but was not approved by CNMMN of the IMA, because it has been found in “products of human activity” – ancient Etruscan slag. The interest towards the processes and the products of thermal decomposition of the zinc hydroxy sulfate is provoked at first from their significance for the hydro-metallurgy of the zinc and in the latest years – as a precursor for production of nano-sized ZnO for various applications. Some data on the thermal behavior of the gordaite can be found in the literature while such data of the Ca-gordaite is unknown to us.

The thermal decomposition process of all three compounds includes dehy-dration, dehydroxylation and evolving of the other volatile components (HCl and SO2) (Fig. 1). As a result, ZnO and a series of secondary hydroxides and hydroxy-salts were formed (Table 1). The existence and formation of Zn3(OH)2(SO4)2 (in the decomposition of the three compounds) for the first time were proved by pow-der XRD data. A clear influence of the Na and Ca cations on the temperatures,

Fig. 1. Ca-gordaite thermal decomposition: a) DTA-TG-MS data; b) Powder XRD patterns of initial and thermal treated samples

Page 76: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

50

stages and products of the destruction of the various hydroxyl compounds were observed [26].

19. Thermal behaviour of nitric-acid-treated biomass and chicken litter mixtures (V. Petkova, E. Serafimova, B. Kostova)

The sustainable agriculture is based on biological (organic and ecological) agriculture. This is a production system that restricts the use of fertilizers, pesti-cides and growth regulators. Commercial chicken production is one of the larg-est agricultural industries generating large quantities of poultry waste, a serious contaminant of air, soil and water. This requires its processing and utilization to obtain products, which can be used as a source of bio-energy and soil improvers.

In this paper we proposed a new solution of using chicken litter as soil im-provers. For the purpose we prepared four mixture samples, composed of chick-en litter, another one industrial waste, namely wood ash and nitric acid, in differ-ent mass ratios.

The aim of the study is the chemical and thermal characterization of the samples in the order to verify the proposed approach for waste utilization. For

DTA-effect

Theoreticalmass loss,

%

Obtainedmass

loss, %Ca-Gordaite thermal decomposition reactions

2,3,413.59 %

9H2O5.4%

3.6 H2OCaZn8(OH)12(SO4)2Cl2•9H2O → CaZn8(OH)12(SO4)2Cl2•5.5H2O + 3.5H2O↑

5,64.53 % 3H2O

12.8%8.5 H2O

CaZn8(OH)12(SO4)2Cl2•5.5H2O → Zn3(OH)2(SO4)2+2β-ZnOHCl + 3ZnO + Ca(OH)2 + 8.5H2O↑

71.51 %1H2O

1.5%1.0 H2O

Zn3(OH)2(SO4)2 + 2β-ZnOHCl + 3ZnO + Ca(OH)2 → Zn3O(SO4)2 + {ZnCl2 + H2O} + 4ZnO + Ca(OH)2 + H2O↑

84.57 %1H2O1HCl

5.9%1.3 H2O1.3 HCl

Zn3O(SO4)2 + {ZnCl2+H2O} + 4ZnO + Ca(OH)2 → 0.5Zn3O(SO4)2 + {0.5ZnCl2 + 0.5H2O} + 6ZnO + CaSO4 + HCl↑ + H2O↑

9

9.77 %1HCl1SO21O2

8.6%0.7 HCl1.0 SO20.5 O2

0.5Zn3O(SO4)2 + {0.5ZnCl2 + 0.5H2O} + 6ZnO + CaSO4

→ 8ZnO + CaSO4 + SO2↑ + 0.5O2↑ + HCl↑

Table 1. Thermal decomposition processes of Ca-gordaite according DTA-TG-MS and intermediate and final products

20–170°C

170–260°C

260–400°C

400–700°C

700–1000°C

Page 77: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

51

the purpose we used chemical analysis, Powder X-ray diffraction, Fourier Trans-formed Infrared Spectroscopy and Thermal analysis.

It was found that the selected raw materials have a structure and composi-tion, which defines them as carriers of essential micro-nutrients for the plants, without excessive content of heavy metals. The experimental results show that used complex of methods (XRD, FT-IR and Thermal analysis) is appropriate for the investigation of the mineralization process and the phase transformations under NA treatment [23].

20. Thermal properties of self-compacting type decorative white ce-ment composites (B. Kostova, V. Petkova, V. Stoyanov, E. Serafimova)

Through mechanical mixing we prepared three different of self-compacting type decorative cement composites based on Portland cement. They was ex-

TG-DTG-DTA curves of raw chicken litter and wood ash

TG-DTG-DTA-curves of A28

Page 78: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

52

posed to 28 and 90 days of water curing. The obtained samples were inves-tigated with Thermogravimetric and differential thermal analyses and Fourier transform infrared spectroscopy in the order to obtain their thermal properties. As a result we conclude that sample composed from cement, marble powder and polycarboxylate-based high range water reducer shows the most suitable proper-ties for practical use [33].

21. X-ray powder diffraction study of (Yb0.007,Na0.05)Ca0.72Sr0.223F2 and (Yb0.006Na0.04)Ca0.917Sr0.073F2 crystals (S. Gechev, O. Petrov, V. Ganev, J. Mouhovski)

The object of study is determination of the unit cell parameters changes of preliminary constituted, co-doped Ca1–xSrxF2 fluoride crystals and the in-fluence of Ca2+ → Sr2+ replacement to the crystal lattice. The indexing of the XRD pattern is performed by the PDI software package [53]. The crystal sys-tem (Yb0.007,Na0.05)Ca0.72Sr0.223F2 was determined as cubic with space group Fm

–3m, a = 5.53795(22) Å, Dx = 0.050, F14 = 116.87(.009, 14).

Both crystals are grown from repeatedly purified fluorspar and synthetics of SrF2, YbF3 and NaF. The main and trace elements chemical composition of the crystals were obtained by ICP‒OES and LA‒ICP‒MS measurements. The trace elements content were determined about a ppm for Ce, Sm, Eu, Er and Pb (used as scavenger in the growing procedure) and ~ 10 ppm for Y.

The unit cell parameters increase with the Sr content augmentation. Such behaviour would be quite slightly affected by the negligible doped concentrations of Yb and Na [53].

4.5. PhD Thesis

22. Optimization of the synthesis of pentasyle type zeolites (T. Тo-dorova)

1. Synthetic mordenite was successfully synthesized without use of organic structure directing template. The initial gel content is: 18SiO2 : Al2O3 : 1.24K2O : 1.21Na2O : xH2O (where x=600, 280 and 22.5 mоlеs). The synthesis of mor-denite is optimized in order to improve the catalytic properties of the obtained products. For this purpose, two approaches are used – reducing the crystal size and formation of additional pores in the crystal structure of the zeolite.

2. Different kind of synthesis methods are used to reduce the crystal size:

Page 79: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

53

● Varying the water content (600, 280 and 22.5 mоlеs) in the initial gel and inspecting its influence on the final product morphology.

● Adding of different amounts of seeds in the synthesis system and in-vestigation of the relationship: amount of seeds – crystal size. For this aim series of synthesis are carried without and with 1, 2 and 5 weight percent seeds.

● The influence of the silicon source on the final product is traced. ● The syntheses are conducted at two crystallization temperatures – 160 °C

and 180 °C.The syntheses clearly show forming of mordenite phase from almost all

systems. Only systems with initial gels composed by high dispersed SiO2 and 600 moles water content form two phases. Pure mordenite phase is prepared from gel with the same water content but different silica source (40% colloidal solution). In the syntheses with reduced amount of water there was no significant difference in morphology and crystal size caused by various sources of silica.

3. For the first time mordenite crystals with size of 4 μm are synthesized without using of OSDA applying combination of a higher crystallization tempera-ture, reduced water content and increased quantity of seed. There is a steric obstruction (a greater number of nuclei in a smaller volume) in the synthetic me-dium, which prevents the formation of large crystals. The obtained samples with a particle size of 40 μm and 4 μm were tested in a reaction of m-xylene transforma-tion. The catalytic activity of crystals with reduced size is much higher than this of zeolite with large particle size.

4. Mordenite type materials are treated with mixture of NH4F and HF. The goal is to create additional pore system for easier access to zeolite active centers and to improve the diffusion through the zeolite crystals. Experiments with differ-ent treatment time and various concentration of HF acid (0.25 M and 0.1 M) are carried out. It is demonstrated that there is no preference to one of the framework elements (Si or Al) of the formed HF2

–. All treated samples show higher catalytic activity in the reaction of m-xylene transformation than the parent sample. The combination of preserved ratio Si/Al, high crystallinity of the product and easier access to active centers contributes to a significant increase of the catalytic activ-ity of the samples in the reaction of m-xylene transformation.

5. Another important zeolite material of the pentasil family is ZSM-5. The pure ZSM-5 phase is successfully synthesized from OSDA-free system. The ini-tial gel used for this purpose is: 50SiO2 : Al2О3 : 5.24N2O : 500H2O after adding 2% seeds and the synthesis is carried out at two different crystallization tempera-

Page 80: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

54

tures 150 °C and 180 °C. The adding of seeds to the initial gel clearly shows posi-tive effect – reducing of the crystallization time and decreasing of the crystal size of products from 50 μm to about 1 μm. Another important point of adding seeds is orientation of crystallization process to form crystals ZSM-5 by a system that does not give a zeolite phase. It is proved that seeds change the rate and course of crystallization mechanism no matter what kind of seeds are used (calcined or not calcined).

23. Crystal growth and characterization of alkaline-earth – rare-earth fluoride systems for broad range of applications (S. Gechev)

Main aim of the doctoral thesis is a crystal growth and design of simultane-ous growing of co-doped single and binary-mixed alkaline-earth metal fluoride (mono)crystal boules, and in particular systems of the type of Yb3+, Na+:CaF2 and Yb3+,Na+:Ca1–xSrxF2.

A combined originally modified Bridgman-Stockbarger Growth System (CRYSTALOX Co. Cambridge UK) was used at the Institute of Mineralogy and Crystallography ‒ Bulgarian Academy of Sciences (IMC – BAS). The furnace unit 59 (FU) of BSGS ‒ CRYSTALOX has been appropriately modified in a way to provide conditions for accomplishing reliable control of the shape of the crystal-lization isotherm via stabilizing its location by a broad adiabatic zone) situated between the upper and lower heating zones in the overall chamber.

Additional molybdenum shielding sheets serve for insulation of both the sur-rounding cylindrical furnace zones walls and the used specific system of movable molybdenum elements (rings) whose changing configuration supposes controlled opportunity to be set desired vertical temperature furnace profile.

For the crystal growth, as main precursor substance it is used a specific highly purified natural fluorspar from Slavyanka deposit (South-Western Bulgar-ia) with concentration of CaF2 > 99.4%. The natural fluorspar is better than the synthetics because of its relatively low grains’ specific area that makes easier and much more effective the originally developed high temperature procedures for removing deeply adsorbed molecules/ions of oxygen and water vapours. Further-more, it was imposed a corresponding specification of the compositional phase diagram of mixed AEM fluoride solid solutions (of the type of: the used natural fluorite – SrF2 (Merck Suprapur) by DTA/TG analysis of a series of such crystal samples with varying the binary system members’ content.

A wide range of modes and innovative methods for growing variety of fluo-ride crystal systems was developed. Here, to ensure uniform distribution of prac-

Page 81: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

55

tically the entire quantity of doping ingredients in the chosen two types of host crystal fluoride matrixes and for maintaining the necessary high degree of purity in the crystallization zone the growing is carried out under specific conditions ‒ a constant slow flowing stream of argon gas (purity > 99.99%) upon pressure at the outlet of the camera in the order of several (3–5) mbar, as in such scenario the gas impurities, pervaded by the mechanism of back Knudsen diffusion undergo pre-purification treatment procedure from highly undesirable molecular oxygen and water vapour.

Such provided conditions are effective for (self-)purification procedure of the input melting fluoride materials during the crystal growth. Special attention, up to detail, was ensured in the preliminary crystal growing discussions and the prerequisite states, so thus to be provided effectiveness of the contaminants removal procedures in terms of oxide, elemental traces and other impurities, as well about the heterogeneous processing substitution of REEs in the crystal lattice during the growth of co-doped solid fluoride solutions. Also, there are discussed the mechanisms of hetero-conversion replacement of REEs, arising under local charge inhomogeneities and the followed them consecutive ionic processes during the growing of (co-)doped calcium-strontium crystal fluorides. Verification of the efficiency of such developed methodology includes a com-prehensive characterization of the grown crystal boules with compositions of 1.8%(YbF3),2.5%(NaF):Ca0.67Sr0.33F2 and 1.8%(YbF3),2.5%(NaF):CaF2.

Using polariscope and polarized microscope, there were investigated re-spectively: the amount, distribution and origin of the aroused diverse mechanical defect and inclusions; the residual tensions giving rise to optical birefringence in the grown crystal structures and the manufactured from them optical windows; the delicate technology of whose processing treatments is described in the disserta-tion work in details so to its eventual further optimization concerning both studied types co-doped fluoride crystal systems. By polariscopic, polarizing-microscopic, structural (powder XRD and TEM – SAED) and also chemical (ICP‒AES and LA‒ICP‒MS) methods are analysed the structural and crystal-chemical features of the studied co-doped single and binary-mixed fluoride crystal systems, while by IR and UV–VIS spectroscopy were obtained data for their optical performance and also structural details.

Investigations show a complete uniformity of optical characteristics for each set of the prepared co-doped fluoride crystal optical windows and the correspond-ing boules: there are no changes in their stoichiometry; no structural changes and no shifting of spectral lines.

Page 82: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

56

Small differences between the two crystal system types are observable in-sofar as the parameters and properties of the crystalline lattices of both host matrices are distinguished according to the quantity, distribution and the types of constituent cation species in them. For this purpose EPR and UV ‒ VIS ‒ NIR spectroscopy were implemented, the last in modes of transition, reflection and absorption. The observed absorption peaks and bands of ytterbium ions are dis-cussed and the mechanisms of their crystal lattice incorporation and distribution of the Yb3+ and Yb2+ valent forms too. It is established a predominant concentra-tion of Yb3+ doping ions which proves the suppressed undesired reduction of Yb3+ – Yb2+, as well as the undesired formation of Yb3+ – Yb3+ couples which hinder the laser amplification in processes such as Stokes/anti-Stokes mechanisms or luminescence. The last is as a result of the codoping with NaF which played its role to act as a charge compensator and thus contributes to the dominant incorporating single ytterbium ions in their third valent state. All the impurities rather form complex heterogeneous light-absorpting or/and light-scattering opti-cally active centres which would have certain negative impact on the optical-transmittance and laser-enhancing properties of the grown co-doped fluoride crystal systems. As a whole, the characteristics of the manufactured optical win-dows indicate that the grown co-doped fluoride crystal boules meet the modern requirements for precision in optics. Testing an optical window, from the crystal system 1.8%(YbF3),2.5%(NaF):Ca0.67Sr0.33F2, for excitation of laser emissions, there were confirmed quite reasonable emission bands and peaks throughout all the UV‒VIS‒NIR region. In the present case, the use of a laser pumping source at a single wavelength (diode at 935 nm) is quite not enough to excite all the possible laser emission states in the vast UV–VIS–NIR domain. The observed successful multiple laser generation outlines the future for far more comprehen-sive research, over the complex properties of particularly grown lasing fluoride crystal systems, so towards the development in maturity stage of variably doped calcium-strontium fluoride crystal systems in stoichiometric ratios of their host matrix components quite other than the used in the current investigation. Such newly invented optical-amplifying crystal media is expected to be entirely relevant as quantum reinforcing cores in developed optical communication systems or for tunable and multipurpose applications in laser technologies, as well for materials treatment/ablation, sensorics and dosimetry, medical surgery interventions, or about the computer chips UV/VUV microlithographic technology.

Page 83: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

57

5. International Cooperation

• The Institute of Mineralogy and Crystallography successfully collabo-rates with institutions abroad in the frames of joint projects, financed by European programs as well as by bilateral agreements of the Bulgarian Academy of Sciences. IMC invites international experts as guest lec-tors and consultants on various topics, concerned with fulfilment of the scientific plan of our institute. Our scientists are also invited in foreign institutes and universities.

• Prof. S. Vassilev was invited by Key Laboratory of Coal Science and Technology in Taiyuan University of Technology (Taiyuan, China) as guest-expert and consultant of the project “Combined combustion, gasi-fication and pyrolysis of coal and bio-mass”.

• Archaeomineralogical studies were conducted in collaboration with NAIM-BAS, Vienna University, OREA – INSTITUTE FOR ORIENTAL AND EUROPEAN ARCHAEOLOGY (Vienna), Institute of Earth Scienc-es-Heidelberg (Germany), Catholic University of Leuven (Belgium), etc.

• Joint research projects are conducted between IMC and the Institute of Macromolecular Chemistry, Romanian Academy of Sciences, Estonian and Czech Academies of Sciences under bilateral academic agreement with equivalent non-currency exchange.

6. Visiting Scientists

• Dr. Boriana Mihailova – Visitor-professor on “Spectroscopy of Miner-als” and “Crystal Physics” at the Faculty of Earth Sciences, University of Hamburg, Germany

• Dr. Stanislav Ferdov – Researcher in the Department of Physics, Univer-sity of Minho, Guimaraes, Portugal

Page 84: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

58

7. Research Topics, Announced for International Partnership Collaboration

Advanced multicomponent utilization of fly ashes from European coal-fired power stations

One of the environmental problems in Europe is the utilization of fly ashes (FAs) from coal-fired thermoelectric power stations (TPSs). This potential investi-gation will include characterization of various products recovered from FAs at Eu-ropean TPSs in an attempt for multicomponent FA utilization (MFAU). The MFAU is a necessary and unavoidable process due to the complex, heterogeneous and unique polycomponent composition of FA. The purpose will be: (i) to demon-strate how a low-cost waste can be transformed into useful, high-grade and valu-able materials, which may find various applications; (ii) to provide a basis for the advanced, multicomponent, wasteless and environmentally friendly utilization of various FAs. The knowledge about the composition of FAs is sufficient to start an advanced and effective MFAU.

Structure and properties of new multifunctional materials

Synthesis and investigation of new materials of practical importance (nano-sized zeolite-type natural and synthetic materials and thin films; ferric iron oxide materials; catalysts based on micro- and mesoporous carriers for removal of soot and nitrogen oxides from exhausted gasses; titanosilicate porous materials for ion-exchange, sorbents, and catalytic systems; materials for optical and mag-netic storage and processing of information; preparation and investigation of coal char based sorbents and catalysts). Characterization methods: X-ray diffraction, electron microscopy, Raman scattering and infrared absorption spectroscopies, optical measurements and chemical analysis. Education: M.Sc. and PhD in Min-eralogy, Crystallography and Materials Science.

Page 85: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

59

8. Publications and Reports at Scientific Forums

8.1. Published Articles and Reports (indexed in Web of Science, IF or SJR)

1. Adetunji, A., Olarewaju, V., Ocan, O.O., Ganev, V., Macheva, L. 2016. Geochem-istry and U-Pb zircon geochronology of the pegmatites in Ede area, southwestern Nigeria: A newly discovered oldest Pan African rock in southwestern Nigeria. – Jour-nal of African Earth Sciences, 115, ISSN:1464-343X, DOI:doi:10.1016/j.jafrears-ci.2015.12.006, 177–190. SJR:0.557, ISI IF:1.403.

2. Al-Ghamdi, A., Al-Harmony, O., Al-Solamy, F., Dishovsky, N., Zaimova, D., Malinova, P., Nihtianova, D. 2016. Preparation and Characterization of Natural Rubber Com-posites Comprising Conductive Carbon Black/Magnetite Hybrid Fillers Obtained by Impregnation Technology. – Polymer-Plastics Technology and Engineering, 55, 13, Taylor and Francis Inc., ISSN:0360-2559, DOI:10.1080/03602559.2015.1132461, 1344–1356. ISI IF:1.511.

3. Al-Ghamdi, A., Al-Hartomy, O., Al-Solamy, F., Dishovsky, N., Atanasov, N., Atanas-ova, G., Nihtianova, D. 2016. Microwave properties of natural rubber based com-posites comprising conductive carbon black/silica hybrid fillers. – Journal of Polymer Research, 23, 9, Springer Netherlands, ISSN:1022-9760, DOI:10.1007/s10965-016-1076-4, 180-1–180-12. ISI IF:1.969.

4. Chakarova, K., Andonova, S., Dimitrov, L., Hadjiivanov, K. 2016. FTIR study of CO and N2 adsorption on [Ge]FAU zeolites in their Na- and H-forms. – Microporous and Mesoporous Materials (2016), 220, Elsevier, 188–197. ISI IF:3.349.

5. Dimowa, L., Piroeva, I., Atanasova-Vladimirova, S., Petrova, N., Ganev, V., Titoren-kova, R., Yankov, G., Petrov, T., Shivachev, B. 2016. Synthesis, structural, thermal and optical properties of TeO2-Bi2O3-GeO2-Li2O glasses. – Optical Materials, 60, El-sevier, ISSN:0925-3467, DOI:10.1016/j.optmat.2016.09.008, 577–583. SJR:0.701, ISI IF:2.183.

6. Georgiev, P., Simeonova, S., Chanachev, A., Mihaylov, L., Nihtianova, D., Bala-shev, K. 2016. Acceleration effect of copper(II) ions on the rate of citrate synthesis of gold nanoparticles. – Colloids and Surfaces A: Physicochemical and Engineer-ing Aspects, 494, Elsevier, ISSN:0927-7757, DOI:10.1016/j.colsurfa.2015.12.031, 39–48. ISI IF:2.76.

7. Gerova, M., Encheva, G., Nikolova, R., Chanev, Ch., Shivachev, B., Apostolova, M., Petrov, O. 2016. Synthesis, crystal structure and cytotoxic properties of nitro-combretastatins (E)- and (Z)-5-(4-methoxy-3-nitrostyryl)-1,2,3-trimethoxybenzene. – Journal of Chemical Crystallography, 46, 105–112, Springer, ISSN:1074-1542, DOI:10.1007/s10870-016-0633-3, ISI IF:0.503.

8. Gerova, M. S., Stateva, S. R., Radonova, E. M., Kalenderska, R. B., Rusew, R. I., Nikolova, R. P., Chanev, C. D., Shivachev, B. L., Apostolova, M. D., Petrov, O. I. 2016. Combretastatin A-4 analogues with benzoxazolone scaffold: Synthesis, structure and biological activity. – European Journal of Medicinal Chemistry, 120, 14, Elsevier Masson SAS, ISSN:02235234, DOI:10.1016/j.ejmech.2016.05.012, 121–133. SJR:1.184, ISI IF:3.447.

9. Glavcheva, Z., Yancheva, D., Velcheva, B., Stamboliyska, B., Petrova N., Petkova V., Lalev, G., Todorov, V. 2016. Analytical studies of the Alexandrovo Thracian tomb wall paintings. – Spectrochimica acta. Part A, Molecular and biomolecular spec-troscopy, 152, ISSN:1386-1425, DOI:DOI:10.1016/j.saa.2015.01.103, 622–628. ISI IF:2.35.

Page 86: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

60

10. Ivanova, S., Zhecheva, E., Kukeva, R., Nihtianova, D., Mihaylov, L., Atanasova, G., Stoyanova, R. 2016. Layered P3-NaxCo1/3Ni1/3Mn1/3O2 versus spinel Li4Ti5O12 as a positive and a negative electrode in a full sodium-lithium cell. – ACS Applied Materials and Interfaces, 8, 27, American Chemical Society, ISSN:1944-8244, DOI:10.1021/acsami.6b05075, 17321–17333. ISI IF:7.145.

11. Ivanova, S., Zhecheva, E., Kukeva, R., Tyuliev, G., Nihtianova, D., Mihailov, L., Stoy-anova, R. 2016. Effect of Sodium Content on the Reversible Lithium Intercalation into Sodium-Deficient Cobalt-Nickel-Manganese Oxides NaxCo1/3Ni1/3Mn1/3O2 (0.38 ≤ x ≤ 0.75) with a P3 Type of Structure. – Journal of Physical Chemistry C, 120, 7, American Chemical Society, ISSN:1932-7447, DOI:10.1021/acs.jpcc.5b11910, 3654–3668. ISI IF:4.509.

12. Kalvachev, Yu., Zgureva, D., Boycheva, S., Barbov, B., Petrova, N. 2016. Synthe-sis of carbon dioxide adsorbents by zeolitization of fly ash. – Journal Therm. Anal. Calorimetry, 124, 1, Springer, ISSN:1388-6150, DOI:10.1007/s10973-015-5148-1, 101–106. SJR:0.6, ISI IF:2.04.

13. Koseva, I., Nikolova, V., Petrova, N., Tzvetkov, P., Marychev, M. 2016. Thermal behavior of germanates with olivine structure. – Thermochimica Acta, 646, Elsevier, ISSN:0040-6031, 1–7. SJR:0.708, ISI IF:1.938.

14. Kostova, I., Vassileva, C., Dai, S., Hower, J. 2016. Mineralogy, geochemistry and mercury content characterization of fly ashes from the Maritza 3 and Varna thermo-electric power plants, Bulgaria. – Fuel, 186, Elsevier, ISSN:0016-2361, 674–684. SJR:1.877, ISI IF:3.611.

15. Kraicheva, I., Tsacheva, I., Nikolova, R., Topashka-Ancheva, M., Stoineva, I., Shi-vachev, B. 2016. Microwave assisted synthesis and X-ray structure of a novel anthra-cene-derived aminophosphonate. enantioseparation of two α-aminophosphonates and genotoxicity in vivo. – Phosphorus, Sulfur, and Silicon and the Related Ele-ments, Taylor & Francis, 10.1080/10. ISI IF:0.723.

16. Kreissl, S., Bolanz, R., Göttlicher, J., Steininger, R., Tarassov, M., Markl, G. 2016. Structural incorporation of W6+ into hematite and goethite: a combined study of natural and synthetic iron oxides developed from precursor ferrihydrite. – American Mineralogist, 101, 12, Mineralogical Society of America, ISSN:0003004X, DOI:http://dx.doi.org/10.2138/am-2016-5690, 2701–2715. SJR:1.83, ISI IF:2.196.

17. Lilkov, V., Petrov, O., Kovacheva, D., Rostovsky, I, Tzvetanova, Y, Petkova, V., Petrova, N. 2016. Carbonation process in cement with mineral additions of natural zeolite and silica fume – Early hydration period (minutes) up to 24 hours. – Con-struction and Building Materials, 124, ISSN:0950-0618, 838–845. SJR:1.606, ISI IF:2.985.

18. Marinova, I., Damyanov, Z. 2016. Plate tectonic aspects of the Triassic carbon-ate-hosted stratiform-stratabound base-metal deposits in the Western Balkan, NW Bulgaria. – Geologia Croatica, 69, 1, ISSN:1333-4875, DOI:10.4154/GC.2016.05, 65–73. SJR:0.1, ISI IF:0.702.

19. Milanova, M., Iordanova, R., Tatsumisago, M., Hayashi, A., Tzvetkov, P., Nihtiano-va, D., Markov, P., Dimitriev, Y. 2016. Structural and electrochemical characterization of LiVMoO6 obtained by soft mechanochemical synthesis. – Journal of Materials Science, 51, 7, Springer US, ISSN:0022-2461, 1573-4803, DOI:10.1007/s10853-015-9677-6, 3574–3584. SJR:0.93, ISI IF:2.371.

20. Olariu, M., Hamciuc, C., Okrasa, L., Hamciuc, E., Dimitrov, L., Kalvachev Yu. 2016. Electrical properties of polyimide composite films containing TiO2 nanotubes. – Polymer Composites, online first 14 NOV, Wiley Online Library, ISSN:1548-0569, DOI:10.1002/pc.23851, 1–9. SJR:0.567, ISI IF:1.632.

21. Palcheva, R., Kaluza, L., Dimitrov, L., Tyuliev, G., Avdeev, G., Jirátová, K., Spojaki-na, A. 2016. NiMo catalysts supported on the Nb modified mesoporous SBA-15and

Page 87: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

61

HMS: Effect of thioglycolic acid addition on HDS. – Applied Catalysis A: General (2016) 24–34, 520, Elsevier, ISSN:ISSN 0926-860X, 24-34. ISI IF:3.91.

22. Palinkas, L., Damyanov, Z., Sostaric, S., Palinkas, S., Marinova, I. 2016. Divergent drift of Adriatic-Dinaridic and Moesian carbonate platforms during the rifting phase witnessed by Triassic MVT Pb-Zn and SEDEX deposits; a metallogenic approach. – Geologica Croatica, 69, 1, ISSN:1333-4875, DOI:10.4154/GC.2016.06, 75–78. SJR:0.1, ISI IF:0.702.

23. Petkova, V., Serafimova, E., Kostova, B. 2016. Thermal behaviour of nitric-acid-treated biomass and chicken litter mixtures. – Journal of Thermal Analysis and Calo-rimetry, 126, 1, Spinger, ISSN:ISSN 1388-6150, DOI:10.1007/s10973-016-5708-z, 149–160. ISI IF:1.781.

24. Popova, M., Szegedi, A., Lazarova, H., Ristic, A., Kalvachev, Yu., Atanasova, G., Wilde, N., Glaeser, R. 2016. Synthesis of biomass derived levulinate esters on novel sulfated Zr/KIL-2 composite catalysts. – Microporous and Mesoporous Materials, 235, Elsevier, ISSN:1387-1811, DOI:http://dx.doi.org/10.1016/j.micromeso.2016.07.047, 50–58. SJR:1.243, ISI IF:3.349.

25. Sbirkova, H. I., Shivachev, B. L. 2016. Crystal structure of a DNA sequence d(CGTGAATTCACG) at 130K. – Bulgarian Chemical Communications, 48, 4, Union of Chemists in Bulgaria, ISSN:0324-1130, 589–592. SJR:0.114, ISI IF:0.229.

26. Staminirova, T., Petrova, N., Kirov, G. 2016. Thermal decomposition of zinc hy-droxy-sulfate-hydrate minerals. – Journal of Thermal Analysis and Calorimetry, 125, 1, 2016, ISSN:1388-6150, 101–106. SJR:0.612, ISI IF:1.662.

27. Todorova, T., Kalvachev, Yu., Lazarova, H., Popova, M. 2016. Catalytic activity of modified mordenite in the reaction of m-xylene transformation. – Compt. rend. Acad. bulg. Sci., 69, 10, „Prof. Marin Drinov“ Academic Publishing House, ISSN:1310-1331, 1283–1290. SJR:0.206, ISI IF:0.233.

28. Tsoncheva, T., Mileva, A., Paneva, D., Kovacheva, D., Spassova, I., Nihtianova, D., Markov, P., Petrov, N., Mitov, I. 2016. Zinc ferrites hosted in activated carbon from waste precursors as catalysts in methanol decomposition. – Microporous and Mesoporous Materials, 229, Elsevier B.V., ISSN:1387-1811, DOI:10.1016/j.mi-cromeso.2016.04.008, 59–67. ISI IF:3.349.

29. Vassilev, S., Vassileva, C. 2016. Composition, properties and challenges of algae biomass for biofuel application: An overview. – Fuel, 181, Elsevier, ISSN:0016-2361, 1–33. ISI IF:3.611.

8.2. Published Articles and Reports (not indexed in Web of Science, IF or SJR)

30. Anastasova, E., Tarassov, M., Tarassova, E. 2016. First data on rhabdophane with a negative Ce anomaly from the Igralishte pluton, Southwestern Bulgaria. – Short Communications, National Conference with International Participation “Geosciences 2016”, Bulgarian Geological Society, 2016, ISSN:1313-2377, 15–16.

31. Dimitrov, L., Petrov, O., Tarassov, M., Lihareva, N. 2016. Perlites – attractive low cost raw materials for synthesis of microporous molecular sieves with useful proper-ties. – Short Communications, National Conference with International Participation “Geosciences 2016”, Bulgarian Geological Society, ISSN:1313-2377, 21–22.

32. Gyurov, S., Marinkov, N., Kostova, Y., Tzvetkova, Ch., Kovacheva, D., Rabadjieva, D., Penkov, I., Petkova, V., Petrova, N. 2016. Extraction of Useful Products from Copper Pyrometallurgical Slag. – Journal of Materials Sci. and Technology, 24, 3, 2016, ISSN:0861-9786, 179–193.

Page 88: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

62

33. Kostova, B., Petkova, V., Stoyanov, V., Serafimova, E. 2016. Thermal properties of self-compacting type decorative white cement composites. – In Proc. XV Internation-al Conference on Thermal Analysis and Calorimetry in Russia (RTAC-2016), 16–23 September, 2016, Saint-Petersburg, Russia, 1, Peter the Great St. Petersburg Poly-technic university, 2016, ISSN:978-5-7422-5447-8, 435–439.

34. Macheva, L., Peytcheva, I., von Quadt, A., Zidarov, N. 2016. Metamorphic evolu-tion of Gondwana-derived fragment in Ograzhden and Belasitsa Mountains, Ser-bo-Macedonian Massif, SW Bulgaria. Short Communications, National Conference with International Participation “Geosciences 2016”, Bulgarian Geological Society, ISSN:1313-2377, 69–70.

35. Marinova, I., Tacheva, E. 2016. Bladed quartz texture and its relationship to elec-trum mineralization in the Eocene, low-sulfidation Kuklitsa gold deposit, SE Bulgaria. Preliminary data. – Geologica Macedonica, 2, 4, 2 August С, Stip, 393–400.

36. Pelovski, Y., Serafimova, E., Kozarev, N., Petrov, A., Petkova, V. 2016. Influence of some factors on the global climate system and needed measures. – Mechanical Engineering – Scientific Journal, 34, 1, 2016, ISSN:1857-9191, 293–302.

37. Serafimova, E., Milenkova, S., Petkova, V., Pelovski, Y. 2016. Integrated wastes treatment as a basic for production new materials. – Mechanical Engineering – Sci-entific Journal, 34, 1, ISSN:1857-9191, 233–239.

38. Tacheva, E, Tarassov, M, Tarassova, E. 2016. Effects of magma mixing on distri-bution of trace elements in zonal apatite from the Petrohan pluton, Western Balkan, Bulgaria. – Short Communications, National Conference with International Partici-pation “Geosciences 2016”, Bulgarian Geological Society, ISSN:1313-2377, 73–74.

39. Tarassova, E., Tarassov, M., Gergova, D., Titorenkova, R., Tacheva, E. 2016. Preliminary mineralogical study of wall paintings from the Red Church (IV-XIV AD) near the town of Perushtitsa, Bulgaria. – Short Communications, National Confer-ence with International Participation “Geosciences 2016”, Bulgarian Geological So-ciety, ISSN:1313-2377, 183–184.

40. Tsintsov, Z., Petrova, N., Mehofer, M. 2016. Ancient Gold Mining at Ada Tepe, East Rhodopes, Bulgaria. Mineralogical Features of Au-Containing Fe-Oxides/Hydrox-ides from the Ada Tepe Gold Deposit.Their Significance in Clarifying the Ancient Gold Mining. – Archaeologia Austriaca, 100, 2016, ISSN:0003-8008, 109–117.

41. Tzvetanova, Y., Tarassov, M., Ganev, V., Piroeva, I. 2016. Crystal chemistry of clinopyroxene with a high content of the Ca-Tschermak and esseneite compo-nents, Eastern Rhodopes, Bulgaria. – Short Communications, National Conference with International Participation “Geosciences 2016”, Bulgarian Geological Society, ISSN:1313-2377, 35–36.

42. Tzanov, V., Gechev, S., Gechev, Tz. 2016. Generation of Koch N-flakes and their correspondance to the total and the marginal utility curves. – Proc. “International Conference on Application of Information and Communication Technology and Sta-tistics in Economy and Education”, UNWE.

43. Vitov, O., Marinova, I. 2016. Distribution and mineral associations of alluvial gold in the Panagyurishte copper region, Bulgaria. – Short Communications, National Conference with International Participation “Geosciences 2016”, ISSN:1313-2377, 41–42.

8.3. Publications in press (indexed in Web of Science, IF or SJR)

44. Mladenova, K., Petrova, S., Andreeva, T., Moskova-Doumanova, V., Topouzova-Hristova, T., Kalvachev, Yu., Balashev, K., Bhattacharya, S., Chakarova, Ch., Lal-chev, Z., Doumanov, J. Effects of Ca2+ ions on bestrophin-1 surface films. – Colloids

Page 89: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

63

and Surfaces B: Biointerfaces, 149, Elsevier, 2017, ISSN:0927-7765, DOI:10.1016/j.colsurfb.2016.10.023, 226-232. SJR:1.105, ISI IF:3.902.

45. Popova, M., Szegedi, A., Lazarova, H., Dimitrov, M., Kalvachev, Yu., Atanasova, G., Ristic, A., Wilde, N., Glaser, R. Influence of the preparation method of sulfated zirco-nia nanoparticles for levulinic acid esterification. – Reaction Kinetics, Mechanisms and Catalysis, Springer, 2017, ISSN:1878-5190, DOI:10.1007/s11144-016-1088-4, SJR:0.394, ISI IF:1.265.

46. Tsintsov, Z., Banushev, I., Ivanov, I., Androlov, I. Placers gold around occurrence “Stremtsi” – characteristics and possible primary sources. – Compt. rend. Acad. bulg. Sci., 70, 2017, ISI IF:0.233.

8.4. Reports at Scientific Forums

47. Anastasova, E., Tarassov, M., Tarassova, E. 2016. Electron backscatter diffrac-tion of the REE-Th-U minerals in SEM – from sample preparation to interpretation of results. – Sixth National Crystallographic Symposium, Sofia, Bulgaria, 04.10.2016–08.10.2016.

48. Anastasova, E., Tarassov, M., Tarassova, E. 2016. First data on rhabdophane with a negative Ce anomaly from the Igralishte pluton, Southwestern Bulgaria (in Bulgar-ian). – “Geosciences 2016”, National Conference with International Participation, Bulgarian Geological Society, 07.12.2016–08.12.2016, Sofia, Bulgaria.

49. Delcheva, Z., Ivanova, K., Staminirova, T. 2016. Phase transitions during washing of ktenasite-like minerals. – Sixth National Crystallographic Symposium, Sofia, Bul-garia, 04.10.2016–08.10.2016.

50. Dimitrov, L., Petrov, O., Tarassov, M., Lihareva, N. 2016. Perlites – attractive low cost raw materilas for synthesis of microporous molecular sieves with useful prop-erties. – “Geosciences 2016”, National Conference with International Participation, Bulgarian Geological Society, 07.12.2016–08.12.2016, Sofia, Bulgaria.

51. Dimowa, L., Petrov, O., Tarasov, M., Kadiyski, M. 2016. Structural study of Tl-exchanged natural clinoptilolite using Rietveld refinement. – Sixth National Crystal-lographic Symposium, Sofia, Bulgaria, 04.10.2016–08.10.2016.

52. Gechev, S. 2016. UV-VIS-NIR structural study of (Yb, Na)-co-doped calcium-(strontium) fluoride single crystals. – Sixth National Crystallographic Symposium, Sofia, Bulgaria, 04.10.2016–08.10.2016.

53. Gechev, S., Petrov, O. E., Ganev, V. Y., Mouhovski, J. T. 2016. X-ray powder dif-fraction of (Yb0.007, Na0.05)Ca0.72Sr0.223F2 and (Yb0.006Na0.04)Ca0.917Sr0.073F2 crystals. – Sixth National Crystallographic Symposium, Sofia, Bulgaria, 04.10.2016 – 08.10.2016.

54. Kalvachev, Yu., Barbov, B., Todorova, T. 2016. Seed-assisted synthesis, modifica-tion and application of zeolites. – Sixth National Crystallographic Symposium, Sofia, Bulgaria, 04.10.2016–08.10.2016.

55. Keskineva, А., Georgiev, N., Naydenov, K., Jordanova, D., Jordanova, D., Dimowa, L. 2016. Magneto-structural and mineralogical study of tectonic gouge. – “Geosciences 2016”, National Conference with International Participation, Bulgarian Geological Society, 07.12.2016–08.12.2016, Sofia, Bulgaria.

56. Kostova, B., Petkova, V., Stoyanov, V., Serafimova, E. 2016. Thermal properties of self-compacting type decorative white cement composites. – XV International Con-ference on Thermal Analysis and Calorimetry in Russia (RTAC-2016), 16–23 Sep-tember, 2016, Saint-Petersburg, Russia, 16.09.2016–23.09.2016.

57. Kurteva, V., Shivachev, B., Nikolova, R., Simova, S., Antonov, L. 2016. First ex-ample of three stable desmotropes. – Sixth National Crystallographic Symposium, Sofia, Bulgaria, 04.10.2016–08.10.2016.

Page 90: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

64

58. Macheva L., Peytcheva I., von Quadt A., Zidarov N. 2016. Metamorphic evolution of Gondwana-derived fragment in Ograzhden and Belasitsa Mountains, Serbo-Mace-donian Massif, SW Bulgaria. – “Geosciences 2016”, National Conference with Inter-national Participation, Bulgarian Geological Society, 07.12.2016–08.12.2016, Sofia, Bulgaria.

59. Marinova, I., Tacheva, E. 2016. Bladed quartz texture and its relationship to elec-trum mineralization in the Eocene, low-sulfidation Kuklitsa gold deposit, SE Bulgaria. Preliminary data. – IIIrd Congress of the Geologists of Macedonia. Struga, Macedo-nia, 01.10.2016–02.10.2016.

60. Pelovski, Y., Serafimova, E., Petkova, V. 2016. Balance fertilization for sustainable agriculture and climate stability in Bulgaria. – 6th International Conference “Protec-tion of natural resources and environmental management: The main tools for sus-tainability” (PRONASEM 2016), Bucharest, Romania, 11.11.2016–13.11.2016.

61. Pelovski, Y., Serafimova, E., Petkova, V. 2016. The measurement of benzene, eth-ylbenzene, toluene and xylene in indoor air in Southeast Bulgaria. – 6th International Conference “Protection of natural resources and environmental management: The main tools for sustainability” (PRONASEM 2016), Bucharest, Romania, 11.11.2016–13.11.2016.

62. Pelovski, Y., Serafimova, E., Petrov, A., Petkova, V. 2016. Influence of some fac-tors on the global climate system and needed measures. – Green Development In-frastructure Technology, International Conference Gredit 2016, Skopje, Macedonia, 31.03.2016–01.04.2016.

63. Petkova, V., Kostova, B., Serafimova, E., Kaljuvee, T. 2016. Thermal investigations of high-energy milled phosphorites from Bulgaria and Estonia with application as a soil conditioners. – 11th International seminar on thermal analysis and calorimetry to the memory of Prof. St. Bretsznajder, 26–29 September 2016, Płock, Poland, 26.09.2016–29.09.2016.

64. Petkova, V., Stoyanov, V., Kostova, B., Serafimova, E. 2016. Impact of mineral addi-tives on thermal behavior of self-compacting type decorative cement composites. – 11th International seminar on thermal analysis and calorimetry to the memory of Prof. St. Bretsznajder, 26–29 September 2016, Płock, Poland, 26.09.2016–29.09.2016.

65. Petrov, O., Dimitrov, L. 2016. 2016. Synthesis of microporous products from waste amorphous silica. – Sixth National Crystallographic Symposium, Sofia, Bulgaria, 04.10.2016–08.10.2016.

66. Petrov, O., Dimitrov, L., Lihareva, N. 2016. Transformation of Australian perlite in phillipsite and its possible use as ion-exchanger. – Sixth National Crystallographic Symposium, Sofia, Bulgaria, 04.10.2016–08.10.2016.

67. Sbirkova, H., Shivachev, B. 2016. Comparison of the crystal structures of DNA sequence d(CGTGAATTCACG) with and without DAPI. – Sixth National Crystal-lographic Symposium, Sofia, Bulgaria, 04.10.2016–08.10.2016.

68. Serafimova, E., Milenkova, S., Petkova, V. 2016. Integrated waste treatment as a ba-sic for production of new materials. – Green Development Infrastructure Technology, International Conference Gredit 2016, Skopje, Macedonia, 31.03.2016–01.04.2016.

69. Shivachev, B. 2016. Стартови техники и стратегии за идентифициране на кристални фази и определяне на кристални структури чрез дифракционни методи. – IX-ти Пролетен семинар на докторантите и младите учени “Интердисциплинарна химия”. Sofia, Bulgaria, 15.04.2016–17.04.2016.

70. Stanisheva, D., Gerova, M., Shivachev, B., Petrov, O., R. Nikolova. 2016. Synthe-sis and crystal structure of benzo[b]imidazo[1,5-d][1,4]-oxazepines. – Sixth National Crystallographic Symposium, Sofia, Bulgaria, 04.10.2016–08.10.2016.

71. Stoyanov, V., Kostova, B., Serafimova, E., Petkova, V. 2016. Effects of mineral addi-tives on the phase formation in self-compacting type decorative cement composites.

Page 91: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

65

– Green Development Infrastructure Technology, International Conference Gredit 2016, Skopje, Macedonia, 31.03.2016–01.04.2016.

72. Tacheva, E, Tarassov, M., Tarassova, E. 2016. Effects of magma mixing on distri-bution of trace elements in zonal apatite from the Petrohan pluton, Western Balkan, Bulgaria. – “Geosciences 2016”, National Conference with International Participa-tion, Bulgarian Geological Society, 07.12.2016–08.12.2016, Sofia, Bulgaria.

73. Tarassova, E., Tarassov, M., Gergova, D., Titorenkova, R., Tacheva, E. 2016. Pre-liminary mineralogical study of wall paintings from the Red Church (IV-XIV AD) near the town of Perushtitsa, Bulgaria. – “Geosciences 2016”, National Conference with International Participation, Bulgarian Geological Society, 07.12.2016–08.12.2016, Sofia, Bulgaria.

74. Todorova, S., Kurteva, V., Simova, S., Shivachev, B., Petrova, R. 2016. Unsym-metrical NH-ureas attached to dihydro-2h-benzo[1,3]oxazin-2-one scaffold. – Sixth National Crystallographic Symposium, Sofia, Bulgaria, 04.10.2016–08.10.2016.

75. Tsvetanova, L., Nikolova, R. 2016. Deformations of ETS-4 Ti-Si framework after ion exchange and temperature lowering. – Sixth National Crystallographic Sympo-sium, Sofia, Bulgaria, 04.10.2016–08.10.2016.

76. Tzvetanova, Y., Tarassov, M., Ganev, V., Piroeva, I. 2016. Crystal chemistry of clinopyroxene with a high content of the Ca-Tschermak and esseneite components, Eastern Rhodopes, Bulgaria. – “Geosciences 2016”, National Conference with Inter-national Participation, Bulgarian Geological Society, 07.12.2016–08.12.2016, Sofia, Bulgaria.

77. Vasilev, D., Jegova, G., Rashkova, M., Titorenkova, R. 2016. Compositional and structural differences of apatite from enamel and dentine. – Sixth National Crystal-lographic Symposium, Sofia, Bulgaria, 04.10.2016–08.10.2016.

78. Vitov, O., Marinova, I. 2016. Distribution and mineral associations of alluvial gold in the Panagyurishte copper region, Bulgaria. – “Geosciences 2016”, National Con-ference with International Participation, Bulgarian Geological Society, 07.12.2016–08.12.2016, Sofia, Bulgaria.

79. Zagranyarska, I., Kostova, K., Nikolova, R., Shivachev, B., Dimitrov, V. 2016. Syn-thesis of chiral aminobenzylnaphthols – structure and configuration. – Sixth National Crystallographic Symposium, Sofia, Bulgaria, 04.10.2016–08.10.2016.

Page 92: ГОДИШЕН ОТЧЕТ № 22 2016imc.bas.bg/bg1/files/AnnualReport/Ann_Report_IMC_2016_site.pdf · Годишен отчет № 22, 2016 Институт по минералогия

66