38
Masahiko YAMAMOTO, Atsushi ISHIBASHI, Tetsuya NAGAYAMA, Naoki SURUGAYA Akira KUROSAWA and Toshiaki HIYAMA JAEA-Technology 2010-040 電位規制クーロメトリーによる 硝酸プルトニウム溶液の精密分析と不確かさ評価 Precise and Accurate Determination of Plutonium by Controlled-potential Coulometry and Its Uncertainty Evaluation 山本 昌彦 石橋 篤 永山 哲也 駿河谷 直樹 黒沢 明 檜山 敏明 Technical Services Department Tokai Reprocessing Technology Development Center Nuclear Fuel Cycle Engineering Laboratories Tokai Research and Development Center 東海研究開発センター 核燃料サイクル工学研究所 再処理技術開発センター 施設管理部 December 2010 Japan Atomic Energy Agency 日本原子力研究開発機構

電位規制クーロメトリーによる 硝酸プルトニウム溶 …jolissrch-inter.tokai-sc.jaea.go.jp/pdfdata/JAEA...Masahiko YAMAMOTO, Atsushi ISHIBASHI, Tetsuya NAGAYAMA,

  • Upload
    hadan

  • View
    222

  • Download
    0

Embed Size (px)

Citation preview

  • Masahiko YAMAMOTO, Atsushi ISHIBASHI, Tetsuya NAGAYAMA, Naoki SURUGAYAAkira KUROSAWA and Toshiaki HIYAMA

    JAEA-Technology

    2010-040

    Precise and Accurate Determination of Plutonium

    by Controlled-potential Coulometry and Its Uncertainty Evaluation

    Technical Services Department Tokai Reprocessing Technology Development Center

    Nuclear Fuel Cycle Engineering Laboratories Tokai Research and Development Center

    December 2010

    Japan Atomic Energy Agency

  • i

    JAEA-Technology 2010-040

    (2010 9 28 )

    2000

    ISO12183:2005 ( National Institute of Standard and Technology: NIST )

    Pu(VI) Pu(IV) NBL CRM-126

    0.1 % 0.05 % ( n=17 )2

    239Pu

    MOX MOX 15.5995 mgPu/g ISO/BIPM-GUM 95 % k=2 0.0036 mgPu/g 0.023 %MOX 319-1194 4-33

  • ii

    JAEA-Technology 2010-040

    Precise and Accurate Determination of Plutonium by Controlled-potential Coulometry and Its Uncertainty Evaluation

    Masahiko YAMAMOTO, Atsushi ISHIBASHI, Tetsuya NAGAYAMA,

    Naoki SURUGAYA, Akira KUROSAWA and Toshiaki HIYAMA

    Technical Services Department, Tokai Reprocessing Technology Development Center Nuclear Fuel Cycle Engineering Laboratories, Tokai Research and Development Center

    Japan Atomic Energy Agency Tokai-mura, Naka-gun, Ibaraki-ken

    (Received September 28, 2010)

    Precise and accurate analysis of plutonium is necessary for material control and safeguards in nuclear facilities. In this study, controlled-potential coulometry, which yields absolute results and high precision, was applied to the determination of plutonium for achieving the highest level of accuracy. The measurement cell and electrodes of our coulometry system were optimized following ISO12183:2005, and the calibration of the coulometer was performed using NIST (National Institute of Standards and Technology, U.S.) certified equipments.

    The influences of fluoride which was used to dissolve a Pu metal and of nitrite which arise from the decomposition of nitrate were eliminated by adding sulfuric acid and amidosulfuric acid to the sample. Also, hydrogen peroxide was added to the sample to reduce Pu(VI) to Pu(IV).

    A plutonium sample prepared from a Pu metal (NBL CRM126) was measured according to the procedure optimized in this study. As a result, the measured value agreed well with the certified value. The relative standard deviation was 0.05 % ( n=17 ).

    For spike preparation of isotope dilution mass spectrometry (IDMS), a plutonium solution was prepared from MOX powder stored in Japan Atomic Energy Agency. The plutonium content in the prepared solution was characterized by coulometry. As a result, the plutonium concentration of 15.5995 mgPu/g was obtained. The uncertainty was calculated following the ISO/BIPM Guide to the Expression of Uncertainties in Measurements. The expanded uncertainty was 0.0036 mgPu/g with confidence interval of 95%. The results obtained by coulometry were also in good agreement with those obtained by IDMS. Thus the proposed coulometry method was successfully applied for the determination of plutonium at the highest level of precision and accuracy. Keywords: Plutonium, Coulometry, Uncertainty, GUM

  • JAEA-Technology 2010-040

    iii

    1. 1

    2. 2

    3. 4 3.1 4 3.2 4 3.3 5

    4. 6 4.1 6 4.2 6

    5. 8 5.1 8 5.2 Pu(VI)8 5.3 9

    6. 10 6.1 10 6.2 10 6.3 11

    7. MOX 12 7.1 12 7.2 12 7.3 13

    8. 15

    16

  • JAEA-Technology 2010-040

    iv

    CONTENTS

    1. INTRODUCTION1

    2. PRINCIPLE 2

    3. EXPERIMENTAL4 3.1 Reagents 4 3.2 Plutonium Standard Sample 4 3.3 Apparatus5

    4. UPGRADE OF COULOMETRY SYSTEM6 4.1 Selection of measurement cell and electrodes6 4.2 Calibration of the system6

    5. OPTIMIZATION OF MEASUREMENT CONDITION8

    5.1 Effect of fluoride and nitrite8 5.2 Effect of plutonium(VI)8 5.3 Selection of Oxidation and Reduction Potential9

    6. ANALYSIS OF PLUTONIUM SAMPLE SOLUTION10 6.1 Buoyancy correction of mass measurement10

    6.2 Results of plutonium contents 10 6.3 Day to day measurement variability 11

    7. ANALYSIS OF PLUTONIUM SOLUTION PREPARED FROM MOX POWDER12 7.1 Measurement of iron contents in the sample12

    7.2 Results of plutonium contents12 7.3 Evaluation of uncertainty 13

    8. CONCLUSION 15

    REFERENCE 16

  • JAEA-Technology 2010-040

    v

    CONTENTS of Figure

    Fig. 1 18 Fig. 2 19 Fig. 3 19 Fig. 4 20 Fig. 5 21 Fig. 6 22 Fig. 7 23 Fig. 8 24 Fig. 9 25

    CONTENTS of Table

    Table 1 20 Table 2 21 Table 3 22 Table 4 24 Table 5 26 Table 6 27 Table 7 28

  • This is a blank page.

  • JAEA-Technology 2010-040

    - 1 -

    1.

    1950 1,2)

    3-7)

    1980

    1983 2000 ( PNC )( DOE )

    ( SRS ) ISO12183 8)

    ( MOX ) 9) 239Pu MOX

    SI 1,2,10)

    ( NBL )0.05 % 11, 12)

    ISO12183:2005

    MOX

  • JAEA-Technology 2010-040

    - 2 -

    2.

    3,5,7) PUREX

    Pu(III) Pu(IV) + e-

    Pu(III) E0-0.26 V vs SCE (E0Pu(III)/Pu(IV))Pu(III) Pu(IV) E0+0.24 V vs SCE 13)

    Nernst

    100%

    ( mgPu/g )(1) 13)

    1000)(

    )/('

    fsF

    MCQQgmgPu PuBS (1)

    SQ ( count ) 'BQ ( count )

    C ( C/count ) PuM ( g/mol )

    F ( 96485.34 C/mol ) s ( g ) f

    C (1)

    'BQ

    BQ QB(2) 13)

    SSredox

    redoxBBBB tIBB

    SStIQQ

    )(

    )()(' (2)

  • JAEA-Technology 2010-040

    - 3 -

    BQ ( count ) oxS ( V ) redS ( V ) SI ( mA ) BI ( mA )

    St ( sec ) Bt ( sec ) oxB ( V ) redB ( V )

    (1) f Nernst (3) 4)

    RTESnF

    RTESnF

    RTESnF

    RTESnF

    fred

    red

    ox

    ox

    )(exp1

    )(exp

    )(exp1

    )(exp

    0

    0

    0

    0

    (3)

    0E Pu(III)/Pu(IV)( V ) R ( 8.3145 J mol-1 K-1 ) n ( ) T ( K )

  • JAEA-Technology 2010-040

    - 4 -

    3.

    3.1 (1)

    ADVANTECMILLIPOREMilli-Q

    (2) 0.9 mol/L 134 mL 2000 mL

    (3) 3 mol/L 112 mL 500 mL

    (4) 8 mol/L 299 mL 500 mL

    (5) 3 mol/L 34 mL 100 mL

    (6) 4 mL 16 mL 4 mL

    (7) - 0.1 mol/L -8 mol/L

    (8) 20% 20 g 100 mL

    (9) ( 3035.5 % )

    (10) 1.5 mol/L 7.281 g 50 mL

    (11) ( 1000 ppm )

    3.2 ( 5.0192 mg/g ) NBL CRM126 20 %( 4.5 V ) NBL CRM126- 3 mol/L 6.1

  • JAEA-Technology 2010-040

    - 5 -

    3.3 (1) Fig. 1

    PC ( :99.99 %:15 mm:20 mm ) Fisher Scientific ( :0.5-3.0 mm )Fig.2 SRS

    Ortec 974 Quad Counter/TimerOrtec 4001A BIN 14)Hewlett-Packard 34970A PC Dell LATITUDE D830 HTBasic Matsusada RK-80 DC Power Supply

    2.5 L/min (2) V-570

    400-900 nm 5.0 nm 100 nm/min

    (3) ICP Seiko Instruments ICP SPS7700

    ICP 238.204 nmRF 1.2 kW15 mm 0.45 MPa 0.3 L/min 16 L/min

  • JAEA-Technology 2010-040

    - 6 -

    4.

    4.1 2000 SRS ISO12183:200514) Fig. 3 5.1

    8)

    8 mol/L 8 mol/L 2.5 mm ( : 0.01 m ) 4.2 ( National Institute of Standard and Technology: NIST ) SI Automatic Systems Laboratory Model RR100Agilent 3458A Agilent 53131A

    ( 50 )

    2 ( Volt Frequency Converter: VFC )

    VFC 21.1 VFC 49.9453 10000.02945 count Hz V-1

    ( 100 ) 500 / 10

  • JAEA-Technology 2010-040

    - 7 -

    (1) C VFC (4) 13) Cth(5) C Cth

    100.0154

    C

    CC

    QtI

    C (4)

    C ( C/count ) CI ( A ) ct ( sec )

    CQ VFC ( count )

    SRth RL

    C 1 (5)

    thC ( C/count ) RL ( ) SR VFC ( count Hz V-1 )

    C

    C 10 0.0001 %ISO12183:2005 0.002 %

  • JAEA-Technology 2010-040

    - 8 -

    5.

    5.1 NBL CRM126

    15)

    3 mol/L 1 mL 200

    16) Fig. 4

    17)

    1.5 mol/LHNO2 + NH2SO3H H2SO4 + N2 + H2O 18)Table 1

    0.5%-0.09% ISO12183:2005 13

    5.2 Pu(VI)

    1015 mgPu 3 mol/L 1 mL 200 0.9 mol/L 18 mL ( n=3 ) 0.20%Table 2 Pu(III) 20004000 Pu(III) Pu(IV) 6501400 ISO12183:2005 500700 13) ISO12183:2005

    5 Pu(III)Table 2 99.599.7 % 99.9 % 8)

  • JAEA-Technology 2010-040

    - 9 -

    Cohen Pu(VI) Pu(III)Pu(III) Pu(IV) + e- 19)

    Pu(VI) Pu(III) 7)

    NBL CRM126 10 3 mol/L 6 Pu(VI)

    Fig. 5 477 nm Pu(IV)833 nm Pu(VI) 26% Pu(VI)

    Pu(VI) Pu(IV) Pu(VI) Pu(IV)Pu(VI)Fe(II)Fe(II) 20,21)Pu(VI)

    100 L 1 90 30 Pu(IV) Fig. 6 Pu(IV)Pu(VI)Pu(VI) Pu(III)Pu(IV) Table 3 500 99.9%

    Fig. 7 5.1 5.3 Fig. 7 0.9 mol/L Pu(III)/Pu(IV) E0 ISO12183:2005 0.91 V vs. SCE

    Nernst E0 13) E0 0.69 V vs. SCE Pu(IV) 0.93 V vs. SCE ( E0 + 0.24 V vs. SCE )Pu(III) 0.43 V vs. SCE ( E0 - 0.26 V vs. SCE )

  • JAEA-Technology 2010-040

    - 10 -

    6.

    6.1

    (6)(7)8.0 g/cm3(8) 22)

    fWmC (6)

    SA

    CAf

    11

    (7)

    Cm ( g ) W ( g ) f

    A ( g/cm3 )

    C ( 8.0 g/cm3 )

    S ( g/cm3 )

    31015.273

    )020582.000252.0(34844.0

    tht

    A (8)

    ( hPa ) t ( ) h ( % )

    1012.8 hPa 19.0 66.0 %

    1.1 g/cm3 1.00094 0.1 %(6)(8) 6.2 ISO12183:2005 415 mgPu 4 mgPu

    10 gPu 0.1%

  • JAEA-Technology 2010-040

    - 11 -

    10 mgPu 15 mgPu 13)

    1015 mgPu Fig. 7 Table 4 No.1No.2No.3 1012.515 mgPu No.1No.2No.3 5.0192 mgPu/g 0.1 %No.1No.2No.3 0.07 %0.05 %0.02 % 1015 mg 0.1% 6.3

    2008/11/192009/1/23 Fig. 8 2008/11/192009/1/23 2 0.15 % 0.05 % ( n=17 ) 0.010.08 %2 Tandon 0.1 % 23) 2 0.1 %

  • JAEA-Technology 2010-040

    - 12 -

    7. MOX

    7.1 Fe(II)/Fe(III)Pu(III)/Pu(IV) 0.668 V vs SCE 0.493 V vs SCE 13) 20,21)MOX

    ICP-AES ICP-AES TEVA ( Eichrom ) MOX 0.0028 mgFe/g ISO12183:2005 1000 ppm (9) 13)MOX (9)

    Fe

    PuFeFePuCPu M

    Mfmmm

    0,

    (9)

    0,CPum Pu ( mg )

    Pum Pu ( mg ) Fem Fe ( mg ) PuM Pu ( g/mol ) FeM Fe ( 55.847 g/mol )

    Fef Fe (3) E0 Fe (0.493V)

    7.2

    MOX

    MOX 15 mgPu Fig. 7 1015.3 hPa 25.4 53.0 % 1.244 g/cm3(6)(8)(9)

    Fig. 9 MOX 15.5995 mgPu/g ( n=8 )

    15.610 mgPu/g 0.06 %

  • JAEA-Technology 2010-040

    - 13 -

    7.3 MOX ISO/BIPM

    Guide to the Expression of Uncertainties in Measurement (ISO/BIPM GUM) 24) 95 % k = 2 15.59950.0036 mgPu/g 0.023 %( International Target Value 2000: ITV2000 ) 25)

    0.15%MOX MOX

    ISO/BIPM GUM Table 5 Table 6 mPu7.3 Wsol WTare 2.4 %ICP-AES FeICP 2.3 % 1 %

    mPu mPu(10)

    1000)(

    )('

    fF

    MCQQmgm PuBSPu (10)

    SQ ( count ) 'BQ ( count ) C ( C/count )

    PuM Pu ( g/mol ) F ( 96485.34 C/mol ) f Pu

    ),,,( 21 nxxxfy y

    )(yuc ix )( ixu (11)

    22 )()( iic xucyu (11)

    ic (12) f

    ii x

    fc

    (12)

  • JAEA-Technology 2010-040

    - 14 -

    ic Holland

    26)(10)(10)(13)(18)(13)(18)Fig. 9 No.1 mPu,No.1 Table 7

    111 1000 fFMCQm

    PuS

    Pu (13)

    111 1000'

    fFMCQm

    PuB

    Pu (14)

    111 1000)'( fFMQQCm

    PuBSPu (15)

    111 1000)'( fFCQQMm

    BSPu

    Pu (16)

    112 1000)'( fFMCQQFm

    PuBSPu (17)

    121 1000)'( fFMCQQfm

    PuBSPu (18)

    Table 7 mPu,No.1(QS

    QB) 34 %51 % f 14 % 1 %

  • JAEA-Technology 2010-040

    - 15 -

    8.

    SRS 2000 ISO12183:2005 NIST

    Pu(VI) Pu(IV)

    NBL CRM-126 0.10 % 1012.515 mg 0.070.050.02 %2 0.05 %

    MOX MOX 15.5995 mgPu/g ISO/BIPM GUM 0.0036 mgPu/g 0.023 %ITV2000 0.15 %

    IDMS 0.1 % MOX

  • JAEA-Technology 2010-040

    - 16 -

    1) , : , , 16, p.927-930 (1967).

    2) , , : , , 15, p.1234-1238 (1966).

    3) C.Bergey, : Precise Coulometric Determination of Uranium, Plutonium and Americium, Mikrochimica Acta, II, p.207-217 (1981).

    4) M.K.Holland, J.R.Weiss, and C.E.Pietri : Controlled-Potential Coulometric Determination of Plutonium, Anal. Chem., 50, p.236-240 (1978).

    5) G.C.Goode and J.Herrington : High-Speed Controlled-Potential Coulometry, Anal. Chim. Acta, 33, p.413-417 (1965).

    6) G.L.Silver : Plutonium Coulometry, Talanta, 29, p.959-960 (1982). 7) W.D.Shults : Applications of Controlled-Potential Coulometry to the Detemination of

    Plutonium, Tlanta, 10, p.833-849 (1963). 8) , , , K , V :

    , 9, p.57-63, (2000).

    9) , : , , 51, p.606-610 (2009).

    10) , , , , , , , , , , , , , , : , , 57, p.363-392 (2008).

    11) J. Neuhoff, A.Voeks, B.Srinivasan, D.Temer, M.Holland: Proceeding of INMM 45th Annual Meeting, (2004).

    12) NBL Certificate of Analysis 126 (1986). 13) International Standard: Nuclear fuel technology controlled potential coulometry assay

    of plutonium, Second Edition, ISO 12183:2005(E) (2005). 14) M.K.Holland and J.V. Cordaro: An Automated Instrument For Controlled-Potential

    Coulometry: System Documentation, U.S. Department of Energy Publication, DP-1751 (1988).

    15) American Society for Testing and Materials: Standard Test Method for Plutonium by Controlled-Potential Coulometry ASTM C1108-99 (1999).

    16) , , , , : , , 11, p.627-631 (1971).

    17) , , : XVII-2 , (1967), (). 18) , : , , 18,

    p.1264-1265 (1969).

  • JAEA-Technology 2010-040

    - 17 -

    19) D.Cohen : Electrochemical Studies of Plutonium Ions in Perchloric Acid Solution, J. Inorg. Nucl. Chem., 18, p.207-210 (1961).

    20) , : ,, 49, p.537-541 (2000).

    21) J.R.Stokely and W.D.Shults : Controlled-Potential Coulometric Determination of Plutonium in the Presence of Iron, Anal. Chem., 43, p.603-605 (1971).

    22) , , , : , 18, p.83-90, (2003).

    23) L.Tandon, K.Kuhn, D.Decker, D.Porterfield, K.Laintz, A.Wong, M.Holland and D.S.Peterson: Plutonium metal standards exchange program for actinide measurement quality assurance (2001-2007), J. Radioanal. Nucl. Chem., 282, p.565-571 (2009).

    24) International Standard: Evaluation of measurement data guide to the expression of uncertainty in measurement, JCGM 100:2008 (2008).

    25) H.Aigner, R.Binner, E.Kuhn, U.Blohm-Hieber, K.Mayer, S.Guardini, C.Pietri, T.Adachi, B.Rappinger, B.Mitterand, J.Reed, O.Mafra-Guidicini and S.Deron : International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials, IAEA STR-327 (2001).

    26) M.K.Holland and J.V. Cordaro: Mass measurement uncertainty for plutonium aliquots assayed by controlled-potential coulometry, J. Radioanal. Nucl. Chem., 282, p.555-563 (2009).

  • JAEA-Technology 2010-040

    - 18 -

    Fig. 1 Controlled-potential coulometry system for determination of plutonium installed by

    SRS.

    P

    S

    1D

    P

    S

    A

    ArGas

    Working Electrode

    Stirrer and motor

    Digital Voltmeter

    Coulometer

    ControlComputer

    Ar gas tube

    Ar gas valve

    Reference Electrode

    Counter Electrode

    Glove Box

    Flowmeter

  • JAEA-Technology 2010-040

    - 19 -

    Fig. 2 Block diagram of the coulometry system

    Fig. 3 Measurement cell and electrodes of coulometry system.

    Glass tube for reference electrode

    Reference electrode

    Counter electrode

    Glass tube for counter electrode

    Working electrode

    Measurement cell

    OxidationPotentiostat

    OrtecCounter/Timer

    AutomationModule

    Linear DC Power Supply

    Isolation Module

    DigitalAnalog

    Converter

    ControlComputer

    DigitalVoltmeter

    ReductionPotentiostat

    IntegratorModule

    WorkingElectrode

    CounterElectrode

    ReferenceElectrode

    NIM BIN

    Coulometer

  • JAEA-Technology 2010-040

    - 20 -

    Fig. 4 Plutonium sample after sulfuric acid treatment.

    Table 1 Comparison of analytical results of plutonium samples with or without sulfuric acid and amidosulfuric acid treatment.

    Sample ID Concentration

    (mgPu/g)

    Difference from certified value*

    (%) No.1

    (without H2SO4 and NH2SO3H treatment) 4.9962 -0.46

    No.2 (with H2SO4 and NH2SO3H treatment)

    5.0149 -0.09

    *Certified value: 5.0192 mgPu/g

  • JAEA-Technology 2010-040

    - 21 -

    Table 2 Oxidation and reduction time and fraction electrolyzed of plutonium samples obtained by coulometric measurement.

    Sample ID Reduction Time Pu Pu(III)

    ( sec )

    Oxidation Time Pu(III) Pu(IV)

    ( sec )

    Plutonium fraction electrolyzed

    ( % ) No.1 3983 650 99.5 No.2 2536 1392 99.5 No.3 2093 1047 99.7

    -0.01

    0.01

    0.03

    0.05

    0.07

    0.09

    400 500 600 700 800 900

    Wavelength [nm]

    Abso

    rban

    ce

    Pu(IV)Pu(VI)

    Fig. 5 Absorption spectrum of plutonium sample in 0.9 mol/L HNO3. Pu concentration: 267 mg/L, Measurement range: 400-900 nm, Band width: 5.0 nm, Scanning speed: 100 nm/min.

  • JAEA-Technology 2010-040

    - 22 -

    -0.01

    0.01

    0.03

    0.05

    0.07

    0.09

    400 500 600 700 800 900

    Wavelength [nm]

    Abso

    rban

    ce

    Pu(IV)

    Fig. 6 Absorption spectrum of plutonium sample in 0.9 mol/L HNO3 after H2O2 treatment. Pu concentration: 267 mg/L, Measurement range: 400-900 nm, Band width: 5.0 nm, Scanning speed: 100 nm/min.

    Table 3 Oxidation and reduction time and fraction electrolyzed of plutonium sample obtained by coulometric measurement after H2O2 treatment.

    Sample ID Reduction Time Pu Pu(III)

    ( sec )

    Oxidation Time Pu(III) Pu(IV)

    ( sec )

    Plutonium fraction electrolyzed

    ( % ) No.1 542 484 99.9 No.2 492 429 99.9 No.3 523 464 99.9

  • JAEA-Technology 2010-040

    - 23 -

    Fig. 7 Optimized sample pretreatment scheme for determination of plutonium by controlled-potential coulometry.

    Plutonium Sample

    Aliquoting ( Pu1015 mg/cell )

    Valence Adjustment ( H2O2 100 L )

    Add 3 mol/L H2SO4 1 mL

    Dried over 200

    Dissolution ( 0.9 mol/L HNO3 18 mL )

    Add NH2SO3H ( 12 drops )

    Coulometric Measurement

  • JAEA-Technology 2010-040

    - 24 -

    Table 4 Analytical results of plutonium samples. No.1 sample contains about 10 mg of Pu in the cell. No.2 contains about 12.5 mg of Pu in the cell. No.3 contains about 15 mg of Pu in the cell.

    Sample ID No. of runs per sample

    Concentration ( mgPu/g )

    RSD (%)

    No.1 3 5.0188 0.07

    No.2 5 5.0148 0.05

    No.3 9 5.0180 0.02

    5.00

    5.01

    5.02

    5.03

    5.04

    5.05

    2008/11/18 2008/12/8 2008/12/28 2009/1/17

    Date

    Conc

    entr

    atio

    n [m

    gPu/

    g]

    Certified Value (5.0192 mgPu/g)

    ;

    Fig. 8 Day to day measurement variability of plutonium samples between 2008/11/18 2009/1/17.

  • JAEA-Technology 2010-040

    - 25 -

    No.8No.7No.6No.5No.4

    No.3No.2No.1

    15.55

    15.56

    15.57

    15.58

    15.59

    15.60

    15.61

    15.62

    15.63

    15.64

    15.65

    Sample No.

    Conc

    entr

    atio

    n [m

    gPu/

    g]; Samples

    ; Average Value (15.5995 mgPu/g); error bar

    Fig. 9 Analytical results of plutonium solution prepared from MOX powder.

  • JAEA-Technology 2010-040

    - 26 -

    Table 5 Uncertainty budget for Pu measurement by coulometry.

    Quantity Value Standard

    uncertainty

    Uncertainty contribution

    (%) p 1015.30 hPa 0.05 hPa < 1 T 25.4 0.1 < 1 h 53.0 % 0.5 % < 1 SS 8.000 g/cm3 0.015 g/cm3 < 1 sol 1.2442 g/cm3 0.0008 g/cm3 < 1

    Wsol,No.1 12.1079 g 0.0001 g 2.4 WTare,No.1 11.1064 g 0.0001 g 2.4 Wsol,No.2 11.9162 g 0.0001 g 2.4 WTare,No.2 10.9190 g 0.0001 g 2.4 Wsol,No.3 12.0042 g 0.0001 g 2.4 WTare,No.3 11.0069 g 0.0001 g 2.4 Wsol,No.4 12.0134 g 0.0001 g 2.4 WTare,No.4 11.0157 g 0.0001 g 2.4 Wsol,No.5 12.0341 g 0.0001 g 2.4 WTare,No.5 11.0371 g 0.0001 g 2.4 Wsol,No.6 12.0502 g 0.0001 g 2.4 WTare,No.6 11.0540 g 0.0001 g 2.4 Wsol,No.7 12.0331 g 0.0001 g 2.4 WTare,No.7 11.0365 g 0.0001 g 2.4 Wsol,No.8 12.0510 g 0.0001 g 2.4 WTare,No.8 11.0532 g 0.0001 g 2.4

    FeICP 0.0028 mg/g 0.0001 mg/g 2.3 MPu 239.1397 g/mol 0.0001 g/mol < 1 MFe 55.845 g/mol 0.002 g/mol < 1

    Pu,No.1 15.64419 mg 0.00393 mg 7.3 Pu,No.2 15.57490 mg 0.00391 mg 7.3 mPu,No.3 15.57027 mg 0.00391 mg 7.3 mPu,No.4 15.58054 mg 0.00391 mg 7.3 mPu,No.5 15.57061 mg 0.00391 mg 7.3 mPu,No.6 15.55798 mg 0.00391 mg 7.3 mPu,No.7 15.56694 mg 0.00391 mg 7.3 mPu,No.8 15.58071 mg 0.00391 mg 7.3 CPu,AVE 15.59945 mg/g 0.00181 mg/g -----

  • JAEA-Technology 2010-040

    - 27 -

    Table 6. Definition of terms in Table 5. p The atmospheric pressure during mass measurement T Temperature during mass measurement h Humidity during mass measurement SS The density of the stainless steel reference weight in the analytical balance,

    which are adjusted by the manufacturer to 8.0 g/cm3 sol The density of the plutonium solution

    Wsol,No.1 The mass of the solution aliquot in coulometer cell for sample No.1 WTare,No.1 The mass of the coulometer cell for sample No.1 Wsol,No.2 The mass of the solution aliquot in coulometer cell for sample No.2

    WTare,No.2 The mass of the coulometer cell for sample No.2 Wsol,No.3 The mass of the solution aliquot in coulometer cell for sample No.3

    WTare,No.3 The mass of the coulometer cell for sample No.3 Wsol,No.4 The mass of the solution aliquot in coulometer cell for sample No.4

    WTare,No.4 The mass of the coulometer cell for sample No.4 Wsol,No.5 The mass of the solution aliquot in coulometer cell for sample No.5

    WTare,No.5 The mass of the coulometer cell for sample No.5 Wsol,No.6 The mass of the solution aliquot in coulometer cell for sample No.6

    WTare,No.6 The mass of the coulometer cell for sample No.6 Wsol,No.7 The mass of the solution aliquot in coulometer cell for sample No.7

    WTare,No.7 The mass of the coulometer cell for sample No.7 Wsol,No.8 The mass of the solution aliquot in coulometer cell for sample No.8

    WTare,No.8 The mass of the coulometer cell for sample No.8 FeICP The contents of iron in the plutonium solution MPu The relative atomic mass of plutonium MFe The relative atomic mass of iron

    Pu,No.1 The contents of plutonium in the sample No.1 measured by coulomery Pu,No.2 The contents of plutonium in the sample No.2 measured by coulomery mPu,No.3 The contents of plutonium in the sample No.3 measured by coulomery mPu,No.4 The contents of plutonium in the sample No.4 measured by coulomery mPu,No.5 The contents of plutonium in the sample No.5 measured by coulomery mPu,No.6 The contents of plutonium in the sample No.6 measured by coulomery mPu,No.7 The contents of plutonium in the sample No.7 measured by coulomery mPu,No.8 The contents of plutonium in the sample No.8 measured by coulomery CPu,AVE The average concentration of plutonium in the sample

  • JAEA-Technology 2010-040

    - 28 -

    Table 7 Propagation of plutonium content measurement uncertainty . Variables, X

    Units

    QS

    count

    QB

    count

    C

    C/count

    MPu

    g/mol

    F

    C/mol

    f none

    Value 6313581 6500 0.99966 239.1397 96485.34 0.99889

    Uncertainty

    1 1400 1700 3.6010-5 0.00002 0.0024 0.00014

    XPu 2.4810-6 -2.4810-6 1.56101 6.5410-2 -1.6210-4 -1.56101 22)( UXPu 1.2110-5 1.7810-5 3.1710-7 1.1810-12 1.5110-13 4.8110-6

    Variance 34 % 51 % < 1 % < 1 % < 1 % 14 %

  • SSII

    1024 10-1 d1021 10-2 c1018 10-3 m1015 10-6 1012 10-9 n109 10-12 p106 10-15 f103 10-18 a102 10-21 z101 da 10-24 y

    SI

    SI min 1 min=60s h 1h =60 min=3600 s d 1 d=24 h=86 400 s 1=(/180) rad 1=(1/60)=(/10800) rad 1=(1/60)=(/648000) rad

    ha 1ha=1hm2=104m2

    Ll 1L=11=1dm3=103cm3=10-3m3

    t 1t=103 kg

    SISI

    SI eV 1eV=1.602 176 53(14)10-19J Da 1Da=1.660 538 86(28)10-27kg u 1u=1 Da ua 1ua=1.495 978 706 91(6)1011m

    SISISI

    SI Ci 1 Ci=3.71010Bq R 1 R = 2.5810-4C/kg rad 1 rad=1cGy=10-2Gy rem 1 rem=1 cSv=10-2Sv 1=1 nT=10-9T 1=1 fm=10-15m 1 = 200 mg = 210-4kg Torr 1 Torr = (101 325/760) Pa atm 1 atm = 101 325 Pa

    1cal=4.1858J154.1868JIT4.184J

    1 =1m=10-6m

    10SI

    cal

    (a)SI(b)radsr(c)sr(d)(e)

    (f)activity referred to a radionuclideradioactivity(g)PV,2002,70,205CIPM2CI-2002

    cCGSSI

    aamount concentrationsubstance concentrationb

    SI

    Pa s m-1 kg s-1

    N m m2 kg s-2

    N/m kg s-2 rad/s m m-1 s-1=s-1 rad/s2 m m-1 s-2=s-2 , W/m2 kg s-3

    , J/K m2 kg s-2 K-1 J/(kg K) m2 s-2 K-1 J/kg m2 s-2 W/(m K) m kg s-3 K-1

    J/m3 m-1 kg s-2

    V/m m kg s-3 A-1 C/m3 m-3 sA C/m2 m-2 sA C/m2 m-2 sA F/m m-3 kg-1 s4 A2

    H/m m kg s-2 A-2

    J/mol m2 kg s-2 mol-1

    , J/(mol K) m2 kg s-2 K-1 mol-1

    C/kg kg-1 sA Gy/s m2 s-3 W/sr m4 m-2 kg s-3=m2 kg s-3

    W/(m2 sr) m2 m-2 kg s-3=kg s-3 kat/m3 m-3 s-1 mol

    SI

    SI

    m2 m3 m/s m/s2 m-1 kg/m3

    kg/m2

    m3/kg A/m2 A/m (a) mol/m3 kg/m3 cd/m2 (b) 1 (b) 1

    SI

    SI

    SI

    SI

    () rad 1 m/m () sr(c) 1 m2/m2 Hz s-1 N m kg s-2 , Pa N/m2 m-1 kg s-2 , , J N m m2 kg s-2 W J/s m2 kg s-3 , C s A , V W/A m2 kg s-3 A-1 F C/V m-2 kg-1 s4 A2 V/A m2 kg s-3 A-2 S A/V m-2 kg-1 s3 A2 Wb Vs m2 kg s-2 A-1 T Wb/m2 kg s-2 A-1 H Wb/A m2 kg s-2 A-2 () K lm cd sr(c) cd lx lm/m2 m-2 cd Bq s-1, ,

    Gy J/kg m2 s-2

    , , ,

    Sv J/kg m2 s-2

    kat s-1 mol

    SISI

    SI bar bar=0.1MPa=100kPa=105Pa mmHg 1mmHg=133.322Pa =0.1nm=100pm=10-10m M=1852m b b=100fm2=(10-12cm)2=10-28m2

    kn kn=(1852/3600)m/s Np

    dB

    SISI

    SI

    m kg s A K mol cd

    SI

    SI

    SI erg 1 erg=10-7 J dyn 1 dyn=10-5N P 1 P=1 dyn s cm-2=0.1Pa s St 1 St =1cm2 s-1=10-4m2 s-1

    sb 1 sb =1cd cm-2=104cd m-2

    ph 1 ph=1cd sr cm-2 104lx Gal 1 Gal =1cm s-2=10-2ms-2

    Mx 1 Mx = 1G cm2=10-8Wb G 1 G =1Mx cm-2 =10-4T Oe 1 Oe (103/4)A m-1

    CGS

    82006