13

repositori.unud.ac.id · bangun destilasi air laut tenaga surya menggunakan penyerap tipe bergelombang dan penyerap tipe datar sebagai pembandingnya dengan dimensi 1m x 1m. Mengingat

Embed Size (px)

Citation preview

Seminar Nasional Mesin Dan Industri (SNMI8) 2013 Riset Multidisiplin Untuk Menunjang Pengembangan Industri Nasional

Jakarta, 14 November 2013

TM-42 | 263

ANALISA PERFORMANSI DESTILASI AIR LAUT TENAGA SURYA

MENGGUNAKAN PENYERAP RADIASI SURYA TIPE BERGELOMBANG YANG BERBAHAN DASAR

CAMPURAN SEMEN DENGAN PASIR

Ketut Astawa1), Made Sucipta2), I Gusti Ngurah Suryana3)

Jurusan Teknik Mesin Fakultas Teknik Universitas Udayana-Badung, Indonesia (80364) e-mail: [email protected]

Abstrak

Air merupakan kebutuhan yang paling penting dalam kehidupan manusia terutama air tawar

yang bersih dan sehat. Kekurangan akan air bersih banyak menimpa masyarakat yang tinggal

di daerah pesisir pantai. Sebagian besar sumber air yang didapat merupakan air laut.

Sehingga untuk mendapatkan air bersih perlu adanya pemrosesan atau pengolahan air laut

menjadi air tawar dan air bersih. Pada sistem destilasi air laut tenaga surya ini, plat penyerap

sangat berperan penting karena berfungsi sebagai penyerap sinar radiasi matahari dan

mengkonversikannya menjadi energi panas. Pada penelitian ini akan dibuat suatu rancang

bangun destilasi air laut tenaga surya menggunakan penyerap tipe bergelombang dan

penyerap tipe datar sebagai pembandingnya dengan dimensi 1m x 1m. Mengingat didalam air

laut terdapat kandungan garam yang mempunyai sifat korosi, maka bahan penyerap yang

akan digunakan pada penelitian ini terbuat dari campuran semen dengan pasir, dengan tujuan

untuk menghindari terjadinya korosi pada penyerap sehingga bisa digunakan dalam jangka

waktu yang cukup lama. Pengujian dilakukan dari pukul 09.00 wita sampai dengan pukul

17.00 wita. Hasil pengujian menunjukkan penyerap radiasi tipe bergelombang lebih banyak

menghasilkan kondensat yaitu sebesar 1250 ml, dengan efisiensi destilasi tertinggi yaitu

mencapai 13,91%. Sedangkan penyerap radiasi tipe datar hanya bisa menghasilkan sebesar

795 ml dengan efisiensi destilasi tertinggi mencapai 9,86%.

Kata kunci : Destilasi, Tenaga Surya, Penyerap Radiasi Tipe Gelombang

1. Pendahuluan

Air merupakan sumber kehidupan. Air merupakan kebutuhan yang paling penting dalam kehidupan manusia terutama air tawar yang bersih dan sehat. Kesulitan mendapatkan air bersih dan layak pakai menjadi permasalahan yang mulai muncul

dibanyak tempat yang salah satunya menimpa masyarakat yang tinggal di daerah pesisir pantai dimana sumber air yang tersedia adalah keebanyakan air laut. Sehingga untuk

mendapatkan air bersih dari sumber air laut yang tersedia perlu adanya pemrosesan atau pengolahan air laut menjadi air tawar dan air bersih, yang salah satunya adalah dengan cara distilasi. Distilasi pada prinsipnya adalah merupakan cara untuk mendapatkan air bersih

melalui proses penyulingan air kotor. Pada proses penyulingan terdapat proses perpindahan panas, penguapan, dan pengembunan.

Sumber energy yang dipergunakan dalam proses distilasi air laut ini adalah energy matahari. Pada sistem destilasi air laut tenaga surya, plat penyerap sangat berperan penting karena berfungsi sebagai penyerap intensitas radiasi matahari dan mengkonversikannya

menjadi energi panas. Fluida yang digunakan dalam penelitian ini adalah air laut, maka bahan dasar dari plat penyerap radiasi yang digunakan berupa campuran semen dengan

pasir guna menghindari adanya korosi pada plat penyerap. Pada umumnya plat penyerap radiasi yang digunakan berupa plat tipe datar. Pada proses distilasi ini buat suatu rancang bangun destilasi air laut tenaga surya yang menggunakan penyerap radiasi surya tipe

bergelombang yang dibandingkan dengan penyerap radiasi tipe datar. Luas bidang penyerapan panas plat penyerap tipe bergelombang ini lebih besar dari pada luas

penyerapan panas plat tipe datar, sehingga performansi dari destilasi air laut tenaga surya ini diharapkan lebih maksimal.

Seminar Nasional Mesin Dan Industri (SNMI8) 2013 Riset Multidisiplin Untuk Menunjang Pengembangan Industri Nasional

Jakarta, 14 November 2013

TM-42 | 264

2. Landasan Teori

2.1 Destilasi Tenaga Surya Teknologi penyulingan air untuk mendapatkan air tawar dari air kotor atau air laut

intinya adalah menguapkan air laut dengan cara dipanaskan, yang kemudian uap air

tersebut diembunkan sehingga didapatkan air tawar. Sumber panas yang dipergunakan berasal dari energi yang beragam yaitu: minyak, gas, listrik, surya/matahari, dan lainnya.

(Sugeng Abdullah, 2005).

Gambar 2.1. Proses Kerja Destilasi Tenaga Surya

2.2 Kesetimbangan Energi

Efisiensi alat destilasi air merupakan perbandingan dari energi berguna dengan

energi panas yang dihasilkan oleh plat penyerap. Energi berguna merupakan energi panas yang digunakan dalam proses penguapan dan energi panas yang digunakan saat

pengembunan. Untuk mengetahui efisiensi alat destilasi kita tinjau kesetimbangan energi pada alat destilasi.

Gambar 2.2. Diagram aliran energi

Keterangan gambar: IT = Intensitas matahari (W/m2). qr,1 = Laju perpindahan panas radiasi dari kolektor kepermukaan dalam kaca (Watt).

qc,1 = Laju perpindahan panas konveksi dari uap air kepermukaan dalam kaca (Watt). qc,w = Laju perpindahan panas konveksi dari air ke uap air (Watt).

qk = Laju perpindahan panas konduksi dari kolektor kedinding luar (Watt). qr,o = Laju perpindahan panas radiasi dari kaca ke lingkungan (Watt). qc,o = Laju perpindahan panas konveksi dari permukaan kaca ke lingkungan (Watt).

Ta = Temperatur lingkungan (oC). Tw = Temperatur air (oC).

Tc = Temperatur permukaan kaca (oC).

Radiasi

Matahari

Output Air Bersih Sistem Destilasi Input Air Laut

Tw Tp

qr,1

qc,w

qc,1

Ta

qc,o

qr,o

Tsv

Tc

Pantulan IT

qk

Seminar Nasional Mesin Dan Industri (SNMI8) 2013 Riset Multidisiplin Untuk Menunjang Pengembangan Industri Nasional

Jakarta, 14 November 2013

TM-42 | 265

Tsv = Temperatur uap air (oC).

Tp = Temperatur plat penyerap (oC).

Kesetimbangan energi dari sistem adalah sebagai berikut: qc,w + qr,1 + qc,1 + (α .IT .Ac) + (α .IT) = qk + qc,o + qr,o (1)

2.3 Energi Berguna

Energi berguna merupakan energi panas yang dihasilkan plat penyerap radiasi untuk memanaskan air laut yang berada di atasnya selama proses. Besarnya energi berguna dapat digunakan persamaan sebagai berikut:

Qu = Qin - Qout Qu = (α .IT .Ac .τ) – [UL .Ac .(Tp – Ta)] (2)

dimana: IT = Intensitas matahari (W/m2) Ac = Luas plat penyerap (m2)

α = Koefisien absorptivitas plat penyerap τ = Koefisien transmisivitas cover / kaca

UL = Koefisien kerugian panas total (W/m2.oC) Tp = Temperatur plat penyerap (oC) Ta = Temperatur lingkungan (oC)

2.4 Energi Berguna Destilasi

Energi berguna destilasi merupakan energi yang dibutuhkan untuk penguapan air laut yang menjadi produk air bersih selama proses. Untuk persamaan energi berguna

destilasi dapat dilihat sebagai berikut:

t

hmQ

fgk

du

(3)

dimana:

mk = produk air bersih per hari (kg) hfg = panas laten penguapan (kJ/kg) t = lama pengujian (s)

2.5 Efisiensi Alat Destilasi

Efisiensi alat destilasi merupakan perbandingan energi panas untuk menguapkan air laut yang menjadi produk air bersih terhadap besar radiasi matahari yang diterima oleh alat destilasi melalui plat penyerap radiasi matahari dalam selang waktu tertentu. Untuk

perhitungan efisiensi alat destilasi air laut tenaga surya dapat digunakan persamaan:

.100 00

tIA

hm

Tc

fgk

d (4)

dimana:

mk = total massa air kondensat (kg) hfg = panas laten penguapan (kJ/kg) Ac = luas plat penyerap (m2)

IT = intensitas radiasi matahari (W/m2) t = lama waktu pengujian (s)

2.6 Koefisien Kerugian Panas Total

Proses perpindahan panas tidak semuanya dapat diubah menjadi energi lain, dan

pada kolektor surya terjadi kerugian panas. Kerugian panas ini terjadi pada bagian atas,

Seminar Nasional Mesin Dan Industri (SNMI8) 2013 Riset Multidisiplin Untuk Menunjang Pengembangan Industri Nasional

Jakarta, 14 November 2013

TM-42 | 266

bagian bawah, dan bagian samping. Pada umumnya kerugian panas bagian samping

diabaikan karena luasan kontak perpindahan panas dari plat penyerap ke samping sangat kecil dibandingkan dengan luasan plat penyerap pada bagian atas/bawah. Untuk koefisien kerugian panas total dapat ditulis sebagai berikut:

UL = Ut + Ub (5) dimana:

UL = koefisien kerugian panas total (W/m2.0C) Ut = koefisien kerugian panas bagian atas (W/m2.0C) Ub = koefisien kerugian panas bagian bawah (W/m2.0C)

3 Metode Penelitian

3.1 Rancangan Penelitian

Metode yang digunakan dalam pengujian ini adalah pengujian eksperimental terhadap rancang bangun destilasi air laut tenaga surya untuk mendapatkan perbandingan

unjuk kerjanya apabila menggunakan plat penyerap tipe datar dan menggunakan plat penyerap tipe bergelombang seperti yang terlihat pada gambar 3.1 dan gambar 3.2. Prinsip

kerja alat destilasi air laut tenaga surya ini adalah air laut yang berada dalam reservoir akan dialirkan menuju basin (penampung air di dalam alat destilasi) melalui pipa penghubung. Air laut yang berada dalam basin akan dipanaskan oleh radiasi matahari melalui media plat

penyerap yang berada pada dasar basin. Air laut akan mengalami penguapan dan kemudian akan mengalami pengembunan pada kaca penutup bagian bawah. Hasil pengembunan

berupa kondensat akan mengalir mengikuti kemiringan kaca penutup dan masuk ke kanal (saluran kondensat) yang selanjutnya akan ditampung dalam penampung air bersih.

Gambar 3.1. Alat destilasi air laut tenaga surya menggunakan plat penyerap radiasi tipe datar

Gambar 3.2. Alat destilasi air laut tenaga surya

menggunakan plat penyerap radiasi tipe bergelombang

Keterangan Gambar: 1. Kaca penutup 2. Plat penyerap

3. Gelas Ukur 4. Kanal

5. Keran/katup 6. Pipa 7. Reservoir Air Laut

8. Isolasi 9. Basin

Seminar Nasional Mesin Dan Industri (SNMI8) 2013 Riset Multidisiplin Untuk Menunjang Pengembangan Industri Nasional

Jakarta, 14 November 2013

TM-42 | 267

3.2 Diagram Alir Prosedur Penelitian

Gambar 3.3. Diagram alir penelitian

4 Hasil dan Analisa

Dari pengujian yang telah dilakukan, maka didapat data-data hasil pengujian dari

alat destilasi air laut tenaga surya menggunakan penyerap radiasi surya tipe bergelombang dan tipe datar sebagai pembandingnya, seperti yang ditunjukan tabel di bawah.

Tabel 4.1. Hasil Pengujian Tipe Datar Jenis Plat: Datar

No Waktu

(Wita)

Tc

(0C)

Tsv

(0C)

Tw

(0C)

Tp

(0C)

Ta

(0C)

Tk

(0C)

mk

(g)

mk

(g)

IT

(mV)

Keterangan

Cuaca

1 09.00 43 35 28 39 33 0 0 0 8,3 Cerah

2 09.30 45 38 30 34 35 0 0 0 7,8 Cerah

3 10.00 45 37 31 31 33 0 0 0 7,8 Cerah

4 10.30 38 37 32 30 32 0 0 0 12,3 Cerah

5 11.00 50 39 34 36 34 34 5 5 12,0 Cerah

6 11.30 48 41 38 39 34 34 10 15 13,3 Cerah

7 12.00 51 43 41 42 35 34 20 35 13,5 Cerah

8 12.30 49 39 42 45 30 31 60 95 12,7 Cerah

9 13.00 51 47 46 47 30 30 15 110 12,2 Cerah

Menghitung Energi Masuk Kolektor (Qin)

Menghitung Energi Berguna Kolektor

(Qu)

Persiapan Alat Pengujian

Pelaksanaan Pengujian

MULAI

Data Tc, Tsv, Tw, Tp, Ta, Tk, mk, IT

Hasil dan Kesimpulan

Menghitung Efisiensi Alat Destilasi ηd

SELESAI

Plot Grafik, Analisa Grafik

Menghitung Energi Berguna Destilasi (Qu-d)

Seminar Nasional Mesin Dan Industri (SNMI8) 2013 Riset Multidisiplin Untuk Menunjang Pengembangan Industri Nasional

Jakarta, 14 November 2013

TM-42 | 268

Jenis Plat: Datar

No Waktu

(Wita)

Tc

(0C)

Tsv

(0C)

Tw

(0C)

Tp

(0C)

Ta

(0C)

Tk

(0C)

mk

(g)

mk

(g)

IT

(mV)

Keterangan

Cuaca

10 13.30 53 49 48 48 32 29 65 175 11,4 Cerah

11 14.00 50 48 51 48 35 32 50 225 10,6 Cerah

12 14.30 52 50 52 49 35 31 85 310 10,2 Cerah

13 15.00 45 47 49 45 30 29 70 380 8,2 Cerah

14 15.30 43 47 47 43 30 29 65 445 7,2 Cerah

15 16.00 38 47 46 43 28 29 40 485 6,0 Cerah

16 16.30 37 45 44 42 27 29 75 560 4,3 Cerah

17 17.00 34 42 42 36 27 29 50 610 3,3 Cerah

Tabel 4.2. Data Hasil Pengujian Tipe Gelombang Jenis Plat: Gelombang

No Waktu

(Wita)

Tc

(0C)

Tsv

(0C)

Tw

(0C)

Tp

(0C)

Ta

(0C)

Tk

(0C)

mk

(g)

mk

(g)

IT

(mV)

Keterangan

Cuaca

1 09.00 36 37 30 37 33 0 0 0 8,3 Cerah 2 09.30 40 35 33 35 35 0 0 0 7,8 Cerah 3 10.00 36 32 33 33 33 0 0 0 7,8 Cerah 4 10.30 39 32 37 36 32 0 0 0 12,3 Cerah 5 11.00 44 40 41 42 34 35 30 30 12,0 Cerah 6 11.30 43 38 42 43 34 34 10 40 13,3 Cerah 7 12.00 44 40 44 46 35 34 50 90 13,5 Cerah 8 12.30 39 40 43 46 30 31 60 150 12,7 Cerah 9 13.00 45 35 45 47 30 30 80 230 12,2 Cerah 10 13.30 49 40 51 52 32 29 65 295 11,4 Cerah 11 14.00 50 43 54 55 35 32 75 370 10,6 Cerah 12 14.30 49 43 56 57 35 31 130 500 10,2 Cerah 13 15.00 45 39 48 53 30 29 105 605 8,2 Cerah 14 15.30 43 37 45 45 30 29 130 735 7,2 Cerah 15 16.00 37 36 44 44 28 29 105 840 6,0 Cerah 16 16.30 34 35 43 44 27 29 130 970 4,3 Cerah 17 17.00 34 35 43 40 27 29 95 1065 3,3 Cerah

Dengan menggunakan persamaan-persamaan yang dijelaskan pada landasan teori

maka hasil perhitungannya dapat dibuatkan grafik seperti dibawah ini:

Gambar 4.1. Garfik Perbandingan Energi Berguna Pada Kolektor

Terhadap Intensitas Radiasi Matahari

0

100

200

300

400

500

600

700

800

900

1000

0

200

400

600

800

1000

1200

09.0

0

09.3

0

10.0

0

10.3

0

11.0

0

11.3

0

12.0

0

12.3

0

13.0

0

13.3

0

14.0

0

14.3

0

15.0

0

15.3

0

16.0

0

16.3

0

17.0

0

Inte

nsi

tas

Radia

si M

ata

hari

(W

/m2)

Qu

(W

att

)

Waktu (Wita)

Qu Plat Datar Qu Plat Gelombang IT

Seminar Nasional Mesin Dan Industri (SNMI8) 2013 Riset Multidisiplin Untuk Menunjang Pengembangan Industri Nasional

Jakarta, 14 November 2013

TM-42 | 269

Dari grafik energi berguna (Qu) tersebut terlihat bahwa energi berguna pada plat

gelombang lebih besar dibandingkan dengan plat datar. Itu disebabkan karena pengaruh dari energi yang masuk ke kolektor. Dari teori menyatakan bahwa dalam energi masuk kolektor terdapat fungsi dari luasan plat penyerap yang dimana dalam pengujian ini luasan

plat penyerap pada tipe gelombang lebih besar dibandingkan dengan luasan plat penyerap pada tipe datar. Jadi dengan semakin luas plat penyerap maka energi berguna juga semakin

besar. Selain itu, intensitas radiasi matahari juga mempengaruhi energi berguna pada kolektor.

Gambar 4.2. Garfik Perbandingan Energi Berguna Destilasi

Terhadap Intensitas Radiasi Matahari

Dari grafik energi berguna destilasi (Qu-d) yang ditunjukan dalam gambar 4.8

sampai gambar 4.10 diatas, terlihat energi berguna destilasi pada plat penyerap tipe

gelombang lebih besar. Pada saat intensitas radiasi matahari menurun maka energi berguna pada destilasi mulai meningkat. Itu disebabkan pada saat intensitas menurun menyebabkan

proses pengembunan menjadi cepat sehingga massa air kondensat yang dihasilkan pun menjadi besar.

Gambar 4.3. Grafik Perbandingan Efisiensi Destilasi

0

200

400

600

800

1000

1200

020406080

100120140160180200

Inte

nsi

tas

Radia

si M

ata

hari

(W/m

2)

Qu

-d (

Watt

)

Waktu (Wita)

Qu-d Plat Datar Qu-d Plat Gelombang IT

0

2

4

6

8

10

12

14

8,48

12,55

Efi

sie

nsi

Desti

lasi

(%)

Plat Datar

Plat Gelombang

Seminar Nasional Mesin Dan Industri (SNMI8) 2013 Riset Multidisiplin Untuk Menunjang Pengembangan Industri Nasional

Jakarta, 14 November 2013

TM-42 | 270

Efisiensi destilasi (ηd) merupakan kemampuan alat destilasi untuk menghasilkan

produk destilasi yang berupa kondensat. Dari gambar 4.3 diatas terlihat efisiensi destilasi yang menggunakan plat penyerap tipe gelombang lebih besar, karena hasil produksi yang berupa kondensat pada plat penyerap tipe gelombang lebih banyak dibandingkan dengan

tipe datar. Dengan intensitas radiasi matahari yang besar, maka uap air yang dihasilkan juga meningkat. Dengan meningkatnya intensitas radiasi matahari tersebut maka

temperatur cover juga meningkat, sehingga proses pengembunan tidak dapat berjalan dengan baik karena pengembunan memerlukan media permukaan dengan temperatur ideal. Pada saat hari semakin sore dimana intensitas radiasi juga menurun akan menyebabkan

temperatur cover juga menurun sehingga proses pengembunan pada saat itu juga meningkat.

5 Kesimpulan

Dari hasil pengujian terhadap performansi destilasi air laut yang menggunakan

kolektor surya tipe datar dan tipe bergelombang yang terbuat dari bahan campuran semen dan pasir dapat disimpulkan bahwa performansi destilasi air laut yang menggunakan tipe

gelombang lebih tinggi dari tipe datar. Efisiensi destilasi pada plat penyerap tipe gelombang mencapai 12,55 %, dengan rata-rata produktivitas air tawar mencapai 1173 gram. Sedangkan pada plat penyerap tipe datar efisiensi destilasi mencapai 8,48 %, dengan

rata-rata produktivitas air tawar mencapai 665 gram.

Daftar Pustaka

1. Abdullah, Sugeng.(2005).Pemanfaatan Destilator Tenaga Surya (Solar Energy)

Untuk Memproduksi Air Tawar Dari Air Laut, Laporan Penelitian Sekolah

Pascasarjana Universitas Gadjah Mada Yogyakarta. 2. Duffie and all. (1991). Solar Engineering of Thermal Processes, John Wiley & Sons,

Inc, United State of America. 3. Holman, J. P. alih bahasa oleh Ir. E. Jasjfi M. Sc.(1997). Perpindahan Kalor,

Erlangga, Jakarta.

4. Ismail, Nova R. (2010). Pengaruh Bentuk Cover Terhadap Produktivitas Dan

Efisiensi Solar Still. Jurnal Teknologi Universitas Widyagama Malang Vol.3 No.1.

P.70-74. 5. Jansen, T. J. alih bahasa oleh Prof. Wiranto Arismunandar. (1995). Teknologi

Rekayasa Surya. PT. Pradnya Paramita, Jakarta.

6. Mulyanef., Marsal., Arman R., Sopian K. (2006). Sistem Destilasi Air Laut Tenaga

Surya Menggunakan Kolektor Plat Datar Dengan Tipe Kaca Penutup Miring.

Jurusan Teknik Mesin Universitas Bung Hatta Padang.