64
η 3 -Allyl Palladium Chemistry G. Poli

η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

η 3-Allyl Palladium Chemistry

G. Poli

Page 2: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

On the Polarization of Allyl-Complexes

Pd

L

LL

E

aldehydeimineMichael acceptor

E

PdLL

Nu

Nuactive methyleneaminealcoolate

nucleophilic

electrophilic

G. Poli

Unless in the presence of special bulky ligands (see later the “memory effect” section)

palladium usually prefers η3-allyl structures, whereas other transition metals (i.e. Rh) prefer η1,η2-olefin type structures.

L -L

[Pd]X

R R

M

R

M

η3-allyl η1,η2-olefin

or

Page 3: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

PdA

B

R1

R3

R2

PdA

BR2

R3R1

PdA

B

R1 R3

R2

η3 → η1

PdA

BR3

R2

R1

rotation

PdA

B

R3

R2

R1

η1 → η3

++

+ +

+

η3-Allyl-Pd Complexes are Fluxional Compounds

Syn-anti equilibration via η3-η1-η3 rearrangement / C-C rotation

Pregosin, P.S. Togni, A. et al. J. Am. Chem. Soc. 1994, 116, 4067

During the syn-anti equilibration switch of the face coordinated to the metal takes place. The

process does not bring about switch between the allylic C1 and C3 carbons with respect to the ancillary ligands A and B, but it involves inversion of the C2 orientation with respect to the

palladium atom.

These processes may occur on the same time scale as other steps in the catalytic cycle and can lead to a loss of stereochemical information

G. Poli

Page 4: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

η3-Allyl-Pd Complexes are Fluxional Compounds

The process involves η3 → η1 rearrangement, rotation about the C-Pd bond, geometry

change around the metal, η1 → η3 rearrangement. Addition of chloride anions can accelerate the apparent allyl rotation via pentacoordination and pseudorotation.

Alternatively, ligand dissociation is another possible pathway for apparent allyl rotation.

Apparent allyl rotation via η3-η1-η3 rearrangement / Pd-C rotation

PdB

A

R1 R2

PdB A

R2R1

PdB

A

R2R1

PdA B

R2R1

PdA

B

R1 R2

η3 → η1

rotation

η1 → η3

++

+ + +

G. Poli

Page 5: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Generation of η3-Allyl Palladium Complexes

X = leaving group

X [Pd(0)]

R [Pd(II)]X

R

X

RX

R

[Pd(0)][Pd(0)]

X

R

[Pd(0)]

Nu, PdX2 PdX X Nu [Pd]X

Nu

HBase, PdX2

HPd

XX

Base [Pd]X

Base XH

X

Via

Pd(

0)V

ia P

d(II)

G. Poli

[Pd(0)]ArAr[Pd]X

[Pd]X

Ar

[Pd]X

C[Pd(0)]

ArX[Pd]

Ar

[Pd]X

[Pd(0)]ArX

Page 6: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

OAcCy3P Pd PCy3

rt 12h

Pd PCy3

OAcCy3P+ AcO-

43% 43%

OAc(Ph3P)4Pd

80°Cno reaction

Pd PCy3

OAc

CO / rt

OAc

The oxidative addition of allyl acetate to Pd is a reversible process

OAc

D D(Ph3P)4Pd

rt OAc

D D+

OAcD

D

Oxidative Addition of Allyl Acetates to Pd(0)

Yamamoto A. et al. J. Am. Chem. Soc. 1981, 103, 5600

Generation of π-allyl-Pd complexes from allylic acetates is reversible and thermodynamically disfavored

G. Poli

The oxidative addition of allyl acetate to Pd(0) is a reversible process

Page 7: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

On the Nature of the Allylic Leaving Groups

O

O O

O

O

NHR

O

O

O

CH3O

O OH Cl NO2 SO2Ph

NR2NR3X SR2X

EWGEWG

NR

O

O

CF3

CCl3

O

OMe

OP

O

OEt

OEt

Many allylic systems undergo oxidative addition in the presence of Pd(0) to generate a

η3-allyl-Pd complex. This reaction is usually reversible and the extent of its equilibrium depends on the nature of the leaving group.

G. Poli

Page 8: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Facial Exchange in the π-Allyl Complex

Displacement of palladium from the π-allyl complex by Pd(0)

MeO2C

Pd

PPh3Ph3P

+

Pd(PPh3)4THF -15 °C

Pd

L L

MeO2C

Pd

PPh3Ph3P

+TfO-

TfO-

Kurosawa H. et al. Chem. Lett. 1990, 1745; Organometallics, 1993, 12, 2869; Granberg, K. L. Backvall J.-E. J. Am. Chem. Soc. 1992, 114, 6858Stary I. et al. Tetrahedron, 1992, 48, 7229; J. Am. Chem. Soc. 1989, 111, 4981Bosnich B. et al. J. Am. Chem. Soc. 1985, 107, 2046

Rapid isomerization to a 45 : 55 equilibrium mixture is observed even at -15°C starting from either complex

G. Poli

Page 9: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Oxidative Addition of Pd(0) on Allyl Systems

Me Ph

OAc

58% ee

Pd(dppe)

NaBF4Me Ph

PdP P

Ph

Ph

Ph

Ph

+

BF4-

47% ee

T. Hayashi et al.J.Am.Chem.Soc. 1983, 105, 7767T. Hayashi et al. J.Chem.Soc. Chem.Commun. 1984, 107

Inversion mechanism: Pd(0) approaches anti with respect to the acetate moiety

G. Poli

Page 10: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Oxidative Addition of Pd(0) on Allyl Systems

OAc

OAc

Pd(PPh3)4 5%

NaCH(CO2Me)23 : 2

OAc

CO2Me

CO2Me

unreactive

Stereoelectronic effects are important. In conformationally locked cyclohexanes: the equatorial isomer is unreactive

Fiaud, J.C. Aribi-Zouioueche, L. J. Chem. Soc. Chem. Commun. 1986, 390

G. Poli

Page 11: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Reactions of η3-Allyl Palladium Complexes

In all these cases Pd(0) is regenerated and transformation can be catalytic in Pd

[Pd]X

Nu (C, O, N) R NuR

MR'

R R'

CO, ROHR CO2R

R'MMR'

R MR'

H-

R H

R''

R = R"CH2

allylation of nucleophiles(if Nu is a soft carbanion: Tsuji-Trost reaction)

transmetalationdehydropalladation

carbonylation

metalation hydrogenolysis

G. Poli

Page 12: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Non-stabilized Nucleophiles (pKa > 25)

X

Pd(II)L L Nu

X

Pd(0)L L

Pd(0)

L L

X-

Nu*

+

X-

Pd(II)

L Nu

L

Nu*

Pd(0)

L L

ionization (formation of the π-allyl complex) and nucleophilic attack are notsimilar processes.Pd(0)Ln approaches the alkene anti to the leaving group, to generate the π-allyl complex.Subsequently, the nucleophile first attacks palladium (inner sphere, transmetalation), then it undergoes reductive elimination The two latter steps proceed with retention mechanism. Thus, starting from a sterogenic substrate overall inversion is observed.

Yamamoto A. et al. Organometallics, 1991, 10, 1221

metal-olefinπ-coordination

nucleophilic addition to the metal

reductive elimination

decoordination

X = leaving group

ionization retention

retention

reversible

reversible

G. Poli

Page 13: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Phenylzinc: A Non-stabilized Nucleophile

T. Hayashi, A. Yamamoto, T. Hagitara, J. Org. Chem. 1986, 51, 723.

Global inversion of configuration is observed

Me Ph

OAc

(S)-E68% ee

Me

PhOAc

61% ee(R)-Z

PhZnBr

Pd(PPh3)4

Me Ph

Ph

PhZnBr

Pd(PPh3)4

Me Ph

Ph

(R)-E44% ee

(R)-E30% ee

Me Ph

[Pd]OAc

v i a r e a r r a n g e m e n t

Me Ph

[Pd]Ph

-Zn(OAc)Br

Me Ph

[Pd]OAc

Me Ph

[Pd]Ph

-Zn(OAc)Br

oxidativeaddition

transmetalation reductiveelimination

G. Poli

Page 14: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Stabilized Nucleophiles (pKa < 25)

X

Pd(II)L L

Nu

X

Pd(0)L L

Pd(0)

L L

Nu

Pd(0)L L

*

X-+

Nu*

Ionization and nucleophilic attack are similar processes. However, the former step is usually reversible (as metal-alkene coordination), whereas the latter is normally irreversible.Pd(0)Ln approaches the alkene anti to the leaving group, to generate the π-allyl complex. Then, the nucleophile approaches the π−allyl moiety anti to Pd(II)Ln. (outer sphere). Thus, starting from a sterogenic substrate overall retention (via double inversion) is observed.

metal-olefin

π-coordination

ionizationnucleophilic attack

decoordination

When Nu is an active methylene the reaction is named allylic alkylation or Tsuji-Trost reaction.

reversible

reversible

irreversible

η3-allyl-Pd complexes are generated from acetates only in very small amounts. However, the irreversible reaction with the nucleophile gradually drives the reaction to completion.

X = leaving group

G. Poli

Page 15: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

The Seminal Paper

NaCH(CO2Et)2Pd

Cl

PdCl CO2Et

CO2Et

CO2Et

CO2Et++

Pd

Cl

PdCl

+

N O

G. Poli

Page 16: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Active Methylenes: Typical Soft Nucleophiles

Hayashi, T.; Yamamoto, A.; Hagitara, T. J. Org. Chem. 1986, 51, 723.Bosnich, B. ;MacKenzie, P. B. Pure Appl. Chem. 1982, 54, 189

O

O

MeO

MeO

Na

+

90 : 10

92 : 8 (S)-E

(S)-E

Me Ph

CO2MeMeO2C

(R)-Z

73% ee(S)-E

Me Ph

MeO2C CO2Me

73% ee

σ → π

π → σ

Pd

PhPh

Ph

Ph PP

Me Ph

AcO-Me

Ph

PhPh

Ph

Ph PP

Pd

H(inversion)

AcO-

+Pd

P PPh

Ph

PhPh

Me

PhPd(0) dppe

Me

PhOAc

+

Me Ph

CO2MeMeO2C

30% ee(S)-E

Me Ph

MeO2C CO2Me

O

O

MeO

MeO

Na

(inversion)AcO-

+Pd

P PPh

Ph

PhPh

Me PhPd(0) dppe

38% ee

Me Ph

OAc

+

+AcO-

syn, syn

anti, syn

syn, syn

Double inversion mechanism (with or without anti-syn equilibration)

G. Poli

Page 17: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Ionization of the Allylic System to the η3-Allyl Complex

Fiaud, J.C. Legros, J. Y. J. Org. Chem. 1987, 52, 1907

Proof of the mechanism with this particular allylic acetate

OAc

H

[Pd(0)]

no reaction

H

AcO

[Pd(0)][Pd]OAc

non-stabilizednucleophile Nu

H

stabilizednucleophile

no reaction

hindered

hindered

G. Poli

Page 18: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Complete Transfer of the Stereoinformation

O

O

Me

MeO2C

Me

H

OP

OOEt

OEt

1. Pd(PPh3)4 / THF2. LiCl / THF

OO

H

Ziegler F.E. et al. J. Am. Chem. Soc., 1988, 110, 5434Ziegler F.E. et al. J. Am. Chem. Soc., 1988, 110, 5442

No appreciable racemization of the transient η3-allyl-Pd complex

Starting from a stereogenic acetate

G. Poli

Page 19: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Complete Transfer of the Stereoinformation

CO2Me

Pent

O

OCO2Me

CO2Me

Pent

O

NaH / DMSO

PdL L+

CO2Me

Pent

O

Pent

O

NaI / HMPA

CO2Me

Pent

O

PdL L+

61% ee

Pd2(dba)3TMPP

Complete transfer of the stereochemical information can be obtained if the transiently

formed π-allyl-Pd complex can be trapped before it can equilibrate. The degree of transfer of the stereochemical information depends, inter alia, on the concentration of the Pd catalyst: the higher the Pd concentration the lower the transfer of the stereochemical

information.

G. Poli

Page 20: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Allylic Alkylations via Titanated Nucleophiles

Poli, G.; Giambastiani, G.; Mordini, A. J. Org. Chem. 1999, 64, 2962-2965G. Poli

CO2Et

CO2Et+Ph OAc

Pd2(dba)3 (0.05 eq).PPh3 (0.05 eq.)Ti(OPr-i)4 (1.3 eq.)

CH2Cl2 reflux 9h(86%)

PhCO2Et

CO2Et

PdPPh3

PPh3

O O

OMeMeO

Ti

RO ORRO OR

Ph

Pd(PPh3)2

pre-catalyst

Ph OAc

PhPd

PPh3

PPh3

AcO

O

OMe

O OMeTi

RO

RO

RO

OR H

HTi(OR)4

MeO2C CO2Me

R'OH

OO

OMe

MeO

Ti

RO ORRO OR

Ph

R' = OAc or i-PrO

start here

and here

Page 21: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Direct Use of Allylic Alcohols

Horino, Y.; Naito, M.; Kimura, M.; Tanaka, S.; Tamaru, Y. Tetrahedron Lett. 2001, 42, 3113

Kinoshita, H.; Shinokubo, H.; Oshima, K, Org. Lett. 2004, 22, 4085-4088

O

CO2Et OH

O

CO2Et

Pd

Cl

PdCl

2.5 mol %

tppts (22 mol%) H2O/AcOEtNa2CO3, rt, 13h, 75%

P

NaO3S

SO3NaNaO3S

NaO3S

SO3Na

SO3Na

tppts (hydrosoluble)

It is proposed that water activates the allylalcohol via hydration of the hydroxy group and stabilizes the resulting hydroxide ion by strong solvation.

G. Poli

OH BEt3, Pd(OAc)2 cat., PPh3THF, NaH, rt, 74%CO2ET

CO2Et

CO2Et

CO2EtO

H

BEt3+

Page 22: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Generation of the η3-Allyl Pd Complex after a Carbopalladation

52%

E = CO2Et

"PdH" migration

[Pd]I

Ph Ph[Pd]I

Ph

[Pd]I

PhPh

[Pd]I

Ph

E

E

E

E

i+ +

H[Pd]I

H[Pd]I

i : Pd(dba)2, NaHCO3, NBu4Cl, DMSO, 80° C

PhI

Ph

Larock, R. C.; Wang, Y.; Lu, Y.; Russel, C. E. J. Org. Chem., 1994, 59, 8107Larock, R. C.; Lu, Y.; Bain, A. C.; Russel, C. E. J. Org. Chem., 1991, 56, 4589.

484 discrete mechanistic steps !!!

G. Poli

Page 23: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Tsuji, J.; Kataoka, H.; Kobayashi, Y. Tetrahedron Lett. 1981, 22, 2575

Tsuji, J.; Shimizu, I.; Minami, I. Tetrahedron Lett. 1982, 23,4809

In Situ Generation of Base

+

89 : 11

OAc

OH

CO2MeO

OAc

OH

OCO2Mert, 72%

+

CO2Me

O

O

OAc Pd2(dba)3, TMPP

With allylic oxiranes, carbonates, and phenates (see next sheet) as substrates use of a base can be avoided since the anion generated during ionization can deprotonate the pro-nucleophile.

G. Poli

AcO

CO2Me

O

AcOOCO2Me

77%

+

CO2MeO

Pd2(dba)3, Ph3P

Page 24: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

In Situ Generation of Base In Situ Generation of Base

With allylic acetates use of the base can be also avoided if the pro-nucleophile is sufficiently acidic (pKa DMSO ≤12).

Poli, G., Giambastiani, G. J. Org. Chem. 1998, 63, 9608-9609

SO2Ph

SO2Ph+

Cl(CH2)2Cl, 12h

Pd2(dba)3, PPh3, 95%Ph OAc

SO2Ph

SO2PhPh

Ph OAcCOMe

CO2Et+

Pd(PPh3)4, PPh3, 69%

CH2Cl2, 11hPh

CO2Et

COMe

Tsuji, J.; Okumoto, H.; Kobayashi, Y.; Takahashi, T. Tetrahedron Lett. 1981, 22, 1357

G. Poli

CO2Me

OPh

O

CO2Me

O

Pd(OAc)2, Bu3P

MeCN, 85%

Page 25: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

pKa Scale of Pro-nucleophiles

G. Poli

Page 26: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

The Memory Effect

D OAc+

THF, rt, 95%

NaCMe(CO2Me)2

Pd

Cl

PdCl

cat D

Me CO2Me

CO2MeD

MeCO2Me

CO2Me

(R)-MeO-MOP

83 : 17

D+

THF, rt, 85%

NaCMe(CO2Me)2

Pd

Cl

PdCl

cat D

Me CO2Me

CO2MeD

MeCO2Me

CO2Me

(R)-MeO-MOP

17 : 83

OAc

Hayashi, T.; Kawatsura, M.; Uozumi, Y.; J. Am. Chem. Soc. 1998, 120, 1681

Isomerization of the π-allyl intermediates is slow when bulky ligands are used such as MeO-MOP or t-Bu3P

G. Poli

Page 27: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Regioselectivity of Addition and the Memory Effect

Normally, Pd-catalyzed allylation of nucleophiles with substituted π-allyl systems occurs with preference at the less substituted alllylic terminus to give the linear product as the

major compound. The bulkier the nucleophile, the higher the preference for the linear

product. In line with the fact that a common π-allyl-Pd intermediate is involved, the final product ratio is independent of the regiochemistry of the chosen starting substrate.

However, in the presence of special bulky monophosphine ligands, allylation takes

place preferentially on the C atom originally occupied by the leaving group. Such a

behavior, which is more pronounced with the branched substrate, is named “memory

effect”, and indicates that, in contrast to the previous case, different π-allyl-Pdintermediates are implicated as a function of the starting regioisomeric substrate used.

G. Poli

Page 28: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Regioselectivity of Addition and the Memory Effect

X

[Pd(0)]

R

[Pd(II)]XLn

RX

R Ph Nu

Nu

R

Nu

common intermediate

linear

branched

linear

branched

L

X

[Pd(0)]

R

[Pd(II)]XL

R

X

R Ph Nu

Nu

R

linear

branched

linear

branched

L

[Pd(0)]

L[Pd(II)]XL

R

Nu

Nu

No memory effect (no bulky monophosphines as ligands)

Memory effect (special bulky monophosphines as ligands)

G. Poli

Page 29: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Regioselectivity of Addition and the Memory Effect

Hayashi, T.; Kawatsura, M.; Uozumi, Y.; J. Am. Chem. Soc. 1998, 120, 1681

Ph

OAc L, THF, rt

NaCMe(CO2Me)2

Pd

Cl

PdCl

cat Ph

CO2Me

CO2MeMe

Ph

MeO2C CO2MeMe

L = 91 9

Ph

OAc

+

L, THF, rt

NaCMe(CO2Me)2

Pd

Cl

PdCl

catPh

CO2Me

CO2MeMe

Ph

MeO2C CO2MeMe

+

L = 92 8

PPh2

OMe L = (R)-MeO-MOP

PPh3

79 21

(R)-MeO-MOP

PPh3

L = (R)-MeO-MOP 23 77

+

+

G. Poli

Page 30: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Rationale for the Memory Effect

When L is a bulky monophosphine the generated π-allyl complex features L and R in anti positions. Furthermore, apparent allyl rotation is slow compared to the addition of the nucleophile.

Poli, G. Scolastico C. Chemtracts - Org.Chem. 1999, 12, 822-836Poli, G. Scolastico C. Chemtracts - Org.Chem. 1999, 12, 837-845

RX

PdL

R

PdLX

Nu

R

PdXL

Nu

R

H

slow or disfavored

fast

G. Poli

Page 31: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Allylation of Oxygen Nucleophiles

Pd-catalyzed allylation of oxygen-based nucleophiles is also possible. However, good results in intermolecular O-allylations can be obtained only by enhancing the

nucleophilicity of these coupling partners via their transformation into metal (i.e. Zn or

Sn) alkoxides.

Kim, H.; Lee, C. Org. Lett. 2002, 4, 4369G. Poli

CO2Me

OAc

Ph OH

ZnEt2 (0.5 eq.) THFCO2Me

O Ph

CO2Me

O Ph

++

Pd(OAc)2 / L

P

> 40 : 1 (70%)

1 : 2 (20%)Pd(PPh3)4

[Pd(0)] cat.

L =

Page 32: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Allylation of Nitrogen Nucleophiles (Allylic Amination)

Several nitrogen-based nucleophiles attack η3-allylpalladium complexes thereby generating allylic amines or amine derivatives. These nucleophiles include primary (but

not ammonia) and secondary amines, carboxamides, sulfonamides, and azides. The

reaction proceeds under conditions similar to the Pd-catalyzed allylic alkylation (Tsuji-Trost reaction). The allylic amination reaction may be a reversible step. In other words,

the resulting allylic amine may, in the presence of Pd(0), give back the parent η3-allylpalladium complex.Primary and secondary amines can add as such, whereas the less nucleophilic

carboxamides or sulfonamides usually need prior deprotonation.

Cl

OAc

HN

OAcPd2dba3

.CHCl3 cat.PPh3, THF, rt, 12h, 95%

Ph NH2

Ph

Lemaire, S. Giambastiani, G. Prestat, G. Poli G. Eur. J. Org. Chem. 2004, 2840-2847

G. Poli

Page 33: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Allylation of Nitrogen Nucleophiles

N

N

O

s-Bu

Ts

Ph

NOAc

O

s-Bu NH

Ts

Ph

5% Pd(OAc)2, 10% dppe, DMF, 80°C, 3 h

N

N

O

R

Ts

Ph

N

N

O

R

Ts

Ph

N

N

O

Ph

Ts

Ph

[Pd]Pd(0) Pd(0)

cis : trans 95 : 5

more stableless stable

quant.

Ferber, B.; Lemaire, S.; Mader, M. M.; Prestat, G.; Poli, G. Tetrahedron Lett. 2003, 44, 4213-4216

G. Poli

Page 34: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Allylation of Nitrogen Nucleophiles (Allylic Amination)

Feuerstein, M.; Laurenti, D.; Doucet, H.; Santelli, M. Tetrahedron Lett. 2001, 42, 2313

Chiusoli, G. P.; Costa, M.; Pallini, L.; Terenghi, G. Transition Met. Chem. 1981, 6, 317; 1982, 7, 304.

The latter example shows that even allylic alkylation, in special cases, can be a reversible process

CO2Me

CO2Me

+ Et2NH

Pd(PPh3)4 THF, 95%

NEt2

CO2Me

CO2Me

CO2Me

CO2Me[Pd]

G. Poli

OAc

H2O, K2CO355°C, 20h, 96%

Pd

Cl

PdCl

cat+

N

O

HPPh2Ph2P

PPh2Ph2P(TEDICYP)

N

O

Page 35: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Fe

OAc

Me Me NNaCHO

CHO

Pd

Cl

PdCl

cat

PPh2

PPh2

(DPPF)

N

Me Me

CHOOHCMeCN79%

+hydrolysis

NH2

Me Me

Indirect Preparation of Primary Allylic Amines

OAc +

Pd2(dba)3 dppe, 93%

N

OO

OO

Li N

Boc

BocNH2

hydrolysis

OAc

Pd(PPh3)4 THF, H2O 88% N

NH2

Ph N N N NN

AcONaNa

sodium azide allyl azide

PPh3 NH2OHPh Ph+

Ph3PO, N2

Murahashi, S.; Taniguchi, Y.; Imada, Y.; Tanigawa, Y. J. Org. Chem. 1989, 54, 3292

Connel, R. D.; Rein, T.; Åkermark, B.;Helquist, P. J. Org. Chem. 1988, 53, 3845

Wang, Y.; Ding, K. J. Org. Chem. 2001, 66, 3238

The direct Pd-cat allylation of ammonia is not a clean reaction. However, indirect preparation of primary allylic amines via Pd-catalysis is possible using ammonia “surrogates”.

G. Poli

Page 36: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Terminal Versus Central Attack in η3-Allyl Systems

σ-donor ligands raise the antisymmetrical MO and slightly lower the symmetrical one, while

π-acceptor ligands, owing to back-donation, lower the antisymmetrical MO.

Thus, under frontier orbital control, σ-donor ligands favor central carbon atom addition, while π-acceptor ligands direct the addition to the terminal position.

L L

Nu

L L

Nu

SymmetricalLower with σ-donor ligands

Low-lying unoccupied MO‘s in (η3-allyl)PdL2 complex

AntisymmetricalLower with π-acceptor ligands

G. Poli

Page 37: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Terminal Versus Central Attack in η3-Allyl Systems

Cl

PdL L

ClMe CO2Et

CO2Et

Pd

L L

Cl

Me CO2Et

CO2Et

PdL L

Me CO2Et

CO2EtMeEtO2C

CO2EtMe

CO2Et

CO2Et

A

B

+

- Cl-

+

σ-donorligands

π-acceptorligands

- PdL2

- PdL2 - NaCl

L = PPh3 A:B 98 : 2

L = TMEDA A:B <1 : > 99BF4-

-NaBF4

Cl-

MeNaC(CO2Et)2

MeNaC(CO2Et)2

However, competition between terminal and central addition may be present only with rather hard nucleophiles.If the energy level of the nucleophile is too low (i.e. if the nucleophile is too stabilized) charge control may override frontier orbital control, and terminal attack is restored

G. Poli

Page 38: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Enantiodiscrimination in the Allylic Alkylation

G. Poli

Page 39: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Types of Enantiodiscriminationη3-Allyl complex formation (ionization)

Product formation

[Pd(II)]Ln*

X

R

enantiotopic faces of the starting alkene

X

enantiotopic allylic leaving groupsin the starting meso substrates

X

σ

R R

[Pd(0)]Ln*[Pd(0)]Ln*

[Pd(II)]Ln*

enantiotopic allylic sitesof the meso π-allyl-moietyin the Pd allyl complexes

σ

R

[Pd(II)]Ln*

enantiotopic faces of the π-allyl moietyin the Pd allyl complexes

σ

σ

Nu Nu

O

R

σ

forming stereogenic center

X R

X

[Pd(0)]Ln*

enantiotopic geminal allylic leaving groups

enantiotopic faces of the nucleophile

G. Poli

Page 40: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Which is the Best Chiral Catalyst?

Phosphines: good σ-donors and π-acceptors.They stabilize the monomeric species while providing control over the steric and electronic properties of the system. The different properties of the donor atoms are transmitted to the π-system through the metal, thus allowing the fine tuning of the reactivity of the substrate.

Phosphites: strong back bonding

Amines: pure σ-donors

Bonds trans to P are expected to be longer than bonds trans to N.

Predictions are very difficult because: 1) information on the olefinic complexes is not available 2) In palladium catalyzed allylic alkylations, allyl-palladium complexes are often in dynamic equilibrium. On the time scale of the catalytic cycle ligands can dissociate, reassociate, and change their conformations

and geometry. When a stabilized nucleophile attacks a π-allyl-Pd-complex, bond reorganization is also occurring between the ligands and the allylic moiety as the substrate undergoes a change in hapticity. Interactions between the chiral ligands and the allyl fragment during the η3-η2 reorganization may be just as important as interactions between the allyl fragment and the incoming nucleophile.

G. Poli

Page 41: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Some Chiral Ligands for Pd-cat Allylic Alkylations

N

O

RR

O

N

R

O

N PPh Ph

Ph

R = t-Bu, Bn R = t-Bu, Ph, i-Pr

Ph

NOH)n

PhPFe

P Ph

Ph

(O

OHO2C

Ph2P PPh2

B.M. Trost G. Helmchen, A. Pfaltz, J.M.J. Williams

T. Hayashi K. Achiwa

NH

P

PhPh

OO

PhPh

P

HN

Two different concepts: • Envelopment of the π-allyl moiety by creating a chiral pocket.• Interaction with the incoming nucleophile.

NH NHO O

P PPh

Ph

PhPh

G. Poli

Page 42: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

T.Hayashi et al. J. Am. Chem. Soc., 1989, 111, 6301

H. Yang et al.Organometallics, 1993, 12, 3485

G.Helmchenet al. Tetrahedron Lett., 1994, 35, 1523

M.Yamaguchi et al.Chem.Lett.,1996, 241

A.Pfaltz et al.Acta Crystallogr.,Sect.C, 1995, 51, 1109

2.24 Å

2.12 Å

X-ray Structures of Some η3-Allyl Complexes

G. Poli

Page 43: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Discrimination of Enantiotopic Faces

O

O

OMe

NaCH(CO2Me)2

Pd(dba)2R-(+)-BINAPdioxane, rt.

CO2Me

CO2MeH

90% ee

Fiaud J. C. et al. J. Org. Chem. 1990, 55, 4840; Tetrahedron, 1994, 50, 465.

PPh2

PPh2

R-(+)-BINAP

The reaction is dependent on solvent and counterion. For example, yields and enantioselectivities dropped with toluene as the solvent or in the presence of crown ethers. The enantioselectivity correlates roughly with the leaving group ability: better leaving groups gave poorer enantioselectivities.

Pd(dba)2dppedioxane, rt.

NaCH(CO2Me)2OAc

60% ee 56% ee

CO2Me

CO2Me Enantioface exchange is not occurring during the reaction. Enantiomeric purity is preserved.

Re face preferred

G. Poli

Page 44: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Discrimination of Enantiotopic Faces

P

NO

Ph Pd

Ph

R

Ph

Ph

NuH

R Yield % ee %

Me 95 95

Ph 88 99

ClC6H4- 91 >95

2-Py 89 92

1-Naphth 96 >96

Mesityl 91 98

Williams, J. M. J. et al. Tetrahedron: Asymmetry 1995, 6, 2535

Ph R

Ph OAc2.5 % [Pd(allyl)Cl]2NaCH(CO2Me)2Ligand 10 %

Ph R

PhMeO2C CO2Me

P N

O

Ph Ph

G. Poli

Page 45: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Discrimination of Enantiotopic Faces

π-σ-π Pd/C rotation may bring about apparent allyl rotation. In contrast to what happens with symmetrical allyl fragments (see later), only complex A has the less

substituted allyl terminus trans to P atom of the ligand. This may explain the lower reactivity of these non symmetrical complexes with respect to the symmetrical

ones. The nucleophile has to “wait” for the allyl group to arrange itself in the more

sterically crowded isomer.

P

N

O

Ph Pd

Ph

R

Ph

+

H

Ph Nu

reactive

Brown, J. Oxford

A B

P

N

O Ph

Pd

Ph

R

Ph

Ph

Nu

+

G. Poli

Page 46: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Discrimination of Enantiotopic Faces

Ph R

Ph OAc

Ph R

Ph

MeO2C CO2Me

Ph R

Ph[Pd]

R

Ph OAc

Ph R

Ph

MeO2C CO2Me

Ph R

Ph

[Pd]

Ph

Ph R

Ph[Pd]

π-σ-π C/C rot. accounts for generation of the same reactive intermediate from the two enantiomeric acetates (enantioface exchange).

G. Poli

Page 47: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

OAcNu

Nu

Desymmetrization of Meso η3-Allyl Complexes

This substrate is often taken as a model to test new chiral ligands in

asymmetric allylic alkylation.With this substrate the ionization step produces a meso form, and

the nucleophile is directly involved in the enantiodiscriminating step.

A wide variety of bidentate ligands are capable of inducing high ee’s.

G. Poli

Page 48: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

The Oxaxoline P/N Ligand

Helmchen G. et al. Tetrahedron Lett. 1994, 35, 1523

ligand / Pd ratio: 1.2

0.02 equiv.

yield 98%e.e.: 98%

Ph Ph

OAc

H2C(CO2Me)2 3 equiv.1/2 [C3H5PdCl]2 cat.BSA 3 equiv.AcOK 0.01 equiv.THF / rt

Ph Ph

MeO2C CO2Me

N P

2.24 Å

2.12 Å

Major and more reactive complexAttack trans to P atomi-Pr is pseudo-axial

Ph Ph

HH

+OPh

PPdN Ph

Nu

X-ray structure

G. Poli

Page 49: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Oxaxoline Ligands do not Exchange Enantiofaces during Rxn

Pfalz, A. Pregosin, P. et al. Helv. Chim. Acta, 1995, 78, 265.

A B

L = PPh3 58 : 42L = A 99 : 1L = B 1 : 99L = C 93 : 7

SR

CH2(CO2Me)2AcOK, 23 °C2% (allylPdCl)2ligand

CO2MeMeO2COAc MeO2C CO2Me

enantiopure enantiopure enantiopure

Enantiofaces are not exchanged during the reaction

Ph Tol

PdL L

Ph TolPd

L L

Nu

O

NN

O

PhCH2 CH2Ph

C

O

N

Ph

P

PhPh

O

N

Ph

P

PhPh

P/N Oxazoline ligands BOX ligand

G. Poli

Page 50: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

H

H

H

H

Ph Ph

HH

SbF6-SbF6

-

++N

HO

PdP

PhPh

Ph Ph

HH

HOPh

PPdN Ph

PF6-PF6

-

++N

HO

PdP

Ph

PhH

H H

H

SbF6-

+

HOPh

PPdN Ph

PhPh

H H

PF6-

+N

HO

PdP

Ph

PhH

HH

H

PhPh

PPd

HO

Nη1→η3 η3→η1

η1→η3 η3→η1

3 1

31

11

8 1

d.r.:

d.r.:

Facial Exchange in π-Allyl Complexes (η3-η1-η3)

Via NOESY ROESY cross peaks: A: 1-Hs/1Ha; 1-Ha/1Hs; 3-Hs/3Hs. B: 3-Ha/3-Ha

Under the conditions of the allylic alkylation the two conformations interconvert at least 50 times faster than nucleophilic attack.Attack trans to the weaker (and longer) Pd-P bond is easier than trans to the Pd-N bond. The major conformer turns out to be also the more reactive one.

Helmchen G. et al. Tetrahedron Lett. 1994, 35, 1523

Via C-C rotation(syn-anti equilibration)k = 0.65 s-1 -23 °C

Via Pd-C rotation(apparent allyl rotation)k = 1.6 s-1 +25 °C

A1 A2

B1 B2

The complexed allyl face is exchanged

The complexed allyl face is not exchanged

P/N Oxazoline ligands

G. Poli

Page 51: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Rationalization of the Enantioselectivity

The enantioselectivity is determined by the regioselectivity of the nucleophilic attack

Ar Ar

Pd CH2PhPhCH2

O

N N

O

+

PF6-

Pd

N N

68°108°

85°99°

2.17

2.13

2.12

2.11

According to 1H-NOESY the allyl complex exists in at least two rapidly interconvertingconformations.

The coordination at Pd is pseudo-square planar and the central chelated 6-membered ring

system is in a boat-like conformation. The C-Pd distance of the two allylic termini is different.The nucleophile attacks preferentially the allylic terminus associated to the longer, and thus

more reactive, C-Pd bond.

NuX-ray structure

G. Poli

Page 52: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Rationalization of the Enantioselectivity

R

R

R

R

R

RPhPh

H H

Ph

Nu

Ph

Ph

Nu

Ph

CH2(CO2Me)2AcOK, 23 °C2% (allylPdCl)2

Ar Ar

OAcCO2MeMeO2C

Ar ArO

NN

O

PhCH2 CH2Ph

favored disfavored

The different energies of the two possible diastereomeric Pd(0) complexes resulting from the nucleophilic attack, or of the corresponding transition states leading to them, may be the

factors dictating the selectivity (a pseudo square planar geometry is assumed for Pd).

BOX ligand

G. Poli

Page 53: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

C1 vs C2 Symmetric Ligands

1,3-syn-disubstituted Pd π-allyl complexes may interconvert only via π−σ−π (C-Pd rot)

mechanism (apparent allyl rotation), as shown above. An alternative π−σ−π (C-C rot) mechanism, which would bring about syn/anti interconversion, is usually at work only

with terminal π-allyl complexes, where the syn/anti interconversion is hidden.

If R1 = R2, the π-allyl fragment has C2h symmetry, and the two allylic termini become enantiotopic. Now, if the chiral bischelating ligand has C1 symmetry, complexes A and B

are different diastereoisomers. The two isomers, usually referred to as endo and exo,

can be distinguished spectroscopically, in fact, their interconversion in solution is slow

with respect to NMR time scale.If, on the other hand, the ligand has C2 symmetry (L1 = L2), the above interconversion

becomes hidden, since it would re-generate the same diastereoisomer (A = B).

A B

C-Pd rot σ→ππ→σR1 R2

PdL2 L1*

PdL2 L1

R1 R2

*Pd

L1 L2

R1 R2

*R1 R2

PdL1 L2*+ + + +

G. Poli

Page 54: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

C2 vs C1 Symmetric Ligands

Apparent allyl rotation

PdR

R

Ph

PhPN

OPh

OPh

N

PdR

R

P Ph

Ph

RR

NO

NO

PdPh

Ph

RR

Ph

PhPd

ON

ON

+

+ +

+

G. Poli

C2

C1

Page 55: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

The Syn/Anti Exchange may be Selective

With Josiphos the allylic carbon attached to the Cy2P group always remains trans to this group. Only the bond trans to Ph2P group is broken during the syn/anti exchange process.

Pregosin, P. S. Togni, A. et al. J. am. Chem. Soc. 1994, 116, 4067

Fe Pd

CyCy

Ph

P

P

Ph

Pd

CyCy

Ph

P

P

Ph

Fe

P

PPh

Ph

CyCy

PdFe

P

PPh

Ph

CyCy

PdFe+ +

+ +

G. Poli

Page 56: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Trost B.M.et al. Angew. Chem.,Int.Ed.1995, 34, 2386,

PdP

HN O

O

P

NH

The π-allyl unit sits in a chiral pocket defined by the propeller arrangements of the aryl rings which orient in edge-face relationships.

The P-Pd-P bite angle is 110.5°, considerably larger than the normal (~90°) bite agle of square planar complexes.

PdP P

PhPh

Ph

Phϑ

The Trost Ligands

X-ray structure

G. Poli

Page 57: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

The Trost Ligands: Concept

XO

P

OX

P

Pd

ON

Pd

P P

NO

H H

SCAFFOLD SCAFFOLD

2-diphenylphosphinoaniline (DPPA) L12-(diphenylphosphino)benzoic acid (DPPBA) L2

For both series opening of the bite angle (P-Pd-P) is believed to enhance the depth of the

chiral pocket in which the substrate must reside. This is expected to create a chiral space that controls enantioselectivity.

B. M. Trost et al. Angew. Chem Int. Ed. Engl. 1992, 31, 228; J. Am. Chem. Soc. 1992, 114, 9327

G. Poli

Page 58: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Discrimination of Enantiotopic Leaving Groups

SCAFFOLD

X Y

P

Y X

P

Pd

O OTsHN NHTs

O O

O

NO

Ts

O

NO

Ts2.5 mol% (Pd2(dba)37.5 mol% Ligand THF rt

SCAFFOLD

XY

P

YX

P

Pd

Clockwise Counterclockwise

Clockwise Counterclockwise

intramolecular

G. Poli

Page 59: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

A Mnemonic Device...

N

O

O

Ts

2.5 mol% Pd2(dba)3 CHCl37.5 mol% ligandTHF / rt

(-)clockwise ionization

PhPh

P

ONH

PhPh

P

ONH

PPh2

PPh2

chiral scaffold

linker

clockwise ligand L2

pro-R pro-S

HNS

O OO O

OO

SNH

O O

PdP

P

Clockwise ligand induces a clockwise motion of the catalyst with respect to the substrate, thereby preferentially ionizing the pro-R leaving group.

…to correlate absolute stereochemistry with the chirality of the ligand

Enantioselective ionization of enantiotopic leaving groups

G. Poli

Page 60: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

PhCO2 O2CPh PhCO2 NuNu / ligand

Nu O2CPhNu / ligand

NH NHO O

P PPh

Ph

PhPh

NH NHO O

P PPh

Ph

PhPh

L3 counterclockwiseL4 clockwise

Nu ligand A:B yield %

NaCH(CO2Me)2 L3 96.5 : 3.5 80

NaCH(CO2Me)2 L4 4 : 96 68

PhCH2NHMe L3 89 : 11 75

PhCH2NHMe L4 <1 : >99 77

Discrimination of Enantiotopic Leaving Groups

ABclockwise counter-clockwise

Trost, B. M. Van Vranken, D. L. Chem. Rev. 1996, 96, 395

intermolecular

G. Poli

Page 61: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Discrimination of Enantiotopic π-Allyl Faces

PhPh

P

ONH

PhPh

P

ONH

H H

Trost, B. M. Bunt, R. C. Angew. Chem. Int. Ed. Engl. 1996, 35, 99

CH2Cl2: 98% eeTHF: 68% ee

<1>75

NO O

OH

PdL L

O-

PdL L

O-

NO O

OH

Ligand (7.5%)K2CO3 (5%)(allyl)PdCl/2 (2.5%)(99%)

N

O

O

H

O

The epimerization (deracemization) has to occur faster than alkylation so that one of the two complexes reacts faster than the other. In the ligand, rotation of the carboxylate bond is restricted owing to the peri interactions. The nature of the chiral cavity is different with respect to the parent phenyl-type ligand.

faster reacting

regio + enantiocontrol + starting material deracemization

G. Poli

Page 62: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Interaction Between η3-Allyl Pd-Complexes and Allenes

[Pd]O2Ct-Bu

t-BuCO2

.

CO2MeMeO2CMeO2C

MeO2C .MeO2C CO2Me

Pd(0)

anti allene-attackto η3-allylPdoxydative add.

Franzén, J.; Löfstedt, J.; Dorange, I.; Bäckvall, J.-E. J. Am. Chem. Soc. 2002, 124, 11246Franzén, J.; Löfstedt, J.; Falk, J.; Bäckvall, J.-E. J. Am. Chem. Soc. 2003, 125, 14140

Allenes can intramolecularly syn carbopalladate with a π-allyl Pd complex to generate a new π-allyl Pd complex, which can in turn be trapped to give a cyclized allylic ester.

a) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067. b) Doi, T.; Yanagisawa, A.; Nakanishi, S.; Yamamoto, K.; Takahashi, T. J. Org. Chem. 1996, 61, 2602. (c) Takahashi, T.; Doi, T.; Yamamoto, K. In Transition Metals for Organic Synthesis, Beller, M.; Bolm, C., Eds. Wiley-VCH: Weinheim, 1998; Vol. 1, pp 265-274

AcO

.

[Pd]OAc

.

OAc

[Pd]OAcoxidativeaddition

Pd(0)

syn carbopd

[Pd(0)]

nu add to η3-allyl

However, allenes are also able to act as π-nucleophiles, giving trans attack on a (π-allyl)Pd complex instead of cis insertion.

Page 63: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Pd(0)-Catalyzed Cyclization of 1,3-Dienyl Allenes

Löfstedt, J.; Franzén, J.; Bäckvall, J. E. J. Org. Chem. 2001, 66, 8015Joakim Löfstedt, Katja Närhi, Ismet Dorange and Jan-E. Bäckvall, J. Org. Chem. 2003, 68, 7243-7248

.

MeO2C CO2MePd(dba)2 (5 mol%) Li2CO3, CH2Cl2Nu (10 equiv.)

MeO2CCO2MeRCO2

10 examplesNu: RCO2H, ROH, RSH

.

MeO2C CO2Me Pd(dba)2, LiOAc, AcOH(D)(65%)

MeO2CCO2MeAcO

H(D)

Page 64: η-Allyl Palladium Chemistry · A Pd B R1 R3 R2 A Pd B R2 R3 R1 A Pd B R1 R3 R2 η3 → η1 Pd A B R3 R2 R1 rotation Pd A B R3 R2 R1 η1 → η3 + + + + + η3-Allyl-Pd Complexes are

Possible Mechanisms of the Cyclization

1st hypothesis

oxidativecoupling

external attackon π-allylPd

.

MeO2C CO2Me MeO2CCO2Me

[Pd]

[Pd]CO2Me

CO2Me

H-Nu

MeO2CCO2Me

H[+Pd]

MeO2CCO2Me

H

NuPd(dba)2

Nu-[Pd(0)]

-LL

[Pd(0)]

bis-allyl-Pdrearrangement

protonation

A palladacycle is formed by oxidative cycloaddition to Pd(0). This species rearranges to a bis-(η3,η1-allyl)Pd complex, which in turn can be protonated by the protic nucleophile at the γ-position of the σ-allylligand, to give a new (η3-allyl)Pd complex. An external nucleophilic attack on this (η3-allyl)Pd complex would give the products and regenerate Pd(0).

.

MeO2C CO2Me

[Pd]

MeO2C CO2Me MeO2CCO2Me

[Pd+]

MeO2CCO2MeNu

Nu-[Pd]-H

Nu-[Pd(0)]

[Pd(0)] + NuH

HH H

oxidativeaddition

syn hydropdto allene

syn caropdto alkene

external attckon π-allylPd

The Pd-hydride species, generated by oxidative addition of NuH to Pd(0), hydropalladates the distal allenicdouble bond thereby forming a vinyl-Pd species. The latter intermediate would then undergo intramolecularcarbopalladation to give an (η3-allyl)Pd complex. Subsequent external nucleophilic attack would give the products.

2nd hypothesis