28
JAEA-Technology 2017-027 DOI:10.11484/jaea-technology-2017-027 広田 憲亮 岩月 仁 今井 良行 Xing L. Yan 原子力科学研究部門 高温ガス炉水素・熱利用研究センター HTGR Hydrogen and Heat Application Research Center Sector of Nuclear Science Research 日本原子力研究開発機構 December 2017 Japan Atomic Energy Agency Noriaki HIROTA, Jin IWATSUKI, Yoshiyuki IMAI and Xing L. YAN 工業プロセスで生じる硫酸及び HI流体環境下における耐食性向上を目指した オーステナイト系Fe基合金及びNi基合金の開発方針 Development Plan of Austenitic Fe and Ni Based Alloys with Improved Corrosion Resistance to Sulfuric Acid and HI Fluids of Industrial Processes

工業プロセスで生じる硫酸及び HI流体環境下における耐 …jolissrch-inter.tokai-sc.jaea.go.jp/pdfdata/JAEA-Technology-2017... · Iodide, Rare Earth, Ellingham

  • Upload
    ngodieu

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

  • JAEA-Technology

    2017-027

    DOI:10.11484/jaea-technology-2017-027

    Xing L. Yan

    HTGR Hydrogen and Heat Application Research CenterSector of Nuclear Science Research

    December 2017

    Japan Atomic Energy Agency

    Noriaki HIROTA, Jin IWATSUKI, Yoshiyuki IMAI and Xing L. YAN

    HI

    FeNiDevelopment Plan of Austenitic Fe and Ni Based Alloys with Improved Corrosion

    Resistance to Sulfuric Acid and HI Fluids of Industrial Processes

  • http://www.jaea.go.jp

    This report is issued irregularly by Japan Atomic Energy Agency.Inquiries about availability and/or copyright of this report should be addressed toInstitutional Repository Section,Intellectual Resources Management and R&D Collaboration Department,Japan Atomic Energy Agency.2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 JapanTel +81-29-282-6387, Fax +81-29-282-5920, E-mail:[email protected]

    Japan Atomic Energy Agency, 2018

    319-1195 2 4 029-282-6387, Fax 029-282-5920, E-mail:[email protected]

  • i

    JAEA-Technology 2017-027

    HI

    Fe Ni

    Xing L. Yan

    2017 10 25

    Fe Ni

    (SiC) Fe CuTa SiTi CuSi

    Ni MoWTa Ti Ni MoW

    311-1393 4002

    i

  • ii

    JAEA-Technology 2017-027

    Development Plan of Austenitic Fe and Ni Based Alloys with Improved Corrosion

    Resistance to Sulfuric Acid and HI Fluids of Industrial Processes

    Noriaki HIROTA, Jin IWATSUKI, Yoshiyuki IMAI and Xing L. YAN

    HTGR Hydrogen and Heat Application Research Center Sector of Nuclear Science Research

    Japan Atomic Energy Agency Oarai-machi, Higashiibaraki-gun, Ibaraki-ken

    (Received October 25, 2017)

    In this study, austenitic Fe based alloys and Ni based alloys was developed as candidate structural materials for equipment operated in sulfuric acid and hydrogen iodide (HI) environment, which exists in various industrial processes including iodine-sulfur (IS) hydrogen production process and geothermal power generation process. The objectives of the study are to achieve the corrosion resistance performance sufficient under the working condition of these processes and to overcome the practical scale-up difficulty of the ceramic (SiC) material that is presently used in the processes due to the manufacturing size limitation of the ceramic. The chemical composition development plan for the austenitic Fe based alloys is threefold: reinforcement of matrix by addition of Cu and Ta, strength compensation of the surface film by addition of Si and Ti, and prevention of peeling of surface oxide by addition of rare earth elements. Because addition of Cu and Si is known to reduce the ductility of the material and thus manufacturability of the component, it is important to determine the allowable amount of each element to be added. On the other hand, the chemical composition development plan for the Ni based alloys is reinforcement of matrix by addition of Mo, W and Ta, strength compensation of the surface film by addition of Ti, and prevention of peeling of surface oxide by addition of rare earth elements. In particular, the addition of Mo and W to the Ni based alloy is expected to be effective in preventing dimensional deviation of structures from increasing during heating and cooling of process equipment. Various material specimens will be fabricated based on the above chemical composition development plans and tests on these specimens will then be carried out to confirm the corrosion resistance performance under the fluid conditions simulating each industrial process.

    Keywords: Corrosion-Resistant Material, High Temperature, Sulfuric Acid, Hydrogen Iodide, Rare Earth, Ellingham Diagram

    ii

  • JAEA-Technology 2017-027

    iii

    1. ---------------------------------------------------------------------------------------------------------------- 1 2. ------------- 2 3. ---------------------------------------------------------------------------------------------------- 2

    3.1 -------------------------------------------------------------------------------------- 2 3.1.1 Fe Cu --------------------------------------- 2 3.1.2 Ni MoW ------------------------------------ 3 3.1.3 Fe Ni Ta --------------------------------- 4

    3.2 ---------------------------------------------------------------------------------------- 4 3.2.1 Fe Si -------------------------------------------- 4

    3.2.2 Fe Ni TiC ------------------------------------- 4 3.3 ------------------------------------------------------------------------------------------------- 5 3.3.1 Fe Ni ----------------- 5

    3.4 Fe Ni --------------------------------------------------------- 5 4. ---------------------------------------------------------------------------------------------------------------- 6 ---------------------------------------------------------------------------------------------------------------------- 6 ---------------------------------------------------------------------------------------------------------------- 7

    iii

    JAEA-Technology 2017-027

  • JAEA-Technology 2017-027

    iv

    Contents 1. Introduction --------------------------------------------------------------------------------------------------- 1 2. Importance of matrix strengthening of alloy, use of surface compound phase and

    prevention of peeling off of compound ------------------------------------------------------------------ 2 3. Development plan for chemical composition -------------------------------------------------------- 2

    3.1 Matrix strengthening element ----------------------------------------------------------------------- 2 3.1.1 Promotion of Passivation by Formation of Cu Sulfide to -Fe based Alloy --------- 2 3.1.2 Solid solution strengthening by adding Mo and W to Ni based alloy,

    and low thermal expansion ----------------------------------------------------------------------- 3 3.1.3 Promotion of passivation by adding Ta to -Fe based alloy and Ni based alloy -- 4

    3.2 Elements that produce surface compounds ------------------------------------------------------ 4 3.2.1 Improvement of corrosion resistance by formation of Si oxides to the-Fe

    based alloy --------------------------------------------------------------------------------------------- 4 3.2.2 Grain boundary reinforcement by TiC formation to -Fe based alloy and Ni

    based alloy --------------------------------------------------------------------------------------------- 4 3.3 Peeling prevention element --------------------------------------------------------------------------- 5 3.3.1 Prevention of peeling of surface compounds by addition of rare earth to -Fe

    based alloy and Ni based alloy ------------------------------------------------------------------- 5 3.4Development plan for chemical composition of -Fe based alloy and Ni based alloy 5

    4. Conclusion ------------------------------------------------------------------------------------------------------- 6 Acknowledgment ---------------------------------------------------------------------------------------------------- 6 References ------------------------------------------------------------------------------------------------------------- 7

    iv

    JAEA-Technology 2017-027

  • JAEA-Technology 2017-027

    - 1 -

    1.

    950

    GTHTR300C1) 950HTTR2) HTTR-HTTR-GT/H2 3)

    IS IS 3 4)

    SO2(g) + I2(aq) + 2H2O(aq) 2HI(aq) + H2SO4(aq) , ca. 100 (1) H2SO4(g) H2O(g) + SO2(g) + 0.5O2(g) , ca. 850 (2) 2HI(g) H2(g) +I2(g) , ca. 500 (3)

    HI HI 2 IS

    HI

    SiCHI Ni HasteloyC276 5)6) IS SiC Ni HI SiC

    SiC Ni IS

    JAEA-Technology 2017-027

    - 1 -

  • JAEA-Technology 2017-027

    - 2 -

    7)

    600 SiC SiC

    SiC 8) SiC SiC

    SiC Fe Ni HI

    2.

    Fe Ni -pH 9)

    Fig. 1 25 1N FeNiCr 18Cr-8Ni SS 10)SS

    SS Cr Ni IS

    Fe Ni

    3.

    Fe Ni HI

    3.1 3.1.1 Fe Cu

    Cu

  • JAEA-Technology 2017-027

    - 3 -

    Fig. 2 4-6 Cu 4-6 Cu 11) Cu Fig. 3 20 Fe 18Cr-8Ni CuPtPd Cu 12) Fig. 4 6693 Cu Cu 13)

    S Cu Cu 14) Ni Cu NiO Cu2O Cu2O NiO

    15)16)Ni Cu NiO 3.1.2 Ni MoW

    HI/I2/H2O 200400Hastelloy Ni 17)Fe Mo Mo SUS405SUS444SUS316L2 SUS329J1Ni Incoloy825HasteloyC276Carpenter20CbInconel625 Fig. 5 Mo Fe Ni Mo Fe Mo 5 18) 37massFig. 6 Thermo-Calc Fe-Mo2 Mo Mo Mo Fe2Mo 950 Mo 2mass% Mo Mo Fe 19) 10mass% Fe Fe HI

    Ni Mo Fig. 7 Thermo-Calc Ni-Mo225mass% Mo Ni Mo Mo

    JAEA-Technology 2017-027

    - 3 -

  • JAEA-Technology 2017-027

    - 4 -

    Ni W Fig. 8

    Ni-W Ni W 30 mass% 20) MoW Ni 21)

    3.1.3 Fe Ni Ta

    pH -pH AuAgPt WTaNb 9) Ta 22)2 Ta 0.06mass% 23) Ni 24)W pH Fe Fe2Mo Fe2W 25)Fe W 3.2 3.2.1 Fe Si

    SiC Fe Fe-Si Si 26)Si 12.2% SiO4 SiC 0.07mm/y Si Fe-Si SiO4

    Ni-Fe Si Fe11Ni15Si4 27)Si 11mass%Ni3Si 28)Ni Si Fe11Ni15Si4Ni3Si 3.2.2 Fe Ni TiC Fe Alloy800Ni Alloy600

    JAEA-Technology 2017-027

    - 4 -

  • JAEA-Technology 2017-027

    - 5 -

    TiC 29) TiCFig. 9 Ti 30)N TiN 31)32)33)C N 3.3 3.3.1 Fe Ni Fe Fe-20Cr

    Fig. 10 1000 95h Fe-20Cr LaTiZrAlSiGdY 34)Si Si LaGdY 4h

    Y YCrO3 Y Cr2O3 Fe Cr2O3 / Y2O3 35)Ni Ni9Y 36)37)

    Fe-25Cr Y 1%Y2O3 YFe3

    38)

    3.4 Fe Ni Table 1 Fe Ni

    TaTi Fe Cu Si Ni MoW IS Fe CuTa SiTi 5mass% Cu Si Ni MoW

    JAEA-Technology 2017-027

    - 5 -

  • JAEA-Technology 2017-027

    - 6 -

    Ta Ti FeNi IS

    4.

    SiC Fe Ni HI

    1) IS

    Fe Ni

    2) Fe CuTa Si Si Ti TiC

    3) Fe CuSi

    Ti 4) Ni MoW Ta

    Ti TiC

    5) Ni MoW

    IS

    IS

    JAEA-Technology 2017-027

    - 6 -

  • JAEA-Technology 2017-027

    - 7 -

    1) K. Kunitomi, X. Yan, T. Nishihara, N. Sakaba and T. Mouri, "JAEA's VHTR for Hydrogen and Electricity Cogeneration: GTHTR300C," Nuclear Engineering and Technology, 39(1), pp.9-20, (2007). 2) S. Fujikawa, H. Hayashi, T. Nakazawa, K. Kawasaki, T. Iyoku, S. Nakagawa and N. Sakaba, Achievement of reactor-outlet coolant temperature of 950C in HTTR, J. Nucl. Sci. Technol., 41 pp.1245-1254 (2004). 3) H. Sato, J. Sumita, A. Terada, H. Ohashi, X. Yan, T. Nishihara, Y. Tachibana and Y. Inagaki, HTTR Demonstration Program for Nuclear Cogeneration of Hydrogen and Electricity, Proceedings of the 23th International Conference on Nuclear Engineering (ICONE23), ICONE23-1459, May 17 - 21, 2015, Chiba, Japan (2015). 4) , , , , , 62, pp.122-128 (2013). 5) , , , , 65(4), pp.262-265, (2001). 6) , , , , , 55(7), pp.320-324, (2006). 7) , , 35(3), pp.215-219, (1996). 8) , , (2017). 9) , , 16, , pp.64-67, (1973). 10) , , , , , p.7, (1986). 11) , , vol.6, No.1, pp.311-315, (1957). 12) N.D. Tomashov, Corrosion, 14, pp.229-236, (1958). 13) , , Vol.20, No.4, pp.178-191, (1971). 14) , , , , , Vo.36, No.3, pp.65-68, (1986). 15) , , , , 3 , 2 , pp.51-57, (1960). 16) , , , , 24, 5, pp.320-324, (1960). 17) , , , , , , 18, pp.49-54, (1993). 18) , , , 47 , 10 , pp.1493-1500, (1961). 19) , , , , , , 80 , 1 , pp.22-29, (2008). 20) , , 2009-64501, H21.3.26. 21) , , , , , , , Vol.90, No.1, pp.37-42, (2004). 22) , , , , , , , 46(2), pp.113-117, (1997).

    JAEA-Technology 2017-027

    - 7 -

  • JAEA-Technology 2017-027

    - 8 -

    23) , , , , , , , 64, pp.324-327, (2015). 24) , , 59, pp.222-227, (2010). 25) , , , , , , Vol. 40, No. 457 pp.1283-1289, (1991). 26) , , , , , , , , 46, pp.1041-1045, (1997). 27) , , , , Vol. 27, No. 1, pp.18-23, (1963). 28) A. T. Dutra, P. L. Ferrandini, R. Caram, Journal of Alloys and Compounds, 432, pp.167-171, (2007). 29) L. Tan, L. Rakotojaona, T. R. Allen, R. K. Nanstad and J. T. Busby, Materials Science and Engineering A, A528, Issue6, pp.2755-2761, (2011). 30) , , 8 , pp.49-57, (1969). 31) R. S. Dutta, R. Purandare, A. Labo, S. K. Kulkarni and G. K. Dey, Corrosion Science, 46, pp.2937-2953, (2004). 32) R. S. Dutta, R. Tewari and P. K. De, Corrosion Science, 49, pp.303-318, (2007). 33) R. S. Dutta, Journal of Nuclear Materials, 393, pp.343-349, (2009). 34) , , , , 42, pp.1138-1144, (1978). 35) , , 65 , 7 , pp.747-771, (1979). 36) , , , , , , 11 , pp.1110-1117, (1975). 37) Ingard A. Kvernes, Oxidation of Metals, Vol.6, No.1, pp.45-64, (1973). 38) J. M. Francis, W. H. Whitlow, Corrosion Science, Vol.5, pp.701-710, (1965).

    JAEA-Technology 2017-027

    - 8 -

  • JAEA-Technology 2017-027

    - 9 -

    Fig. 1 Anodic polarization curve at 25C. under 1N sulfuric acid environment 10)

    Logarithm of reaction current log i (mA/cm2)

    Ele

    ctr

    ode p

    ote

    ntial E (

    V, S

    CE)

  • JAEA-Technology 2017-027

    - 10 -

    Fig. 2 Changes in cavitation corrosion amount with temperature rise of 4-6 brass, pure Cu 11)

    Liquid temperature ()

    Boiling

    Am

    ount

    of

    cav

    itat

    ion c

    orr

    osi

    on (

    mg)

    4-6 Brass

    Steel

    Cu

  • JAEA-Technology 2017-027

    - 11 -

    Fig. 3 The effect of addition of Cu, Pt and Pd on corrosion rate of 18Cr-8Ni steel with increasing

    sulfuric acid concentration at 20C 12)

    H2SO4 (%)

    Corr

    osi

    on r

    ate (

    g/m

    2/h)

    No addition

  • JAEA-Technology 2017-027

    - 12 -

    Fig. 4 Changes in the degree of corrosion associated with the increase in the amount of Cu to stainless steel under 66C, 93C sulfuric acid environment 13)

    H2SO4 (%)

    Degr

    ee o

    f ero

    sion (

    mm

    /y)

  • JAEA-Technology 2017-027

    - 13 -

    Fig. 5 Relationship between Corrosion rate and Mo addition amount of Various Alloys in HI / I2 / H2O Mixed Gas from 200C to 400C

    Degr

    ee o

    f ero

    sion (

    mm

    /y)

    Mo content (mass%)

    Ferrite Austenite

    Ni alloy

    JAEA-Technology 2017-027

    - 13 -

  • JAEA-Technology 2017-027

    - 14 -

    Fig. 6 Fe-Mo phase diagram

    Mo content (atom%)

    Mo content (mass%)

    Tem

    pera

    ture

    (

    )

    JAEA-Technology 2017-027

    - 14 -

  • JAEA-Technology 2017-027

    - 15 -

    Fig. 7 Ni-Mo phase diagram

    Solid solution amount

    Mo content (atom%)

    Mo content (mass%)

    Tem

    pera

    ture

    (

    )

    JAEA-Technology 2017-027

    - 15 -

  • JAEA-Technology 2017-027

    - 16 -

    Fig. 8 Ni-W phase diagram

    Solid solution

    amount

    W content (atom%)

    W content (mass%)

    Tem

    pera

    ture

    (

    )

    JAEA-Technology 2017-027

    - 16 -

  • JAEA-Technology 2017-027

    - 17 -

    Fig.9 Ellingham diagram evaluating carbide forming ability 30)

    Temperature (K)

    Temperature (K)

    Change

    of

    standar

    d p

    roducin

    g fr

    ee e

    nerg

    y (k

    cal

    )

  • JAEA-Technology 2017-027

    - 18 -

    Fig. 10 Influence of weight change on Fe-20Cr alloys containing La, Ti, Zr, Al, Si, Gd and Y added when kept at 1000C for 95 h 34)

  • JAEA-Technology 2017-027

    - 19 -

    -Fe based alloy Ni based alloy -Fe based alloy Ni based alloy

    Cu Cu Sulfide

    Peeling by Cu2O

    Decline inprocessability

    by Cu embrittlement

    Acceleration of surfaceoxidation by Cu2O

    MoW

    Decrease incorrosion resistance

    by Fe2Mo, Fe2W

    Solid solutionstrengthening

    of Mo, W

    Fe2Mo, Fe2WEmbrittlement

    Low thermalexpansion

    by Mo, W content

    Ta Ta Passive film

    Ta Passive film

    No effect No effect

    Si SiO4 oxide

    Decrease incorrosion resistance

    by Fe11Ni15Si4

    Decline inprocessability by Si

    embrittlement

    Ni3SiEmbrittlement

    Ti TiC

    TiC

    Improvement ofcreep strength by TiC

    Improvement ofcreep strength by TiC

    Prevention ofpeeling

    Rareearth

    Rare earth compound

    Rare earth compound

    Improvement oftoughness

    by Rare earth

    Improvement oftoughness

    by Rare earth

    : Obviously good effect: Those that will be adversely affected by excessive addition

    Influence on corrosion resistance Influence on mechanical properties

    Element thatproducesurface

    compounds

    Matrixstrengthening

    element

    Table1 Influence of each added element on corrosion resistance and mechanical properties for -Fe based alloy and Ni-based alloy

    JAEA-Technology 2017-027

    - 19 -

    -Fe based alloy Ni based alloy -Fe based alloy Ni based alloy

    Cu Cu Sulfide

    Peeling by Cu2O

    Decline inprocessability

    by Cu embrittlement

    Acceleration of surfaceoxidation by Cu2O

    MoW

    Decrease incorrosion resistance

    by Fe2Mo, Fe2W

    Solid solutionstrengthening

    of Mo, W

    Fe2Mo, Fe2WEmbrittlement

    Low thermalexpansion

    by Mo, W content

    Ta Ta Passive film

    Ta Passive film

    No effect No effect

    Si SiO4 oxide

    Decrease incorrosion resistance

    by Fe11Ni15Si4

    Decline inprocessability by Si

    embrittlement

    Ni3SiEmbrittlement

    Ti TiC

    TiC

    Improvement ofcreep strength by TiC

    Improvement ofcreep strength by TiC

    Prevention ofpeeling

    Rareearth

    Rare earth compound

    Rare earth compound

    Improvement oftoughness

    by Rare earth

    Improvement oftoughness

    by Rare earth

    : Obviously good effect: Those that will be adversely affected by excessive addition

    Influence on corrosion resistance Influence on mechanical properties

    Element thatproducesurface

    compounds

    Matrixstrengthening

    element

    Table1 Influence of each added element on corrosion resistance and mechanical properties for -Fe based alloy and Ni-based alloy

    JAEA-Technology 2017-027

    - 19 -

  • This is a blank page.

  • SI

    1024 10-1 d1021 10-2 c1018 10-3 m1015 10-6 1012 10-9 n109 10-12 p106 10-15 f103 10-18 a102 10-21 z101 da 10-24 y

    SI

    SI min 1 min=60 s h 1 h =60 min=3600 s d 1 d=24 h=86 400 s 1=(/180) rad 1=(1/60)=(/10 800) rad 1=(1/60)=(/648 000) rad

    ha 1 ha=1 hm2=104m2

    Ll 1 L=1 l=1 dm3=103cm3=10-3m3

    t 1 t=103 kg

    SISI

    SI eV 1 eV=1.602 176 53(14)10-19J Da 1 Da=1.660 538 86(28)10-27kg u 1 u=1 Da ua 1 ua=1.495 978 706 91(6)1011m

    SISISI

    SI Ci 1 Ci=3.71010Bq R 1 R = 2.5810-4C/kg rad 1 rad=1cGy=10-2Gy rem 1 rem=1 cSv=10-2Sv 1=1 nT=10-9T 1=1 fm=10-15m 1 = 0.2 g = 210-4kg Torr 1 Torr = (101 325/760) Pa atm 1 atm = 101 325 Pa

    1 cal=4.1858J154.1868JIT4.184J

    1 =1m=10-6m

    10SI

    cal

    (a)SI(b)radsr(c)sr(d)(e)

    (f)activity referred to a radionuclideradioactivity(g)PV,2002,70,205CIPM2CI-2002

    aamount concentrationsubstance concentrationb

    SI

    Pa s m-1 kg s-1

    N m m2 kg s-2

    N/m kg s-2 rad/s m m-1 s-1=s-1 rad/s2 m m-1 s-2=s-2 , W/m2 kg s-3

    , J/K m2 kg s-2 K-1 J/(kg K) m2 s-2 K-1 J/kg m2 s-2 W/(m K) m kg s-3 K-1

    J/m3 m-1 kg s-2

    V/m m kg s-3 A-1 C/m3 m-3 s A C/m2 m-2 s A C/m2 m-2 s A F/m m-3 kg-1 s4 A2

    H/m m kg s-2 A-2

    J/mol m2 kg s-2 mol-1

    , J/(mol K) m2 kg s-2 K-1 mol-1

    C/kg kg-1 s A Gy/s m2 s-3 W/sr m4 m-2 kg s-3=m2 kg s-3

    W/(m2 sr) m2 m-2 kg s-3=kg s-3 kat/m3 m-3 s-1 mol

    SI

    SI

    m2 m3 m/s m/s2 m-1 kg/m3

    kg/m2

    m3/kg A/m2 A/m (a) mol/m3 kg/m3 cd/m2 (b) 1 (b) 1

    SI

    SI

    SI

    SI

    () rad 1 m/m () sr(c) 1 m2/m2 Hz s-1

    N m kg s-2 , Pa N/m2 m-1 kg s-2 , , J N m m2 kg s-2 W J/s m2 kg s-3 , A sC , V W/A m2 kg s-3 A-1 F C/V m-2 kg-1 s4 A2 V/A m2 kg s-3 A-2 S A/V m-2 kg-1 s3 A2

    Wb Vs m2 kg s-2 A-1 T Wb/m2 kg s-2 A-1 H Wb/A m2 kg s-2 A-2 () K

    lm cd sr(c) cd lx lm/m2 m-2 cd

    Bq s-1, ,

    Gy J/kg m2 s-2

    , ,,

    Sv J/kg m2 s-2

    kat s-1 mol

    SISI

    SI bar bar=0.1MPa=100 kPa=105Pa mmHg mmHg133.322Pa =0.1nm=100pm=10-10m M=1852m b b=100fm2=(10-12cm) =10-28m22

    kn kn=(1852/3600)m/s Np

    dB

    SISI

    SI

    m kg s A K mol cd

    SI

    SI

    SI erg 1 erg=10-7 J dyn 1 dyn=10-5N P 1 P=1 dyn s cm-2=0.1Pa s St 1 St =1cm2 s-1=10-4m2 s-1

    sb 1 sb =1cd cm-2=104cd m-2

    ph 1 ph=1cd sr cm-2 =104lx Gal 1 Gal =1cm s-2=10-2ms-2

    Mx 1 Mx = 1G cm2=10-8Wb G 1 G =1Mx cm-2 =10-4T Oe 1 Oe (103/4)A m-1

    CGS

    aCGSSI

    82006

  • SI

    1024 10-1 d1021 10-2 c1018 10-3 m1015 10-6 1012 10-9 n109 10-12 p106 10-15 f103 10-18 a102 10-21 z101 da 10-24 y

    SI

    SI min 1 min=60 s h 1 h =60 min=3600 s d 1 d=24 h=86 400 s 1=(/180) rad 1=(1/60)=(/10 800) rad 1=(1/60)=(/648 000) rad

    ha 1 ha=1 hm2=104m2

    Ll 1 L=1 l=1 dm3=103cm3=10-3m3

    t 1 t=103 kg

    SISI

    SI eV 1 eV=1.602 176 53(14)10-19J Da 1 Da=1.660 538 86(28)10-27kg u 1 u=1 Da ua 1 ua=1.495 978 706 91(6)1011m

    SISISI

    SI Ci 1 Ci=3.71010Bq R 1 R = 2.5810-4C/kg rad 1 rad=1cGy=10-2Gy rem 1 rem=1 cSv=10-2Sv 1=1 nT=10-9T 1=1 fm=10-15m 1 = 0.2 g = 210-4kg Torr 1 Torr = (101 325/760) Pa atm 1 atm = 101 325 Pa

    1 cal=4.1858J154.1868JIT4.184J

    1 =1m=10-6m

    10SI

    cal

    (a)SI(b)radsr(c)sr(d)(e)

    (f)activity referred to a radionuclideradioactivity(g)PV,2002,70,205CIPM2CI-2002

    aamount concentrationsubstance concentrationb

    SI

    Pa s m-1 kg s-1

    N m m2 kg s-2

    N/m kg s-2 rad/s m m-1 s-1=s-1 rad/s2 m m-1 s-2=s-2 , W/m2 kg s-3

    , J/K m2 kg s-2 K-1 J/(kg K) m2 s-2 K-1 J/kg m2 s-2 W/(m K) m kg s-3 K-1

    J/m3 m-1 kg s-2

    V/m m kg s-3 A-1 C/m3 m-3 s A C/m2 m-2 s A C/m2 m-2 s A F/m m-3 kg-1 s4 A2

    H/m m kg s-2 A-2

    J/mol m2 kg s-2 mol-1

    , J/(mol K) m2 kg s-2 K-1 mol-1

    C/kg kg-1 s A Gy/s m2 s-3 W/sr m4 m-2 kg s-3=m2 kg s-3

    W/(m2 sr) m2 m-2 kg s-3=kg s-3 kat/m3 m-3 s-1 mol

    SI

    SI

    m2 m3 m/s m/s2 m-1 kg/m3

    kg/m2

    m3/kg A/m2 A/m (a) mol/m3 kg/m3 cd/m2 (b) 1 (b) 1

    SI

    SI

    SI

    SI

    () rad 1 m/m () sr(c) 1 m2/m2 Hz s-1

    N m kg s-2 , Pa N/m2 m-1 kg s-2 , , J N m m2 kg s-2 W J/s m2 kg s-3 , A sC , V W/A m2 kg s-3 A-1 F C/V m-2 kg-1 s4 A2 V/A m2 kg s-3 A-2 S A/V m-2 kg-1 s3 A2

    Wb Vs m2 kg s-2 A-1 T Wb/m2 kg s-2 A-1 H Wb/A m2 kg s-2 A-2 () K

    lm cd sr(c) cd lx lm/m2 m-2 cd

    Bq s-1, ,

    Gy J/kg m2 s-2

    , ,,

    Sv J/kg m2 s-2

    kat s-1 mol

    SISI

    SI bar bar=0.1MPa=100 kPa=105Pa mmHg mmHg133.322Pa =0.1nm=100pm=10-10m M=1852m b b=100fm2=(10-12cm) =10-28m22

    kn kn=(1852/3600)m/s Np

    dB

    SISI

    SI

    m kg s A K mol cd

    SI

    SI

    SI erg 1 erg=10-7 J dyn 1 dyn=10-5N P 1 P=1 dyn s cm-2=0.1Pa s St 1 St =1cm2 s-1=10-4m2 s-1

    sb 1 sb =1cd cm-2=104cd m-2

    ph 1 ph=1cd sr cm-2 =104lx Gal 1 Gal =1cm s-2=10-2ms-2

    Mx 1 Mx = 1G cm2=10-8Wb G 1 G =1Mx cm-2 =10-4T Oe 1 Oe (103/4)A m-1

    CGS

    aCGSSI

    82006