66
叶叶叶 Hong-Gwa Yeh 叶叶叶叶 , 叶叶 [email protected] July 31, 2009 Some Results on Labeling Graphs with a Condition at Distance Two

叶鸿国 Hong-Gwa Yeh 中央大学 , 台湾 [email protected] July 31, 2009

  • Upload
    mare

  • View
    130

  • Download
    11

Embed Size (px)

DESCRIPTION

Some Results on Labeling Graphs with a Condition at Distance Two. 叶鸿国 Hong-Gwa Yeh 中央大学 , 台湾 [email protected] July 31, 2009. Channel-Assignment Problem. Hale, 1980. Hale, 1980, IEEE. 1. 1. 1. 1. 2. 1. 1. 2. 2. 2. 3. 1. 3. 1. 1. 3. 1. Chromatic number = 3. 2. 2. - PowerPoint PPT Presentation

Citation preview

叶鸿国 Hong-Gwa Yeh中央大学 , 台湾 [email protected] 31, 2009

Some Results on Labeling Graphs with a Condition at Distance Two

2

Channel-Assignment Problem

3

4

5

Hale, 1980

6

Hale, 1980, IEEE

7

11

8

11

9

12

10

2

1

3

3 1

1

2

3

2

1

11

2

1

3

3 1

1

2

3

2

1 Chromatic number = 3

12

However, interference phenomena may be

so powerful that even the different channels

used at “very close” transmitters may interfere.

13

“close” transmitters must receive different channels

and “very close” transmitters must

receive channels that are at least two channels apart.

Roberts, 1988

?

?

14

k-L(2,1)-labeling of a graph G

Griggs and Yeh, 1992, SIAM J. Discrete Math.

15

J. R. GRIGGS

R. K. YEH

f:V(G)-------->{0,1,2,…,k}s.t.|f(x)-f(y)| 2 if d(x,y)=≧ 1|f(x)-f(y)| 1 if d(x,y)=≧ 2

k-L(2,1)-labeling of a graph G

16

2

1

3

3 1

1

2

3

2

1 Roberts, 1980

17

8-L(2,1)-labeling of P

7-L(2,1)-labeling of P

6-L(2,1)-labeling of P ?

??

18

9-L(2,1)-labeling of P

83

?

19

9-L(2,1)-labeling of P

λ(G) =λ-number of Gλ(P)=9

83

?

20

The problem of

determining λ(G) for general graphs G is known to be

NP-complete!

21

Good upper bounds for λ(G) are clearly welcome.

22

Griggs and Yeh: λ(G) ≦△2+ 2△

Chang and Kuo: λ(G) ≦△2+ △

Kral and Skrekovski : λ(G) ≦△2+ -1△

Goncalves:λ(G) ≦△2+ -2△

23

J. R. GRIGGS

R. K. YEH

Griggs-Yeh Conjecture1992

λ(G) ≦△2 for any graph G with maximum degree 2△≧

24

Very recently Havet, Reed, and Sereni

have shown that Griggs-Yeh Conjecture holds

for sufficiently large △ !!

SODA 2008

25

Note that to prove Griggs-Yeh Conjecture

it suffices to consider regular graphs.

26

However….

27

Very little was known about exact L(2,1)-labeling numbers for

specific classes of graphs.

--- even for 3-regular graphs

28

Consider various subclasses of 3-regular graphs

Kang, 2008, SIAM J. on Discrete Math., proved that Griggs-Yeh Conjecture is true for 3-regular Hamiltonian graphs

29

Other important subclasses of 3-regular graphs

Generalized Petersen Graph

30

Generalized Petersen Graph of order 5

GPG(5)

31

GPG(3) , GPG(4)

32

GPG(6)

33

GPG(9)

34

Griggs-Yeh Conjecture says that

λ(G) ≦9 for all GPGs G

35

Georges and Mauro, 2002, Discrete Math.

λ(G) ≦8 for all GPGs G

except for the Petersen graph

36

Georges and Mauro, 2002, Discrete Math.

λ(G) ≦7 for all GPGs G

of order n 6≦ except for

the Petersen graph

37

Georges-Mauro Conjecture2002

For any GPG G of order n 7,≧

λ(G) ≦7

38

Sarah Spence Adams

Jonathan Cass

Denise Sakai Troxell

2006, IEEE Trans. Circuits & Systems

Georges-Mauro Conjectureis true

for orders 7 and 8

39

Generalized Petersen6

grap of order h 6

More….

40

Number of non-isomorphic GPGs of order n

with the aid of a computer program

41

Georges-Mauro Conjectureis true

for orders 9,10,11 and 12

Y-Z Huang, C-Y Chiang,L-H Huang, H-G Yeh

2009

42

Theorem

Generalized Petersen7

gra of order 9ph

Generalized Petersen graphs of orders 9, 10, 11 and 12

One-page proof !!

43

3

33

44

3

33

1, 2, 4, 5, 6

45

3

33

Case 1 3

33

Case 2 3

33

Case 3

3

33

Case 4 3

33

Case 5 3

33

Case 6

3

33

Case 7

46

3

33

5 1

6

4

25

1

4

2

1, 2, 4, 5, 60

7

Case 1

47

3

33

5 1

6

4

25

1

4

2

1, 2, 4, 5, 60

7

Case 1Case A

48

3

33

0

7

07

0

75 1

6

4

25

1

4

2

1, 2, 4, 5, 60

7

Case 1Case A

49

3

33

5 1

6

4

25

1

4

2

1, 2, 4, 5, 60

7

Case 1Case B

50

3

33

7

0

70

7

05 1

6

4

25

1

4

2

1, 2, 4, 5, 60

7

Case 1Case B

51

3

33

5 1

6

25

1

4

2

1, 2, 4, 5, 60

7

Case 2

4

52

3

33

7

0

70

7

05 1

6

25

1

4

2

1, 2, 4, 5, 60

7

Case 2

4

Case A

53

3

33

0

7

07

0

75 1

6

25

1

4

2

1, 2, 4, 5, 60

7

Case 2

4

Case B

54

3

33

0

7

07

0

76

6

46

2

2

4

2

1, 2, 4, 5, 60

7

Case 7

4

55

Theorem

Generalized Petersen7

grap of order h 10

56

57

1

1

1

Case 1 1

1

1

Case 2 1

1

1

Case 3

1

1

1

Case 4 1

1

1

Case 5 1

1

1

Case 6

1

1

1

Case 7 Case 8

58

1

1

1

4, 4, 6

59

1

1

1

242

0

0

06

Case 1

46

4

0, 2, 4, 65

7

3

60

Case 8

从这开始

次一个

再次一个

61

3

44

6

1

51

6

0

5

7

4

0

7

2

0

2

1

3

6

Case 8

太过暴力 , 不宜在此陈述 ! .其余的证

明呢 ?

63

64