6
-295- 29 屆海洋工程研討會論文集 國立成功大學 2007 11 Proceedings of the 29th Ocean Engineering Conference in Taiwan National Cheng Kung University, November 2007 變動密躍層厚度對孤立內波傳遞的影響實驗 盧典育 1 鄭明宏 1 賴得旺 2 王瑋宏 2 陳震遠 3 許榮中 4 1 國立中山大學海洋環境及工程學系研究生 2 國立中山大學海下科技暨應用海洋物理研究所研究生 3 永達技術學院資訊管理學系助理教授 4 國立中山大學海洋環境及工程學系教授 摘要 內波在大洋中傳遞時所產生的各種現象對於海上結構物的破壞、營養鹽的懸浮或是軍事上 海底聲納的干擾等均有重大影響。在大洋中的密躍層厚度並非如理論假設般薄薄一層,導致許 多理想的雙層流體理論,無法適切地描述孤立內波的運動特徵;因此有必要研究不同密躍層厚 度對內波傳遞的影響。由實驗結果分析發現,下沉型孤立內波在不同造波區位能差條件下,其 振幅隨密躍層厚度增加而減小:初始振幅與傳遞振幅之減少率皆在小位能差( 0 η =10)時比大位 能差( 0 η =15)明顯、波速在大位能差產生之變化量比小位能差明顯、初始波長與傳遞波長變化 皆無明顯變化及初始能量與傳遞能量之減少率皆在小位能差時比大位能差明顯。而上舉型孤立 內波之變化與下沉型相似,但其減少率之明顯程度卻弱於下沉型孤立內波之變化。 關鍵字:密躍曾厚度、孤立內波、實驗室試驗 Experimental Study on the Effect of Varying Pycnocline Thickness on Internal Solitary Wave Evolution Tien-Yu Lu Ming-Hung Cheng Te-Wang Lai Wei-Hung Wang Chen-Yuan Chen John R-C. Hsu * * Professor, Department of Marine Environment and Engineering, National Sun Yat-sen University ABSTRACT Internal solitary waves (ISW) have been detected on the interface of a stratified water column in the ocean. It is believed that ISW could affect oil drilling operations, nutrient pumping, and acoustic signal obstruction. In the ocean, the thickness of a pycnocline is finite which differs with the theoretical assumption as being an ultra-thin layer. This paper reports the propagation of an ISW in various pycnocline thicknesses. Our experimental results show that, as the thickness of the pycnoline increases, the values of all the physical parameters (e.g. wave amplitude, phase speed, and wave energy) decreases. Their reduction rates were more significant in the case of small interface displacement (η 0 =10cm) than that with large value of η 0 =15cm. On the other hand, the physical variables associated with a depression ISW are more significant than those in an elevation ISW. Key words: psycnocline thickness; internal solitary wave; laboratory experiment 一、前言 依文獻記載內波的傳遞速度最大值約為 3m/s(Hsu et al., 2000)。海洋內波能量容易蓄積,以 孤立子形態呈現,造成的大振幅波,足以將深處較 冷的海水帶往較暖的淺層,冷水富含營養質,可促 進海洋基礎生物生長。另外,內波引起的等密度線 的低頻振盪,間接引起聲效於水中傳遞之變化,影

變動密躍層厚度對孤立內波傳遞的影響實驗 · PDF fileSluice Gate card Converter 33 34 35 36 37 0 1000 2000 3000 4000 33 34 35 36 37 33 34 35 36 37 500 ... 錄並展示所量測的電壓值,再利用MATLAB

  • Upload
    vutuong

  • View
    218

  • Download
    5

Embed Size (px)

Citation preview

  • -295-

    29 2007 11 Proceedings of the 29th Ocean Engineering Conference in Taiwan National Cheng Kung University, November 2007

    1

    1

    2

    2

    3

    4

    1 2

    3 4

    ( 0 =10)( 0 =15)

    Experimental Study on the Effect of Varying Pycnocline Thickness on Internal Solitary Wave Evolution

    Tien-Yu Lu Ming-Hung Cheng Te-Wang Lai Wei-Hung Wang Chen-Yuan Chen John R-C. Hsu*

    *Professor, Department of Marine Environment and Engineering, National Sun Yat-sen University

    ABSTRACT

    Internal solitary waves (ISW) have been detected on the interface of a stratified water column in the ocean. It is believed that ISW could affect oil drilling operations, nutrient pumping, and acoustic signal obstruction. In the ocean, the thickness of a pycnocline is finite which differs with the theoretical assumption as being an ultra-thin layer. This paper reports the propagation of an ISW in various pycnocline thicknesses. Our experimental results show that, as the thickness of the pycnoline increases, the values of all the physical parameters (e.g. wave amplitude, phase speed, and wave energy) decreases. Their reduction rates were more significant in the case of small interface displacement (0=10cm) than that with large value of 0=15cm. On the other hand, the physical variables associated with a depression ISW are more significant than those in an elevation ISW.

    Key words: psycnocline thickness; internal solitary wave; laboratory experiment

    3m/s(Hsu et al., 2000)

  • -296-

    12m

    ComputerA/D

    Amplifier

    MNDAS

    Digital Camera

    Probe 2 Probe 1Probe 4

    0

    0.3m3.2m5.5m

    Probe 3

    H1

    H2

    Sluice Gate

    card

    Converter

    33 34 35 36 370

    1000

    2000

    3000

    4000

    33 34 35 36 37 33 34 35 36 37

    500

    (0)

    (m)

    (Osborne et al., 1978)

    (Johnson

    et al., 2001)

    ( 1)

    (pycnocline)

    1 2

    1

    2

    (1992)(1997)(1995)

    (

    )

    MNDAS

    MATLAB

    3

    3

    3.1

    3.1.1

  • -297-

    MATLAB

    10

    15

    4 5

    4 H1/H2=10cm/40cm

    0=15cm 15

    1=999g/cm32=1020g/cm3

    5 H1/H2=40cm/10cm

    0=15cm 15

    1=999g/cm32=1020g/cm3

    3.1.2

    ( 4

    5)

    H1/H2=10/4015/3535/15 40/10cm

    15 6

    ( )/()( 121 ) 0~1 Z=0

    6

    (B/H)(f)

    0~0.1

    5 6 ~

    B/H

    ( 2cm )

    6

    3.2 (

    )

    i

    nai a

    aT = aiT na

    ia ( 1

    ). (1)

    i

    ta a

    aT = aT ta

    ( 3 ) ia

    (2)

    i

    nEi E

    ET = EiT nE

  • -298-

    iE ..(3)

    i

    tE E

    ET = ET tE

    iE .(4)

    i

    nCi C

    CT = EiT nC

    iC ..(5)

    3.2.1

    7 8

    1510 15

    B

    7

    6 H1/H2=10cm/40cm

    0=15cm

    8 6

    5 10

    6 3-4

    0 10 20 30 40 50 60 70-7

    -6

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    (t)(c

    m)

    time(s)

    1st (B=4cm)5th (B=8cm)10th (B=12cm)15th (B=14cm)

    7 H1/H2=10cm/40cm

    0=15cm 1510 15

    0 10 20 30 40 50 60 70-2

    -1

    0

    1

    2

    3

    4

    5

    6

    7

    (t)(c

    m)

    time(s)

    1st (B=4cm)5th (B=8cm)10th (B=10cm)15th (B=14cm)

    8 H1/H2=40cm/10cm0=15cm 1510 15

    3.2.2

    9

    (0=15cm)

    (ai)

    10 H1/H2

    (0=15cm)

    10

    2 4 6 8 10 12 140.75

    0.8

    0.85

    0.9

    0.95

    1

    1.05

    1.1

    1.15

    1.2

    (cm)

    T ai

    9 0=15cm H1/H2

    1040 15 run

    1535 15 run

    3515 15 run

    4010 15 run

  • -299-

    2 4 6 8 10 12 140.65

    0.7

    0.75

    0.8

    0.85

    0.9

    0.95

    1

    1.05

    1.1

    (cm)

    T a

    10 0=15cm H1/H2

    3.2.3

    Wessels and Hutter (1996)

    C0

    ''0 HgC = . .(6)

    ( )2121 /' HHHHH += ( ) 112 /' = gg 11 (0=15cm)

    C(cm/sec)

    (0)

    12

    (0=15cm)

    0

    (H1/H2=10cm/40cm)

    (%/cm)(H1/H2=40cm/10cm)

    0

    0

    2 4 6 8 10 12 148

    8.5

    9

    9.5

    10

    10.5

    11

    (cm)

    C (cm

    /s)

    11 0=15cm H1/H2

    2 4 6 8 10 12 140.92

    0.94

    0.96

    0.98

    1

    1.02

    1.04

    (cm)

    Ci

    12 0=15cm H1/H2

    3.2.4

    13 H1/H2

    (0=15cm)

    (Koop and Butler, 1981Michallet and Barthelemy,

    1997)(Vlasenko and Hutter, 2002)

    14

    H1/H2 (0= 10cm)

    1040 15 run

    1535 15 run

    3515 15 run

    4010 15 run

    1040 15 run

    1535 15 run

    3515 15 run

    4010 15 run

    1040 15 run

    1535 15 run

    3515 15 run

    4010 15 run

  • -300-

    2 4 6 8 10 12 140.6

    0.7

    0.8

    0.9

    1

    1.1

    (cm)

    T Ei

    13 0=15cm H1/H2

    2 4 6 8 10 12 140.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    (cm)

    T E

    14 0=10cm H1/H2

    12

    H=50cm

    ( H1 H2)

    (0=10 15cm)

    (H1/H2=10cm/40cm, 15cm/35cm 35cm/15cm

    40cm/10cm)

    (0=15cm)

    (H1/H2=10cm/40cm 35cm/15cm)

    1.

    2.

    NSC 95-2611-M-110 -008

    --

    1. Hsu, M.K. and Liu, A.K. (2000) Nonlinear

    internal waves in the South China Sea, Canadian

    Journal of Remote Sensing, 26, pp. 72-81.

    2. Johnson, D.R., Weidemann, A. and Pegau, W.S.

    (2001) Internal tidal bores and bottom nepheloid

    layers, Continental Shelf Research, 21, pp.

    1473-1484.

    3. Koop, C.G. and Butler, G. (1981) An investigation

    of internal solitary waves in a two-fluid system, J.

    Fluid Mech., 112, pp. 225-251.

    4. Michallet, H. and Barthelemy, E. (1997)

    Ultrasonic probes and data processing to study

    interfacial solitary waves, Experiments in Fluid,

    22, pp. 380-386.

    5. Osborne, A.R., Burch, T.L. and Scarlet, T.I. (1978)

    The influence of internal waves on deepwater

    drilling, J. Petroleum Tech., 30, pp. 1497-1504.

    6. Vlasenko, V. and Hutter, K. (2002) Numerical

    experiments on the breaking of solitary internal

    waves over a slope-shelf topography, J. Physical

    Oceanography, 32(6), pp. 1779-1793.

    7. Wessels, F. and Hutter, K. (1996) Interaction of

    internal waves with a topographic sill in a

    two-layered fluid, J. Phys. Oceanogr., 26(1), pp.

    5-20.

    1040 15 run

    1535 15 run

    3515 15 run

    4010 15 run

    1040 10 run

    1535 10 run

    3515 10 run

    4010 10 run