221
« » « »

¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�÷­÷áâ¥àá⢮ ®á¢÷â¨ â  ­ ãª¨ �ªà ù­¨� æ÷®­ «ì­¨© â¥å­÷ç­¨© ã­÷¢¥àá¨â¥â �ªà ù­¨

«�¨ù¢á쪨© ¯®«÷â¥å­÷ç­¨© ÷­áâ¨âãâ»

� ¢ç «ì­®-­ ãª®¢¨© ª®¬¯«¥ªá«ö­áâ¨âã⠯ਪ« ¤­®£® á¨á⥬­®£®  ­ «÷§ã»

¤¨áªà¥â­  ¬ â¥¬ â¨ª 

 «£¥¡à  ¢¨á«®¢«¥­ì, ⥮à÷ï ¬­®¦¨­, ⥮à÷ï ¢÷¤­®è¥­ì,¥«¥¬¥­â¨ ª®¬¡÷­ â®à¨ª¨, ⥮à÷ï £à ä÷¢ ¥«¥¬¥­â¨ ⥮à÷ù £àã¯

â  ª÷«¥æì

�«ï áâ㤥­â÷¢ ¬ â¥¬ â¨ç­¨å ᯥæ÷ «ì­®á⥩¢¨é¨å ­ ¢ç «ì­¨å § ª« ¤÷¢

�¨ù¢ 2004

Page 2: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®á÷¡­¨ª ¬÷áâ¨âì ⥮à¥â¨ç­÷ ¢÷¤®¬®áâ÷ ÷§ âà ¤¨æ÷©­¨å ஧¤÷«÷¢¤¨áªà¥â­®ù ¬ â¥¬ â¨ª¨ {  «£¥¡à  ¢¨á«®¢«¥­ì,  «£¥¡à  ¬­®¦¨­, ⥮à÷ï¢÷¤­®è¥­ì, ª®¬¡÷­ â®à¨ª , ⥮à÷ï £à ä÷¢, ¥«¥¬¥­â¨ ⥮à÷ù £à㯠÷ ª÷«¥æì.

�®á÷¡­¨ª ®à÷õ­â®¢ ­¨© ¤«ï áâ㤥­â÷¢ ¬ â¥¬ â¨ç­¨å ᯥæ÷ «ì­®á⥩¢¨é¨å ­ ¢ç «ì­¨å § ª« ¤÷¢,   â ª®¦ ¤«ï ­ ãª®¢¨å ¯à æ÷¢­¨ª÷¢ ÷ ÷­¦¥-­¥à÷¢, ïª÷ æ÷ª ¢«ïâìáï ¢÷¤¯®¢÷¤­¨¬¨ ஧¤÷« ¬¨ ¤¨áªà¥â­®ù ¬ â¥¬ â¨ª¨.�¥à¥¤¡ ç õâìáï, é® ç¨â ç ¢®«®¤÷õ ¡ §®¢¨¬¨ ¯®­ïââﬨ «÷­÷©­®ù  «£¥¡à¨â  ¬ â¥¬ â¨ç­®£®  ­ «÷§ã.

Page 3: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�÷­÷áâ¥àá⢮ ®á¢÷â¨ â  ­ ãª¨ �ªà ù­¨� æ÷®­ «ì­¨© â¥å­÷ç­¨© ã­÷¢¥àá¨â¥â �ªà ù­¨

«�¨ù¢á쪨© ¯®«÷â¥å­÷ç­¨© ÷­áâ¨âãâ»

� ¢ç «ì­®-­ ãª®¢¨© ª®¬¯«¥ªá«ö­áâ¨âã⠯ਪ« ¤­®£® á¨á⥬­®£®  ­ «÷§ã»

¤¨áªà¥â­  ¬ â¥¬ â¨ª 

 «£¥¡à  ¢¨á«®¢«¥­ì, ⥮à÷ï ¬­®¦¨­, ⥮à÷ï ¢÷¤­®è¥­ì,¥«¥¬¥­â¨ ª®¬¡÷­ â®à¨ª¨, ⥮à÷ï £à ä÷¢, ¥«¥¬¥­â¨ ⥮à÷ù £àã¯

â  ª÷«¥æì

�«ï áâ㤥­â÷¢ ¬ â¥¬ â¨ç­¨å ᯥæ÷ «ì­®á⥩ ¢¨é¨å ­ ¢ç «ì­¨å § ª« ¤÷¢

� â¢¥à¤¦¥­®­  § á÷¤ ­­÷ ª ä¥¤à¨¬ â¥¬ â¨ç­¨å ¬¥â®¤÷¢

á¨á⥬­®£®  ­ «÷§ã

�à®â®ª®« ü?? ¢÷¤ ????????????? பã

�¨ù¢ 2004

Page 4: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

� ¢ç «ì­¨© ¯®á÷¡­¨ª § ¤¨á樯«÷­¨ «�¨áªà¥â­  ¬ â¥¬ â¨ª ». �ª« -¤ ç: ö.�¯¥ªâ®àá쪨©. - �.: ���� «��ö», ��� «ö���», 2002. - 120 á.

� ¢ç «ì­¥ ¢¨¤ ­­ï

�¨áªà¥â­  ¬ â¥¬ â¨ª 

 «£¥¡à  ¢¨á«®¢«¥­ì, ⥮à÷ï ¬­®¦¨­, ⥮à÷ï ¢÷¤­®è¥­ì,¥«¥¬¥­â¨ ª®¬¡÷­ â®à¨ª¨, ⥮à÷ï £à ä÷¢, ¥«¥¬¥­â¨ ⥮à÷ù £àã¯ â  ª÷«¥æì

�«ï áâ㤥­â÷¢ ¬ â¥¬ â¨ç­¨å ᯥæ÷ «ì­®á⥩ ã­÷¢¥àá¨â¥â÷¢

�ª« ¤ ç: �¯¥ªâ®àá쪨© ö£®à �ª®¢¨ç

�÷¤¯®¢÷¤ «ì­¨© । ªâ®à: �®¬ ­¥­ª® �÷ªâ®à �¥¬¨¤®¢¨ç

�¥æ¥­§¥­â¨: �襭ª® �®«®¤¨¬¨à � á¨«ì®¢¨ç� ­÷®¢á쪠 öਭ  �à÷ù¢­ 

Page 5: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�¬÷áâ

�áâ㯠6

1. �«£¥¡à  ¢¨á«®¢«¥­ì 71.1. �á­®¢­÷ ¯®­ïââï  «£¥¡à¨ ¢¨á«®¢«¥­ì . . . . . . . . . . . . . 71.2. ö­â¥à¯à¥â æ÷ù ä®à¬ã«  «£¥¡à¨ ¢¨á«®¢«¥­ì. � ¡«¨æ÷

¯à ¢¤¨¢®áâ÷ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.3. �®â®¦­®áâ÷  «£¥¡à¨ ¢¨á«®¢«¥­ì . . . . . . . . . . . . . . . . 121.4. �ਭ樯 ¤ã «ì­®áâ÷. �§ £ «ì­¥­¥ ¯à ¢¨«® ¤¥ �®à£ ­  . . . 141.5. �®£÷ç­¨© ­ á«÷¤®ª ÷ «®£÷ç­  ¥ª¢÷¢ «¥­â­÷áâì . . . . . . . . . 17

2. �¥®à÷ï ¬­®¦¨­ 192.1. �á­®¢­÷ ¯®­ïââï ⥮à÷ù ¬­®¦¨­ . . . . . . . . . . . . . . . . 192.2. �®â®¦­®áâ÷  «£¥¡à¨ ¬­®¦¨­ . . . . . . . . . . . . . . . . . . 222.3. �®¢¥¤¥­­ï § ª®­÷¢  «£¥¡à¨ ¬­®¦¨­ . . . . . . . . . . . . . . 252.4. �ª÷­ç¥­­÷ ¬­®¦¨­¨. �®â㦭÷áâì áª÷­ç¥­­®ù ¬­®¦¨­¨ . . . 262.5. �¥ª àâ÷¢ ¤®¡ã⮪ ¬­®¦¨­ . . . . . . . . . . . . . . . . . . . 282.6. �«£¥¡à  ¬­®¦¨­ ïª  «£¥¡à¨ç­  áâàãªâãà . �÷«ìæ¥ ¬­®¦¨­ . . 30

3. �¥®à÷ï ¢÷¤­®è¥­ì 333.1. �á­®¢­÷ ¯®­ïââï ⥮à÷ù ¢÷¤­®è¥­ì . . . . . . . . . . . . . . . 333.2. �¯®á®¡¨ § ¤ ­­ï ¡÷­ à­¨å ¢÷¤­®è¥­ì . . . . . . . . . . . . . 343.3. �¯¥à æ÷ù ­ ¤ ¡÷­ à­¨¬¨ ¢÷¤­®è¥­­ï¬¨ . . . . . . . . . . . . 373.4. �« á⨢®áâ÷ ¡÷­ à­¨å ¢÷¤­®è¥­ì . . . . . . . . . . . . . . . . 413.5. �÷¤­®è¥­­ï ¥ª¢÷¢ «¥­â­®áâ÷ â  ¢÷¤­®è¥­­ï ¯®à浪ã . . . . 453.6. �®§¡¨ââï ¬­®¦¨­¨. � ªâ®à-¬­®¦¨­  . . . . . . . . . . . . . 493.7. �ã­ªæ÷ï ïª ®ªà¥¬¨© ¢¨¯ ¤®ª ¢÷¤­®è¥­­ï . . . . . . . . . . 53

3

Page 6: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�¬÷áâ

4. �«¥¬¥­â¨ ª®¬¡÷­ â®à¨ª¨ 574.1. �á­®¢­÷ ¯à¨­æ¨¯¨ ª®¬¡÷­ â®à¨ª¨. � £ «ì­¥ ¢¨§­ ç¥­­ï

¢¨¡÷ન . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574.2. �®§¬÷饭­ï § ¯®¢â®à¥­­ï¬¨ â  ¡¥§ ¯®¢â®à¥­ì . . . . . . . . 604.3. �®¬¡÷­ æ÷ù § ¯®¢â®à¥­­ï¬¨ â  ¡¥§ ¯®¢â®à¥­ì . . . . . . . . . 614.4. �¯®à浪®¢ ­÷ ஧¡¨ââï . . . . . . . . . . . . . . . . . . . . . 644.5. �÷­®¬÷ «ì­  â  ¯®«÷­®¬÷ «ì­  ä®à¬ã«¨. �ਪãâ­¨ª � áª «ï . 654.6. � áâ®á㢠­­ï ª®à¥­¥¢¨å ¤¥à¥¢ ã ª®¬¡÷­ â®à­¨å § ¤ ç å . . 68

5. �¥®à÷ï £à ä÷¢ 705.1. �á­®¢­÷ ¯®­ïââï ⥮à÷ù £à ä÷¢ . . . . . . . . . . . . . . . . . 705.2. �⥯¥­÷ ¢¥à設 £à äã. �¥®à¥¬  ¯à® á⥯¥­÷ ¢¥à設 . . . . 725.3. �¢'吝÷áâì £à ä÷¢ . . . . . . . . . . . . . . . . . . . . . . . . 755.4. �©«¥à®¢÷ ÷ ­ ¯÷¢¥©«¥à®¢÷ £à ä¨ . . . . . . . . . . . . . . . . 775.5. �®­ïââï ¯à® £ ¬÷«ìâ®­®¢÷ â  ­ ¯÷¢£ ¬÷«ìâ®­®¢÷ £à ä¨ . . . 815.6. �¯¥æ÷ «ì­÷ ⨯¨ £à ä÷¢ . . . . . . . . . . . . . . . . . . . . . 845.7. ö§®¬®àä÷§¬ ÷ £®¬¥®¬®àä÷§¬ £à ä÷¢ . . . . . . . . . . . . . . 875.8. � âà¨æï áã¬÷¦­®áâ÷ £à äã . . . . . . . . . . . . . . . . . . . 895.9. �«®áª÷ â  ¯« ­ à­÷ £à ä¨ . . . . . . . . . . . . . . . . . . . 915.10. �à ­÷ £à äã. �®à¬ã«  �©«¥à  . . . . . . . . . . . . . . . . . 925.11. �ã «ì­÷ £à ä¨ . . . . . . . . . . . . . . . . . . . . . . . . . . 955.12. �⥯÷­ì £à ­÷ ¯«®áª®£® £à äã. �¥®à¥¬  ¯à® á⥯¥­÷ £à ­¥© . 975.13. �¤¨­ ­ á«÷¤®ª § ä®à¬ã«¨ �©«¥à  ¤«ï ¯«®áª¨å £à ä÷¢ . . . 985.14. � à¡ã¢ ­­ï ¢¥à設 â  £à ­¥© £à äã . . . . . . . . . . . . . 1005.15. �®­ïââï ¯à® ®à÷õ­â®¢ ­÷ £à ä¨ . . . . . . . . . . . . . . . . 104

6. �«¥¬¥­â¨ ⥮à÷ù £à㯠1066.1. �«£¥¡à¨ç­÷ áâàãªâãਠ§ ®¤­÷õî ¡÷­ à­®î ®¯¥à æ÷õî . . . . 1066.2. �á­®¢­÷ ¢« á⨢®áâ÷ £àã¯. �⥯÷­ì ¥«¥¬¥­â  . . . . . . . . . 1116.3. �à㯠 ¯÷¤áâ ­®¢®ª . . . . . . . . . . . . . . . . . . . . . . . . 1136.4. �¤¨â¨¢­  â  ¬ã«ì⨯«÷ª â¨¢­  £à㯨 ª« á÷¢ «¨èª÷¢ . . . . 1326.5. �®­ïââï ¯÷¤£à㯨. �à¨â¥à÷© ¯÷¤£à㯨 . . . . . . . . . . . . . 1386.6. �®¬®¬®àä÷§¬¨ £àã¯: ®á­®¢­÷ ¢¨§­ ç¥­­ï â  â¥®à¥¬¨ . . . . 1416.7. �¨ª«÷ç­÷ £à㯨 . . . . . . . . . . . . . . . . . . . . . . . . . . 1436.8. �ã¬÷¦­÷ ª« á¨ . . . . . . . . . . . . . . . . . . . . . . . . . . 1476.9. �ª÷­ç¥­­÷ £à㯨. �¥®à¥¬  � £à ­¦  . . . . . . . . . . . . . 1506.10. � á«÷¤ª¨ § ⥮६¨ � £à ­¦  . . . . . . . . . . . . . . . . . 153

4

Page 7: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�¬÷áâ

6.11. �®à¬ «ì­÷ ¤÷«ì­¨ª¨ . . . . . . . . . . . . . . . . . . . . . . . 1546.12. �®­ïââï ä ªâ®à-£à㯨 . . . . . . . . . . . . . . . . . . . . . 1576.13. �®¬®¬®àä÷§¬¨ £àã¯: ⥮६¨ ¯à® ï¤à® â  ®¡à §

£®¬®¬®àä÷§¬ã . . . . . . . . . . . . . . . . . . . . . . . . . . 1646.14. �¥®à¥¬  ¯à® £®¬®¬®àä÷§¬¨ £à㯠. . . . . . . . . . . . . . . . 170

7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì 1777.1. �¨§­ ç¥­­ï â  ¯à¨ª« ¤¨ ª÷«¥æì . . . . . . . . . . . . . . . . 1777.2. �á­®¢­÷ ¢« á⨢®áâ÷ ª÷«¥æì . . . . . . . . . . . . . . . . . . . 1817.3. �÷¤ª÷«ìæ¥. �à¨â¥à÷© ¯÷¤ª÷«ìæï . . . . . . . . . . . . . . . . . 1827.4. �÷«ìæï § ®¤¨­¨æ¥î . . . . . . . . . . . . . . . . . . . . . . . . 1837.5. �÷«ì­¨ª¨ ­ã«ï. �®­ïââï ®¡« áâ÷ æ÷«÷á­®áâ÷ . . . . . . . . . . 1867.6. ö¤¥ « ª÷«ìæï . . . . . . . . . . . . . . . . . . . . . . . . . . . 1917.7. � ªâ®à-ª÷«ìæ¥ . . . . . . . . . . . . . . . . . . . . . . . . . . 1957.8. �®¬®¬®àä÷§¬¨ ª÷«¥æì . . . . . . . . . . . . . . . . . . . . . . 1977.9. �¥®à¥¬  ¯à® £®¬®¬®àä÷§¬¨ ª÷«¥æì . . . . . . . . . . . . . . . 2007.10. � ªá¨¬ «ì­÷ ÷¤¥ «¨ . . . . . . . . . . . . . . . . . . . . . . . 2057.11. �®­ïââï ¯à® ÷¤¥¬¯®â¥­â­÷ ª÷«ìæï . . . . . . . . . . . . . . . 2087.12. �®­ïââï ¬®¤ã«ï â   «£¥¡à¨ . . . . . . . . . . . . . . . . . . . 209

�¯¨á®ª ¢¨ª®à¨áâ ­®ù «÷â¥à âãਠ213

�®ª ¦ç¨ª â¥à¬÷­÷¢ 215

5

Page 8: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�áâã¯

�¨á樯«÷­  «�¨áªà¥â­  ¬ â¥¬ â¨ª » õ ®¤­÷õî § ®á­®¢­¨å äã­¤ ¬¥­-â «ì­¨å ¤¨á樯«÷­ ã § £ «ì­®­ ãª®¢÷© ¯÷¤£®â®¢æ÷ áâ㤥­â÷¢ §  ᯥæ÷ «ì-­®áâﬨ 7.080203 «�¨á⥬­¨©  ­ «÷§ ÷ ã¯à ¢«÷­­ï», 7.080204 «�®æ÷ «ì­ ÷­ä®à¬ â¨ª » â  7.080404 «ö­â¥«¥ªâã «ì­÷ á¨á⥬¨ ¯à¨©­ïââï à÷襭ì».�ãàá ¤¨áªà¥â­®ù ¬ â¥¬ â¨ª¨ ¡ §®¢¨© ¤«ï â ª¨å ¤¨á樯«÷­, ïª «�¥®à÷𤋮®¢÷à­®á⥩ â  ¬ â¥¬ â¨ç­  áâ â¨á⨪ », «�¯¥æ÷ «÷§®¢ ­÷ ¬®¢¨ ¯à®£à -¬ã¢ ­­ï», «�ªá¯¥àâ­÷ á¨á⥬¨» â  ÷­. �÷¤ ç á ¢¨¢ç¥­­ï ªãàáã ¢¨ª®à¨áâ®-¢ãîâì ®á­®¢­÷ ¢¨§­ ç¥­­ï â  â¥®à¥¬¨ ¤¨á樯«÷­ «� â¥¬ â¨ç­¨©  ­ «÷§»â  «�÷­÷©­   «£¥¡à ».

� ­ ¢ç «ì­®¬ã ¯®á÷¡­¨ªã ¯®¤ ­® ⥮à¥â¨ç­¨© ¬ â¥à÷ « §  ஧¤÷« ¬¨:«�«£¥¡à  ¢¨á«®¢«¥­ì», «�¥®à÷ï ¬­®¦¨­», «�¥®à÷ï ¢÷¤­®è¥­ì», «�«¥¬¥­-⨠ª®¬¡÷­ â®à¨ª¨», «�¥®à÷ï £à ä÷¢», «�«¥¬¥­â¨ ⥮à÷ù £à㯻, «�«¥¬¥­â¨â¥®à÷ù ª÷«¥æì». � â¥à÷ « §£÷¤­® § ஡®ç®î ¯à®£à ¬®î ¤¨á樯«÷­¨ «�¨áª-à¥â­  ¬ â¥¬ â¨ª » ஧à å®¢ ­® ­  ¢¨ª« ¤ ­­ï ¯à®â¬ ¤¢ ¤æï⨠®¤­÷õù«¥ªæ÷ù.

�§­ ç¥­­ï â  â¥®à¥¬¨ ¯à®÷«îáâ஢ ­® ¯à¨ª« ¤ ¬¨. �®¢¥¤¥­­ï «¥¬ ÷⥮६ ­ ¢¥¤¥­® ¢ áâ¨á«®¬ã ¢¨£«ï¤÷. �à®áâ÷ ⢥द¥­­ï â  â¢¥à¤¦¥­­ï,é® ¬®¦ãâì ¡ã⨠¤®¢¥¤¥­÷ §   ­ «®£÷õî, § ¯à®¯®­®¢ ­® ïª ¢¯à ¢¨ ¤«ïá ¬®áâ÷©­®ù ஡®â¨.

�®à冷ª ÷ áâ¨«ì ¯®¤ ­­ï ¬ â¥à÷ «ã ¯®¢­÷áâî ¢÷¤¯®¢÷¤ õ ஡®ç÷© ¯à®£-à ¬÷ ¤¨á樯«÷­¨ «�¨áªà¥â­  ¬ â¥¬ â¨ª » â  § ¤®¢®«ì­ïõ ¯®âॡ¨ áã-¬÷¦­¨å ¬ â¥¬ â¨ç­¨å ÷ ¯à¨ª« ¤­¨å ¤¨á樯«÷­.

6

Page 9: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 1

�«£¥¡à  ¢¨á«®¢«¥­ì

1.1. �á­®¢­÷ ¯®­ïââï  «£¥¡à¨ ¢¨á«®¢«¥­ì

� æ쮬㠯÷¤à®§¤÷«÷ ­ ¢¥¤¥¬® ®á­®¢­÷ ®§­ ç¥­­ï â  ä ªâ¨, é® áâ®áã-îâìáï  «£¥¡à¨ ¢¨á«®¢«¥­ì.

�§­ ç¥­­ï 1.1. �¨á«®¢«¥­­ï¬ ­ §¨¢ îâì ஧¯®¢÷¤­¥ à¥ç¥­­ï, áâ®-ᮢ­® 类£® ¢ ¤ ­®¬ã ª®­â¥ªáâ÷ ¬®¦­  ¢¨§­ ç¨â¨, õ ¢®­® ¯à ¢¤¨¢¨¬ 稭¥¯à ¢¤¨¢¨¬.

�ਪ« ¤ 1.1. �¥ç¥­­ï «�­÷£ { ¡÷«¨©» õ ¢¨á«®¢«¥­­ï¬, ®áª÷«ìª¨ ¯à¨ä÷ªá®¢ ­®¬ã ª®­â¥ªáâ÷ ¬®¦­  ¢¨§­ ç¨â¨ ©®£® ¯à ¢¤¨¢÷áâì ç¨ ­¥¯à ¢¤¨-¢÷áâì. �ਠ¯à¨à®¤­®¬ã ª®­â¥ªáâ÷ (­®à¬ «ì­¨©  â¬®áä¥à­¨© â¨áª, ¢÷¤-­®á­® ç¨á⥠¯®¢÷âàï â®é®) ¤ ­¥ ¢¨á«®¢«¥­­ï õ ¯à ¢¤¨¢¨¬. �«÷¤ § §­ -ç¨â¨, é® ä÷ªá æ÷ï ª®­â¥ªáâã õ ­¥®¡å÷¤­®î ¯¥à¥¤ã¬®¢®î ¤«ï ¢¨§­ ç¥­­ï¯à ¢¤¨¢®áâ÷ ¤ ­®£® à¥ç¥­­ï, ®áª÷«ìª¨ ¢ ¥ª®«®£÷ç­® § ¡à㤭¥­÷© ¬÷á楢®á-â÷ á­÷£ ¬®¦¥ ­¥ ¡ã⨠¡÷«¨¬ (ã ¬¥¦ å ª®­â¥ªáâã á«÷¤ â ª®¦ ¢¨§­ ç¨â¨ á ¬÷¯®­ïââï «á­÷£» â  «¡÷«¨© ª®«÷à»).

� ã¢ ¦¥­­ï 1.1. � ¯à¨ª«. 1.1 ¯¥à¥¤ ­ ¬¨ ¯®áâ «  ¯à®¡«¥¬  ä®à¬ -«÷§ æ÷ù ¯à¨à®¤­®ù ¬®¢¨. �®à¬ «ì­¥ ¢¨§­ ç¥­­ï â¥à¬÷­÷¢ «á­÷£» â  «¡÷«¨©ª®«÷à» ­¥ õ ¯à®á⨬,   ¢ ¬¥¦ å ä®à¬ «ì­®ù «®£÷ª¨ ÷ ­¥¬®¦«¨¢¨¬ (§ á¯à®¡¨ ¤ â¨ ¢÷¤¯®¢÷¤­÷ ®§­ ç¥­­ï ¡ã¤ãâì §'ïâ¨áï ¢á¥ ­®¢÷ â  ­®¢÷ â¥à-¬÷­¨). � ª  ¯à®¡«¥¬  ⨯®¢  ¯÷¤ ç á ஧£«ï¤ã «â¥ªá⮢¨å» § ¤ ç.

7

Page 10: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 1. �«£¥¡à  ¢¨á«®¢«¥­ì

�ਪ« ¤ 1.2. �¥ç¥­­ï «�ப®¤¨«¨ «÷â îâì» õ ¢¨á«®¢«¥­­ï¬, ­¥-¯à ¢¤¨¢¨¬ ¯à¨ ¯à¨à®¤­®¬ã ª®­â¥ªáâ÷ (¢ ¦ª® ᪮­áâàã⨠ª®­â¥ªáâ,§  直¬ ¤ ­¥ ¢¨á«®¢«¥­­ï ¯à ¢¤¨¢¥, ¯à®â¥ ⥮à¥â¨ç­® â ª  ¬®¦«¨¢÷áâì­¥ ¢¨ª«î祭 ).

�ਪ« ¤ 1.3. �®§¯®¢÷¤­¥ à¥ç¥­­ï «�¥ à¥ç¥­­ï õ ­¥¯à ¢¤¨¢¨¬» ­¥õ ¢¨á«®¢«¥­­ï¬, ®áª÷«ìª¨, ïª «¥£ª® ¯¥à¥¢÷à¨â¨, ¯à¨ ¦®¤­®¬ã ª®­â¥ªáâ÷­¥¬®¦«¨¢® ¢¨§­ ç¨â¨ ©®£® ¯à ¢¤¨¢÷áâì ç¨ ­¥¯à ¢¤¨¢÷áâì.

� ã¢ ¦¥­­ï 1.2. �ਪ« ¤ 1.3 õ ®¤­¨¬ § â ª §¢ ­¨å ««®£÷ç­¨å ¯ à -¤®ªá÷¢». �à® ¯à¨à®¤ã â  § á®¡¨ ¡®à®â졨 § ¯ à ¤®ªá ¬¨ ¤¨¢. [1, 2].

� ¤ «÷ ¤®¬®¢¨¬®áì ¯®§­ ç â¨ ¢¨á«®¢«¥­­ï ¢¥«¨ª¨¬¨ «÷â¥à ¬¨  ­£-«÷©á쪮£®  «ä ¢÷âã § ÷­¤¥ªá ¬¨ ç¨ ¡¥§: A, B3, X2,13 (â ª §¢ ­÷ ¯à®¯®§¨-æ÷©­÷ «÷â¥à¨). �ªé® ¢¨á«®¢«¥­­ï A ¯à¨ ä÷ªá®¢ ­®¬ã ª®­â¥ªáâ÷ ¯à ¢¤¨¢¥(­¥¯à ¢¤¨¢¥), ¡ã¤¥¬® ¯¨á â¨: |A| = 1 (¢÷¤¯®¢÷¤­® |A| = 0).

1.1.1. �á­®¢­÷ ®¯¥à æ÷ù ­ ¤ ¢¨á«®¢«¥­­ï¬¨

�§­ ç¥­­ï 1.2. �¨§'î­ªæ÷õî («®£÷ç­®î á㬮î) ¢¨á«®¢«¥­ì A â  B­ §¨¢ îâì ¢¨á«®¢«¥­­ï A ∨ B, 瘟 õ ¯à ¢¤¨¢¨¬ ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨¯à ¢¤¨¢¥ å®ç  ¡ ®¤­¥ § ¢¨á«®¢«¥­ì A ç¨ B.

�§­ ç¥­­ï 1.3. �®­'î­ªæ÷õî («®£÷ç­¨¬ ¤®¡ã⪮¬) ¢¨á«®¢«¥­ì A â B ­ §¨¢ îâì ¢¨á«®¢«¥­­ï A∧B, 瘟 õ ¯à ¢¤¨¢¨¬ ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨¯à ¢¤¨¢÷ ®¡¨¤¢  ¢¨á«®¢«¥­­ï A â  B.

�§­ ç¥­­ï 1.4. � ¯¥à¥ç¥­­ï¬ ¢¨á«®¢«¥­­ï A ­ §¨¢ îâì ¢¨á«®¢«¥­-­ï ¬A, 瘟 õ ¯à ¢¤¨¢¨¬ ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ ¢¨á«®¢«¥­­ï A ­¥¯à ¢-¤¨¢¥.

�§­ ç¥­­ï 1.5. ö¬¯«÷ª æ÷õî ¢¨á«®¢«¥­ì A â  B ­ §¨¢ îâì ¢¨á«®¢-«¥­­ï A → B, 瘟 õ ¯à ¢¤¨¢¨¬ ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ § ¯à ¢¤¨¢®áâ÷¢¨á«®¢«¥­­ï A ¢¨¯«¨¢ õ ¯à ¢¤¨¢÷áâì B. �¨á«®¢«¥­­ï A ç áâ® ­ §¨¢ îâ쯮ᨫª®î  ¡® £÷¯®â¥§®î ÷¬¯«÷ª æ÷ù A → B, ¢¨á«®¢«¥­­ï B { ­ á«÷¤ª®¬.

� ã¢ ¦¥­­ï 1.3. �¨á«®¢«¥­­ï A → B õ ¯à ¢¤¨¢¨¬ ⮤÷ ÷ â÷«ìª¨â®¤÷, ª®«¨ ­ á«÷¤®ª B ¯à ¢¤¨¢¨©  ¡® ¯®á¨«ª  A ­¥¯à ¢¤¨¢ , ⮡â®:A → B = (¬A) ∨B.

8

Page 11: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

1.1. �á­®¢­÷ ¯®­ïââï  «£¥¡à¨ ¢¨á«®¢«¥­ì

�§­ ç¥­­ï 1.6. �ª¢÷¢ «¥­æ÷õî (¯®¤¢÷©­®î ÷¬¯«÷ª æ÷õî) ¢¨á«®¢«¥­ìA â  B ­ §¨¢ îâì ¢¨á«®¢«¥­­ï A ↔ B, 瘟 õ ¯à ¢¤¨¢¨¬ ⮤÷ ÷ â÷«ìª¨ ⮤÷,ª®«¨ ®¡¨¤¢  ¢¨á«®¢«¥­­ï A â  B õ ¢®¤­®ç á ¯à ¢¤¨¢¨¬¨  ¡® ¢®¤­®ç á­¥¯à ¢¤¨¢¨¬¨ (­ ¡ã¢ îâì ®¤­ ª®¢¨å §­ ç¥­ì).

� ã¢ ¦¥­­ï 1.4. �¨á«®¢«¥­­ï A ↔ B õ ¯à ¢¤¨¢¨¬ ⮤÷ i â÷«ìª¨ â®-¤÷, ª®«¨ ¢®¤­®ç á ¯à ¢¤¨¢÷ ®¡¨¤¢÷ ÷¬¯«÷ª æ÷ù A → B â  B → A, ⮡â®:A ↔ B = (A → B) ∧ (B → A).

�§­ ç¥­­ï 1.7. �ã¬®î §  ¬®¤ã«¥¬ 2 (¢¨ª«îç­®î «®£÷ç­®î á㬮î)¢¨á«®¢«¥­ì A â  B ­ §¨¢ îâì ¢¨á«®¢«¥­­ï A⊕B, 瘟 õ ¯à ¢¤¨¢¨¬ ⮤÷÷ â÷«ìª¨ ⮤÷, ª®«¨ à÷¢­® ®¤­¥ § ¢¨á«®¢«¥­ì A ç¨ B õ ¯à ¢¤¨¢¨¬ (¢¨á«®-¢«¥­­ï A â  B ­ ¡ã¢ îâì à÷§­¨å §­ ç¥­ì).

� ã¢ ¦¥­­ï 1.5. �¨á«®¢«¥­­ï A ⊕ B õ ¯à ¢¤¨¢¨¬ ⮤÷ i â÷«ìª¨ ⮤÷,ª®«¨ ¥ª¢÷¢ «¥­æ÷ï A ↔ B õ ­¥¯à ¢¤¨¢®î: A⊕B = ¬(A ↔ B).

1.1.2. �¥ªãàᨢ­¥ ¢¨§­ ç¥­­ï ä®à¬ã«¨ «£¥¡à¨ ¢¨á«®¢«¥­ì

� §­ ç¨¬®, é® ¯®­ïââï ä®à¬ã«¨  «£¥¡à¨ ¢¨á«®¢«¥­ì õ ÷­âãù⨢­® §à®-§ã¬÷«¨¬, ¯à®â¥ ä®à¬ «÷§ æ÷ï ¯®âॡãõ ç÷âª¨å ¢¨§­ ç¥­ì.

�§­ ç¥­­ï 1.8. �­®¦¨­  ä®à¬ã« ¢¨§­ ç õâìáï â ª¨¬¨ âà쮬 ã¬®¢ ¬¨:

• ¯à®¯®§¨æ÷©­  «÷â¥à  õ ä®à¬ã«®î;• ïªé® A â  B { ä®à¬ã«¨, â® (A∨B), (A∧B), (¬A) { â ª®¦ ä®à¬ã«¨;• ÷­è¨å ä®à¬ã« ­¥¬ õ.

�ਪ« ¤¨ ä®à¬ã«  «£¥¡à¨ ¢¨á«®¢«¥­ì: (A∨(¬B)), (A∧(B∨C)). � ¯¨áA ∨B ∧ C, §£÷¤­® § ®§­ ç¥­­ï¬ 1.8, ­¥ õ ä®à¬ã«®î  «£¥¡à¨ ¢¨á«®¢«¥­ì.

� ¤ «÷ ¢¨à § A → B ¢¢ ¦ â¨¬¥¬® ᪮à®ç¥­­ï¬ ¤«ï (¬A)∨B, ¢¨à §A ↔ B { ᪮à®ç¥­­ï¬ ¤«ï (A → B) ∧ (B → A) (¤¨¢. § ã¢. 1.3 â  1.4).

� ¬¥â®î á¯à®é¥­­ï § ¯¨áã, ­ ¤ «÷ ã ä®à¬ã« å ®¯ã᪠⨬¥¬® §®¢­÷è-­÷ ¤ã¦ª¨, é® ­¥ ­¥áãâì ¢ ᮡ÷ ¤®¤ âª®¢®ù ÷­ä®à¬ æ÷ù, ¯à®â¥ ­¥¬¨­ã祧'ïîâìáï, ïªé® ä®à¬ã«  ¬÷áâ¨âì å®ç  ¡ ®¤­ã «®£÷ç­ã ®¯¥à æ÷î. � ª,§ ¬÷áâì (A ∨B) ¡ã¤¥¬® ¯¨á â¨ A ∨B.

9

Page 12: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 1. �«£¥¡à  ¢¨á«®¢«¥­ì

� ¤ «÷ ¢¢ ¦ â¨¬¥¬®, é® ¡÷­ à­÷ ®¯¥à æ÷ù «∨», «∧», «→», «↔» â  «⊕»¬ îâì ¬¥­è¨© ¯à÷®à¨â¥â, ­÷¦ ã­ à­  ®¯¥à æ÷ï «¬». � ¯¨áãîç¨ ä®à¬ã-«¨  «£¥¡à¨ ¢¨á«®¢«¥­ì, ¡ã¤¥¬® ®¯ã᪠⨠¤ã¦ª¨, ­ ï¢­÷áâì ïª¨å ¢áâ ­®-¢«îõâìáï § ¬÷àªã¢ ­ì ¯à÷®à¨â¥â­®áâ÷ ®¯¥à æ÷©. � ª, § ¬÷áâì A∨ (¬B) â (¬A) → B ¯¨á â¨¬¥¬® ¢÷¤¯®¢÷¤­® A ∨ ¬B â  ¬A → B.

1.2. ö­â¥à¯à¥â æ÷ù ä®à¬ã«  «£¥¡à¨¢¨á«®¢«¥­ì. � ¡«¨æ÷ ¯à ¢¤¨¢®áâ÷

�§­ ç¥­­ï 1.9. ö­â¥à¯à¥â æ÷õî ä®à¬ã«¨  «£¥¡à¨ ¢¨á«®¢«¥­ì ­ -§¨¢ õâìáï §÷áâ ¢«¥­­ï ª®¦­÷© ¯à®¯®§¨æ÷©­÷© «÷â¥à÷, é® ¬÷áâ¨âìáï ã ä®à-¬ã«÷, §­ ç¥­­ï «¯à ¢¤ » (1) ç¨ «­¥¯à ¢¤ » (0).

�­®¦¨­ã ¢á÷å ÷­â¥à¯à¥â æ÷© ¤ ­®ù ä®à¬ã«¨ §àãç­® §¢®¤¨â¨ ¢ â ª §¢ -­ã â ¡«¨æî ¯à ¢¤¨¢®áâ÷. �¥å © ä®à¬ã«  A ¬÷áâ¨âì n ¯à®¯®§¨æ÷©­¨å «÷-â¥à: A1, A2, . . . , An. � ¡«¨æï ¯à ¢¤¨¢®áâ÷ ä®à¬ã«¨ A ¡ã¤ãõâìáï ïª â ¡«¨-æï, é® ¬÷áâ¨âì n+1 á⮢¯æ÷¢ â  2n à浪÷¢. �ਠæ쮬㠢 ¯¥àè¨å n á⮢¯æï姢®¤ïâìáï «®£÷ç­÷ §­ ç¥­­ï, ïª÷ §÷áâ ¢«ïîâìáï n ¯à®¯®§¨æ÷©­¨¬ «÷â¥à ¬,(n + 1)-© á⮢¯¥æì ¬÷áâ¨âì ¢÷¤¯®¢÷¤­¥ §­ ç¥­­ï á ¬®ù ä®à¬ã«¨ A. �⦥,ª®¦¥­ § à浪÷¢ ¢÷¤¯®¢÷¤ õ ®¤­÷© ÷­â¥à¯à¥â æ÷ù.

�ਪ« ¤ 1.4. � ¢¥¤¥¬® â ¡«¨æ÷ ¯à ¢¤¨¢®áâ÷ ¤«ï ä®à¬ã«  «£¥¡à¨¢¨á«®¢«¥­ì ¬A â  A1 ∨ ¬A2:

A ¬A0 11 0

A1 A2 A1 ∨ ¬A2

0 0 10 1 01 0 11 1 1

� áâ® ¢ ®¤­ã â ¡«¨æî ¯à ¢¤¨¢®áâ÷ §¢®¤ïâì ÷­â¥à¯à¥â æ÷ù ¤¥ª÷«ìª®åä®à¬ã«, é® ¬÷áâïâì á¯÷«ì­÷ ¯à®¯®§¨æ÷©­÷ «÷â¥à¨.

�ਪ« ¤ 1.5. �¢¥¤¥¬® ¢ ®¤­ã â ¡«¨æî ¯à ¢¤¨¢®áâ÷ ÷­â¥à¯à¥â æ÷ù ¤«ï¡÷­ à­¨å «®£÷ç­¨å ®¯¥à æ÷© «∨», «∧», «→», «↔» â  «⊕»:

10

Page 13: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

1.2. ö­â¥à¯à¥â æ÷ù ä®à¬ã«  «£¥¡à¨ ¢¨á«®¢«¥­ì. � ¡«¨æ÷ ¯à ¢¤¨¢®áâ÷

A B A ∨B A ∧B A → B A ↔ B A⊕B0 0 0 0 1 1 00 1 1 0 1 0 11 0 1 0 0 0 11 1 1 1 1 1 0

�ã¤ãîç¨ â ¡«¨æ÷ ¯à ¢¤¨¢®áâ÷ ᪫ ¤­¨å ä®à¬ã« ÷­®¤÷ ¤®æ÷«ì­® ¢¨¢¥-á⨠§­ ç¥­­ï ¯à®¬÷¦­¨å ᪫ ¤®¢¨å ç á⨭ ¢¨å÷¤­®ù ä®à¬ã«¨.

�ਪ« ¤ 1.6. �®¡ã¤ãõ¬® â ¡«¨æî ¯à ¢¤¨¢®áâ÷ ¤«ï ä®à¬ã«¨  «£¥¡à¨¢¨á«®¢«¥­ì (A ∨B) ↔ (A ∧B):

A B A ∨B A ∧B (A ∨B) ↔ (A ∧B)0 0 0 0 10 1 1 0 01 0 1 0 01 1 1 1 1

�§­ ç¥­­ï 1.10. �®à¬ã«¨ A1 â  A2 ­ §¨¢ îâì «®£÷ç­® ¥ª¢÷¢ «¥­â-­¨¬¨  ¡® â®â®¦­¨¬¨, ïªé® ­  ª®¦­÷© ÷­â¥à¯à¥â æ÷ù ¢®­¨ ­ ¡ã¢ îâì ®¤-­ ª®¢¨å §­ ç¥­ì (¢®¤­®ç á ¯à ¢¤¨¢÷  ¡® ¢®¤­®ç á ­¥¯à ¢¤¨¢÷).

� ªâ «®£÷ç­®ù ¥ª¢÷¢ «¥­â­®áâ÷ (â®â®¦­®áâ÷) ä®à¬ã« A1 â  A2 ¯®§­ -ç â¨¬¥¬® ïª A1 ⇔ A2  ¡® A1 = A2.

�ਪ« ¤ 1.7. �祢¨¤­®, é® A ∨ B = B ∨ A, A ∧ B = B ∧ A, ¯à®â¥A ∧B 6= A ∨B.

�«ï ¤®¢¥¤¥­­ï â®â®¦­®áâ÷ ä®à¬ã«  «£¥¡à¨ ¢¨á«®¢«¥­ì, é® ¬÷áâïâì­¥¢¥«¨ªã ª÷«ìª÷áâì ¯à®¯®§¨æ÷©­¨å «÷â¥à, §àãç­® ¢¨ª®à¨á⮢㢠⨠⠡«¨-æ÷ ¯à ¢¤¨¢®áâ÷.

�ਪ« ¤ 1.8. �®¢¥¤¥¬® § ª®­ ¤¨áâਡã⨢­®áâ÷ ¤¨§'î­ªæ÷ù ¢÷¤­®á­®ª®­'î­ªæ÷ù: A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C).

11

Page 14: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 1. �«£¥¡à  ¢¨á«®¢«¥­ì

A B C B ∧ C A ∨ (B ∧C) A ∨B A ∨ C (A ∨B) ∧ (A ∨C)0 0 0 0 0 0 0 00 0 1 0 0 0 1 00 1 0 0 0 1 0 00 1 1 1 1 1 1 11 0 0 0 1 1 1 11 0 1 0 1 1 1 11 1 0 0 1 1 1 11 1 1 1 1 1 1 1

�§­ ç¥­­ï 1.11. �®à¬ã«ã A ­ §¨¢ îâì «®£÷ç­® § £ «ì­®§­ çãé®î ¡® ⠢⮫®£÷õî, ïªé® A ­ ¡ã¢ õ §­ ç¥­­ï 1 ­  ¢á÷å ÷­â¥à¯à¥â æ÷ïå. �®à-¬ã«ã A ­ §¨¢ îâì «®£÷ç­®î á㯥à¥ç­÷áâî  ¡® ¯à®áâ® á㯥à¥ç­÷áâî, ïª-é® A ­ ¡ã¢ õ §­ ç¥­­ï 0 ­  ¢á÷å ÷­â¥à¯à¥â æ÷ïå. �®à¬ã«ã A ­ §¨¢ îâìâ ª®î, é® ¢¨ª®­ãõâìáï, ïªé® A ­ ¡ã¢ õ §­ ç¥­­ï 1 å®ç  ¡ ­  ®¤­÷© ÷­-â¥à¯à¥â æ÷ù.

�«ï ⠢⮫®£÷ù â  á㯥à¥ç­®áâ÷ §¡¥à¥¦¥¬® ¯®§­ ç¥­­ï 1 ÷ 0 ¢÷¤¯®¢÷¤­®.

�ਪ« ¤ 1.9. �®à¬ã«  A = A1 ∨ ¬A1 õ ⠢⮫®£÷õî, ®áª÷«ìª¨A1 ∨ ¬A1 = 1. �®à¬ã«  A = A1 ∧ ¬A1 õ á㯥à¥ç­÷áâî, ®áª÷«ìª¨A1 ∧ ¬A1 = 0. �®à¬ã«  A = A1 ∧ ¬A2 õ â ª®î, é® ¢¨ª®­ãõâìáï, ¯à®-â¥, ïª ¢¨¤­® § ¢÷¤¯®¢÷¤­®ù â ¡«¨æ÷ ¯à ¢¤¨¢®áâ÷ (¤¨¢. ¯à¨ª«. 1.4), ­¥ õ⠢⮫®£÷õî.

1.3. �®â®¦­®áâ÷  «£¥¡à¨ ¢¨á«®¢«¥­ì1.3.1. �á­®¢­÷ â®â®¦­®áâ÷  «£¥¡à¨ ¢¨á«®¢«¥­ì

� ¢¥¤¥¬® ç®â¨à¨ ¯ à¨ § ª®­÷¢  «£¥¡à¨ ¢¨á«®¢«¥­ì, ïª÷ ­ ¤ «÷ ¢¨¤÷-«ï⨬¥¬® ïª ®á­®¢­÷.

�¥å © A, B, C { ¤®¢÷«ì­÷ ä®à¬ã«¨  «£¥¡à¨ ¢¨á«®¢«¥­ì.1. �®¬ãâ â¨¢­÷áâì (¯¥à¥áâ ¢­¨© § ª®­): A ∨B = B ∨ A,

A ∧B = B ∧ A.2. �¨áâਡã⨢­÷áâì (஧¯®¤÷«ì­¨© § ª®­):

A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C),A ∧ (B ∨ C) = (A ∧B) ∨ (A ∧ C).

12

Page 15: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

1.3. �®â®¦­®áâ÷  «£¥¡à¨ ¢¨á«®¢«¥­ì

3. �¥©âà «ì­÷áâì: A ∨ 0 = A,A ∧ 1 = A.

4. �®¯®¢­¥­÷áâì: A ∨ ¬A = 1,A ∧ ¬A = 0.

�¯à ¢  1.1. �¨¢¥á⨠­ ¢¥¤¥­÷ ®á­®¢­÷ § ª®­¨ §  ¤®¯®¬®£®î â ¡«¨æì¯à ¢¤¨¢®áâ÷.

� ¢¥¤¥­¨å ¢®á쬨 (ç®â¨à¨ ¯ à¨) ®á­®¢­¨å § ª®­÷¢ ¤®áâ â­ì® ¤«ï ¢¨-¢¥¤¥­­ï ¡ã¤ì-类ù â®â®¦­®áâ÷  «£¥¡à¨ ¢¨á«®¢«¥­ì ¡¥§ ¢¨ª®à¨áâ ­­ï â ¡-«¨æì ¯à ¢¤¨¢®áâ÷ (楩 䠪⠭¥£ ©­® ¢¨¯«¨¢ õ § ¬®¦«¨¢®áâ÷ §®¡à ¦¥­­ï¤®¢÷«ì­®ù ä®à¬ã«¨ ã ¢¨£«ï¤÷ â ª §¢ ­®ù ¤®áª®­ «®ù ¤¨§'⨢­®ù ­®à-¬ «ì­®ù ä®à¬¨; ⥮à÷ï ¤¨§'⨢­¨å ÷ ª®­'⨢­¨å ä®à¬ ஧£«ï¤ -õâìáï, ­ ¯à¨ª« ¤, ã [3]).

� §­ ç¨¬®, é® ¦®¤­ã ¯ àã ­ ¢¥¤¥­¨å ®á­®¢­¨å § ª®­÷¢ ­¥ ¬®¦­  ¢¨-¢¥á⨠§ âàì®å ÷­è¨å ¯ à, é® § «¨è îâìáï. �à®â¥, ®¤­  (¡ã¤ì-猪) § â®-⮦­®á⥩ ­¥©âà «ì­®áâ÷ ¬®¦¥ ¡ã⨠¢¨¢¥¤¥­  § ᥬ¨ § ª®­÷¢, é® § «¨-è îâìáï. �¯à ¢¤÷, ¢¨¢¥¤¥¬® â®â®¦­÷áâì A ∨ 0 = A. �«ï æ쮣® ᯮç âªã¢¨¢¥¤¥¬® â ª §¢ ­ã â®â®¦­÷áâì ã­÷¢¥àá «ì­¨å ¬¥¦ A ∨ 1 = 1 (­ £ ¤ -õ¬®, é® A { ¤®¢÷«ì­  ä®à¬ã« ),   ¯®â÷¬ ¤®¢¥¤¥¬® ¯®âà÷¡­ã â®â®¦­÷áâì­¥©âà «ì­®áâ÷ A ∨ 0 = A.

A ∨ 1 = (A ∨ 1) ∧ 1 = (A ∨ 1) ∧ (A ∨ ¬A) = A ∨ (1 ∧ ¬A) = A ∨ ¬A = 1;

A ∨ 0 = A ∨ (A ∧ ¬A) = (A ∧ 1) ∨ (A ∧ ¬A) = A ∧ (1 ∨ ¬A) = A ∧ 1 = A.

�¨á⥬  § ᥬ¨ § ª®­÷¢, é® § «¨è îâìáï ¯÷á«ï ¢¨ª«î祭­ï ®¤­÷õù § â®-⮦­®á⥩ ­¥©âà «ì­®áâ÷, ¢¨ï¢«ïõâìáï ­¥§ «¥¦­®î (¤¨¢. [3]).

1.3.2. ö­è÷ § ª®­¨  «£¥¡à¨ ¢¨á«®¢«¥­ì� ¢¥¤¥¬® ¤¥ïª÷ ÷­è÷ § ª®­¨  «£¥¡à¨ ¢¨á«®¢«¥­ì, é® ¡ã¤ãâì ç áâ® ¢¨-

ª®à¨á⮢㢠â¨áì ­ ¤ «÷.5. �­÷¢¥àá «ì­÷ ¬¥¦÷: A ∨ 1 = 1,

A ∧ 0 = 0.

6. �¡á®à¡æ÷ï (¯®£«¨­ ­­ï): A ∨ (A ∧B) = A,A ∧ (A ∨B) = A.

7. ö¤¥¬¯®â¥­â­÷áâì: A ∨ A = A,A ∧ A = A.

13

Page 16: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 1. �«£¥¡à  ¢¨á«®¢«¥­ì

8. �á®æ÷ â¨¢­÷áâì (ᯮ«ãç­¨© § ª®­): A ∨ (B ∨ C) = (A ∨B) ∨ C,A ∧ (B ∧ C) = (A ∧B) ∧ C.

9. ô¤¨­÷áâì § ¯¥à¥ç¥­­ï: á¨á⥬  à÷¢­ï­ì{

A ∨X = 1,

A ∧X = 0¢÷¤­®á­® X

¬ õ õ¤¨­¨© ஧¢'燐ª X = ¬A (⮡⮠ïªé® A ∨X = 1 â  A ∧X = 0, â®X = ¬A).

10. ö­¢®«î⨢­÷áâì (¯®¤¢÷©­¥ § ¯¥à¥ç¥­­ï): ¬(¬A) = A .11. � ª®­ (¯à ¢¨«®) ¤¥ �®à£ ­ : ¬(A ∨B) = ¬A ∧ ¬B,

¬(A ∧B) = ¬A ∨ ¬B.� £ ¤ õ¬®, é® ­ ¢¥¤¥­÷ â®â®¦­®áâ÷ (ïª ÷ ¡ã¤ì-ïª÷ ÷­è÷ â®â®¦­®áâ÷  «-

£¥¡à¨ ¢¨á«®¢«¥­ì) ¬®¦ãâì ¡ã⨠¢¨¢¥¤¥­÷ § ç®â¨àì®å ¯ à ®á­®¢­¨å § ª®­÷¢¡¥§ ¢¨ª®à¨áâ ­­ï â ¡«¨æì ¯à ¢¤¨¢®áâ÷.

�®§£«ï­ã¢è¨ ­ ¢¥¤¥­÷ § ª®­¨  «£¥¡à¨ ¢¨á«®¢«¥­ì, ­¥¢ ¦ª® ¯®¬÷â¨-⨠¯¥¢­ã ᨬ¥âà÷î { ãá÷ ®á­®¢­÷ § ª®­¨ §£à㯮¢ ­÷ ¢ â ª §¢ ­÷ «¤ã «ì­÷¯ à¨». �ï ᨬ¥âà÷ï õ ®á­®¢®î ¤«ï ¯à¨­æ¨¯ã ¤ã «ì­®áâ÷ { ¯®â㦭®£®§ á®¡ã ¤®¢¥¤¥­­ï â®â®¦­®á⥩ ¢  «£¥¡à÷ ¢¨á«®¢«¥­ì â  ÷­è¨å ¯®¤÷¡­¨åáâàãªâãà å.

1.4. �ਭ樯 ¤ã «ì­®áâ÷. �§ £ «ì­¥­¥¯à ¢¨«® ¤¥ �®à£ ­ 

1.4.1. �ਭ樯 ¤ã «ì­®áâ÷�§­ ç¥­­ï 1.12. �®à¬ã«ã A∗ ­ §¨¢ îâì ¤ã «ì­®î ¤® ä®à¬ã«¨ A,

ïªé® A∗ ®âਬãõâìáï § A § ¬÷­®î ¢á÷å ¢å®¤¦¥­ì «∨» ­  «∧», ¢á÷å ¢å®-¤¦¥­ì «∧» ­  «∨», ¢á÷å ¢å®¤¦¥­ì «0» ­  «1» â  ¢á÷å ¢å®¤¦¥­ì «1» ­  «0».

�ਪ« ¤ 1.10. (A∨¬B)∗ = A∧¬B, (A∧¬(B ∨ 1))∗ = A∨¬(B ∧ 0).� §­ ç¨¬® ®ç¥¢¨¤­¨© ä ªâ ÷­¢®«î⨢­®áâ÷ ®¯¥à æ÷ù ¢§ïââï ¤ã «ì­®ù

ä®à¬ã«¨: A∗∗ = A.� áâ㯭  ⥮६  ä®à¬ã«îõ â ª §¢ ­¨© ¯à¨­æ¨¯ ¤ã «ì­®áâ÷ ¤«ï  «-

£¥¡à¨ ¢¨á«®¢«¥­ì.�¥®à¥¬  1.1. �¥å © ä®à¬ã«¨  «£¥¡à¨ ¢¨á«®¢«¥­ì A â  B ¥ª¢÷¢ -

«¥­â­÷, ⮡⮠¬ õ ¬÷áæ¥ â®â®¦­÷áâì A = B. �®¤÷ ¬ õ ¬÷áæ¥ â®â®¦-­÷áâì ¤ã «ì­¨å ä®à¬ã«: A∗ = B∗.

14

Page 17: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

1.4. �ਭ樯 ¤ã «ì­®áâ÷. �§ £ «ì­¥­¥ ¯à ¢¨«® ¤¥ �®à£ ­ 

�®¢¥¤¥­­ï. �¥å © ¬ õ ¬÷áæ¥ â®â®¦­÷áâì A = B. �®¤÷ ¬ õ ÷á­ã¢ â¨¢¨¢¥¤¥­­ï § §­ ç¥­®ù â®â®¦­®áâ÷ § ®á­®¢­¨å ä®à¬ã«  «£¥¡à¨ ¢¨á«®¢«¥­ì:

A = A1 = A2 = · · · = An = B, (1.1)

¤¥ ­  ª®¦­®¬ã ªà®æ÷ § áâ®á®¢ãõâìáï ®¤¨­ ÷§ § ª®­÷¢  «£¥¡à¨ ¢¨á«®¢«¥­ì.�«¥ ⮤÷, ®áª÷«ìª¨ ¢á÷ ®á­®¢­÷ § ª®­¨  «£¥¡à¨ ¢¨á«®¢«¥­ì §£à㯮¢ ­÷ ¢ç®â¨à¨ «¤ã «ì­÷ ¯ à¨», ¬®¦¥¬® ¯®¡ã¤ã¢ â¨ ¢¨¢¥¤¥­­ï, ¤ã «ì­¥ ¤® (1.1):

A∗ = A∗1 = A∗

2 = · · · = A∗n = B∗,

¤¥ ­  ª®¦­®¬ã ªà®æ÷ ¢¨ª®à¨á⮢ãõâìáï ®á­®¢­¨© § ª®­, ¤ã «ì­¨© ¤® â®-⮦­®áâ÷, é® ¢¨ª®à¨á⮢㢠« áì ­  ¢÷¤¯®¢÷¤­®¬ã ªà®æ÷ ã ¢¨¢¥¤¥­­÷ (1.1).

�ਪ« ¤ 1.11. �த¥¬®­áâàãõ¬®, ïª ¯à æîõ ¯à¨­æ¨¯ ¤ã «ì­®áâ÷,­  ¯à¨ª« ¤÷ ¢¨¢¥¤¥­­ï § ª®­ã ã­÷¢¥àá «ì­¨å ¬¥¦:

A ∨ 1 = (A ∨ 1) ∧ 1 = (A ∨ 1) ∧ (A ∨ ¬A) = A ∨ (1 ∧ ¬A) = A ∨ ¬A = 1;

A ∧ 0 = (A ∧ 0) ∨ 0 = (A ∧ 0) ∨ (A ∧ ¬A) = A ∧ (0 ∨ ¬A) = A ∧ ¬A = 0.

�¯à ¢  1.2. �¨¢¥á⨠§ ª®­¨  «£¥¡à¨ ¢¨á«®¢«¥­ì 6 { 11 § ®á­®¢­¨å§ ª®­÷¢, ­¥ ª®à¨áâãîç¨áì §¬÷á⮢­¨¬¨ ¢¨§­ ç¥­­ï¬¨ ®¯¥à æ÷© (§®ªà¥¬ ,­¥ ª®à¨áâãîç¨áì â ¡«¨æﬨ ¯à ¢¤¨¢®áâ÷).

�ª §÷¢ª . �®â®¦­®áâ÷ §àãç­® ¤®¢®¤¨â¨ ¢ ⮬㠦 ¯®à浪ã, ¢ 类¬ã¢®­¨ ­ ¢¥¤¥­÷ ¢¨é¥. �à÷¬ ⮣®, § ¢¤ïª¨ ¯à¨­æ¨¯ã ¤ã «ì­®áâ÷, ¤®á¨â줮¢¥á⨠«¨è¥ ®¤­ã â®â®¦­÷áâì § ª®¦­®ù ¤ã «ì­®ù ¯ à¨.

1.4.2. �§ £ «ì­¥­¥ ¯à ¢¨«® ¤¥ �®à£ ­ �« á¨ç­¥ ¯à ¢¨«® ¤¥ �®à£ ­  à §®¬ ÷§ § ª®­®¬ ÷­¢®«î⨢­®áâ÷ (§ -

ª®­¨ 11 â  10 ­  á. 14) §àãç­® ¢¨ª®à¨á⮢㢠⨠¤«ï «¯à®­¥á¥­­ï»§®¢­÷è­ì®ù ®¯¥à æ÷ù «®£÷ç­®£® § ¯¥à¥ç¥­­ï ¯÷¤ ®¯¥à æ÷ù ¤¨§'î­ªæ÷ù â ª®­'î­ªæ÷ù.

�ਪ« ¤ 1.12.

¬(A∨ (B ∧¬C)) = ¬A∧¬(B ∧¬C) = ¬A∧ (¬B ∨¬¬C) = ¬A∧ (¬B ∨C).

15

Page 18: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 1. �«£¥¡à  ¢¨á«®¢«¥­ì

�¦¥ § ­ ¢¥¤¥­®£® ¯à¨ª« ¤ã ¢¨¤­®, é® ®¯¥à æ÷ï «¯à®­¥á¥­­ï § ¯¥à¥-祭­ï» â÷á­® ¯®¢'易­  § ¤ã «ì­÷áâî ä®à¬ã«, ÷ ¯à ¢¨«® ¤¥ �®à£ ­  ¬®¦-­  ¯à¨à®¤­¨¬ 稭®¬ 㧠£ «ì­¨â¨ ­  ¢¨¯ ¤®ª ¤®¢÷«ì­¨å ä®à¬ã«  «£¥¡à¨¢¨á«®¢«¥­ì.

�¥®à¥¬  1.2 (㧠£ «ì­¥­¥ ¯à ¢¨«® ¤¥ �®à£ ­ ). �¥å © A { ¤®-¢÷«ì­  ä®à¬ã«   «£¥¡à¨ ¢¨á«®¢«¥­ì, ä®à¬ã«  A~ ®âਬãõâìáï § ä®à-¬ã«¨ A∗ § ¬÷­®î ¢á÷å ¯à®¯®§¨æ÷©­¨å «÷â¥à ­  ùå § ¯¥à¥ç¥­­ï. �®¤÷ ¬ õ¬÷áæ¥ â®â®¦­÷áâì:

A~ = ¬A.

�«ï ¤®¢¥¤¥­­ï ⥮६¨ ­ ¬ §­ ¤®¡¨âìáï ­ áâ㯭  «¥¬ .

�¥¬  1.1. �«ï ¤®¢÷«ì­¨å ä®à¬ã« A â  B ¢¨ª®­ãîâìáï â ª÷ â®-⮦­®áâ÷:

(A ∧ B)~ = A~ ∨ B~; (A ∨ B)~ = A~ ∧ B~; (¬A)~ = ¬ (A~).

�¢¥à¤¦¥­­ï «¥¬¨ ­¥£ ©­® ¢¨¯«¨¢ õ § ®§­ ç¥­­ï ¤«ï A~ â  B~.

�®¢¥¤¥­­ï ⥮६¨ 1.2. � áâ®áãõ¬® ¬¥â®¤ ¬ â¥¬ â¨ç­®ù ÷­¤ãªæ÷ù § ª÷«ìª÷áâî «®£÷ç­¨å ®¯¥à æ÷© («∨», «∧», «¬») ã ¢¨å÷¤­÷© ä®à¬ã«÷ A.

1. � §  ÷­¤ãªæ÷ù. �¥å © ä®à¬ã«  A ¬÷áâ¨âì 0 ®¯¥à æ÷©. �¥ ®§­ ç õ, é®A õ ¯à®¯®§¨æ÷©­®î «÷â¥à®î: A = A. �®¤÷ ⢥द¥­­ï ⥮६¨, ®ç¥¢¨¤­®,¢¨ª®­ãõâìáï:

A~ = A~ = ¬A = ¬A.

2. �ਯã饭­ï ÷­¤ãªæ÷ù. �¥å © ⢥द¥­­ï ⥮६¨ ¢¨ª®­ãõâìáï ¤«ï¡ã¤ì-类ù ä®à¬ã«¨ A, é® ¬÷áâ¨âì ­¥ ¡÷«ìè ïª n «®£÷ç­¨å ®¯¥à æ÷©.

3. �ப ÷­¤ãªæ÷ù. �®¢¥¤¥¬® ⢥द¥­­ï ⥮६¨ ¤«ï ä®à¬ã«¨ A, 鮬÷áâ¨âì n + 1 «®£÷ç­ã ®¯¥à æ÷î.

3.1. �¥å © §®¢­÷è­ï ®¯¥à æ÷ï õ ¤¨§'î­ªæ÷ï, ⮡⮠A = A1 ∨ A2. �ç¥-¢¨¤­®, é® ä®à¬ã«¨ A1 â  A2 ¬÷áâïâì ­¥ ¡÷«ìè ïª n ®¯¥à æ÷©. �®¤÷ ­ ¯÷¤áâ ¢÷ «¥¬¨ 1.1, ª« á¨ç­®£® ¯à ¢¨«  ¤¥ �®à£ ­  â  ¯à¨¯ã饭­ï ÷­¤ãª-æ÷ù ¬ õ¬®:

A~ = (A1 ∨ A2)~ = A~

1 ∧ A~2 = ¬A1 ∧ ¬A2 = ¬(A1 ∨ A2) = ¬A.

3.2. �¥å © §®¢­÷è­ï ®¯¥à æ÷ï { ª®­'î­ªæ÷ï, ⮡⮠A = A1 ∧A2. �®¢¥-¤¥­­ï ¯à®¢®¤¨âìáï  ­ «®£÷ç­® ¢¨¯ ¤ªã 3.1.

16

Page 19: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

1.5. �®£÷ç­¨© ­ á«÷¤®ª ÷ «®£÷ç­  ¥ª¢÷¢ «¥­â­÷áâì

3.3. �¥å © §®¢­÷è­ï ®¯¥à æ÷ï { § ¯¥à¥ç¥­­ï, ⮡⮠A = ¬A1. �ç¥-¢¨¤­®, é® ä®à¬ã«  A1 ¬÷áâ¨âì n ®¯¥à æ÷©. �®¤÷ ­  ¯÷¤áâ ¢÷ «¥¬¨ 1.1 ⠯ਯã饭­ï ÷­¤ãªæ÷ù ¬ õ¬®:

A~ = (¬A1)~ = ¬ (A~

1

)= ¬¬A1 = ¬A.

�⦥, ⥮६㠯®¢­÷áâî ¤®¢¥¤¥­®.

�ਪ« ¤ 1.13. � áâ®áãõ¬® 㧠£ «ì­¥­¥ ¯à ¢¨«® ¤¥ �®à£ ­  ¤® ä®à-¬ã«¨ § ¯à¨ª«. 1.12:

¬(A ∨ (B ∧ ¬C)) = (A ∨ (B ∧ ¬C))~ = ¬A ∧ (¬B ∨ C).

1.5. �®£÷ç­¨© ­ á«÷¤®ª÷ «®£÷ç­  ¥ª¢÷¢ «¥­â­÷áâì

�§­ ç¥­­ï 1.13. �®à¬ã«  B «®£÷ç­® ¢¨¯«¨¢ õ § ä®à¬ã« A1, A2, . . . ,An (ä®à¬ã«¨ A1, A2, . . . , An «®£÷ç­® âãâì ä®à¬ã«ã B), ïªé® ä®à¬ã-«  B õ ¯à ¢¤¨¢®î ­  ¢á÷å ÷­â¥à¯à¥â æ÷ïå, ­  ïª¨å ¢®¤­®ç á ¯à ¢¤¨¢÷ä®à¬ã«¨ A1, A2, . . . , An.

�®à¬ã«¨ A1, A2, . . . , An ­ §¨¢ îâì £÷¯®â¥§ ¬¨, ä®à¬ã«ã B { ­ á«÷¤-ª®¬. �«ï ä ªâã «®£÷ç­®£® ­ á«÷¤ªã ¢¨ª®à¨á⮢㢠⨬¥¬® ¯®§­ ç¥­­ï:A1, A2, . . . , An |= B. �ªé® n = 1 (®¤­  £÷¯®â¥§  A), ¢¨ª®à¨á⮢ãõâìáïâ ª®¦ ¯®§­ ç¥­­ï A ⇒ B.

�ªé® n = 0, ä®à¬ã«  B õ ­ á«÷¤ª®¬ ¯®à®¦­ì®ù ¬­®¦¨­¨ £÷¯®â¥§, ⮡-â® ­ ¡ã¢ õ §­ ç¥­­ï 1 ­  ¢á÷å ÷­â¥à¯à¥â æ÷ïå, ¡¥§ ¤®¤ âª®¢¨å ¯à¨¯ã饭ì鮤® ¯à ¢¤¨¢®áâ÷ £÷¯®â¥§ (B õ ⠢⮫®£÷õî). � æ쮬ã à §÷ ¢¨ª®à¨á⮢ãõ-âìáï ¯®§­ ç¥­­ï |= B.

�祢¨¤­®, ¥ª¢÷¢ «¥­â­÷áâì ä®à¬ã« A â  B ¬ õ ¬÷áæ¥ â®¤÷ ÷ â÷«ìª¨ ⮤÷,ª®«¨ A ⇒ B â  B ⇒ A.

�¥®à¥¬  1.3 (⥮६  ¤¥¤ãªæ÷ù).1. �®à¬ã«  B «®£÷ç­® ¢¨¯«¨¢ õ § ä®à¬ã« A1, . . . , An ⮤÷ i â÷«ìª¨

⮤÷, ª®«¨ ä®à¬ã«  (A1 ∧ A2 ∧ · · · ∧ An) → B õ ⠢⮫®£÷õî.2. �®à¬ã«¨ A â  B «®£÷ç­® ¥ª¢÷¢ «¥­â­÷ ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨

ä®à¬ã«  A ↔ B õ ⠢⮫®£÷õî.

17

Page 20: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 1. �«£¥¡à  ¢¨á«®¢«¥­ì

�¢¥à¤¦¥­­ï ⥮६¨ õ ¡¥§¯®á¥à¥¤­÷¬ ­ á«÷¤ª®¬ ®§­ ç¥­ì «®£÷ç­®£®­ á«÷¤ªã, «®£÷ç­®ù ¥ª¢÷¢ «¥­â­®áâ÷ â  ®§­ ç¥­ì «®£÷ç­¨å ®¯¥à æ÷© ÷¬¯«÷-ª æ÷ù i ¥ª¢÷¢ «¥­æ÷ù.

1.5.1. �ਪ« ¤¨ § ¤ ç ­  «®£÷ç­¨© ­ á«÷¤®ª1. �®¢¥á⨠«¯à ¢¨«® ¢¨¡®àã» (Modus Ponens1, MP): A,A → B |= B.�¥å © ­  ¤¥ïª÷© ä÷ªá®¢ ­÷© ÷­â¥à¯à¥â æ÷ù |A| = 1 â  |A → B| = 1.

�®¤÷, ïª ¢¨¯«¨¢ õ § ®§­ ç¥­­ï ÷¬¯«÷ª æ÷ù, ­  ¤ ­÷© ÷­â¥à¯à¥â æ÷ù |B| = 1.� ¢¤ïª¨ ¤®¢÷«ì­®áâ÷ ä÷ªá®¢ ­®ù ÷­â¥à¯à¥â æ÷ù, ¯à ¢¨«® MP ¤®¢¥¤¥­®.

�âਬ ­¥ ¤®¢¥¤¥­­ï ç áâ® § ¯¨áãîâì ã ª®¬¯ ªâ­®¬ã ¢¨£«ï¤÷:

1. |A| = 1 (�÷¯®â¥§  1, �1)2. |A → B| = 1 (�2)3. |B| = 1 (1,2)

2. �®¢¥á⨠¯à ¢¨«® ᨫ®£÷§¬ã: A → B,B → C |= A → C.�®£÷ç­¨© ­ á«÷¤®ª ¤®¢®¤¨â¨¬¥¬® §¢¥¤¥­­ï¬ ¤®  ¡áãà¤ã. �ਯãáâ÷¬®,

é® ­  ¤¥ïª÷© ÷­â¥à¯à¥â æ÷ù £÷¯®â¥§¨ ¯à ¢¤¨¢÷ â  ­ á«÷¤®ª ­¥¯à ¢¤¨¢¨©,¯÷á«ï 箣® ®âਬãõ¬® á㯥à¥ç­÷áâì.

1. |A → B| = 1 (�1)2. |B → C| = 1 (�2)3. |A → C| = 0 (¯à¨¯ã饭­ï)4. |A| = 1 (3)5. |C| = 0 (3)6. |B| = 1 (MP(4,1))7. |C| = 1 (MP(6,2))

�㭪⨠5 â  7 ¤ îâì á㯥à¥ç­÷áâì.�¥â «ì­÷è÷ ¢÷¤®¬®áâ÷ § ¬ â¥¬ â¨ç­®ù «®£÷ª¨ ­ ¢¥¤¥­®, §®ªà¥¬ , ¢ à®-

¡®â å [1{4].

1�àﬨ© ¯¥à¥ª« ¤ § « â¨­á쪮ù: ¯à ¢¨«® ¯®§¨æ÷®­ã¢ ­­ï.

18

Page 21: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 2

�¥®à÷ï ¬­®¦¨­

2.1. �á­®¢­÷ ¯®­ïââï ⥮à÷ù ¬­®¦¨­�§­ ç¥­­ï 2.1 («­ ù¢­¥» ¢¨§­ ç¥­­ï ¬­®¦¨­¨). �®¢÷«ì­¨© ­ -

¡÷à ®¡'õªâ÷¢, é® ¯®¯ à­® ஧à÷§­ïîâìáï, ­ §¨¢ îâì ¬­®¦¨­®î.

�÷¤®¬® (¤¨¢., ­ ¯à¨ª« ¤,[1]), é®, ­ ¢¥¤¥­¥ ¢¨§­ ç¥­­ï ¬­®¦¨­¨ (­ -«¥¦¨âì ­÷¬¥æ쪮¬ã ¢ç¥­®¬ã �¥®à£ã � ­â®àã) ¯à¨§¢®¤¨âì ¤® ¯ à ¤®ªá÷¢.�¨­÷ ÷á­ãîâì  ªá÷®¬ â¨ç­÷ ⥮à÷ù ¬­®¦¨­ ( ªá÷®¬ â¨ª¨ �¥à¬¥«® { �७-ª¥«ï, �¥¤¥«ï { �¥à­ ©á  â®é®; ¤¨¢., §®ªà¥¬ , [1]), é® ¢÷«ì­÷ ¢÷¤ ¯ à ¤®ª-á÷¢, ïª÷ ¢« á⨢÷ «­ ù¢­÷©» ⥮à÷ù � ­â®à . �à®â¥ «­ ù¢­ » ⥮à÷ï ¬­®¦¨­æ÷«ª®¬ ¯à¨¤ â­  ¤«ï ஧¢'易­­ï è¨à®ª®£® ª« á㠯ਪ« ¤­¨å ¯à®¡«¥¬.

�­®¦¨­¨ ¯®§­ ç â¨¬¥¬®, ïª ¯à ¢¨«®, ¢¥«¨ª¨¬¨ «÷â¥à ¬¨  ­£«÷©áì-ª®£®  «ä ¢÷âã § ÷­¤¥ªá ¬¨ ç¨ ¡¥§: A, B1, X1,42. �«ï ¯®§­ ç¥­­ï ä ªâã ­ -«¥¦­®áâ÷ ¥«¥¬¥­â  x ¬­®¦¨­÷ A ¢¨ª®à¨á⮢㢠⨬¥¬® ¯®§­ ç¥­­ï x ∈ A,¤«ï ¯®§­ ç¥­­ï ä ªâã ­¥­ «¥¦­®áâ÷ x ¬­®¦¨­÷ A { ¯®§­ ç¥­­ï x /∈ A.

�«ï ¬­®¦¨­ ­ âãà «ì­¨å, æ÷«¨å, à æ÷®­ «ì­¨å, ¤÷©á­¨å â  ª®¬¯«¥ª-á­¨å ç¨á¥« ¢¨ª®à¨á⮢㢠⨬¥¬® «ª« á¨ç­÷» ¯®§­ ç¥­­ï: N, Z, Q, R, C.�¢ ¦ â¨¬¥¬®, é® ¬­®¦¨­  N ¬÷áâ¨âì æ÷«÷ ¤®¤ â­÷ ç¨á«  (0 /∈ N). �«ï¬­®¦¨­¨, é® ­¥ ¬÷áâ¨âì ¦®¤­®£® ¥«¥¬¥­â  (¯®à®¦­ì®ù ¬­®¦¨­¨) ¡ã¤¥-¬® ¢¨ª®à¨á⮢㢠⨠¯®§­ ç¥­­ï ∅.

�§­ ç¥­­ï 2.2. �­®¦¨­¨ A â  B ­ §¨¢ îâì ¥ª¢÷¢ «¥­â­¨¬¨  ¡®à÷¢­¨¬¨ (A = B), ïªé® ¢®­¨ ¬÷áâïâì ®¤­÷ © â÷ á ¬÷ ¥«¥¬¥­â¨:

(A = B) ⇔ ((x ∈ A) ↔ (x ∈ B)).

19

Page 22: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 2. �¥®à÷ï ¬­®¦¨­

�§­ ç¥­­ï 2.3. �­®¦¨­ã B ­ §¨¢ îâì ¯÷¤¬­®¦¨­®î ¬­®¦¨­¨ A(¯®§­ ç¥­­ï B ⊂ A),   ¬­®¦¨­ã A { ­ ¤¬­®¦¨­®î ¬­®¦¨­¨ B (A ⊃ B),ïªé® ª®¦¥­ ¥«¥¬¥­â ¬­®¦¨­¨ B ­ «¥¦¨âì ¬­®¦¨­÷ A:

(B ⊂ A) ⇔ (A ⊃ B) ⇔ ((x ∈ B) → (x ∈ A)).

�祢¨¤­®, é® ∅ ⊂ A â  A ⊂ A ¤«ï ¤®¢÷«ì­®ù ¬­®¦¨­¨ A. �­®¦¨­ãB ⊂ A, â ªã, é® B 6= ∅, B 6= A, ÷­®¤÷ ­ §¨¢ îâì ¢« á­®î ¯÷¤¬­®¦¨­®î¬­®¦¨­¨ A.

� ã¢ ¦¥­­ï 2.1. � «÷â¥à âãà÷ ¤«ï ¯®§­ ç¥­­ï ä ªâã «¬­®¦¨­  A õ¯÷¤¬­®¦¨­®î ¬­®¦¨­¨ B» ÷­®¤÷ ¢¨ª®à¨á⮢ãîâì ¯®§­ ç¥­­ï A ⊆ B (¯÷¤-ªà¥á«îîç¨ ¬®¦«¨¢÷áâì A = B), ¯®§­ ç¥­­ï ¦ A ⊂ B ã â ª®¬ã à §÷ ¢¨ª®-à¨á⮢ãîâì ¤«ï ¢¨¯ ¤ªã A 6= B. � æ쮬㠯®á÷¡­¨ªã ¢¨ª®à¨á⮢㢠⨬¥-¬® áâ¨«ì ¯®§­ ç¥­ì, ¢¢¥¤¥­¨© ¢ ®§­ ç¥­­÷ 2.3: ¢¢ ¦ îç¨, é® ¯®§­ ç¥­­ïA ⊂ B ¯à¨¯ã᪠õ A = B, ¯®§­ ç¥­­ï A ⊆ B ¢§ £ «÷ ­¥ ¢¨ª®à¨á⮢㢠-⨬¥¬®.

2.1.1. �¯®á®¡¨ § ¤ ­­ï ¬­®¦¨­

1. �¥§¯®á¥à¥¤­õ ¯¥à¥«÷祭­ï ¥«¥¬¥­â÷¢ ¬­®¦¨­¨: A = {1, 2, 3, 4, 5, 6},B = {� è , �¥âà®, � á¨«ì}, C = {�ப®¤¨«}.

� ã¢ ¦¥­­ï 2.2. �㦥 ç áâ® ¢¨ª®à¨á⮢ãîâìáï ¯®§­ ç¥­­ï ¢¨£«ï-¤ã {1, 2, . . . , n} (¬­®¦¨­  ­ âãà «ì­¨å ç¨á¥«, ­¥ ¡÷«ìè¨å §  n) â {1, 2, . . . , n, . . . } (¬­®¦¨­  ¢á÷å ­ âãà «ì­¨å ç¨á¥«). � ¢¥¤¥­÷ ¯®§­ ç¥­­ï­¥ õ  ¡á®«îâ­® ª®à¥ªâ­¨¬¨, ®áª÷«ìª¨ ᨬ¢®« «. . . » ¬®¦¥ âà ªâ㢠â¨áì­¥®¤­®§­ ç­®. �à®â¥ ᥭá â ª¨å ¯®§­ ç¥­ì æ÷«ª®¬ §à®§ã¬÷«¨© § ª®­â¥ª-áâã, ÷ ¬¨ ùå ¢¨ª®à¨á⮢㢠⨬¥¬® ¤«ï ¡÷«ìè ­ ®ç­®£® § ¯¨áã.

2. � ¤ ­­ï ¬­®¦¨­¨ ç¥à¥§ å à ªâ¥à¨áâ¨ç­ã ¢« á⨢÷áâì (å à ªâ¥à¨á-â¨ç­¨© ¯à¥¤¨ª â): A = {x : P (x)}, ¤¥ P (x) { ¤¥ïª¥ ¢¨á«®¢«¥­­ï, é®­ ¡ã¢ õ §­ ç¥­­ï 1 «¨è¥ ¤«ï ¥«¥¬¥­â÷¢ x ¬­®¦¨­¨ A (P ­ §¨¢ îâì å -à ªâ¥à¨áâ¨ç­®î ¢« á⨢÷áâî ¬­®¦¨­¨ A). �⦥, A ¢¨§­ ç õâìáï 窱­®¦¨­ , é® ¬÷áâ¨âì â÷ ÷ â÷«ìª¨ â÷ ¥«¥¬¥­â¨ x, ¤«ï ïª¨å ¯à ¢¤¨¢¥ ¢¨-á«®¢«¥­­ï P (x). � áâ® ¢¨ª®à¨á⮢ãîâì ¯®§­ ç¥­­ï A = {x ∈ U : P (x)}

20

Page 23: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

2.1. �á­®¢­÷ ¯®­ïââï ⥮à÷ù ¬­®¦¨­

{ ¬­®¦¨­  A ¬÷áâ¨âì â÷ ÷ â÷«ìª¨ â÷ ¥«¥¬¥­â¨ x, é® ­ «¥¦ âì ¬­®¦¨­÷ Uâ  ¤«ï ïª¨å ¯à ¢¤¨¢¥ ¢¨á«®¢«¥­­ï P (x).

{x ∈ N : x = 1 (mod 3)} = {1, 4, 7, . . . , 3n + 1, . . . }{x : x { ¢¥«¨ª÷ «÷â¥à¨ ãªà ù­á쪮£®  «ä ¢÷âã} = {�,�,. . . ,�,�}.

3. � ¤ ­­ï ¬­®¦¨­¨ § ¢¨ª®à¨áâ ­­ï¬ ä®à¬ã«, ïª÷ ¬÷áâïâì ®¯¥à æ÷ù­ ¤ ¢÷¤®¬¨¬¨ ¬­®¦¨­ ¬¨ (®¯¥à æ÷ù ­ ¤ ¬­®¦¨­ ¬¨ { ®¡'õ¤­ ­­ï, ¯¥à¥-à÷§, ¤®¯®¢­¥­­ï â®é® { ¢¨§­ ç îâìáï ­¨¦ç¥ ¢ æ쮬㠯÷¤à®§¤÷«÷).

2.1.2. �¯¥à æ÷ù ­ ¤ ¬­®¦¨­ ¬¨�§­ ç¥­­ï 2.4. �¡'õ¤­ ­­ï¬ ¬­®¦¨­ A â  B ­ §¨¢ îâì ¬­®¦¨­ã

A ∪B = {x : (x ∈ A) ∨ (x ∈ B)}.

�§­ ç¥­­ï 2.5. �¥à¥à÷§®¬ ¬­®¦¨­ A â  B ­ §¨¢ îâì ¬­®¦¨­ã

A ∩B = {x : (x ∈ A) ∧ (x ∈ B)}.

�ªé® A ∩B = ∅, ª ¦ãâì, é® ¬­®¦¨­¨ A â  B ­¥ ¯¥à¥à÷§ îâìáï.� ã¢ ¦¥­­ï 2.3. �¨§­ ç¥­­ï ®¯¥à æ÷© ®¡'õ¤­ ­­ï â  ¯¥à¥à÷§ã ¯à¨à®¤-

­¨¬ 稭®¬ ¯¥à¥­®áïâìáï ­  ­¥áª÷­ç¥­­ã ª÷«ìª÷áâì ¬­®¦¨­:⋂a∈I

Aa = {x : ∀a ∈ I : x ∈ Aa},⋃a∈I

Aa = {x : ∃a ∈ I : x ∈ Aa },

¤¥ I { ¤®¢÷«ì­  ¬­®¦¨­  ÷­¤¥ªá÷¢.

�§­ ç¥­­ï 2.6. �÷§­¨æ¥î ¬­®¦¨­ A â  B ­ §¨¢ îâì ¬­®¦¨­ã

A \B = {x : (x ∈ A) ∧ (x /∈ B)}.

�§­ ç¥­­ï 2.7. �¨¬¥âà¨ç­®î à÷§­¨æ¥î ¬­®¦¨­ A â  B ­ §¨¢ îâ쬭®¦¨­ã

A M B = {x : (x ∈ A)⊕ (x ∈ B)}.�祢¨¤­®, é® A M B = (A \B) ∪ (B \ A).

21

Page 24: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 2. �¥®à÷ï ¬­®¦¨­

�ਪ« ¤ 2.1.

{1, 2, 3} \ {3, 4} = {1, 2}, {1, 2, 3} M {3, 4} = {1, 2, 4}.� ¤ «÷ ¢¢ ¦ â¨¬¥¬®, é® ¢ ¬¥¦ å ¤ ­®£® ª®­â¥ªáâã ¢¨§­ ç¥­  â ª

§¢ ­  ã­÷¢¥àá «ì­  ¬­®¦¨­  U , é® ¬÷áâ¨âì ¢á÷ ¥«¥¬¥­â¨, ïª÷ ஧£«ï¤ -îâìáï ¢ § ¤ ­®¬ã ª®­â¥ªáâ÷.

�§­ ç¥­­ï 2.8. �®¯®¢­¥­­ï¬ ¤® ¬­®¦¨­¨ A (¢÷¤­®á­® ã­÷¢¥àá «ì-­®ù ¬­®¦¨­¨ U) ­ §¨¢ îâì ¬­®¦¨­ã Ac = {x ∈ U : (x /∈ A)}.

�¥£ª® ¯®¡ ç¨â¨, é® Ac = U \ A, A \B = A ∩Bc.� ã¢ ¦¥­­ï 2.4. �÷¤ªà¥á«¨¬®, é® à¥§ã«ìâ â ®¯¥à æ÷ù ¤®¯®¢­¥­­ï áãâ-

âõ¢® § «¥¦¨âì ¢÷¤ ¢¨¡®àã ã­÷¢¥àá «ì­®ù ¬­®¦¨­¨:

U = R, [0; 1]c = (−∞; 0) ∪ (1; +∞); U = [0; +∞), [0; 1]c = (1; +∞).

� §­ ç¨¬®, é® ®¯¥à æ÷ù ®¡'õ¤­ ­­ï, ¯¥à¥à÷§ã, à÷§­¨æ÷ â  á¨¬¥âà¨ç­®ùà÷§­¨æ÷ ¡ã«¨ ¢¢¥¤¥­÷ ¡¥§ ä÷ªá®¢ ­®ù ã­÷¢¥àá «ì­®ù ¬­®¦¨­¨. �à®â¥, § ¢¨§­ ç¥­®ù ã­÷¢¥àá «ì­®ù ¬­®¦¨­¨ (÷, ïª ­ á«÷¤®ª, §  ¢¨§­ ç¥­®ù ®¯¥à -æ÷ù ¤®¯®¢­¥­­ï), à÷§­¨æï â  á¨¬¥âà¨ç­  à÷§­¨æï ¬­®¦¨­ ¬®¦ãâì ¡ã⨢¨§­ ç¥­÷ ç¥à¥§ ®¯¥à æ÷ù ®¡'õ¤­ ­­ï, ¯¥à¥à÷§ã â  ¤®¯®¢­¥­­ï (¤¨¢. ¢¨é¥ã æ쮬㠯÷¤à®§¤.).

�¯à ¢  2.1. �   ­ «®£÷õî §  «£¥¡à®î ¢¨á«®¢«¥­ì ­ ¢¥á⨠४ãàᨢ­¥®§­ ç¥­­ï ä®à¬ã«¨  «£¥¡à¨ ¬­®¦¨­ (§  ®á­®¢­÷ ®¯¥à æ÷ù ¢§ï⨠®¡'õ¤­ ­-­ï, ¯¥à¥à÷§ â  ¤®¯®¢­¥­­ï).

2.2. �®â®¦­®áâ÷  «£¥¡à¨ ¬­®¦¨­� ª®­¨  «£¥¡à¨ ¬­®¦¨­ æ÷«ª®¬  ­ «®£÷ç­÷ § ª®­ ¬  «£¥¡à¨ ¢¨á«®¢-

«¥­ì: ®¯¥à æ÷ï¬ ¤¨§'î­ªæ÷ù, ª®­'î­ªæ÷ù â  § ¯¥à¥ç¥­­ï ¢  «£¥¡à÷ ¢¨á«®¢-«¥­ì ¢÷¤¯®¢÷¤ îâì ®¡'õ¤­ ­­ï, ¯¥à¥à÷§ â  ¤®¯®¢­¥­­ï ­ ¤ ¬­®¦¨­ ¬¨.

2.2.1. �á­®¢­÷ â®â®¦­®áâ÷  «£¥¡à¨ ¬­®¦¨­� ¢¥¤¥¬® ç®â¨à¨ ¯ à¨ § ª®­÷¢  «£¥¡à¨ ¬­®¦¨­, ïª÷ ­ ¤ «÷ ¢¨¤÷«ïâ¨-

¬¥¬® ïª ®á­®¢­÷.

22

Page 25: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

2.2. �®â®¦­®áâ÷  «£¥¡à¨ ¬­®¦¨­

�¥å © A, B, C { ¤®¢÷«ì­÷ ä®à¬ã«¨  «£¥¡à¨ ¬­®¦¨­.1. �®¬ãâ â¨¢­÷áâì (¯¥à¥áâ ¢­¨© § ª®­): A ∪B = B ∪ A,

A ∩B = B ∩ A.2. �¨áâਡã⨢­÷áâì (஧¯®¤÷«ì­¨© § ª®­):

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

3. �¥©âà «ì­÷áâì: A ∪∅ = A,A ∩ U = A.

4. �®¯®¢­¥­÷áâì: A ∪ Ac = U,A ∩ Ac = ∅.

�¯à ¢  2.2. �¨¢¥á⨠­ ¢¥¤¥­÷ ®á­®¢­÷ § ª®­¨, ª®à¨áâãîç¨áì ¢¨§­ -祭­ï¬¨ ®¯¥à æ÷© ­ ¤ ¬­®¦¨­ ¬¨.

�ª ÷ ã ¢¨¯ ¤ªã  «£¥¡à¨ ¢¨á«®¢«¥­ì, ­ ¢¥¤¥­¨å ç®â¨àì®å ¯ à ®á­®¢­¨å§ ª®­÷¢ ¤®áâ â­ì® ¤«ï ¢¨¢¥¤¥­­ï ¡ã¤ì-类ù â®â®¦­®áâ÷, é® § ¯¨á ­  §¢¨ª®à¨áâ ­­ï¬ ®¯¥à æ÷© ®¡'õ¤­ ­­ï, ¯¥à¥à÷§ã â  ¤®¯®¢­¥­­ï.

2.2.2. ö­è÷ § ª®­¨  «£¥¡à¨ ¬­®¦¨­� ¢¥¤¥¬® ¤¥ïª÷ ÷­è÷ § ª®­¨  «£¥¡à¨ ¬­®¦¨­, ïª÷ ç áâ® ¢¨ª®à¨á⮢ã-

¢ â¨¬¥¬® ¤ «÷.5. �­÷¢¥àá «ì­÷ ¬¥¦÷: A ∪ U = U,

A ∩∅ = ∅.

6. �¡á®à¡æ÷ï (¯®£«¨­ ­­ï ): A ∪ (A ∩B) = A,A ∩ (A ∪B) = A.

7. ö¤¥¬¯®â¥­â­÷áâì: A ∪ A = A,A ∩ A = A.

8. �á®æ÷ â¨¢­÷áâì (ᯮ«ãç­¨© § ª®­): A ∪ (B ∪ C) = (A ∪B) ∪ C,A ∩ (B ∩ C) = (A ∩B) ∩ C.

9. ô¤¨­÷áâì ¤®¯®¢­¥­­ï: á¨á⥬  à÷¢­ï­ì{

A ∪X = U,

A ∩X = ∅¢÷¤­®á­® X

¬ õ õ¤¨­¨© ஧¢'燐ª X = Ac (⮡⮠ïªé® A ∪X = U â  A ∩X = ∅, â®X = Ac).

10. ö­¢®«î⨢­÷áâì: (Ac)c = A.11. � ª®­ (¯à ¢¨«®) ¤¥ �®à£ ­ : (A ∪B)c = Ac ∩Bc,

(A ∩B)c = Ac ∪Bc.

23

Page 26: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 2. �¥®à÷ï ¬­®¦¨­

� £ ¤ õ¬®, é® ­ ¢¥¤¥­÷ â®â®¦­®áâ÷ (ïª ÷ ¡ã¤ì-ïª÷ ÷­è÷ â®â®¦­®áâ÷  «-£¥¡à¨ ¬­®¦¨­, § ¯¨á ­÷ § ¢¨ª®à¨áâ ­­ï¬ ®¯¥à æ÷© ®¡'õ¤­ ­­ï, ¯¥à¥à÷§ãâ  ¤®¯®¢­¥­­ï) ¬®¦ãâì ¡ã⨠¢¨¢¥¤¥­÷ § ç®â¨àì®å ¯ à ®á­®¢­¨å § ª®­÷¢.

�¯à ¢  2.3. �ä®à¬ã«î¢ â¨ â  ¤®¢¥á⨠¯à¨­æ¨¯ ¤ã «ì­®áâ÷ â  ã§ -£ «ì­¥­¥ ¯à ¢¨«® ¤¥ �®à£ ­  ¤«ï  «£¥¡à¨ ¬­®¦¨­.

2.2.3. �÷ £à ¬¨ �¥­­ �÷ £à ¬¨ �¥­­  (÷­è  ­ §¢  { ªà㣨 �©«¥à ) ¤®¯®¬ £ îâì ­ ®ç­®

¯à®÷«îáâà㢠⨠१ã«ìâ â¨ ¢¨ª®­ ­­ï ®¯¥à æ÷© ¢  «£¥¡à÷ ¬­®¦¨­,   â -ª®¦ «¢£ ¤ â¨» ( «¥ ­¥ ¤®¢¥áâ¨!) ¤¥ïª÷ ­¥áª« ¤­÷ â®â®¦­®áâ÷.

�  ¤÷ £à ¬÷ �¥­­  ã­÷¢¥àá «ì­ã ¬­®¦¨­ã §®¡à ¦ãîâì ã ¢¨£«ï¤÷ ¯àï-¬®ªãâ­¨ª , ª®¦­ã ÷­èã ¬­®¦¨­ã { ã ¢¨£«ï¤÷ ªà㣠 ( ¡® ÷­è®ù ä÷£ãà¨).�ªé® ¢÷¤®¬®, é® ¬­®¦¨­¨ ­¥ ¯¥à¥à÷§ îâìáï, ¢÷¤¯®¢÷¤­÷ ªà㣨 §®¡à ¦ã-îâì â ª¨¬¨, é® ­¥ ¯¥à¥à÷§ îâìáï. �ªé® ¢÷¤®¬®, é® A ⊂ B, ªà㣠¬­®-¦¨­¨ A §®¡à ¦ãîâì ¢á¥à¥¤¨­÷ ªà㣠 ¬­®¦¨­¨ B. �ªé®  ¯à÷®à÷ ­÷箣®­¥ ¢÷¤®¬® ¯à® ¢§ õ¬­¥ ¯®«®¦¥­­ï ¬­®¦¨­, ¢÷¤¯®¢÷¤­÷ ªà㣨 §®¡à ¦ãîâìâ ª¨¬¨, é® ¯¥à¥à÷§ îâìáï, â  ¦®¤¥­ ªà㣠­¥ «¥¦¨âì æ÷«ª®¬ ¢á¥à¥¤¨­÷÷­è®£®.

�ਪ« ¤ 2.2. �®¡à §¨¬® ­  ¤÷ £à ¬÷ �¥­­  ᨬ¥âà¨ç­ã à÷§­¨æ®¦¨­ A M B (à¨á. 2.1).

UA B

�¨á. 2.1

� ­ ¢¥¤¥­®£® à¨áã­ª  «¥£ª® «¢£ ¤ãõâìáï» â®â®¦­÷áâì

A M B = (A ∪B) \ (A ∩B),

®¤­ ª æï â®â®¦­÷áâì ¯®âॡãõ  ªãà â­®£® ¤®¢¥¤¥­­ï.

24

Page 27: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

2.3. �®¢¥¤¥­­ï § ª®­÷¢  «£¥¡à¨ ¬­®¦¨­

2.3. �®¢¥¤¥­­ï § ª®­÷¢  «£¥¡à¨ ¬­®¦¨­2.3.1. �®¤¥«ì­¥ ¤®¢¥¤¥­­ï

�®¤¥«ì­¨© ¬¥â®¤ ¤®¢¥¤¥­­ï ¡ §ãõâìáï ­  ¢¨§­ ç¥­­÷ ¥ª¢÷¢ «¥­â­®áâ÷(à÷¢­®áâ÷) ¬­®¦¨­ â  ¢¨§­ ç¥­­÷ ¯÷¤¬­®¦¨­¨:

(A = B) ⇔ ((x ∈ A) ↔ (x ∈ B)) ⇔ (A ⊂ B) ∧ (B ⊂ A);

(A ⊂ B) ⇔ (B ⊃ A) ⇔ ((x ∈ A) → (x ∈ B)).

�ਪ« ¤ 2.3. �®¢¥¤¥¬® â®â®¦­÷áâì ¯®£«¨­ ­­ï: A ∪ (A ∩B) = A.

(x ∈ (A ∪ (A ∩B))) ⇔ (x ∈ A) ∨ (x ∈ (A ∩B)) ⇔(x ∈ A) ∨ ((x ∈ A) ∧ (x ∈ B)) ⇔ (x ∈ A)

(­  ®áâ ­­ì®¬ã «®£÷ç­®¬ã ¯¥à¥å®¤÷ ¢¨ª®à¨áâ ­® § ª®­ ¯®£«¨­ ­­ï ¤«ï «£¥¡à¨ ¢¨á«®¢«¥­ì).

�ਪ« ¤ 2.4. �®¢¥¤¥¬® ¥ª¢÷¢ «¥­â­÷áâì: A ⊂ B ⇔ A ∪B = B.1. �¥å © A ⊂ B, ⮡⮠(x ∈ A) ⇒ (x ∈ B). �®âà÷¡­® ¤®¢¥áâ¨:

A ∪B = B, ⮡⮠(x ∈ A ∪B) ⇔ (x ∈ B).(x ∈ A ∪B) ⇔ (x ∈ A) ∨ (x ∈ B) ⇔ (x ∈ B),

®áª÷«ìª¨ (x ∈ A) ⇒ (x ∈ B).2. �¥å © A ∪ B = B. �®¤÷, § ®§­ ç¥­­ï ®¯¥à æ÷ù ®¡'õ¤­ ­­ï ¬­®¦¨­,

(x ∈ A) ⇒ (x ∈ B), ⮡⮠A ⊂ B.�ਪ« ¤ 2.5. �®¢¥¤¥¬® § ª®­ ¬®¤ã«ïà­®áâ÷:

A ⊂ B ⇒ A ∪ (B ∩ C) = (A ∪ C) ∩B.

�¥å © A ⊂ B. �®¢¥¤¥¬®, é® A ∪ (B ∩ C) ⊂ (A ∪ C) ∩B.

(x ∈ A ∪ (B ∩ C)) ⇒ (x ∈ A) ∨ ((x ∈ B) ∧ (x ∈ C)) ⇒⇒ ((x ∈ A) ∨ (x ∈ B)) ∧ ((x ∈ A) ∨ (x ∈ C)) ⇒

⇒ ((x ∈ A) ∨ (x ∈ C)) ∧ (x ∈ B) ⇒ x ∈ (A ∪ C) ∩B.

�®¢¥¤¥¬®, é® A ∪ (B ∩ C) ⊃ (A ∪ C) ∩B.

x ∈ (A ∪ C) ∩B ⇒ ((x ∈ A) ∨ (x ∈ C)) ∧ (x ∈ B) ⇒⇒ ((x ∈ A) ∧ (x ∈ B)) ∨ ((x ∈ C) ∧ (x ∈ B)) ⇒

⇒ (x ∈ A) ∨ ((x ∈ B) ∧ (x ∈ C)) ⇒ x ∈ A ∪ (B ∩ C).

25

Page 28: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 2. �¥®à÷ï ¬­®¦¨­

2.3.2. �ªá÷®¬ â¨ç­¥ ¤®¢¥¤¥­­ï�ªá÷®¬ â¨ç­¥ ¤®¢¥¤¥­­ï, ïª ÷ ¢ ¢¨¯ ¤ªã  «£¥¡à¨ ¢¨á«®¢«¥­ì, ¯¥à¥¤¡ -

ç õ § áâ®á㢠­­ï ç®â¨àì®å ¯ à ®á­®¢­¨å § ª®­÷¢ (ª®¬ãâ â¨¢­÷áâì, ¤¨á-âਡã⨢­÷áâì, ­¥©âà «ì­÷áâì â  ¤®¯®¢­¥­÷áâì), ¡¥§ ãà å㢠­­ï §¬÷áâ㮯¥à æ÷© ­ ¤ ¬­®¦¨­ ¬¨.

�ਪ« ¤ 2.6. �®¢¥¤¥¬® § ª®­ ᪫¥î¢ ­­ï: (A ∩B) ∪ (A ∩Bc) = A.

(A ∩B) ∪ (A ∩Bc) = A ∩ (B ∪Bc) = A ∩ U = A.

�ਪ« ¤ 2.7. �®¢¥¤¥¬® ¥ª¢÷¢ «¥­â­÷áâì A ∪B = B ⇔ A ∩B = A.1. �¥å © A ∪B = B. �®¤÷ (A ∪B) ∩ A = B ∩ A, â  A = B ∩ A.2. �¥å © A ∩B = A. �®¤÷ (A ∩B) ∪B = A ∪B, â  B = A ∪B.

�¯à ¢  2.4. �®¢¥á⨠ ªá÷®¬ â¨ç­¨¬ ¬¥â®¤®¬ « ­æª ¥ª¢÷¢ «¥­â-­®á⥩: A ∪B = B ⇔ A ∩B = A ⇔ A ∩Bc = ∅⇔ Ac ∪B = U .

�¥§ã«ìâ â ¯à¨ª«. 2.4 ¤®§¢®«ïõ ¢¢¥á⨠ ªá÷®¬ â¨ç­¥ (ç¥à¥§ ®¯¥à æ÷ù¯¥à¥à÷§ã, ®¡'õ¤­ ­­ï â  ¤®¯®¢­¥­­ï) ¢¨§­ ç¥­­ï ¯÷¤¬­®¦¨­¨:

A ⊂ B ⇔ (§  ¢¨§­ ç¥­­ï¬) A ∪B = B.

�¥ ¢¨§­ ç¥­­ï, à §®¬ § १ã«ìâ â®¬ ¢¯à ¢¨ 2.4, ¤®§¢®«ïõ  ªá÷®¬ â¨ç­®¤®¢®¤¨â¨ 䠪⨠¢ª«î祭­ï ¬­®¦¨­.

�ਪ« ¤ 2.8. �®¢¥¤¥¬® «®£÷ç­¨© ­ á«÷¤®ª: A ⊂ B ⇒ Bc ⊂ Ac.�¥å © A ⊂ B. �®¤÷, §  ¢¨§­ ç¥­­ï¬, A∪B = B. �¥àãç¨ ¢÷¤ ®¡®å ç á-

⨭ à÷¢­®áâ÷ ¤®¯®¢­¥­­ï, §  § ª®­®¬ ¤¥ �®à£ ­  ®âਬãõ¬®: Ac∩Bc = Bc,§¢÷¤ª¨, §  « ­æ®¬ ¥ª¢÷¢ «¥­â­®á⥩ ¢¯à ¢¨ 2.4, ¤÷áâ ­¥¬®: Bc ⊂ Ac.

2.4. �ª÷­ç¥­­÷ ¬­®¦¨­¨. �®â㦭÷áâìáª÷­ç¥­­®ù ¬­®¦¨­¨

� æ쮬㠯÷¤à®§¤÷«÷ ஧£«ï¤ â¨¬¥¬® áª÷­ç¥­­÷ ¬­®¦¨­¨, ⮡⮠¬­®-¦¨­¨, é® ¬÷áâïâì áª÷­ç¥­­ã ª÷«ìª÷áâì ¥«¥¬¥­â÷¢.

�§­ ç¥­­ï 2.9. �®â㦭÷áâì áª÷­ç¥­­®ù ¬­®¦¨­¨ A ¢¨§­ ç õâìáï 着÷«ìª÷áâì ¥«¥¬¥­â÷¢, é® ­ «¥¦ âì ¬­®¦¨­÷ A.

26

Page 29: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

2.4. �ª÷­ç¥­­÷ ¬­®¦¨­¨. �®â㦭÷áâì áª÷­ç¥­­®ù ¬­®¦¨­¨

�®â㦭÷áâì áª÷­ç¥­­®ù ¬­®¦¨­¨ A ¯®§­ ç â¨¬® ïª n(A)  ¡® card(A).

�ਪ« ¤ 2.9. n({1, 2, 18}) = 3, n(∅) = 0, n({∅}) = 1.

� áâ㯭¥ ⢥द¥­­ï ­¥£ ©­® ¢¨¯«¨¢ õ § ®§­ ç¥­­ï ¯®â㦭®áâ÷.

�¥®à¥¬  2.1. �¥å © A, B { áª÷­ç¥­­÷ ¬­®¦¨­¨, é® ­¥ ¯¥à¥à÷§ îâì-áï, ⮡⮠A ∩B = ∅. �®¤÷ n(A ∪B) = n(A) + n(B).

�¥§ã«ìâ â ⥮६¨ 2.1 ¬¥â®¤®¬ ¬ â¥¬ â¨ç­®ù ÷­¤ãªæ÷ù 㧠£ «ì­îõâìáï­  ¤®¢÷«ì­ã áª÷­ç¥­­ã ª÷«ìª÷áâì ¬­®¦¨­, é® ¯®¯ à­® ­¥ ¯¥à¥à÷§ îâìáï.

� á«÷¤®ª. �¥å © Ak (k = 1, 2, . . . , n) { áª÷­ç¥­­÷ ¬­®¦¨­¨, é® ¯®-¯ à­® ­¥ ¯¥à¥à÷§ îâìáï. �®¤÷ n(A1 ∪ A2 ∪ · · · ∪ An) =

n∑k=1

n(Ak).

� ¢¥¤¥¬® 㧠£ «ì­¥­­ï ⥮६¨ 2.1 ­  ¢¨¯ ¤®ª ¬­®¦¨­, é® ¯¥à¥à÷-§ îâìáï.

�¥®à¥¬  2.2. �¥å © A â  B { ¤®¢÷«ì­÷ áª÷­ç¥­­÷ ¬­®¦¨­¨. �®¤÷n(A ∪B) = n(A) + n(B)− n(A ∩B).

�®¢¥¤¥­­ï. �¥§¯®á¥à¥¤­ì® ¯¥à¥¢÷àïõâìáï, é® ¬­®¦¨­¨ A1 = A \ B,A2 = B \ A, A3 = A ∩ B ¯®¯ à­® ­¥ ¯¥à¥à÷§ îâìáï, â  A = A1 ∪ A3,B = A2 ∪A3, A ∪B = A1 ∪A2 ∪A3, �®¤÷, ­  ¯÷¤áâ ¢÷ ⥮६¨ 2.1, ¬ õ¬®:

n(A ∪B) = (n(A1) + n(A3)) + (n(A2) + n(A3))− n(A3) =

= n(A) + n(B)− n(A ∩B).

�¯à ¢  2.5. �¨¢¥á⨠ä®à¬ã«ã ¤«ï ¯®â㦭®áâ÷ ®¡'õ¤­ ­­ï âàì®åáª÷­ç¥­­¨å ¬­®¦¨­:

n(A ∪B ∪ C) = n(A) + n(B) + n(C)−− n(A ∩B)− n(B ∩ C)− n(A ∩ C) + n(A ∩B ∩ C).

�த㬠⨠㧠£ «ì­¥­­ï ¤«ï ¤®¢÷«ì­®ù áª÷­ç¥­­®ù ª÷«ìª®áâ÷ áª÷­ç¥­­¨å¬­®¦¨­.

27

Page 30: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 2. �¥®à÷ï ¬­®¦¨­

2.5. �¥ª àâ÷¢ ¤®¡ã⮪ ¬­®¦¨­�§­ ç¥­­ï 2.10. �¥ª à⮢¨¬ ¤®¡ã⪮¬ ¤®¢÷«ì­¨å ¬­®¦¨­ A â  B

­ §¨¢ îâì ¬­®¦¨­ã A×B, é® áª« ¤ õâìáï § 㯮à浪®¢ ­¨å ¯ à ¢¨£«ï¤ã(a, b), ¤¥ a ∈ A, b ∈ B:

A×B = {(a, b) : a ∈ A, b ∈ B}.

�«ï ¢¨¯ ¤ªã A = B («¤¥ª àâ÷¢ ª¢ ¤à â») ç áâ® ¢¨ª®à¨á⮢ãîâì ¯®-§­ ç¥­­ï A× A = A×2 = A2.

�ਪ« ¤ 2.10. �¥å © A = {1, 2, 3}, B = {a, b}. �®¤÷

A×B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}.

� ã¢ ¦¥­­ï 2.5. �¥ª àâ÷¢ ¤®¡ã⮪ ­¥ª®¬ãâ â¨¢­¨©. � ª, ¤«ï ¬­®¦¨­§ ¯à¨ª«. 2.10,

B × A = {(a, 1), (b, 1), (a, 2), (b, 2), (a, 3), (b, 3)} 6= A×B.

�áª÷«ìª¨ ¥«¥¬¥­â¨ ¬­®¦¨­ A â  B ¢ ¤¥ª à⮢®¬ã ¤®¡ãâªã A×B ¬®-¦ãâì ¡ã⨠à÷§­®ù ¯à¨à®¤¨, ¤®æ÷«ì­® ¢¢®¤¨â¨ à÷§­÷ ã­÷¢¥àá «ì­÷ ¬­®¦¨­¨¤«ï ¯¥àè®ù ÷ ¤à㣮ù ª®¬¯®­¥­â ¤¥ª à⮢®£® ¤®¡ãâªã: A ⊂ U1, B ⊂ U2.�­÷¢¥àá «ì­®î ¬­®¦¨­®î ¤«ï ¤¥ª à⮢®£® ¤®¡ãâªã ¢ æ쮬ã à §÷ ¢¢ ¦ -⨬¥¬® U = U1 × U2.

�¥®à¥¬  2.3. �¥å © A â  B { áª÷­ç¥­­÷ ¬­®¦¨­¨. �®¤÷

n(A×B) = n(A) · n(B).

�®¢¥¤¥­­ï. �¥å © A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bm}. �«ï ¤®¢¥-¤¥­­ï ¤®áâ â­ì® ஧¬÷áâ¨â¨ ¥«¥¬¥­â¨ ¬­®¦¨­¨ A × B ã ¢¨£«ï¤÷ â ¡«¨-æ÷, à浪¨ 类ù ¢÷¤¯®¢÷¤ îâì ¥«¥¬¥­â ¬ ¬­®¦¨­¨ A, á⮢¯æ÷ { ¥«¥¬¥­â ¬¬­®¦¨­¨ B:

b1 b2 . . . bm

a1 (a1, b1) (a1, b2) . . . (a1, bm)a2 (a2, b1) (a2, b2) . . . (a2, bm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .an (an, b1) (an, b2) . . . (an, bm)

28

Page 31: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

2.5. �¥ª àâ÷¢ ¤®¡ã⮪ ¬­®¦¨­

�祢¨¤­®, é® â ¡«¨æï ¬÷áâ¨âì nm ¥«¥¬¥­â÷¢, é® ¤®¢®¤¨âì ⥮६ã.

�§­ ç¥­­ï 2.10 㧠£ «ì­îõâìáï ­  ¢¨¯ ¤®ª ¤®¢÷«ì­®ù áª÷­ç¥­­®ù ª÷«ì-ª®áâ÷ ¬­®¦¨­.

�§­ ç¥­­ï 2.11. �¥ª à⮢¨¬ ¤®¡ã⪮¬ ¬­®¦¨­ A1, A2, . . . , An ­ -§¨¢ îâì ¬­®¦¨­ã A1 × A2 × · · · × An, é® áª« ¤ õâìáï § 㯮à浪®¢ ­¨ån-®ª ¢¨£«ï¤ã (a1, a2, . . . , an), ¤¥ a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An:

A1 × A2 × · · · × An = {(a1, a2, . . . , an) : a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An}.�«ï ¢¨¯ ¤ªã A1 = A2 = · · · = An = A («¤¥ª àâ÷¢ á⥯÷­ì») ç áâ®

¢¨ª®à¨á⮢ãîâì ¯®§­ ç¥­­ï A×n = An.�¯à ¢  2.6. �®à¨áâãîç¨áì ¬¥â®¤®¬ ¬ â¥¬ â¨ç­®ù ÷­¤ãªæ÷ù, ¤®¢¥áâ¨

 ­ «®£ ⥮६¨ 2.3 ¤«ï ¤¥ª à⮢®£® ¤®¡ãâªã ¤®¢÷«ì­®ù áª÷­ç¥­­®ù ª÷«ì-ª®áâ÷ ¬­®¦¨­:

n(A1 × A2 × · · · × An) = n(A1) · n(A2) · · ·n(An).

2.5.1. �®¢¥¤¥­­ï â®â®¦­®á⥩, é® ¬÷áâïâ줥ª àâ÷¢ ¤®¡ã⮪

�«ï ¤®¢¥¤¥­­ï â®â®¦­®á⥩, é® ¬÷áâïâì ¤¥ª àâ÷¢ ¤®¡ã⮪, §àãç­®¢¨ª®à¨á⮢㢠⨠¬®¤¥«ì­¨© ¬¥â®¤.

�ਪ« ¤ 2.11. �®¢¥¤¥¬® â®â®¦­÷áâì A×(B∪C) = (A×B)∪(A×C).

(x, y) ∈ A× (B ∪ C) ⇔ (x ∈ A) ∧ (y ∈ (B ∪ C)) ⇔⇔ (x ∈ A) ∧ ((y ∈ B) ∨ (y ∈ C)).

(x, y) ∈ (A×B) ∪ (A× C) ⇔ ((x, y) ∈ (A×B)) ∨ ((x, y) ∈ (A× C)) ⇔⇔ ((x ∈ A)∧(y ∈ B))∨((x ∈ A)∧(y ∈ C)) ⇔ (x ∈ A)∧((y ∈ B)∨(y ∈ C)).

�÷¤ ç á  ­ «÷§ã ­¥áª« ¤­¨å â®â®¦­®á⥩, é® ¬÷áâïâì ¤¥ª àâ÷¢ ¤®¡ã-⮪, §àãç­® ¢¨ª®à¨á⮢㢠⨠ ­ «®£ ¤÷ £à ¬ �¥­­ . �­®¦¨­¨, é® ¢÷¤-¯®¢÷¤ îâì ¯¥àè÷© ª®¬¯®­¥­â÷ ¤¥ª à⮢®£® ¤®¡ãâªã, ஧¬÷éãîâì ¯® ®á÷ X,¤àã£÷© ª®¬¯®­¥­â÷ { ¯® ®á÷ Y . � £ ¤ õ¬®, é® ¤÷ £à ¬¨ �¥­­  ¤®§¢®«ïîâì«¢£ ¤ â¨» â®â®¦­÷áâì,  «¥ «¢£ ¤ ­ » â®â®¦­÷áâì ¯®âॡãõ ¤®¢¥¤¥­­ï.

29

Page 32: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 2. �¥®à÷ï ¬­®¦¨­

�ਪ« ¤ 2.12. �®¡à §¨¬® ­  ¤÷ £à ¬÷ �¥­­  ¬­®¦¨­ã (A × B)c

(à¨á. 2.2). � £ ¤ õ¬®, é® (A×B)c = U \ (A×B), ¤¥ U = U1 × U2.

{} } }U1

U=U U1 2´

U2

AB

A´B

X

Y

�¨á. 2.2

� ­ ¢¥¤¥­®£® à¨áã­ª  «¥£ª® «¢£ ¤ãõâìáï» â®â®¦­÷áâì

(A×B)c = (U1 ×Bc) ∪ (Ac × U2).

�¯à ¢  2.7. �®¢¥á⨠â®â®¦­÷áâì (A × B)c = (U1 × Bc) ∪ (Ac × U2)¬®¤¥«ì­¨¬ ¬¥â®¤®¬.

2.6. �«£¥¡à  ¬­®¦¨­ ïª  «£¥¡à¨ç­ áâàãªâãà . �÷«ìæ¥ ¬­®¦¨­

2.6.1. �«£¥¡à  ¬­®¦¨­�§­ ç¥­­ï 2.12. �¥¯®à®¦­î áãªã¯­÷áâì ¬­®¦¨­ S, § ¬ª­¥­ã ¢÷¤-

­®á­® ®¯¥à æ÷© ®¡'õ¤­ ­­ï, ¯¥à¥à÷§ã â  ¤®¯®¢­¥­­ï, ⮡⮠⠪ã, é®

(A ∈ S) ∧ (B ∈ S) ⇒ (A ∪B ∈ S) ∧ (A ∩B ∈ S) ∧ (Ac ∈ S),

­ §¨¢ îâì  «£¥¡à®î ¬­®¦¨­.

30

Page 33: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

2.6. �«£¥¡à  ¬­®¦¨­ ïª  «£¥¡à¨ç­  áâàãªâãà . �÷«ìæ¥ ¬­®¦¨­

� ®§­ ç¥­­ï 2.12 ­¥£ ©­® ¢¨¯«¨¢ õ § ¬ª­¥­÷áâì  «£¥¡à¨ ¬­®¦¨­ ¢÷¤-­®á­® ®¯¥à æ÷© à÷§­¨æ÷ â  á¨¬¥âà¨ç­®ù à÷§­¨æ÷, ®áª÷«ìª¨ æ÷ ®¯¥à æ÷ù ¬®¦-­  ¢¨à §¨â¨ ç¥à¥§ ®¡'õ¤­ ­­ï, ¯¥à¥à÷§ â  ¤®¯®¢­¥­­ï. � §­ ç¨¬®, é® ¢¨-¬®£  ®§­ ç¥­­ï 2.12 ¬®¦¥ ¡ã⨠¯®á« ¡«¥­ , ®áª÷«ìª¨, § ¢¤ïª¨ § ª®­ã ¤¥�®à£ ­ , ®¯¥à æ÷î ®¡'õ¤­ ­­ï (¯¥à¥à÷§) ¬®¦­  ¢¨à §¨â¨ ç¥à¥§ ¯¥à¥à÷§(®¡'õ¤­ ­­ï) â  ¤®¯®¢­¥­­ï.

�¯à ¢  2.8. �®¢¥áâ¨, é®  «£¥¡à  ¬­®¦¨­ § ¢¦¤¨ ¬÷áâ¨âì ¯®à®¦­î¬­®¦¨­ã: ∅ ∈ S.

�ਪ« ¤ 2.13. �¥å © U { ¤®¢÷«ì­  ­¥¯®à®¦­ï ¬­®¦¨­ , ïªã ¢¢ -¦ â¨¬¥¬® ã­÷¢¥àá «ì­®î ¬­®¦¨­®î.

1. S1 = {U,∅} {  «£¥¡à  ¬­®¦¨­.2. S2 = {U,∅, A, Ac} (A ⊂ U) {  «£¥¡à  ¬­®¦¨­.3. �¥å © U = A1 ∪ A2 ∪ · · · ∪ An, ¯à¨ç®¬ã ¬­®¦¨­¨ Ak (k = 1, . . . , n)

¯®¯ à­® ­¥ ¯¥à¥à÷§ îâìáï. �®§£«ï­¥¬® áãªã¯­÷áâì ¬­®¦¨­

Sn = {Aj1 ∪ Aj2 ∪ · · · ∪ Ajm : m = 0, . . . , n},é® ¬÷áâ¨âì ¢á÷ ¬®¦«¨¢÷ ®¡'õ¤­ ­­ï ¬­®¦¨­ Ak (k = 1, . . . , n), ¢¨¯ ¤®ªm = 0 ¢÷¤¯®¢÷¤ õ ¯®à®¦­÷© ¬­®¦¨­÷. �¥¢ ¦ª® ¤®¢¥áâ¨, é® Sn {  «£¥¡à ¬­®¦¨­. � §­ ç¨¬®, é® S0 â  S1 { ®ªà¥¬÷ ¢¨¯ ¤ª¨  «£¥¡à¨ Sn ¯à¨ n = 0â  n = 1 ¢÷¤¯®¢÷¤­®. �¥£ª® ¯¥à¥¢÷à¨â¨, é®  «£¥¡à  Sn ¬÷áâ¨âì 2n ¬­®¦¨­.

� ã¢ ¦¥­­ï 2.6. �÷¤®¬® (¤¨¢., ­ ¯à¨ª« ¤, [3]), é® ¡ã¤ì-猪 áª÷­ç¥­­  «£¥¡à  ¬­®¦¨­ § ¢¦¤¨ ¬÷áâ¨âì 2n ¥«¥¬¥­â÷¢, ¤¥ n { ¤¥ïª¥ ­ âãà «ì­¥ç¨á«®. �÷«ìè¥ â®£®, ¤®¢÷«ì­  áª÷­ç¥­­   «£¥¡à  ¬­®¦¨­ ¬®¦¥ ¡ã⨠§®¡-à ¦¥­  ã ¢¨£«ï¤÷ Sn.

� ¢¥¤¥¬® ¯à¨ª« ¤ ­¥áª÷­ç¥­­®ù  «£¥¡à¨ ¬­®¦¨­.

�ਪ« ¤ 2.14. �¥å © U = [0, 1). �®§£«ï­¥¬® áãªã¯­÷áâì ¬­®¦¨­

A = {[a1, b1) ∪ [a2, b2) ∪ · · · ∪ [am, bm) : 0 ≤ aj < bj ≤ 1, m ≥ 0},é® ¬÷áâ¨âì ¢á÷ ¬®¦«¨¢÷ áª÷­ç¥­­÷ ®¡'õ¤­ ­­ï ­ ¯÷¢¢÷¤ªà¨â¨å ÷­â¥à¢ «÷¢¢¨£«ï¤ã [a, b) ⊂ [0, 1); ¢¨¯ ¤®ª m = 0 ¢÷¤¯®¢÷¤ õ ¯®à®¦­÷© ¬­®¦¨­÷. �¥-¢ ¦ª® ¤®¢¥áâ¨, é® A {  «£¥¡à  ¬­®¦¨­. �«£¥¡àã A = A([0, 1)) ­ §¨¢ îâ졮५÷¢áìª®î  «£¥¡à®î ­  [0, 1), ¢®­  ¢÷¤÷£à õ ª«î箢ã à®«ì ¢ ⥮à÷ù ¬÷à¨â  ÷­â¥£à « .

31

Page 34: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 2. �¥®à÷ï ¬­®¦¨­

2.6.2. �®­ïââï ¯à® ª÷«ìæ¥ ¬­®¦¨­�§­ ç¥­­ï 2.13. �÷«ì楬 ¬­®¦¨­ ­ §¨¢ îâì ­¥¯®à®¦­î áãªã¯-

­÷áâì ¬­®¦¨­ S, § ¬ª­¥­ã ¢÷¤­®á­® ®¯¥à æ÷© ¯¥à¥à÷§ã â  á¨¬¥âà¨ç­®ùà÷§­¨æ÷, ⮡⮠⠪ã, é®

(A ∈ S) ∧ (B ∈ S) ⇒ (A ∩B ∈ S) ∧ (A M B ∈ S).

� ®§­ ç¥­­ï 2.13 ¢¨¯«¨¢ õ § ¬ª­¥­÷áâì ª÷«ìæï ¢÷¤­®á­® ®¯¥à æ÷©®¡'õ¤­ ­­ï â  à÷§­¨æ÷, ®áª÷«ìª¨

A ∪B = (A M B) M (A ∩B), A \B = (A ∪B) M B.

�¯à ¢  2.9. �®¢¥áâ¨, é® ª÷«ìæ¥ ¬­®¦¨­ § ¢¦¤¨ ¬÷áâ¨âì ¯®à®¦­î¬­®¦¨­ã: ∅ ∈ R.

�¯à ¢  2.10. �®¢¥áâ¨, é® ­¥¯®à®¦­ï áãªã¯­÷áâì ¬­®¦¨­ R õ ª÷«ì-楬 ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ R § ¬ª­¥­¥ ¢÷¤­®á­® ®¯¥à æ÷© ®¡'õ¤­ ­­ï â à÷§­¨æ÷.

�ਪ« ¤ 2.15. �®¢÷«ì­   «£¥¡à  ¬­®¦¨­ S õ ª÷«ì楬.�¯à ¢  2.11. �®¢¥áâ¨, é® ª÷«ìæ¥ ¬­®¦¨­ õ  «£¥¡à®î ⮤÷ ÷ â÷«ìª¨

⮤÷, ª®«¨ ¢®­® ¬÷áâ¨âì ã­÷¢¥àá «ì­ã ¬­®¦¨­ã.�ਪ« ¤ 2.16. �¥å © U { ã­÷¢¥àá «ì­  ¬­®¦¨­ .1. �¥å © A ⊂ U . �®¤÷ R = {∅, A} { ª÷«ìæ¥ ¬­®¦¨­. � §­ ç¨¬®, é®

¯à¨ A 6= U ª÷«ìæ¥ R ­¥ ¬÷áâ¨âì ã­÷¢¥àá «ì­ã ¬­®¦¨­ã (U /∈ R).2. �¥å © A ⊂ U , B ⊂ U , A∩B = ∅. �®¤÷ R = {∅, A, B,A∪B} { ª÷«ìæ¥

¬­®¦¨­.3. �¥å © U = R. �®§£«ï­¥¬® áãªã¯­÷áâì ¬­®¦¨­

R = {[a1, b1) ∪ [a2, b2) ∪ · · · ∪ [am, bm) : aj < bj, m ≥ 0},é® ¬÷áâ¨âì ¢á÷ ¬®¦«¨¢÷ áª÷­ç¥­­÷ ®¡'õ¤­ ­­ï ­ ¯÷¢¢÷¤ªà¨â¨å ÷­â¥à¢ «÷¢¢¨£«ï¤ã [a, b) ⊂ R; ¢¨¯ ¤®ª m = 0 ¢÷¤¯®¢÷¤ õ ¯®à®¦­÷© ¬­®¦¨­÷. �¥¢ ¦-ª® ¤®¢¥áâ¨, é® R { ª÷«ìæ¥ ¬­®¦¨­. �÷«ìæ¥ R ­ §¨¢ îâì ¡®à¥«÷¢á쪨¬ª÷«ì楬 (­  R), ¢®­® ¢÷¤÷£à õ ¢ ¦«¨¢ã à®«ì ¢ ⥮à÷ù ¬÷à¨ â  ÷­â¥£à « .

�¥â «ì­÷ ¢÷¤®¬®áâ÷ ¯à®  «£¥¡àã â  ª÷«ìæï ¬­®¦¨­ (  â ª®¦ ¯à® ÷­è÷á¨á⥬¨ ¬­®¦¨­) ¬®¦­  §­ ©â¨, ­ ¯à¨ª« ¤, ¢ [5].

� £ «ì­÷ ¯¨â ­­ï ⥮à÷ù ¬­®¦¨­ ¤¥â «ì­® ¢¨á¢÷â«¥­÷, §®ªà¥¬ , ¢ [6].

32

Page 35: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 3

�¥®à÷ï ¢÷¤­®è¥­ì

3.1. �á­®¢­÷ ¯®­ïââï ⥮à÷ù ¢÷¤­®è¥­ì�§­ ç¥­­ï 3.1. �¥å © A1, A2, . . . , An { ¤®¢÷«ì­÷ ¬­®¦¨­¨. �÷¤­®-

襭­ï¬ R, é® § ¤ ­¥ ­  ¬­®¦¨­ å A1, . . . , An, ­ §¨¢ îâì ¤®¢÷«ì­ã ¯÷¤-¬­®¦¨­ã ¤¥ª à⮢®£® ¤®¡ãâªã A1 × A2 × · · · × An:

R ⊂ A1 × A2 × · · · × An.

�ªé® A1 = A2 = · · · = An = A, â® ª ¦ãâì, é® R § ¤ ­¥ ­  ¬­®¦¨­÷ A.�÷¤­®è¥­­ï R = ∅ ­ §¨¢ îâì ¯®à®¦­÷¬, ¢÷¤­®è¥­­ï R = A1×· · ·×An

{ ¯®¢­¨¬.�ªé® n = 1, ¢÷¤­®è¥­­ï ­ §¨¢ îâì ã­ à­¨¬, ïªé® n = 2 { ¡÷­ à­¨¬,

ïªé® n = 3 { â¥à­ à­¨¬ ( ­ «®£÷ç­÷ ­ §¢¨ ¤«ï ¡÷«ìè¨å §­ ç¥­ì n ¬®¦-­  ã⢮à⨠¢÷¤ « â¨­áìª¨å ¯®à浪®¢¨å ç¨á«÷¢­¨ª÷¢,  «¥ ­  ¯à ªâ¨æ÷¢®­¨ ¬ ©¦¥ ­¥ ¢¨ª®à¨á⮢ãîâìáï).

�ਪ« ¤ 3.1. 1. �  ¬­®¦¨­÷ A1 = N ¬®¦­  § ¤ â¨ ã­ à­¥ ¢÷¤­®-襭­ï

R = {n : n { ¯ à­¥}.2. �¥å © A1 { ¬­®¦¨­  ªã«ì, A2 { ¬­®¦¨­  ª®«ì®à÷¢. �  ¬­®¦¨­ å

A1, A2 ¬®¦­  § ¤ â¨ ¡÷­ à­¥ ¢÷¤­®è¥­­ï

R = {(a1, a2) : ªã«ï a1 ¬ õ ª®«÷à a2}.

33

Page 36: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 3. �¥®à÷ï ¢÷¤­®è¥­ì

3. �¥å © A1 { ¬­®¦¨­  ¢á÷å 箫®¢÷ª÷¢, A2 { ¬­®¦¨­  ¦÷­®ª, A3 {¬­®¦¨­  ¢á÷å «î¤¥©. �  ¬­®¦¨­ å A1, A2, A3 ¬®¦­  § ¤ â¨ â¥à­ à­¥¢÷¤­®è¥­­ï

R = {(a1, a2, a3) : a1 â  a2 õ ¡ â쪠¬¨ a3}.� ¤ «÷ ®á­®¢­ã 㢠£ã ¯à¨¤÷«ï⨬¥¬® ¡÷­ à­¨¬ ¢÷¤­®è¥­­ï¬, ïª÷ è¨-

ப® § áâ®á®¢ãîâì ã à÷§­¨å £ «ã§ïå ¬ â¥¬ â¨ª¨.�÷¤ ç á  ­ «÷§ã ¡÷­ à­¨å ¢÷¤­®è¥­ì §àãç­® ¢¨ª®à¨á⮢㢠⨠¯®§­ -

祭­ï:• R :: A → B § ¬÷áâì R ⊂ A×B;• xRy § ¬÷áâì (x, y) ∈ R;• x6Ry § ¬÷áâì ¬((x, y) ∈ R).

�ਪ« ¤ 3.2. �¥å © R : R→ R. � ¤ ¬® ¢÷¤­®è¥­­ï R ç¥à¥§ «®£÷ç­ã¥ª¢÷¢ «¥­â­÷áâì xRy ⇔ x ≤ y. �祢¨¤­®, R = {(x, y) : x ≤ y}.

�ਪ« ¤ 3.3. �¥å © R : U → 2U , ¤¥ U { ¤®¢÷«ì­  ¬­®¦¨­ , 2U

{ ¬­®¦¨­  ¢á÷å ¯÷¤¬­®¦¨­ U , ⮡⮠2U = {A : A ⊂ U}. � ¤ ¬® ¢÷¤-­®è¥­­ï R ç¥à¥§ «®£÷ç­ã ¥ª¢÷¢ «¥­â­÷áâì aRA ⇔ a ∈ A. �祢¨¤­®,R = {(a,A) : a ∈ A}.

� «÷, ïªé® ­¥ ¢ª § ­® ÷­è¥, ¢á÷ ¢÷¤­®è¥­­ï ¢¢ ¦ â¨¬¥¬® ¡÷­ à­¨¬¨.

�§­ ç¥­­ï 3.2. �®â®¦­¨¬ ¢÷¤­®è¥­­ï¬ ­  ¬­®¦¨­÷ A ­ §¨¢ îâì¢÷¤­®è¥­­ï IA, ¢¨§­ ç¥­¥ «®£÷ç­®î ¥ª¢÷¢ «¥­â­÷áâî xIAy ⇔ x = y, ⮡â®

IA = {(x, x) : x ∈ A}.

3.2. �¯®á®¡¨ § ¤ ­­ï ¡÷­ à­¨å ¢÷¤­®è¥­ì

1. �®¢÷«ì­¥ (­¥ ®¡®¢'離®¢® ¡÷­ à­¥) ¢÷¤­®è¥­­ï ¬®¦­  § ¤ â¨ 窱­®¦¨­ã. �஠ᯮᮡ¨ § ¤ ­­ï ¬­®¦¨­ ¤¨¢. ¯÷¤à®§¤. 2.1.

2. �®®à¤¨­ â­¨© ᯮá÷¡: § áâ®á®¢ãõâìáï ¤«ï ¡÷­ à­®£® ¢÷¤­®è¥­­ïR : A → B ã ¢¨¯ ¤ªã, ª®«¨ ¥«¥¬¥­â ¬ ¬­®¦¨­ A â  B ¬®¦­  ¯à¨à®¤­®§÷áâ ¢¨â¨ â®çª¨ ­  ç¨á«®¢÷© ®á÷. �®¤÷ ¬­®¦¨­  A § ¤ õâìáï ïª ¯÷¤¬­®-¦¨­  ®á÷ X, ¬­®¦¨­  B { ïª ¯÷¤¬­®¦¨­  ®á÷ Y , ¥«¥¬¥­â ¬ ¢÷¤­®è¥­­ïR §÷áâ ¢«ïîâìáï â®çª¨ ­  ª®®à¤¨­ â­÷© ¯«®é¨­÷.

34

Page 37: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

3.2. �¯®á®¡¨ § ¤ ­­ï ¡÷­ à­¨å ¢÷¤­®è¥­ì

�ਪ« ¤ 3.4. �¥å © R : A → B. �  à¨á. 3.1 ­ ¢¥¤¥­® ¢÷¤­®è¥­­ï

R = {(x, y) : x2 + y2 = 1}, A = B = R

(®¤¨­¨ç­¥ ª®«® § 業â஬ ã ¯®ç âªã ª®®à¤¨­ â).�  à¨á. 3.2 ­ ¢¥¤¥­® ¢÷¤­®è¥­­ï

R = {(1, x), (2, y), (3, y)}, A = {1, 2, 3}, B = {x, y}

(âਠâ®çª¨ ­  ª®®à¤¨­ â­÷© ¯«®é¨­÷).

X

Y

0

1

1

–1

–1

�¨á. 3.1

X

Y

1

x

y

2 3

(1, )x

(2, )y (3, )y

0

�¨á. 3.2

3. �âà÷«ª®¢÷ ¤÷ £à ¬¨: § áâ®á®¢ãîâìáï ¤«ï ¢÷¤­®è¥­­ï R : A → Bã ¢¨¯ ¤ªã áª÷­ç¥­­¨å ¬­®¦¨­ A â  B. �¥å © A = (a1, a2, . . . , an),B = (b1, b2, . . . , bm). �«¥¬¥­â¨ ¬­®¦¨­ A â  B §®¡à ¦ãîâì ã ¢¨£«ï¤÷¢÷¤®ªà¥¬«¥­¨å ®¤­  ¢÷¤ ®¤­®ù â®ç®ª ­  ¯«®é¨­÷; ïªé® aRb, ­  à¨áã­ªã¢÷¤ â®çª¨ a ¤® â®çª¨ b ¯à®¢®¤ïâì áâà÷«ªã.

�ਪ« ¤ 3.5. �¥å © R : A → B. �  à¨á. 3.3 ­ ¢¥¤¥­® ¢÷¤­®è¥­­ï

R = {(a1, b1), (a2, b2), (a3, b1)}, A = {a1, a2, a3}, B = {b1, b2}

(âਠáâà÷«ª¨ ­  ¤÷ £à ¬÷).�  à¨á. 3.4 ­ ¢¥¤¥­® ¯®¢­¥ ¢÷¤­®è¥­­ï

R = A×B, A = B = {a, b, c}

(¤¥¢'ïâì áâà÷«®ª ­  ¤÷ £à ¬÷).

35

Page 38: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 3. �¥®à÷ï ¢÷¤­®è¥­ì

a2

b2

a3

a1

b1

A B

�¨á. 3.3

b b

c c

aa

A B

�¨á. 3.4

�ª ¢¨¤­® § ­ ¢¥¤¥­¨å à¨áã­ª÷¢, áâà÷«ª®¢÷ ¤÷ £à ¬¨ ¤®æ÷«ì­® § áâ®-ᮢ㢠⨠¤«ï §®¡à ¦¥­­ï ¢÷¤­®è¥­ì, é® ¬÷áâïâì ­¥¢¥«¨ªã ª÷«ìª÷áâì ¯ à¥«¥¬¥­â÷¢ (¤«ï §®¡à ¦¥­­ï ¯®¢­®£® ¢÷¤­®è¥­­ï áâà÷«ª®¢  ¤÷ £à ¬  { ­¥­ ©ªà é¨© ¢¨¡÷à).

4. � âà¨ç­¨© ᯮá÷¡: § áâ®á®¢ãõâìáï ¤«ï ¢÷¤­®è¥­­ï R : A → Bã ¢¨¯ ¤ªã áª÷­ç¥­­¨å ¬­®¦¨­ A â  B. �¥å © A = (a1, a2, . . . , an),B = (b1, b2, . . . , bm). �÷¤­®è¥­­ï R § ¤ õâìáï ã ¢¨£«ï¤÷ ¬ âà¨æ÷ MR ஧-¬÷஬ n × m (â ¡«¨æï § n à浪÷¢ â  m á⮢¯æ÷¢); à浪¨ ¬ âà¨æ÷ MR

­ã¬¥àãîâìáï ¥«¥¬¥­â ¬¨ ¬­®¦¨­¨ A, á⮢¯æ÷ { ¥«¥¬¥­â ¬¨ ¬­®¦¨­¨ B.� âà¨æï § ¯®¢­îõâìáï «®£÷ç­¨¬¨ ¥«¥¬¥­â ¬¨ 0 â  1: ¥«¥¬¥­â ai,j (­ ¯¥à¥â¨­÷ à浪  i â  á⮢¯æï j) ¤®à÷¢­îõ 1 ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ aiRbj.

�ਪ« ¤ 3.6. �¥å © A = {a1, a2, a3}, B = {b1, b2}. �®¦­®¬ã¥«¥¬¥­âã ai §÷áâ ¢¨¬® i-© à冷ª (i = 1, 2, 3) ¬ âà¨æ÷, ª®¦­®¬ã ¥«¥-¬¥­âã bj §÷áâ ¢¨¬® j-© á⮢¯¥æì (j = 1, 2). �®¤÷ ¤«ï ¢÷¤­®è¥­­ïR = {(a1, b1), (a2, b2), (a3, b1)},   â ª®¦ ¤«ï ¯®¢­®£® â  ¯®à®¦­ì®£® ¢÷¤-­®è¥­ì ­  A×B ÷ ¤«ï â®â®¦­®£® ¢÷¤­®è¥­­ï IB, ¤÷áâ ­¥¬®:

MR =

1 00 11 0

; MA×B =

1 11 11 1

; M∅ =

0 00 00 0

; MIB

=

(1 00 1

).

5. �à÷õ­â®¢ ­÷ £à ä¨: § áâ®á®¢ãîâìáï ¤«ï ¢÷¤­®è¥­­ï R : A → Aã ¢¨¯ ¤ªã áª÷­ç¥­­®ù ¬­®¦¨­¨ A. �÷¤­®è¥­­ï R § ¤ õâìáï ã ¢¨£«ï¤÷®à÷õ­â®¢ ­®£® £à äã: ª®¦­®¬ã ¥«¥¬¥­âã a ∈ A §÷áâ ¢«ïõâìáï ¤¥ïª  â®çª ­  ¯«®é¨­÷ (¢¥à設  £à äã); ïªé® aRb, ¢¥à設¨ a â  b §'õ¤­ãîâìáï®à÷õ­â®¢ ­¨¬ ॡ஬, é® ¢¥¤¥ ¢÷¤ a ¤® b. �¨¯ ¤ªã aRa ­  £à ä÷ ¢÷¤¯®¢÷¤ õ«§ ¬ª­¥­¥» ॡ஠(¯¥â«ï) ­  ¢¥à設÷ a.

36

Page 39: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

3.3. �¯¥à æ÷ù ­ ¤ ¡÷­ à­¨¬¨ ¢÷¤­®è¥­­ï¬¨

�ਪ« ¤ 3.7. �¥å © A = {a, b, c}.�  à¨á. 3.5 ­ ¢¥¤¥­® ¢÷¤­®è¥­­ï

R = {(a, b), (b, c), (c, c)}

(£à ä § âà쮬  ॡࠬ¨, ®¤­¥ § 直å {¯¥â«ï).

b

ca

�¨á. 3.5

3.3. �¯¥à æ÷ù ­ ¤ ¡÷­ à­¨¬¨ ¢÷¤­®è¥­­ï¬¨

1. �¡'õ¤­ ­­ï ¢÷¤­®è¥­ì: § áâ®á®¢ãõâìáï ¤® ¤®¢÷«ì­¨å (­¥ ®¡®¢'離®-¢® ¡÷­ à­¨å) ¢÷¤­®è¥­ì R,S ⊂ A1 × A2 × · · · × An ÷ ¢¨§­ ç õâìáï 类¡'õ¤­ ­­ï ¬­®¦¨­ R ∪ S. � ¢¨¯ ¤ªã ¡÷­ à­¨å ¢÷¤­®è¥­ì R, S : A → B­  áª÷­ç¥­­¨å A â  B ¬ âà¨æï ®¡'õ¤­ ­­ï MR∪S ®¡ç¨á«îõâìáï ïª ¯®¥«¥-¬¥­â­  ¤¨§'î­ªæ÷ï ¬ âà¨æì MR â  MS:

(MR∪S)i,j = (MR)i,j ∨ (MS)i,j , 1 ≤ i ≤ n(A), 1 ≤ j ≤ n(B).

�ਪ« ¤ 3.8. �¥å ©A = {a1, a2, a3}, B = {b1, b2},

R = {(a1, b1), (a2, b2), (a3, b1)}, S = {(a1, b1), (a1, b2)}.� áâ®á®¢ãîç¨ ¯à¨à®¤­ã ­ã¬¥à æ÷î à浪÷¢ â  á⮢¯æ÷¢ ¬ âà¨æì MR

â  MS (¥«¥¬¥­âã ai §÷áâ ¢¨¬® i-© à冷ª, ¥«¥¬¥­âã bj { j-© á⮢¯¥æì),®âਬãõ¬®:

MR =

1 00 11 0

, MS =

1 10 00 0

, MR∪S =

1 10 11 0

,

⮡⮠R ∪ S = {(a1, b1), (a2, b2), (a3, b1), (a1, b2)}.2. �¥à¥à÷§ ¢÷¤­®è¥­ì: § áâ®á®¢ãõâìáï ¤® ¤®¢÷«ì­¨å (­¥ ®¡®¢'離®¢®

¡÷­ à­¨å) ¢÷¤­®è¥­ì R, S ⊂ A1×A2× · · · ×An ÷ ¢¨§­ ç õâìáï ïª ¯¥à¥à÷§¬­®¦¨­ R∩S. � ¢¨¯ ¤ªã ¡÷­ à­¨å ¢÷¤­®è¥­ì R, S : A → B ­  áª÷­ç¥­­¨åA â  B ¬ âà¨æï ¯¥à¥à÷§ã MR∩S ®¡ç¨á«îõâìáï ïª ¯®¥«¥¬¥­â­  ª®­'î­ªæ÷ﬠâà¨æì MR â  MS:

(MR∩S)i,j = (MR)i,j ∧ (MS)i,j , 1 ≤ i ≤ n(A), 1 ≤ j ≤ n(B).

37

Page 40: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 3. �¥®à÷ï ¢÷¤­®è¥­ì

�ਪ« ¤ 3.9. �¥å ©

A = {a1, a2, a3}, B = {b1, b2},R = {(a1, b1), (a2, b2), (a3, b1)}, S = {(a1, b1), (a1, b2)}.

� áâ®á®¢ãîç¨ ¯à¨à®¤­ã ­ã¬¥à æ÷î à浪÷¢ â  á⮢¯æ÷¢ ¬ âà¨æì MR â MS, ®¤¥à¦¨¬®:

MR =

1 00 11 0

, MS =

1 10 00 0

, MR∩S =

1 00 00 0

,

⮡⮠R ∩ S = {(a1, b1)}.

3. �®¯®¢­ï«ì­¥ ¢÷¤­®è¥­­ï: ¢¨§­ ç¥­® ¤«ï ¤®¢÷«ì­®£® (­¥ ®¡®¢'離®-¢® ¡÷­ à­®£®) ¢÷¤­®è¥­­ï R ⊂ A1 × A2 × · · · × An ïª ¤®¯®¢­¥­­ï Rc

¬­®¦¨­¨ R ¢÷¤­®á­® ã­÷¢¥àá «ì­®ù ¬­®¦¨­¨ U = A1 × · · · × An, ⮡â®

Rc = (A1 × A2 × · · · × An) \R.

� ¢¨¯ ¤ªã ¡÷­ à­®£® ¢÷¤­®è¥­­ï R : A → B ­  áª÷­ç¥­­¨å A â  B ¬ â-à¨æï ¤®¯®¢­¥­­ï MRc ®¡ç¨á«îõâìáï ïª ¯®¥«¥¬¥­â­¥ «®£÷ç­¥ § ¯¥à¥ç¥­­ï¬ âà¨æ÷ MR:

(MRc)i,j = ¬ (MR)i,j , 1 ≤ i ≤ n(A), 1 ≤ j ≤ n(B).

�ਪ« ¤ 3.10. �¥å ©

A = {a1, a2, a3}, B = {b1, b2}, R = {(a1, b1), (a2, b2), (a3, b1)}.

� áâ®á®¢ãîç¨ ¯à¨à®¤­ã ­ã¬¥à æ÷î à浪÷¢ â  á⮢¯æ÷¢, ¤÷áâ ­¥¬®:

MR =

1 00 11 0

, MRc =

0 11 00 1

,

⮡⮠Rc = {(a1, b2), (a2, b1), (a3, b2)}.

38

Page 41: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

3.3. �¯¥à æ÷ù ­ ¤ ¡÷­ à­¨¬¨ ¢÷¤­®è¥­­ï¬¨

4. ö­¢¥àá­¥ (®¡¥à­¥­¥) ¢÷¤­®è¥­­ï: ¢¨§­ ç õâìáï ¤«ï ¡÷­ à­®£® ¢÷¤­®-襭­ï R : A → B ïª ¢÷¤­®è¥­­ï R−1 : B → A, â ª¥, é®:

yR−1x ⇔ xRy (x ∈ A, y ∈ B).

� ¢¨¯ ¤ªã ¡÷­ à­®£® ¢÷¤­®è¥­­ï R : A → B ­  áª÷­ç¥­­¨å A â  B ¬ -âà¨æï ÷­¢¥àá­®£® ¢÷¤­®è¥­­ï MR−1 ®¡ç¨á«îõâìáï ïª â࠭ᯮ­®¢ ­  ¤®¬ âà¨æ÷ MR: MR−1 = (MR)T , ⮡â®

(MR−1)j,i = (MR)i,j , 1 ≤ i ≤ n(A), 1 ≤ j ≤ n(B).

�ਪ« ¤ 3.11. �¥å ©

A = {a1, a2, a3}, B = {b1, b2}, R = {(a1, b1), (a2, b2), (a3, b1)}.

� áâ®á®¢ãîç¨ ¯à¨à®¤­ã ­ã¬¥à æ÷î à浪÷¢ â  á⮢¯æ÷¢, ®âਬãõ¬®:

MR =

1 00 11 0

, MR−1 =

(1 0 10 1 0

),

⮡⮠R−1 = {(b1, a1), (b2, a2), (b1, a3)}.

5. �®¬¯®§¨æ÷ï ¢÷¤­®è¥­ì: ¢¨§­ ç õâìáï ¤«ï ¢÷¤­®è¥­ì R : A → B â S : B → C ïª ¢÷¤­®è¥­­ï R ◦ S : A → C, â ª¥, é®:

a(R ◦ S)c ⇔ ∃b ∈ B : aRb ∧ bSc.

� ã¢ ¦¥­­ï 3.1. �«ï § ¯¨áã ª®¬¯®§¨æ÷ù äã­ªæ÷© §àãç­¨¬ â  § £ «ì-­®¯à¨©­ï⨬ õ §¢®à®â­¨© § ¯¨á ((g ◦ f)(x) = g(f(x))), ®¤­ ª ¤«ï ª®¬¯®-§¨æ÷ù ¢÷¤­®è¥­ì ç áâ® ¢¨ª®à¨á⮢ãîâì ïª ¯àﬨ©, â ª ÷ §¢®à®â­¨© § ¯¨á.� æ쮬㠯®á÷¡­¨ªã ¤«ï ª®¬¯®§¨æ÷ù ¢÷¤­®è¥­ì ¢¨ª®à¨á⮢㢠⨬¥¬® ¯àï-¬¨© § ¯¨á, 直© §àãç­÷訩 ¤«ï ­ è¨å ¯®âॡ.

�«ï áª÷­ç¥­­¨å ¬­®¦¨­ A, B â  C § ­¥¢¥«¨ª®î ª÷«ìª÷áâî ¥«¥¬¥­-â÷¢ ª®¬¯®§¨æ÷î ¢÷¤­®è¥­ì §àãç­® ®¡ç¨á«î¢ â¨ §  ¤®¯®¬®£®î áâà÷«ª®¢¨å¤÷ £à ¬.

39

Page 42: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 3. �¥®à÷ï ¢÷¤­®è¥­ì

�ਪ« ¤ 3.12. �¥å © A = {a1, a2, a3}, B = {b1, b2, b3}, C = {c1, c2}.�®§£«ï­¥¬® ¢÷¤­®è¥­­ï

R : A → B, R = {(a1, b2), (a2, b1), (a2, b3), (a3, b2)};S : B → C, S = {(b1, c1), (b3, c1), (b3, c2)}.

�¡ç¨á«¨¬® ª®¬¯®§¨æ÷î R ◦ S.

a2 b2

c2

b3a3

a1 b1c1

A B C

R S

�¨á. 3.6

�ª ¢¨¤­® § à¨á. 3.6,

R ◦ S = {(a2, c1), (a2, c2)}.

�®¬¯®§¨æ÷ï ¢÷¤­®è¥­ì ­  áª÷­ç¥­­¨å ¬­®¦¨­ å â÷á­® ¯®¢'易­  § ¤®-¡ã⪮¬ ¬ âà¨æì ¢÷¤­®è¥­ì.

�§­ ç¥­­ï 3.3. �¥å ©

A = {a1, . . . , an}, B = {b1, . . . , bm}, C = {c1, . . . , ck},R : A → B, S : B → C.

�®¤÷ MRMS ¢¨§­ ç õâìáï ïª ¬ âà¨æï ஧¬÷஬ n× k, â ª , é®

(MRMS)i,j =m∨

p=1

(MR)i,p ∧ (MS)p,j =

{1, ∃p : (MR)i,p = (MS)p,j = 1,

0, ∀p : (MR)i,p ∧ (MS)p,j = 0.

� §­ ç¨¬®, é® ¤®¡ã⮪ ¬ âà¨æì ¢÷¤­®è¥­ì MRMS ¢¨§­ ç õâìáï  ­ -«®£÷ç­® ª« á¨ç­®¬ã ¤®¡ãâªã ¬ âà¨æì, ¢÷¤®¬®¬ã § ªãàáã «÷­÷©­®ù  «£¥¡à¨, «¥ § ¬÷áâì  à¨ä¬¥â¨ç­¨å ®¯¥à æ÷© ¤®¡ãâªã â  á㬨 ¢¨ª®à¨á⮢ãîâìáï«®£÷ç­÷ ®¯¥à æ÷ù ª®­'î­ªæ÷ù â  ¤¨§'î­ªæ÷ù ¢÷¤¯®¢÷¤­®.

40

Page 43: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

3.4. �« á⨢®áâ÷ ¡÷­ à­¨å ¢÷¤­®è¥­ì

�¯à ¢  3.1. �®¢¥áâ¨, é® MR◦S = MRMS.�ਪ« ¤ 3.13. �¡ç¨á«¨¬® ª®¬¯®§¨æ÷î ¢÷¤­®è¥­ì § ¯à¨ª« ¤ã 3.12.

�  ¯à¨à®¤­®ù ­ã¬¥à æ÷ù à浪÷¢ â  á⮢¯æ÷¢ ¬ âà¨æì ®âਬãõ¬®:

MR◦S = MRMS =

0 1 01 0 10 1 0

1 00 01 1

=

0 01 10 0

.

�⦥, R ◦ S = {(a2, c1), (a2, c2)}.�¥®à¥¬  3.1. �¯¥à æ÷ï ª®¬¯®§¨æ÷ù  á®æ÷ â¨¢­ , ⮡â®

R ◦ (S ◦ T ) = (R ◦ S) ◦ T, ¤¥ R : A → B, S : B → C, T : C → D.

�®¢¥¤¥­­ï. �®¢¥¤¥­­ï ¡ã¤¥¬® ¯à®¢®¤¨â¨ ¬®¤¥«ì­¨¬ ᯮᮡ®¬.

1) a(R ◦ (S ◦ T ))d ⇔ ∃b : aRb ∧ b(S ◦ T )d ⇔⇔ ∃b : aRb ∧ (∃c : bSc ∧ cTd) ⇔ ∃b∃c : aRb ∧ bSc ∧ cTd;

2) a((R ◦ S) ◦ T )d ⇔ ∃c : a(R ◦ S)c ∧ cTd ⇔⇔ ∃c : (∃b : aRb ∧ bSc) ∧ cTd ⇔ ∃b∃c : aRb ∧ bSc ∧ cTd.

3.4. �« á⨢®áâ÷ ¡÷­ à­¨å ¢÷¤­®è¥­ì�  ¯à ªâ¨æ÷ ç áâ® §ãáâà÷ç îâìáï ÷ ¢¨ª®à¨á⮢ãîâìáï ¡÷­ à­÷ ¢÷¤­®-

襭­ï ­  ¬­®¦¨­÷ A, é® ¬ îâì ¯¥¢­÷ ¤®¤ âª®¢÷ ¢« á⨢®áâ÷. �¥ïª÷ §â ª¨å ¢« á⨢®á⥩ ஧£«ï­¥¬® ¢ æ쮬㠯÷¤à®§¤÷«÷. � ¤ «÷ ¢ æ쮬㠯÷¤-஧¤÷«÷ ஧£«ï¤ õâìáï ¢÷¤­®è¥­­ï R : A → A.

1. �÷¤­®è¥­­ï R ­ §¨¢ îâì à¥ä«¥ªá¨¢­¨¬, ïªé® ∀a : aRa.� ®§­ ç¥­­ï ¢¨¯«¨¢ õ, é® ã ¢¨¯ ¤ªã áª÷­ç¥­­®ù ¬­®¦¨­¨ A

(R { à¥ä«¥ªá¨¢­¥) ⇔ (∀i : (MR)ii = 1).

�¯à ¢  3.2. �®¢¥áâ¨, é®

(R { à¥ä«¥ªá¨¢­¥) ⇔ (R ⊃ IA).

�ਪ« ¤ 3.14. 1) �¥ä«¥ªá¨¢­¨¬¨ õ â®â®¦­¥ ¢÷¤­®è¥­­ï IA â  ¯®¢­¥¢÷¤­®è¥­­ï A2 ¤«ï ¤®¢÷«ì­®ù ¬­®¦¨­¨ A;

2) ­¥å © A = R. �®¤÷ ¢÷¤­®è¥­­ï «=», «≤», «≥» à¥ä«¥ªá¨¢­÷.

41

Page 44: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 3. �¥®à÷ï ¢÷¤­®è¥­ì

2. �÷¤­®è¥­­ï R ­ §¨¢ îâì  ­â¨à¥ä«¥ªá¨¢­¨¬, ïªé® ∀a : a6Ra.� ®§­ ç¥­­ï ¢¨¯«¨¢ õ, é® ã ¢¨¯ ¤ªã áª÷­ç¥­­®ù ¬­®¦¨­¨ A

(R {  ­â¨à¥ä«¥ªá¨¢­¥) ⇔ (∀i : (MR)ii = 0).

�¯à ¢  3.3. �®¢¥áâ¨, é®

(R {  ­â¨à¥ä«¥ªá¨¢­¥) ⇔ (R ∩ IA = ∅).

�ਪ« ¤ 3.15. 1) �­â¨à¥ä«¥ªá¨¢­¨¬ õ ¯®à®¦­õ ¢÷¤­®è¥­­ï ∅;2) ­¥å © A = R. �®¤÷ ¢÷¤­®è¥­­ï «<>», «<», «>»  ­â¨à¥ä«¥ªá¨¢­÷.

3. �÷¤­®è¥­­ï R ­ §¨¢ îâì ᨬ¥âà¨ç­¨¬, ïªé® aRb ⇔ bRa.� ®§­ ç¥­­ï ¢¨¯«¨¢ õ, é® ã ¢¨¯ ¤ªã áª÷­ç¥­­®ù ¬­®¦¨­¨ A

(R { ᨬ¥âà¨ç­¥) ⇔ (MR = (MR)T ).

�¯à ¢  3.4. �®¢¥áâ¨, é®

(R { ᨬ¥âà¨ç­¥) ⇔ (R = R−1).

�ਪ« ¤ 3.16. 1) �¨¬¥âà¨ç­¨¬¨ õ ¯®à®¦­õ, ¯®¢­¥ â  â®â®¦­¥ ¢÷¤-­®è¥­­ï ­  ¤®¢÷«ì­÷© ¬­®¦¨­÷ A;

2) ­¥å © A = R. �®¤÷ ¢÷¤­®è¥­­ï «<>» â  «=» ᨬ¥âà¨ç­÷.

4. �÷¤­®è¥­­ï R ­ §¨¢ îâì  ­â¨á¨¬¥âà¨ç­¨¬, ïªé®

(aRb ∧ bRa) ⇒ (a = b).

�¯à ¢  3.5. �®¢¥áâ¨, é®

(R {  ­â¨á¨¬¥âà¨ç­¥) ⇔ (R ∩R−1 ⊂ IA).

�ਪ« ¤ 3.17. 1) �­â¨á¨¬¥âà¨ç­¨¬¨ õ ¯®à®¦­õ â  â®â®¦­¥ ¢÷¤­®-襭­ï ­  ¤®¢÷«ì­÷© ¬­®¦¨­÷ A;

2) ­¥å © A = R. �®¤÷ ¢÷¤­®è¥­­ï «≤»,«≥», «<», «>»  ­â¨á¨¬¥âà¨ç­÷.

� ã¢ ¦¥­­ï 3.2. �« á⨢®áâ÷ ᨬ¥âà¨ç­®áâ÷ â   ­â¨á¨¬¥âà¨ç­®áâ÷ ­¥õ ¢§ õ¬®¢¨ª«îç­¨¬¨. � ª, ¯®à®¦­õ â  â®â®¦­¥ ¢÷¤­®è¥­­ï ¢®¤­®ç á á¨-¬¥âà¨ç­÷ â   ­â¨á¨¬¥âà¨ç­÷.

42

Page 45: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

3.4. �« á⨢®áâ÷ ¡÷­ à­¨å ¢÷¤­®è¥­ì

�¯à ¢  3.6. � ¢¥á⨠¯à¨ª« ¤¨ ¢÷¤­®è¥­ì, ïª÷:1) ­¥ õ  ­÷ ᨬ¥âà¨ç­¨¬¨,  ­÷  ­â¨á¨¬¥âà¨ç­¨¬¨;2) ­¥ õ  ­÷ à¥ä«¥ªá¨¢­¨¬¨,  ­÷  ­â¨à¥ä«¥ªá¨¢­¨¬¨;3) õ ᨬ¥âà¨ç­¨¬¨ ÷  ­â¨á¨¬¥âà¨ç­¨¬¨ ®¤­®ç á­®.5. �÷¤­®è¥­­ï R ­ §¨¢ îâì âà ­§¨â¨¢­¨¬, ïªé®

(aRb ∧ bRc) ⇒ (aRc).

�¯à ¢  3.7. �®¢¥áâ¨, é®(R { âà ­§¨â¨¢­¥) ⇔ (R ◦R ⊂ R).

�ਪ« ¤ 3.18. 1) �à ­§¨â¨¢­¨¬¨ õ ¯®à®¦­õ, ¯®¢­¥ â  â®â®¦­¥ ¢÷¤-­®è¥­­ï ­  ¤®¢÷«ì­÷© ¬­®¦¨­÷ A;

2) ­¥å © A = R. �®¤÷ ¢÷¤­®è¥­­ï «=», «≤», «≥», «<», «>» âà ­§¨â¨¢­÷.

3.4.1. �à ­§¨â¨¢­¥ § ¬¨ª ­­ï�§­ ç¥­­ï 3.4. �à ­§¨â¨¢­¨¬ § ¬¨ª ­­ï¬ ¢÷¤­®è¥­­ï R : A → A

­ §¨¢ îâì â ª¥ ¢÷¤­®è¥­­ï Rtr : A → A, é®:• Rtr { âà ­§¨â¨¢­¥;• Rtr ⊃ R;• ïªé® ¢÷¤­®è¥­­ï S : A → A âà ­§¨â¨¢­¥ â  S ⊃ R, â® S ⊃ Rtr.ö­ ªè¥ ª ¦ãç¨, âà ­§¨â¨¢­¨¬ § ¬¨ª ­­ï¬ ¢÷¤­®è¥­­ï R õ ­ ©¬¥­-

è¥ §  ¢ª«î祭­ï¬ («⊂») âà ­§¨â¨¢­¥ ¢÷¤­®è¥­­ï Rtr, é® ¬÷áâ¨âì ¢÷¤-­®è¥­­ï R ïª ¯÷¤¬­®¦¨­ã (Rtr { ­ ©¬¥­è¥ âà ­§¨â¨¢­¥ ஧è¨à¥­­ï¢÷¤­®è¥­­ï R).

�祢¨¤­®, é® âà ­§¨â¨¢­¥ § ¬¨ª ­­ï ¢¨§­ ç¥­¥ ®¤­®§­ ç­®. �¯à ¢-¤÷, ïªé® 㬮¢¨ ®§­ ç¥­­ï 3.4 § ¤®¢®«ì­ïîâì ¤¢  ¢÷¤­®è¥­­ï Rtr,1 â Rtr,2, § ®§­ ç¥­­ï 3.4 ­¥£ ©­® ®âਬãõ¬®:

(Rtr,1 ⊂ Rtr,2) ∧ (Rtr,2 ⊂ Rtr,1) ⇒ Rtr,1 = Rtr,2.

�¯à ¢  3.8. �®¢¥á⨠⠪ã ä®à¬ã«ã ¤«ï ®¡ç¨á«¥­­ï Rtr:

Rtr =∞⋃

n=1

Rn = R ∪R2 ∪ · · · ∪Rn ∪ . . . , (3.1)

¤¥ R1 = R, Rn = R ◦ · · · ◦R︸ ︷︷ ︸n

.

43

Page 46: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 3. �¥®à÷ï ¢÷¤­®è¥­ì

�®à¬ã«  (3.1) ¬÷áâ¨âì ®¡'õ¤­ ­­ï ­¥áª÷­ç¥­­®ù ª÷«ìª®áâ÷ «ª®¬¯®§¨-æ÷©­¨å á⥯¥­÷¢» Rn, ¯à®â¥ ã ¢¨¯ ¤ªã áª÷­ç¥­­®ù ¬­®¦¨­¨ A ¤«ï ®¡-ç¨á«¥­­ï Rtr ¯à®æ¥á ®¡ç¨á«¥­­ï «áâ ¡÷«÷§ãõâìáï» §  áª÷­ç¥­­ã ª÷«ìª÷áâìªà®ª÷¢. �ä®à¬ã«îõ¬® 楩 ä ªâ ã ¢¨£«ï¤÷ ⥮६¨.

�¥®à¥¬  3.2. �¥å © n(A) = N . �®¤÷

Rtr =N⋃

n=1

Rn = R ∪R2 ∪ · · · ∪RN .

�¥®à¥¬ã 3.2 ¡ã¤¥ ¤®¢¥¤¥­® ¤ «÷, § ¢¨ª®à¨áâ ­­ï¬ â¥å­÷ª¨ ®à÷õ­â®¢ -­¨å £à ä÷¢ (¤¨¢. ¯÷¤à®§¤. 5.8).

�ਪ« ¤ 3.19. 1. �¥å © A = {a, b}, R = {(a, b), (b, a)}. �®¤÷

R2 = {(a, a), (b, b)}, Rtr = R ∪R2 = {(a, a), (a, b), (b, a), (b, b)}.

�÷ª ¢® § §­ ç¨â¨, é® ª®¬¯®§¨æ÷©­÷ á⥯¥­÷ Rk ¢ æ쮬㠯ਪ« ¤÷ ­¥ áâ -¡÷«÷§ãîâìáï:

R2k = {(a, a), (b, b)}, R2k+1 = R, k ∈ N.

2. �®§£«ï­¥¬® ¢¨¯ ¤®ª ¢÷¤­®è¥­­ï ­  ­¥áª÷­ç¥­­÷© ¬­®¦¨­÷. �¥å ©A = N, R = {(n, n + 1): n ∈ N}. �¥â®¤®¬ ¬ â¥¬ â¨ç­®ù ÷­¤ãªæ÷ù ­¥¢ ¦ª®¤®¢¥áâ¨, é® Rk = {(n, n + k)}, (k ≥ 1), §¢÷¤ª¨ ¬ õ¬®:

Rtr =∞⋃

k=1

Rk = {(n, n + k) : n ∈ N, k ∈ N} = {(n,m) : n < m}.

�⦥, ¢÷¤­®è¥­­ï R §¡÷£ õâìáï § ¢÷¤­®è¥­­ï¬ «<» ­  ¬­®¦¨­÷ ­ âã-à «ì­¨å ç¨á¥«:

nRm ⇔ n < m, n, m ∈ N.

� ஡®â÷ [7] ­ ¢¥¤¥­® ¥ä¥ªâ¨¢­¨© ª®¬¯'îâ¥à­®-®à÷õ­â®¢ ­¨©  «£®-à¨â¬ ®¡ç¨á«¥­­ï âà ­§¨â¨¢­®£® § ¬¨ª ­­ï ¤«ï ¢÷¤­®è¥­ì ­  áª÷­ç¥­­¨å¬­®¦¨­ å.

44

Page 47: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

3.5. �÷¤­®è¥­­ï ¥ª¢÷¢ «¥­â­®áâ÷ â  ¢÷¤­®è¥­­ï ¯®à浪ã

3.5. �÷¤­®è¥­­ï ¥ª¢÷¢ «¥­â­®áâ÷â  ¢÷¤­®è¥­­ï ¯®à浪ã

3.5.1. �÷¤­®è¥­­ï ¥ª¢÷¢ «¥­â­®áâ÷�§­ ç¥­­ï 3.5. �÷¤­®è¥­­ï R : A → A ­ §¨¢ îâì ¢÷¤­®è¥­­ï¬

¥ª¢÷¢ «¥­â­®áâ÷ ( ¡® ¥ª¢÷¢ «¥­â­÷áâî), ïªé® R õ ¢®¤­®ç á à¥ä«¥ªá¨¢­¨¬,ᨬ¥âà¨ç­¨¬ â  âà ­§¨â¨¢­¨¬.

� à §÷  ¡áâࠪ⭮£® ¢÷¤­®è¥­­ï ¥ª¢÷¢ «¥­â­®áâ÷ R ¤«ï ¢¨á«®¢«¥­­ïxRy § £ «ì­®¯à¨©­ï⨬ õ ¯®§­ ç¥­­ï x ∼ y (x ¥ª¢÷¢ «¥­â­¥ y).

�¯à ¢  3.9. �¥à¥¢÷à¨â¨, ç¨ õ ¯®¢­¥ ¢÷¤­®è¥­­ï ¢÷¤­®è¥­­ï¬ ¥ª¢÷-¢ «¥­â­®áâ÷.

�¯à ¢  3.10. �¥à¥¢÷à¨â¨, ç¨ õ ¯®à®¦­õ ¢÷¤­®è¥­­ï ¢÷¤­®è¥­­ï¬¥ª¢÷¢ «¥­â­®áâ÷.

�ਪ« ¤ 3.20. 1. �¥å © A { ¤®¢÷«ì­  ¬­®¦¨­ . �®â®¦­¥ ¢÷¤­®è¥­­ïIA õ ¢÷¤­®è¥­­ï¬ ¥ª¢÷¢ «¥­â­®áâ÷.

2. �¥å © A = Z. �÷­ à­¥ ¢÷¤­®è¥­­ï

(x ∼ y) ⇔ ((x− y) { ¯ à­¥)

õ ¢÷¤­®è¥­­ï¬ ¥ª¢÷¢ «¥­â­®áâ÷. � ªã ¥ª¢÷¢ «¥­â­÷áâì ­ §¨¢ îâì ¥ª¢÷¢ -«¥­â­÷áâî §  ¬®¤ã«¥¬ 2 â  ¯®§­ ç îâì ç¥à¥§ x = y (mod 2). �ª «¥£ª®¯®¡ ç¨â¨, ¤¢  ç¨á«  x â  y ¥ª¢÷¢ «¥­â­÷ §  ¬®¤ã«¥¬ 2 ⮤÷ ÷ â÷«ìª¨ ⮤÷,ª®«¨ ¢®­¨ ¬ îâì ®¤­ ª®¢ã ¯ à­÷áâì (®¡¨¤¢  ¯ à­÷  ¡® ®¡¨¤¢  ­¥¯ à­÷).� ª, 2 ∼ 0 ∼ 4 ∼ −2 ∼ 18, 1 ∼ 3 ∼ −13,  «¥ 1 6∼ 4.

3. �®§£«ï­¥¬® 㧠£ «ì­¥­­ï ¯à¨ª« ¤ã § ¯ã­ªâã 2. �¥å © p ∈ N, A = Z.�¥à¥§ x mod p (x ∈ Z) ¡ã¤¥¬® ¯®§­ ç â¨ ®áâ çã ¢÷¤ ¤÷«¥­­ï x/p, ⮡â®x = pk + (x mod p) ¤«ï ¤¥ïª®£® k ∈ Z. �¥£ª® ¯¥à¥¢÷à¨â¨, é® ¡÷­ à­¥¢÷¤­®è¥­­ï

(x ∼ y) ⇔ (x− y) mod p = 0

õ ¢÷¤­®è¥­­ï¬ ¥ª¢÷¢ «¥­â­®áâ÷. � ªã ¥ª¢÷¢ «¥­â­÷áâì ­ §¨¢ îâì ¥ª¢÷¢ -«¥­â­÷áâî §  ¬®¤ã«¥¬ p â  ¯®§­ ç îâì x = y (mod p). �ª «¥£ª® ¡ ç¨â¨,

45

Page 48: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 3. �¥®à÷ï ¢÷¤­®è¥­ì

¤¢  ç¨á«  x â  y ¥ª¢÷¢ «¥­â­÷ §  ¬®¤ã«¥¬ p ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ ¢®-­¨ ¤ îâì ®¤­ ª®¢ã ®áâ çã ¢÷¤ ¤÷«¥­­ï ­  p. � ª, ¯à¨ p = 2 ®¤¥à¦¨¬®¢÷¤­®è¥­­ï § ¯ã­ªâã 2.

4. �¥å © A = R2. �®§£«ï­¥¬® ¢÷¤­®è¥­­ï ¥ª¢÷¢ «¥­â­®áâ÷((x1, x2) ∼ (y1, y2)) ⇔ (x1 = y1).

�ª ¡ ç¨¬®, ¤¢  ¢¥ªâ®à¨ x = (x1, x2), y = (y1, y2) ®£®«®èãîâìáï ¥ª¢÷¢ -«¥­â­¨¬¨ ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ ¢®­¨ ¬ îâì ®¤­ ª®¢÷ ¯¥àè÷ ª®®à¤¨­ â¨,⮡⮠x1 = y1.

5. � ¢¥¤¥¬® ¤¥é® èâãç­¨© ¯à¨ª« ¤. �¥å © A = {1, 2, 3, 4, 5, 6}. �®§-£«ï­¥¬® â ª¥ ¢÷¤­®è¥­­ï:

R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6),

(1, 2), (2, 1), (3, 4), (4, 3), (3, 5), (5, 3), (4, 5), (5, 4)}.�¥£ª® ¯¥à¥¢÷à¨â¨, é® R { ¢÷¤­®è¥­­ï ¥ª¢÷¢ «¥­â­®áâ÷:

1 ∼ 2, 3 ∼ 4 ∼ 5, 1 6∼ 3, 1 6∼ 6, 3 6∼ 6.

�÷¤­®è¥­­ï R ¬ õ ­ ®ç­÷è¥ §®¡à ¦¥­­ï ã ¢¨£«ï¤÷ ®à÷õ­â®¢ ­®£® £à -äã â  ¬ âà¨æ÷ (à¨á. 3.7, §  ¯à¨à®¤­®ù ­ã¬¥à æ÷ù à浪÷¢ â  á⮢¯æ÷¢).

1

2

3

4

5

6

M∼ =

1 1 0 0 0 01 1 0 0 0 00 0 1 1 1 00 0 1 1 1 00 0 1 1 1 00 0 0 0 0 1

�¨á. 3.7

46

Page 49: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

3.5. �÷¤­®è¥­­ï ¥ª¢÷¢ «¥­â­®áâ÷ â  ¢÷¤­®è¥­­ï ¯®à浪ã

� §­ ç¨¬®, é® «¡«®ª®¢ » áâàãªâãà  ¬ âà¨æ÷ M∼ ­¥ õ ¢¨¯ ¤ª®¢÷áâî{ ¤®áâ â­ì® ¯®à÷¢­ï⨠áâàãªâãàã ¬ âà¨æ÷ §÷ áâàãªâãà®î ®à÷õ­â®¢ ­®£®£à äã. �÷«ìè¥ â®£®, ¬ âà¨æï ¤®¢÷«ì­®£® ¢÷¤­®è¥­­ï ¥ª¢÷¢ «¥­â­®áâ÷ ­ áª÷­ç¥­­÷© ¬­®¦¨­÷ ¬ â¨¬¥  ­ «®£÷ç­ã ¡«®ª®¢ã áâàãªâãàã §  ­ «¥¦­®ù­ã¬¥à æ÷ù à浪÷¢ â  á⮢¯æ÷¢ (¯®¢¥à­÷¬®áì ¤® æ쮣® ¯¨â ­­ï, ª®«¨ ஧-£«ï¤ â¨¬¥¬® ä ªâ®à-¬­®¦¨­¨).

�¯à ¢  3.11. �®¢¥áâ¨, é® ¢á÷ ¢÷¤­®è¥­­ï § ¯à¨ª«. 3.20 õ ¢÷¤­®è¥­-­ï¬¨ ¥ª¢÷¢ «¥­â­®áâ÷.

�ਪ« ¤ 3.21. �¥å © A { ¬­®¦¨­  箫®¢÷ª÷¢. �®§£«ï­¥¬® â ª¥ ¢÷¤-­®è¥­­ï ­  A:

(xRy) ⇔ (y { ¡à â x (§  ®¡®¬  ¡ â쪠¬¨)).

�祢¨¤­®, ¢÷¤­®è¥­­ï R ᨬ¥âà¨ç­¥. �à®â¥ à¥ä«¥ªá¨¢­¨¬ â  âà ­§¨-⨢­¨¬ æ¥ ¢÷¤­®è¥­­ï ¡ã¤¥ «¨è¥ ⮤÷, ïªé® ¤®¬®¢¨â¨áì, é® ª®¦¥­ ç®-«®¢÷ª { ¡à â á ¬®¬ã ᮡ÷.

3.5.2. �÷¤­®è¥­­ï ¯®à浪ã�§­ ç¥­­ï 3.6. �÷¤­®è¥­­ï R : A → A ­ §¨¢ îâì ¢÷¤­®è¥­­ï¬

¯®à浪ã (¯®à浪®¬, ­¥áâண¨¬ ç á⪮¢¨¬ ¯®à浪®¬), ïªé® R õ ¢®¤­®ç áà¥ä«¥ªá¨¢­¨¬,  ­â¨á¨¬¥âà¨ç­¨¬ â  âà ­§¨â¨¢­¨¬. �­®¦¨­ã A, ­  ïª÷©§ ¤ ­¥ ¢÷¤­®è¥­­ï ¯®à浪㠫R», ­ §¨¢ îâì ç á⪮¢® ¢¯®à浪®¢ ­®î.�«ï ç á⪮¢® ¢¯®à浪®¢ ­®ù ¬­®¦¨­¨ A § ¢÷¤­®è¥­­ï¬ ¯®à浪㠫R»¢¨ª®à¨á⮢㢠⨬¥¬® ¯®§­ ç¥­­ï 〈A,R〉.

�÷¤ ç á ஡®â¨ §  ¡áâࠪ⭨¬ ¢÷¤­®è¥­­ï¬ ¯®à浪ã R ¤«ï ¢¨á«®-¢«¥­­ï xRy ¯à¨©­ïâ® ¯®§­ ç¥­­ï x ¹ y (x ¯¥à¥¤ãõ y, y á«÷¤ãõ §  x).� ¤ «÷ ¡ã¤¥¬® â ª®¦ ¢¨ª®à¨á⮢㢠⨠⠪÷ ¯®§­ ç¥­­ï:

• (x º y) ⇔ (y ¹ x);• (x ≺ y) ⇔ ((x ¹ y) ∧ (x 6= y));• (x  y) ⇔ (y ≺ x).

�ਪ« ¤ 3.22. 1. �¥å © A { ¤®¢÷«ì­  ¬­®¦¨­ . �®â®¦­¥ ¢÷¤­®è¥­­ïIA õ ¢÷¤­®è¥­­ï¬ ¯®à浪㠭  A.

2. �¥å © A = R. �÷¤­®è¥­­ï «≤» â  «≥» { ¢÷¤­®è¥­­ï ¯®à浪㠭  R,

47

Page 50: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 3. �¥®à÷ï ¢÷¤­®è¥­ì

®¤­ ª ¢÷¤­®è¥­­ï «<» â  «>» ­¥ õ ¢÷¤­®è¥­­ï¬¨ ¯®à浪ã (­¥ ¢¨ª®­ãõ-âìáï ¢¨¬®£  à¥ä«¥ªá¨¢­®áâ÷).

3. �¥å © A { ¬­®¦¨­  箫®¢÷ª÷¢. �®§£«ï­¥¬® â ª¥ ¢÷¤­®è¥­­ï ­  A:

(x ¹ y) ⇔ (y { ¯à¥¤®ª ¤«ï x).

�ªé® ¢¢ ¦ â¨ «î¤¨­ã ¯à¥¤ª®¬ á ¬®ù ᥡ¥, ¢¢¥¤¥­¥ ¢÷¤­®è¥­­ï õ ¢÷¤­®-襭­ï¬ ¯®à浪ã.

�¯à ¢  3.12. �®¢¥áâ¨, é® ¢á÷ ¢÷¤­®è¥­­ï § ¯à¨ª«. 3.22, §  ¢¨­ï⪮¬«<» â  «>» ­  R, õ ¢÷¤­®è¥­­ï¬¨ ¯®à浪ã.

�§­ ç¥­­ï 3.7. �¥å © 〈A,¹〉 { ç á⪮¢® ¢¯®à浪®¢ ­  ¬­®¦¨­ .�«¥¬¥­â¨ x, y ∈ A ­ §¨¢ îâì ¯®à÷¢­ï­­¨¬¨, ïªé® (x ¹ y) ∨ (y ¹ x).�ªé® ¡ã¤ì-ïª÷ ¥«¥¬¥­â¨ x, y ∈ A õ ¯®à÷¢­ï­­¨¬¨, ¢÷¤­®è¥­­ï «¹» ­ §¨-¢ îâì ¢÷¤­®è¥­­ï¬ «÷­÷©­®£® ¯®à浪ã («÷­÷©­¨¬ ¯®à浪®¬),   ¬­®¦¨­ãA { «÷­÷©­® ¢¯®à浪®¢ ­®î.

�ਪ« ¤ 3.23. 1. �¥£ª® ¯¥à¥¢÷à¨â¨, é® ç á⪮¢® ¢¯®à浪®¢ ­÷ ¬­®-¦¨­¨ 〈R,≤〉 â  〈R,≥〉 õ «÷­÷©­® ¢¯®à浪®¢ ­¨¬¨.

2. �¥å © U { ¤®¢÷«ì­  ¬­®¦¨­ . �¥£ª® ¯¥à¥¢÷à¨â¨, é® 〈2U ,⊂〉 õ ç áâ-ª®¢® ¢¯®à浪®¢ ­®î ¬­®¦¨­®î. �à®â¥, ¢ § £ «ì­®¬ã ¢¨¯ ¤ªã, ¢÷¤­®-襭­ï «⊂» ­¥ õ «÷­÷©­¨¬ ¯®à浪®¬. � ª, ¯à¨ U = {a, b, c}, ¥«¥¬¥­â¨{a, b}, {b, c} ∈ 2U ­¥ õ ¯®à÷¢­ï­­¨¬¨.

3. �  ¬­®¦¨­÷ R2 ஧£«ï­¥¬® ¢÷¤­®è¥­­ï ç á⪮¢®£® ( «¥ ­¥ «÷­÷©­®-£®) ¯®à浪ã:

((x1, x2) ¹ (y1, y2)) ⇔ ((x1 ≤ y1) ∧ (x2 ≤ y2)).

� ª, ­ ¯à¨ª« ¤, (0, 1) ¹ (1, 1) ¹ (2, 1). �¥£ª® ¯¥à¥¢÷à¨â¨, é® ¢¢¥¤¥­¥¢÷¤­®è¥­­ï õ ç á⪮¢¨¬ ¯®à浪®¬,  «¥, §à®§ã¬÷«®, ¢ R2 ÷á­ãîâì ­¥¯®à÷¢-­ï­­÷ ¥«¥¬¥­â¨ (­ ¯à¨ª« ¤, (1, 0) â  (0, 1)).

4. �  ¬­®¦¨­÷ R2 ஧£«ï­¥¬® ¢÷¤­®è¥­­ï «÷­÷©­®£® ¯®à浪ã

((x1, x2) ¹ (y1, y2)) ⇔ ((x1 < y1) ∨ ((x1 = y1) ∧ (x2 ≤ y2))).

� ª, ­ ¯à¨ª« ¤, (0, 1) ¹ (1, 0). �¢¥¤¥­¥ ¢÷¤­®è¥­­ï ­ §¨¢ îâì «¥ªá¨ª®-£à ä÷ç­¨¬ 㯮à浪㢠­­ï¬ (¯®à÷¢­ï©â¥ § 㯮à浪㢠­­ï¬ ¤¢®«÷â¥à­¨å

48

Page 51: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

3.6. �®§¡¨ââï ¬­®¦¨­¨. � ªâ®à-¬­®¦¨­ 

á«÷¢ ã á«®¢­¨ªã: ᯮç âªã ¯®à÷¢­îîâìáï ¯¥àè÷ «÷â¥à¨, ÷ ïªé® ¯¥àè÷ «÷-â¥à¨ §¡÷£ îâìáï, ¯®à÷¢­îîâìáï ¤àã£÷ «÷â¥à¨).

5. �÷¤­®è¥­­ï «¥ªá¨ª®£à ä÷ç­®£® ¢¯®à浪㢠­­ï ¯à¨à®¤­® ¯®è¨àî-õâìáï ­  Rn ¤«ï ¤®¢÷«ì­®£® n ∈ N:

(x1, . . . , xn) ¹ (y1, . . . , yn) ⇔⇔ (∃k : (xk < yk) ∧ (∀j < k : xj = yj)) ∨ (∀j ≤ n : xj = yj).

�⦥, «£®«®¢­®î» ®£®«®èãõâìáï ¯¥àè  ª®®à¤¨­ â : ïªé® x1 < y1,â®, §  ¢¨§­ ç¥­­ï¬, x ¹ y (¡÷«ìè¥ â®£®, x ≺ y); ïªé® ¯¥àè÷ ª®®à¤¨­ â¨¢¥ªâ®à÷¢ ®¤­ ª®¢÷, ¯®à÷¢­îîâìáï ¤àã£÷ ª®®à¤¨­ â¨; ïªé® ÷ ¤àã£÷ ª®®à¤¨-­ â¨ ®¤­ ª®¢÷, ¯®à÷¢­îîâìáï âà¥â÷ ª®®à¤¨­ â¨ ÷ â. ¤. �¥£ª® §à®§ã¬÷â¨,é® ¡ã¤ì-ïª÷ ¤¢  ¢¥ªâ®à¨ § Rn ¬®¦­  ¯®à÷¢­ïâ¨.

�¨§­ ç¥­¥ ¢ æ쮬㠯÷¤à®§¤÷«÷ ¢÷¤­®è¥­­ï ¯®à浪ã ç áâ® ­ §¨¢ îâì¢÷¤­®è¥­­ï¬ ­¥áâண®£® ¯®à浪ã (§¢ ¦ îç¨ ­  à¥ä«¥ªá¨¢­÷áâì). �®¤­®-ç á, ç á⮠஧£«ï¤ îâì ¢÷¤­®è¥­­ï áâண®£® ¯®à浪ã, é® ¢¨§­ ç õâìáïç¥à¥§ ¢¨¬®£¨  ­â¨à¥ä«¥ªá¨¢­®áâ÷,  ­â¨á¨¬¥âà¨ç­®áâ÷ â  âà ­§¨â¨¢­®áâ÷.� ª, ¢÷¤­®è¥­­ï «<» â  «>» ­  R { ¢÷¤­®è¥­­ï áâண®£® ¯®à浪ã.

�¯à ¢  3.13. �®¢¥áâ¨, é®  ­â¨á¨¬¥âà¨ç­÷áâì ¡÷­ à­®£® ¢÷¤­®è¥­­ï¢¨¯«¨¢ õ §  ­â¨à¥ä«¥ªá¨¢­®áâ÷ â  âà ­§¨â¨¢­®áâ÷.

3.6. �®§¡¨ââï ¬­®¦¨­¨. � ªâ®à-¬­®¦¨­ 3.6.1. �®§¡¨ââï ¬­®¦¨­¨

�§­ ç¥­­ï 3.8. �¥å © U 6= ∅. �ãªã¯­÷áâì ¬­®¦¨­ {Aa : a ∈ I}, ¤¥I{¤®¢÷«ì­  ¬­®¦¨­  ÷­¤¥ªá÷¢, ­ §¨¢ îâì ஧¡¨ââï¬ ¬­®¦¨­¨ U , ïªé®:

• Aa 6= ∅ (a ∈ I);• U =

⋃a∈I

Aa;• Aa1 ∩ Aa2 = ∅ (a1 6= a2).�ਪ« ¤ 3.24. 1. �¥å © U { ¤®¢÷«ì­  ­¥¯®à®¦­ï ¬­®¦¨­ , A ⊂ U ,

A 6= U . �¥£ª® ¯¥à¥¢÷à¨â¨, é® {A, Ac} { ஧¡¨ââï ¬­®¦¨­¨ U .2. {1, 2, 3, 4, 5} = {1, 2} ∪ {3, 5} ∪ {4}. �⦥, {{1, 2}, {3, 5}, {4}} { ஧-

¡¨ââï ¬­®¦¨­¨ {1, 2, 3, 4, 5}.3. �¥å © U = R2, Ay = {(x, y) : x ∈ R} (y ∈ R). �¥£ª® §à®§ã¬÷â¨, é®

{Ay : y ∈ R} õ ஧¡¨ââï¬ ¬­®¦¨­¨ R2.

49

Page 52: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 3. �¥®à÷ï ¢÷¤­®è¥­ì

X

Y

1

10

0,5 A0,5

A0

A1

A–1–1

–1

�¨á. 3.8

�ª ¢¨¤­® § à¨á. 3.8, ª®¦­ ¬­®¦¨­  Ay ­  ª®®à¤¨­ â-­÷© ¯«®é¨­÷ õ ¯àאַî, é® ¯ -à «¥«ì­  ®á÷ OX. �⦥, ¢á类®à¤¨­ â­  ¯«®é¨­  R2 õ®¡'õ¤­ ­­ï¬ ­¥¯®à®¦­÷å ¬­®-¦¨­ Ay (y ∈ R), é® ¯®¯ à­®­¥ ¯¥à¥à÷§ îâìáï.

4. �¥å © U = R2, Ar = {(x, y) : x2 + y2 = r2} (r ≥ 0). �¥£ª® §à®§ã¬÷â¨,é® {Ar : r ≥ 0} õ ஧¡¨ââï¬ ¬­®¦¨­¨ R2.

X

Y

1

1

2

A2

A1

A0={(0, 0)}

�¨á. 3.9

�ª ¢¨¤­® § à¨á. 3.9, ª®¦-­  ¬­®¦¨­  Ar ­  ª®®à¤¨-­ â­÷© ¯«®é¨­÷ õ ª®«®¬ §æ¥­â஬ ¢ ¯®ç âªã ª®®à¤¨-­ â ÷ à ¤÷ãᮬ r ¯à¨ r > 0â  ®¤­®â®çª®¢®î ¬­®¦¨­®î{(0, 0)} ¯à¨ r = 0. �⦥, ¢á类®à¤¨­ â­  ¯«®é¨­  R2 {®¡'õ¤­ ­­ï ­¥¯®à®¦­÷å ¬­®-¦¨­ Ar (r ≥ 0), é® ¯®¯ à­®­¥ ¯¥à¥à÷§ îâìáï.

3.6.2. � ªâ®à-¬­®¦¨­ �¥å © A { ¤¥ïª  ­¥¯®à®¦­ï ¬­®¦¨­ , ­  ïª÷© § ¤ ­¥ ¢÷¤­®è¥­­ï

¥ª¢÷¢ «¥­â­®áâ÷ «∼».�§­ ç¥­­ï 3.9. �¥å © a ∈ A. �« á®¬ ¥ª¢÷¢ «¥­â­®áâ÷, ¯®à®¤¦¥­¨¬

¥«¥¬¥­â®¬ a, ­ §¨¢ îâì ¬­®¦¨­ã [a], é® áª« ¤ õâìáï § ¥«¥¬¥­â÷¢, ¥ª¢÷-¢ «¥­â­¨å ¥«¥¬¥­âã a:

[a] = {x ∈ A : x ∼ a}.

50

Page 53: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

3.6. �®§¡¨ââï ¬­®¦¨­¨. � ªâ®à-¬­®¦¨­ 

�¥®à¥¬  3.3. �« á¨ ¥ª¢÷¢ «¥­â­®áâ÷  ¡® ­¥ ¯¥à¥à÷§ îâìáï,  ¡® §¡÷-£ îâìáï:

∀a1, a2 ∈ A : ([a1] ∩ [a2] = ∅) ∨ ([a1] = [a2]).

�®¢¥¤¥­­ï. �¥å © b ∈ [a1] ∩ [a2], ⮡⮠[a1] ∩ [a2] 6= ∅. �«ï ¤®¢¥¤¥­­ï⥮६¨ ¤®áâ â­ì® ¤®¢¥á⨠à÷¢­÷áâì [a1] = [a2].(b ∈ [a1]) ⇒ (b ∼ a1); (b ∈ [a2]) ⇒ (b ∼ a2); (a1 ∼ b)∧(b ∼ a2) ⇒ (a1 ∼ a2).

�⦥, a1 ∼ a2. �¥¯¥à ¤«ï ¤®¢¥¤¥­­ï à÷¢­®áâ÷ [a1] = [a2] ᪮à¨áâ õ¬®á쬮¤¥«ì­¨¬ ᯮᮡ®¬:

(x ∈ [a1]) ⇔ (x ∼ a1) ⇔ (x ∼ a2) ⇔ (x ∈ [a2]).

�⦥, [a1] = [a2], é® § ¢¥àèãõ ¤®¢¥¤¥­­ï ⥮६¨.�§­ ç¥­­ï 3.10. � ªâ®à-¬­®¦¨­®î ¬­®¦¨­¨ A §  ¢÷¤­®è¥­­ï¬

¥ª¢÷¢ «¥­â­®áâ÷ «∼» ­ §¨¢ îâì ¬­®¦¨­ã A/∼ ¢á÷å ª« á÷¢ ¥ª¢÷¢ «¥­â-

­®áâ÷:A

/∼ = {[a] : a ∈ A}.

�¯¥à æ÷î ®¡ç¨á«¥­­ï ä ªâ®à-¬­®¦¨­¨ ­ §¨¢ îâì ä ªâ®à¨§ æ÷õî ¬­®-¦¨­¨ §  ¤ ­®î ¥ª¢÷¢ «¥­â­÷áâî.

� §­ ç¨¬®, é® ã ä ªâ®à-¬­®¦¨­÷ {[a] : a ∈ A} ¤¥ïª÷ § ª« á÷¢ ¥ª¢÷¢ -«¥­â­®áâ÷, é® ¯®à®¤¦¥­÷ à÷§­¨¬¨ ¥«¥¬¥­â ¬¨, ¬®¦ãâì §¡÷£ â¨áï (¡÷«ìè¥â®£®, ïªé® ¢÷¤­®è¥­­ï «∼» ­¥ õ â®â®¦­¨¬, ÷á­ãîâì a1, a2 ∈ A, â ª÷ é®[a1] = [a2]). �¤­ ª ã § ¯¨áã {[a] : a ∈ A} ®¤­ ª®¢÷ ª« á¨ ­¥ ஧à÷§­ïîâìáï:ª« á¨ [a1] = [a2] ¢¢ ¦ îâìáï ®¤­¨¬ ¥«¥¬¥­â®¬ ä ªâ®à-¬­®¦¨­¨.

� «÷ § §­ ç¨¬®, é® ¦®¤¥­ ÷§ ª« á÷¢ ¥ª¢÷¢ «¥­â­®áâ÷ ­¥ õ ¯®à®¦­ì®î¬­®¦¨­®î: ¯à¨­ ©¬­÷ a ∈ [a].

�⦥, ¢à å®¢ãîç¨ â¢¥à¤¦¥­­ï ⥮६¨ 3.3 ¬®¦¥¬® §à®¡¨â¨ ¢¨á­®-¢®ª, é® (¯®¯ à­® à÷§­÷) ª« á¨ ¥ª¢÷¢ «¥­â­®áâ÷ ã⢮àîîâì ஧¡¨ââï ¬­®-¦¨­¨ A. �à®â¥ ¬ õ ¬÷áæ¥ ÷ §¢®à®â­¥ ⢥द¥­­ï: ª®¦­¥ ஧¡¨ââï ¬­®-¦¨­¨ A ¯®à®¤¦¥­¥ ¤¥ïª¨¬ ¢÷¤­®è¥­­ï¬ ¥ª¢÷¢ «¥­â­®áâ÷.

�¯à ¢  3.14. �¥å © {Aa : a ∈ I} { ஧¡¨ââï ¬­®¦¨­¨ A. �¢¥¤¥¬®â ª¥ ¡÷­ à­¥ ¢÷¤­®è¥­­ï «∼»:

(a1 ∼ a2) ⇔ (∃a ∈ I : a1, a2 ∈ Aa),

⮡⮠a1 ∼ a2 ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ a1 â  a2 ­ «¥¦ âì ®¤­÷© ÷ â÷© á ¬÷©¬­®¦¨­÷ Aa. �®¢¥áâ¨:

51

Page 54: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 3. �¥®à÷ï ¢÷¤­®è¥­ì

• ¢¢¥¤¥­¥ ¢÷¤­®è¥­­ï «∼» õ ¢÷¤­®è¥­­ï¬ ¥ª¢÷¢ «¥­â­®áâ÷ ­  A;• ä ªâ®à-¬­®¦¨­  §  ¢÷¤­®è¥­­ï¬ «∼» §¡÷£ õâìáï § ¢¨å÷¤­¨¬ ஧-

¡¨ââï¬:A

/∼ = {Aa : a ∈ I}.

�ਪ« ¤ 3.25. 1. �¥å © A { ¤®¢÷«ì­  ­¥¯®à®¦­ï ¬­®¦¨­ . �à®ä ª-â®à¨§ãõ¬® A §  â®â®¦­¨¬ ¢÷¤­®è¥­­ï¬ IA («=»). �祢¨¤­®, ¢á÷ ª« á¨¥ª¢÷¢ «¥­â­®áâ÷ { ®¤­®¥«¥¬¥­â­÷ ¬­®¦¨­¨:

[a] = {a} (a ∈ A), A/

== {{a} : a ∈ A}.

2. �à®ä ªâ®à¨§ãõ¬® ¬­®¦¨­ã A = {1, 2, 3, 4, 5, 6} §  â ª¨¬ ¢÷¤­®è¥­-­ï¬ ¥ª¢÷¢ «¥­â­®áâ÷:

1 ∼ 2, 3 ∼ 4 ∼ 5, 1 6∼ 3, 1 6∼ 6, 3 6∼ 6

(¤¨¢. ¯à¨ª«. 3.20, ¯ã­ªâ 5). �祢¨¤­®, ä ªâ®à-¬­®¦¨­  ¬÷áâ¨âì âਠª« -ᨠ¥ª¢÷¢ «¥­â­®áâ÷:

A/∼ = {{1, 2}, {3, 4, 5}, {6}}.

�®à÷¢­îîç¨ A/∼ § £à ä®¬ â  ¬ âà¨æ¥î ¢÷¤­®è¥­­ï «∼», «¥£ª® ¯®¡ ç¨-

â¨, é® ª®¦¥­ ª« á ¥ª¢÷¢ «¥­â­®áâ÷ ®¤­®§­ ç­® ¢÷¤¯®¢÷¤ õ ¤¥ïª÷© ®¡« áâ÷§¢'吝®áâ÷ £à äã â  ¤¥ïª®¬ã «®¤¨­¨ç­®¬ã ¡«®ªã» ¬ âà¨æ÷ M∼ (£à ä â ¬ âà¨æï M∼ ­ ¢¥¤¥­÷ ¢ ¯à¨ª«. 3.20, ¯ã­ªâ 3). �஧ã¬÷«®, é® ¬ âà¨æ冷¢÷«ì­®£® ¢÷¤­®è¥­­ï ¥ª¢÷¢ «¥­â­®áâ÷ § ¢¦¤¨ ¬ â¨¬¥ ¡«®ª®¢ã áâàãªâã-àã, ïªé® ¥«¥¬¥­â¨ ¬­®¦¨­¨ A ¤«ï §÷áâ ¢«¥­­ï à浪 ¬ â  á⮢¯æï¬ ¬ -âà¨æ÷ ­ã¬¥à㢠⨠§  ª« á ¬¨ ¥ª¢÷¢ «¥­â­®áâ÷: ᯮç âªã ¯à®­ã¬¥à㢠⨥«¥¬¥­â¨ ®¤­®£® ¤®¢÷«ì­®£® ª« áã [a1], ¯®â÷¬ { ¥«¥¬¥­â¨ ª« áã [a2] 6= [a1],÷ â. ¤. �஧ã¬÷«®, é® §  ÷­è®ù ­ã¬¥à æ÷ù à浪÷¢ â  á⮢¯æ÷¢ ¡«®ª®¢  áâàãª-âãà  ¬ âà¨æ÷ ¬®¦¥ ¯®àãè¨â¨áì.

�¯à ¢  3.15. �®¡ã¤ã¢ â¨ ¬ âà¨æî ­ ¢¥¤¥­®£® ¢÷¤­®è¥­­ï «∼», ¢¨-ª®à¨á⮢ãîç¨ â ªã ­ã¬¥à æ÷î à浪÷¢ â  á⮢¯æ÷¢: ¯¥à訩 à冷ª â á⮢¯¥æì ¬ âà¨æ÷ ¢÷¤¯®¢÷¤ îâì ¥«¥¬¥­âã 1, ¤à㣨© à冷ª â  á⮢¯¥æì{ ¥«¥¬¥­âã 3, âà¥â÷© à冷ª â  á⮢¯¥æì { ¥«¥¬¥­âã 6, ç¥â¢¥à⨩ à冷ª â á⮢¯¥æì { ¥«¥¬¥­âã 2, ¯'ï⨩ à冷ª â  á⮢¯¥æì { ¥«¥¬¥­âã 4, è®á⨩à冷ª â  á⮢¯¥æì { ¥«¥¬¥­âã 5. �¥à¥ª®­ â¨áï, é® ¡«®ª®¢  áâàãªâãà ¬ âà¨æ÷ ¯®àã襭 .

52

Page 55: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

3.7. �ã­ªæ÷ï ïª ®ªà¥¬¨© ¢¨¯ ¤®ª ¢÷¤­®è¥­­ï

3. �à®ä ªâ®à¨§ãõ¬® Z §  ¢÷¤­®è¥­­ï¬ ¥ª¢÷¢ «¥­â­®áâ÷ «( mod p)», ¤¥p ∈ N. �祢¨¤­®, ª®¦¥­ ª« á ¥ª¢÷¢ «¥­â­®áâ÷ ¬÷áâ¨âì ¥«¥¬¥­â¨ n ∈ Z §ä÷ªá®¢ ­¨¬ §­ ç¥­­ï¬ ®áâ ç÷ ¢÷¤ ¤÷«¥­­ï ­  p. �⦥, ¬ õ¬® p à÷§­¨åª« á÷¢ ¥ª¢÷¢ «¥­â­®áâ÷:

Ak = [k] = {k + jp : j ∈ Z}, (0 ≤ k ≤ p− 1),

A/

( mod p)= {Ak : 0 ≤ k ≤ p− 1}.

� ª, ¯à¨ p = 2 ä ªâ®à-¬­®¦¨­  A/

( mod p)¡ã¤¥ ¤¢®¥«¥¬¥­â­®î:

A/

( mod 2)= {{n ∈ Z : n { ¯ à­¥}, {n ∈ Z : n { ­¥¯ à­¥}}.

4. �à®ä ªâ®à¨§ãõ¬® R2 §  â ª¨¬ ¢÷¤­®è¥­­ï¬ ¥ª¢÷¢ «¥­â­®áâ÷:((x1, x2) ∼ (y1, y2)) ⇔ (x2

1 + x22 = y2

1 + y22).

� ¢¨§­ ç¥­­ï ¤ ­®£® ¢÷¤­®è¥­­ï «∼» ¢¨¯«¨¢ õ, é® ª®¦¥­ ª« á ¥ª¢÷¢ -«¥­â­®áâ÷ ¬÷áâ¨âì ¥«¥¬¥­â¨ (x1, x2) ∈ R2 § ä÷ªá®¢ ­¨¬ §­ ç¥­­ï¬ x2

1 +x22:

Ar = {(x1, x2) : x21 + x2

2 = r2}, (r ≥ 0), A/∼ = {Ar : r ≥ 0}.

�⦥, ä ªâ®à-¬­®¦¨­  A/∼ õ ஧¡¨ââï¬ ª®®à¤¨­ â­®ù ¯«®é¨­¨ R2

­  ª®­æ¥­âà¨ç­÷ ª®«  § 業âà ¬¨ ã ¯®ç âªã ª®®à¤¨­ â ÷ à ¤÷ãá ¬¨r ≥ 0 (¢¨¯ ¤ªã r = 0 ¢÷¤¯®¢÷¤ õ ®¤­®â®çª®¢¨© ª« á ¥ª¢÷¢ «¥­â­®áâ÷[(0, 0)] = {(0, 0)}). � §­ ç¨¬®, é® ¤ ­¥ ஧¡¨ââï R2 ¬¨ ஧£«ï¤ «¨ ¢¯à¨ª«. 3.24 (¯ã­ªâ 4), ¤¥ ¡ã«® ­ ¢¥¤¥­® ¢÷¤¯®¢÷¤­¨© à¨áã­®ª.

3.7. �ã­ªæ÷ï ïª ®ªà¥¬¨© ¢¨¯ ¤®ª¢÷¤­®è¥­­ï

� æ쮬㠯÷¤à®§¤÷«÷ ¢¨¢ç â¨¬¥¬® §¢'燐ª, é® ÷á­ãõ ¬÷¦ ¡÷­ à­¨¬¨ ¢÷¤-­®è¥­­ï¬¨ â  ª« á¨ç­¨¬ ¯®­ïââï¬ äã­ªæ÷ù, 瘟 ¢÷¤®¬¥ § ªãàáã ¬ â¥¬ -â¨ç­®£®  ­ «÷§ã (â  §÷ èª÷«ì­®£® ªãàáã ¬ â¥¬ â¨ª¨).

�§­ ç¥­­ï 3.11. �¡« áâî ¢¨§­ ç¥­­ï ¢÷¤­®è¥­­ï R : A → B ­ §¨-¢ îâì ¬­®¦¨­ã

DR = {x ∈ A : ∃y ∈ B : xRy}.�¡« áâî §­ ç¥­ì (®¡à §®¬) ¢÷¤­®è¥­­ï R : A → B ­ §¨¢ îâì ¬­®¦¨­ã

ImR = {y ∈ B : ∃x ∈ A : xRy}.

53

Page 56: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 3. �¥®à÷ï ¢÷¤­®è¥­ì

�¯à ¢  3.16. �®¢¥áâ¨: DR = ImR−1 .

�§­ ç¥­­ï 3.12. �÷­ à­¥ ¢÷¤­®è¥­­ï R : A → B ­ §¨¢ îâì áîà'õª-⨢­¨¬, ïªé®

∀y ∈ B ∃x ∈ A : xRy.

�¯à ¢  3.17. �®¢¥áâ¨: (R { áîà'õªâ¨¢­¥) ⇔ (ImR = B).

�§­ ç¥­­ï 3.13. �÷­ à­¥ ¢÷¤­®è¥­­ï R : A → B ­ §¨¢ îâì ÷­'õªâ¨-¢­¨¬, ïªé®

((x1Ry) ∧ (x2Ry)) ⇒ (x1 = x2).

�÷­ à­¥ ¢÷¤­®è¥­­ï R : A → B ­ §¨¢ îâì äã­ªæ÷®­ «ì­¨¬, ïªé®

((xRy1) ∧ (xRy2)) ⇒ (y1 = y2).

�¯à ¢  3.18. �®¢¥áâ¨: (R { ÷­'õªâ¨¢­¥) ⇔ (R−1 { äã­ªæ÷®­ «ì­¥).

� «÷ ¢¢ ¦ â¨¬¥¬®, é® äã­ªæ÷®­ «ì­®¬ã ¢÷¤­®è¥­­î Rf : A → B¢÷¤¯®¢÷¤ õ äã­ªæ÷ï f : A → B (Rf ¿ f), â ª , é®:

Df = DRf, (f(x) = y) ⇔ (xRfy).

�ਪ« ¤ 3.26. �®§£«ï­¥¬® ¢÷¤­®è¥­­ï R : R→ R, (xRy) ⇔(y = x2).�¥§¯®á¥à¥¤­ì® ¯¥à¥¢÷àïõâìáï, é® R { äã­ªæ÷®­ «ì­¥ ¢÷¤­®è¥­­ï, 类¬ã¢÷¤¯®¢÷¤ õ äã­ªæ÷ï f(x) = x2. �à®â¥ ®¡¥à­¥­¥ ¢÷¤­®è¥­­ï R−1 ­¥ õ äã­ª-æ÷®­ «ì­¨¬, ®áª÷«ìª¨ R ­¥ ÷­'õªâ¨¢­¥ (1R1, (−1)R1,  «¥ 1 6= −1).

� ¢¨§­ ç¥­ì ­¥£ ©­® ¢¨¯«¨¢ õ, é® ª®¬¯®§¨æ÷ù ¢÷¤­®è¥­ì ¢÷¤¯®¢÷¤ õª®¬¯®§¨æ÷ï äã­ªæ÷©, ®¡¥à­¥­®¬ã ÷­'õªâ¨¢­®¬ã ¢÷¤­®è¥­­î { ®¡¥à­¥­ äã­ªæ÷ï:

(Rf ◦Rg) ¿ (g ◦ f), (Rf : A → B, Rg : B → C { äã­ªæ÷®­ «ì­÷);(Rf )

−1 ¿ f−1, (Rf { ÷­'õªâ¨¢­¥ â  äã­ªæ÷®­ «ì­¥).

� ã¢ ¦¥­­ï 3.3. �¥ à § §¢¥à­÷¬® 㢠£ã ­  â¥, é® ¤«ï § ¯¨áã ª®¬-¯®§¨æ÷ù ¢÷¤­®è¥­ì ¯à¨©­ïâ® ¯àﬨ© ¯®à冷ª § ¯¨áã,   ¤«ï ª®¬¯®§¨æ÷ùäã­ªæ÷© { §¢®à®â­¨© (¤¨¢. § ã¢. 3.1).

54

Page 57: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

3.7. �ã­ªæ÷ï ïª ®ªà¥¬¨© ¢¨¯ ¤®ª ¢÷¤­®è¥­­ï

�¥®à¥¬  3.4. �®¬¯®§¨æ÷ï áîà'õªâ¨¢­¨å ¢÷¤­®è¥­ì õ áîà'õªâ¨¢­¨¬¢÷¤­®è¥­­ï¬, ª®¬¯®§¨æ÷ï ÷­'õªâ¨¢­¨å ¢÷¤­®è¥­ì õ ÷­'õªâ¨¢­¨¬ ¢÷¤­®-襭­ï¬, ª®¬¯®§¨æ÷ï äã­ªæ÷®­ «ì­¨å ¢÷¤­®è¥­ì õ äã­ªæ÷®­ «ì­¨¬ ¢÷¤-­®è¥­­ï¬.

�®¢¥¤¥­­ï. �¥å © R : A → B, S : B → C. �®¤÷ ¢¨§­ ç¥­  ª®¬¯®§¨æ÷ïR ◦ S : A → C.

1. �¥å © R, S { áîà'õªâ¨¢­÷. �®¢¥¤¥¬® áîà'õªâ¨¢­÷áâì R ◦ S.�¥å © z ∈ C. � ¢¤ïª¨ áîà'õªâ¨¢­®áâ÷ S §­ ©¤¥âìáï y ∈ B, â ª¨©, é®

ySz. � «÷, § ¢¤ïª¨ áîà'õªâ¨¢­®áâ÷ R §­ ©¤¥âìáï x ∈ A, â ª¨©, é® xRy.�⦥, x(R ◦ S)z.

2. �¥å © R, S { ÷­'õªâ¨¢­÷. �®¢¥¤¥¬® ÷­'õªâ¨¢­÷áâì R ◦ S.�¥å © x1(R ◦ S)z, x2(R ◦ S)z. �®¤÷, §  ¢¨§­ ç¥­­ï¬ ª®¬¯®§¨æ÷ù, §­ ©-

¤ãâìáï y1, y2 ∈ B, â ª÷, é® x1Ry1, x2Ry2, y1Sz â  y2Sz. � «÷, § ¢¤ïª¨÷­'õªâ¨¢­®áâ÷ S, y1 = y2 = y. �⦥, x1Ry â  x2Ry, §¢÷¤ª¨, § ¢¤ïª¨ ÷­'õª-⨢­®áâ÷ R, ¬ õ¬®: x1 = x2.

3. �¥å © R, S { äã­ªæ÷®­ «ì­÷. �®¢¥¤¥­­ï äã­ªæ÷®­ «ì­®áâ÷ R ◦ S§ «¨è õ¬® ïª ¢¯à ¢ã.

�¯à ¢  3.19. �®¢¥á⨠äã­ªæ÷®­ «ì­÷áâì R ◦ S á ¬®áâ÷©­®.�ª §÷¢ª . �®¢¥¤¥­­ï §¢®¤¨âìáï ¤® ¯ã­ªâã 2 § ¢¨ª®à¨áâ ­­ï¬ १ã«ì-

â âã ¢¯à ¢¨ 3.18, ïªé® ᯮç âªã ¤®¢¥á⨠¯à®áâã â®â®¦­÷áâì:

(R ◦ S)−1 = S−1 ◦R−1.

� «÷, ïªé® ­¥ ¢¨­¨ª õ ­¥¯®à®§ã¬÷­ì, ¡ã¤¥¬® ®â®â®¦­î¢ â¨ äã­ªæ÷-®­ «ì­¥ ¢÷¤­®è¥­­ï Rf â  ¢÷¤¯®¢÷¤­ã äã­ªæ÷î f .

�§­ ç¥­­ï 3.14. �ã­ªæ÷î f : A → B ­ §¨¢ îâì ¢÷¤®¡à ¦¥­­ï¬,ïªé® ¢®­  ¢¨§­ ç¥­  ¤«ï ¢á÷å x ∈ A, ⮡⮠Df = A.

�¯à ¢  3.20. �¥å © Rf { äã­ªæ÷®­ «ì­¥ ¢÷¤­®è¥­­ï. �®¢¥áâ¨:

(f { ¢÷¤®¡à ¦¥­­ï) ⇔ ((Rf )−1 { áîà'õªâ¨¢­¥).

�÷¤ªà¥á«¨¬®, é® ¢÷¤­®è¥­­ï (Rf )−1 ¬®¦¥ ­¥ ¡ã⨠äã­ªæ÷®­ «ì­¨¬.

�¯à ¢  3.21. �®¢¥áâ¨, é® ª®¬¯®§¨æ÷ï ¢÷¤®¡à ¦¥­ì õ ¢÷¤®¡à ¦¥­­ï¬.

55

Page 58: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 3. �¥®à÷ï ¢÷¤­®è¥­ì

� ã¢ ¦¥­­ï 3.4. � «÷â¥à âãà÷ §ãáâà÷ç îâìáï à÷§­÷ ¢¨§­ ç¥­­ï ¤«ï ¯®-­ïâì äã­ªæ÷ù â  ¢÷¤®¡à ¦¥­­ï: ­ ©ç áâ÷è¥ æ÷ ¯®­ïââï ¢¨§­ ç îâì ⠪ᠬ®, ïª ÷ ¢ æ쮬㠯®á÷¡­¨ªã, ¯à®â¥ ÷­®¤÷ ù¬ ­ ¤ îâì ¤¥é® ÷­è®£® ᥭáã(â ª, ÷­ª®«¨ ¯®­ïââï äã­ªæ÷ù â  ¢÷¤®¡à ¦¥­­ï ®â®â®¦­îîâì). �¯à æì®-¢ãîç¨ «÷â¥à âãàã § æ÷õù ⥬¨ á«÷¤ §¢¥àâ â¨ 㢠£ã, ïª á ¬¥  ¢â®à ¢¨§­ ç õäã­ªæ÷î â  ¢÷¤®¡à ¦¥­­ï.

�§­ ç¥­­ï 3.15. ö­'õªæ÷õî ­ §¨¢ îâì ¢÷¤®¡à ¦¥­­ï, é® ¢÷¤¯®¢÷¤ õ÷­'õªâ¨¢­®¬ã äã­ªæ÷®­ «ì­®¬ã ¢÷¤­®è¥­­î; áîà'õªæ÷õî ­ §¨¢ îâì ¢÷¤®-¡à ¦¥­­ï, é® ¢÷¤¯®¢÷¤ õ áîà'õªâ¨¢­®¬ã äã­ªæ÷®­ «ì­®¬ã ¢÷¤­®è¥­­î;¡÷õªæ÷õî (¢§ õ¬­® ®¤­®§­ ç­¨¬ ¢÷¤®¡à ¦¥­­ï¬) ­ §¨¢ îâì ¢÷¤®¡à ¦¥­-­ï, 瘟 õ ¢®¤­®ç á ÷­'õªæ÷õî â  áîà'õªæ÷õî.

�¯à ¢  3.22. �®¢¥áâ¨:• ïªé® äã­ªæ÷®­ «ì­¥ ¢÷¤­®è¥­­ï Rf ¢¨§­ ç õ ¡÷õªæ÷î f , â® ®¡¥à-

­¥­¥ ¢÷¤­®è¥­­ï (Rf )−1 â ª®¦ õ äã­ªæ÷®­ «ì­¨¬ ÷ ¢¨§­ ç õ ¡÷õª-

æ÷î f−1;• ª®¬¯®§¨æ÷ï ¡÷õªæ÷© õ ¡÷õªæ÷õî.

�ਪ« ¤ 3.27. 1. f : R → R, f(x) = x2. �÷¤®¡à ¦¥­­ï f ­¥ õ  ­÷÷­'õªæ÷õî (f(1) = f(−1)),  ­÷ áîà'õªæ÷õî (f(x) ≥ 0).

2. f : R → [0,∞), f(x) = x2. �÷¤®¡à ¦¥­­ï f õ áîà'õªæ÷õî,  «¥ ­¥ õ÷­'õªæ÷õî.

3. f : [0,∞) → R, f(x) = x2. �÷¤®¡à ¦¥­­ï f õ ÷­'õªæ÷õî,  «¥ ­¥ õáîà'õªæ÷õî.

4. f : [0,∞) → [0,∞), f(x) = x2. �÷¤®¡à ¦¥­­ï f õ ¡÷õªæ÷õî.

56

Page 59: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 4

�«¥¬¥­â¨ ª®¬¡÷­ â®à¨ª¨

4.1. �á­®¢­÷ ¯à¨­æ¨¯¨ ª®¬¡÷­ â®à¨ª¨.� £ «ì­¥ ¢¨§­ ç¥­­ï ¢¨¡÷ન

�¡'õªâ ¢¨¢ç¥­­ï ª®¬¡÷­ â®à¨ª¨ { æ¥ ¢¨¡÷à ¥«¥¬¥­â÷¢ ÷§ áª÷­ç¥­­®ù¬­®¦¨­¨ §£÷¤­® ÷§ § ¤ ­¨¬¨ ¯à ¢¨« ¬¨.

4.1.1. �á­®¢­÷ ¯à¨­æ¨¯¨ ª®¬¡÷­ â®à¨ª¨

1. �ਭ樯 ¤®¡ãâªã. �¥å © ¤¥ïªã ¤÷î ¬®¦­  ஧¡¨â¨ ­  n ¯®á«÷-¤®¢­¨å ­¥§ «¥¦­¨å ¯÷¤¤÷©, ¯à¨ç®¬ã ª®¦­ã ¯÷¤¤÷î j ¬®¦­  ¢¨ª®­ â¨ kj

ᯮᮡ ¬¨ (j = 1, . . . , n). �®¤÷ ¢¨å÷¤­ã ¤÷î ¬®¦­  ¢¨ª®­ â¨ k1k2 . . . kn

ᯮᮡ ¬¨.�¡óàã­â㢠­­ï ¯à¨­æ¨¯ã ¤®¡ãâªã §¢®¤¨âìáï ¤® ¯÷¤à å㭪㠯®âã¦-

­®áâ÷ ¤¥ª à⮢®£® ¤®¡ãâªã áª÷­ç¥­­®ù ª÷«ìª®áâ÷ áª÷­ç¥­­¨å ¬­®¦¨­. �÷¤-ªà¥á«¨¬®, é® ¯¥à¥¤ã¬®¢®î ª®à¥ªâ­®£® § áâ®á㢠­­ï ¯à¨­æ¨¯ã ¤®¡ãâªãõ ­¥§ «¥¦­÷áâì kj ¢÷¤ ⮣®, 直¬ á ¬¥ ᯮᮡ®¬ ¡ã«¨ ¢¨ª®­ ­÷ ¯®¯¥à¥¤­÷j − 1 ¯÷¤¤÷©.

�ਪ« ¤ 4.1. �®§£«ï­¥¬® ¤®¡à¥ ¢÷¤®¬ã ¬®¤¥«ì, áâ ­¤ àâ­ã ¤«ï ¡ -£ âì®å ª®¬¡÷­ â®à­¨å ®¡'õªâ÷¢.

�¥å © ¢ ãà­÷ ¬÷áâïâìáï n ¡÷«¨å â  m ç®à­¨å ­ã¬¥à®¢ ­¨å ªã«ì,n,m ≥ 2. �ª÷«ìª®¬  ᯮᮡ ¬¨ ¬®¦­  ¯®á«÷¤®¢­® ¢¨âï£â¨ 2 ªã«÷ â ª,鮡 ¯¥àè  ¢¨âãâ  ªã«ï ¢¨ï¢¨« áï ¡÷«®î,   ¤à㣠 { ç®à­®î?

57

Page 60: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 4. �«¥¬¥­â¨ ª®¬¡÷­ â®à¨ª¨

�¨å÷¤­  ¤÷ï (¢¨âï£ã¢ ­­ï ¤¢®å ªã«ì) ஧¯ ¤ õâìáï ­  ¤¢÷ ¯®á«÷¤®¢­÷­¥§ «¥¦­÷ ¯÷¤¤÷ù { ¢¨âï£ã¢ ­­ï ¡÷«®ù ªã«÷ â  ¢¨âï£ã¢ ­­ï ç®à­®ù ªã«÷.�¥àè  ¯÷¤¤÷ï ¬®¦¥ ¡ã⨠¢¨ª®­ ­  n ᯮᮡ ¬¨, ¤à㣠 (­¥§ «¥¦­® ¢÷¤á¯®á®¡ã ¢¨ª®­ ­­ï ¯¥àè®ù ¯÷¤¤÷ù, ⮡⮠¢÷¤ ⮣®, ïªã á ¬¥ ¡÷«ã ªã«î¡ã«® ¢¨âãâ® ¯¥àè®î ¯÷¤¤÷õî) { m ᯮᮡ ¬¨. �⦥, ïª ¢¨¯«¨¢ õ §¯à¨­æ¨¯ã ¤®¡ãâªã, ¢¨å÷¤­  ¤÷ï ¬®¦¥ ¡ã⨠¢¨ª®­ ­  nm ᯮᮡ ¬¨.

2. �ਭ樯 á㬨. �¥å © ¬­®¦¨­ã ᯮᮡ÷¢ ¢¨ª®­ ­­ï ¤¥ïª®ù ¤÷ù ¬®¦-­  ஧¡¨â¨ ­  k ¯÷¤¬­®¦¨­, é® ¯®¯ à­® ­¥ ¯¥à¥à÷§ îâìáï, ¯à¨ç®¬ã ¢ª®¦­÷© j-© ¬­®¦¨­÷ ¬÷áâ¨âìáï nj ¥«¥¬¥­â÷¢ (ᯮᮡ÷¢). �®¤÷ ¢¨å÷¤­ã ¤÷¦­  ¢¨ª®­ â¨ n1 + n2 + · · ·+ nk ᯮᮡ ¬¨.

�¡óàã­â㢠­­ï ¯à¨­æ¨¯ã á㬨 §¢®¤¨âìáï ¤® ¯÷¤à å㭪㠥«¥¬¥­â÷¢ ¢®¡'õ¤­ ­­÷ áª÷­ç¥­­®ù ª÷«ìª®áâ÷ áª÷­ç¥­­¨å ¬­®¦¨­, é® ¯®¯ à­® ­¥ ¯¥à¥-à÷§ îâìáï.

�ਪ« ¤ 4.2. �¥å © ¢ ãà­÷ ¬÷áâïâìáï n ¡÷«¨å, m ç®à­¨å â  k ç¥à-¢®­¨å ­ã¬¥à®¢ ­¨å ªã«ì, n,m, k ≥ 2. �ª÷«ìª®¬  ᯮᮡ ¬¨ ¬®¦­  ¯®á«÷-¤®¢­® ¢¨âï£â¨ 2 ªã«÷ â ª, 鮡 ¯¥àè  ÷ â÷«ìª¨ ¯¥àè  ¢¨âãâ  ªã«ï ¡ã« ¡÷«®î?

�­®¦¨­ã ᯮᮡ÷¢ ¢¨ª®­ ­­ï ¢¨å÷¤­®ù ¤÷ù ¬®¦­  ஧¡¨â¨ ­  ¤¢÷ ¯÷¤-¬­®¦¨­¨, é® ­¥ ¯¥à¥à÷§ îâìáï { ¯÷¤¬­®¦¨­  ᯮᮡ÷¢, ª®«¨ ¤à㣠 ªã«ï¡ã¤¥ ç®à­®î, â  ¯÷¤¬­®¦¨­ , ª®«¨ ¤à㣠 ªã«ï õ ç¥à¢®­®î. �¥àè  ¯÷¤¬­®-¦¨­ , §  ¯à¨­æ¨¯®¬ ¤®¡ãâªã, ¬÷áâ¨âì nm ¥«¥¬¥­â÷¢, ¤à㣠 { nk ¥«¥¬¥­-â÷¢. �⦥, ïª ¢¨¯«¨¢ õ § ¯à¨­æ¨¯ã á㬨, ¢¨å÷¤­ã ¤÷î ¬®¦­  ¢¨ª®­ â¨nm + nk ᯮᮡ ¬¨.

3. �ਭ樯 �÷à÷å«¥. �¥å © ¥«¥¬¥­â¨ ¬­®¦¨­¨ A = {a1, a2, . . . , an}¯®âà÷¡­® ஧¬÷áâ¨â¨ ¯® m ª®¬÷ઠå, ¯à¨ç®¬ã n > m. �®¤÷ ¯à¨­ ©¬­÷®¤­  § ª®¬÷ப ¡ã¤¥ ¬÷áâ¨â¨ ¡÷«ìè¥ ®¤­®£® ¥«¥¬¥­â .

�ਪ« ¤ 4.3. 1. �¥å © 5 áâ㤥­â÷¢ ᪫ ¤ îâì ÷ᯨ⠧  áâ ­¤ àâ­®îç®â¨à¨¡ «ì­®î á¨á⥬®î («¢÷¤¬÷­­®», «¤®¡à¥», «§ ¤®¢÷«ì­®», «­¥§ ¤®¢÷-«ì­®»). �®¤÷ §  ¯à¨­æ¨¯®¬ �÷à÷å«¥ ¯à¨­ ©¬­÷ ¤¢  áâ㤥­â¨ ®âਬ îâ쮤­ ª®¢÷ ®æ÷­ª¨.

2. �£÷¤­® § ¯à¨­æ¨¯®¬ �÷à÷å«¥ ¢ ¬÷áâ÷ �¨õ¢÷ 2004 ப㠬¥èª «¨ ¯à¨-­ ©¬­÷ ¤¢÷ «î¤¨­¨ § ®¤­ ª®¢®î ª÷«ìª÷áâî ¢®«®á¨­ ­  £®«®¢÷ (®áª÷«ìª¨­  2004 à÷ª ­ á¥«¥­­ï �¨õ¢  ¯¥à¥¢¨é㢠«® ¬®¦«¨¢ã ª÷«ìª÷áâì ¢®«®á¨­­  £®«®¢÷ «î¤¨­¨).

58

Page 61: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

4.1. �á­®¢­÷ ¯à¨­æ¨¯¨ ª®¬¡÷­ â®à¨ª¨. � £ «ì­¥ ¢¨§­ ç¥­­ï ¢¨¡÷ન

4.1.2. � £ «ì­¥ ¢¨§­ ç¥­­ï ¢¨¡÷ન.�¨¡÷ન ¢¯®à浪®¢ ­÷ â  ­¥¢¯®à浪®¢ ­÷,§ ¯®¢â®à¥­­ï¬¨ â  ¡¥§ ¯®¢â®à¥­ì

�§­ ç¥­­ï 4.1. �¨¡÷àª®î § ¬­®¦¨­¨ A = {a1, a2, . . . , an} ¤®¢¦¨­®î(®¡'õ¬®¬) k ­ §¨¢ îâì ¤®¢÷«ì­¨© ­ ¡÷à ¥«¥¬¥­â÷¢ aj1 , aj2 , . . . , ajk

, ¯à¨ç®¬ã¥«¥¬¥­â¨ ¢¨¡÷ન ¢ § £ «ì­®¬ã ¢¨¯ ¤ªã ¬®¦ãâì ¯®¢â®àâ¨áì.

�ªé® ¢á÷ ¥«¥¬¥­â¨ ¢¨¡÷ન ¯®¯ à­® à÷§­÷ (ajp 6= ajq ¯à¨ p 6= q), ¢¨¡÷àªã­ §¨¢ îâì ¢¨¡÷àª®î ¡¥§ ¯®¢â®à¥­ì. �ªé® ¯®¢â®à¥­­ï ¤®§¢®«ïîâìáï ( «¥­¥ ¢¨¬ £ îâìáï), ¢¨¡÷àªã ­ §¨¢ îâì ¢¨¡÷àª®î § ¯®¢â®à¥­­ï¬¨.

�ªé® ­  ¢¨¡÷àæ÷ § ¤ ­® ¢÷¤­®è¥­­ï «÷­÷©­®£® ¯®à浪ã, ¢¨¡÷àªã ­ -§¨¢ îâì 㯮à浪®¢ ­®î ¢¨¡÷મî,  ¡® ஧¬÷饭­ï¬. �ªé® ¢÷¤­®è¥­­ï¯®à浪㠭¥ § ¤ ­¥ (¯®à冷ª ¥«¥¬¥­â÷¢ ¢¨¡÷ન ­¥ ¢à å®¢ãõâìáï), ¢¨¡÷àªã­ §¨¢ îâì ­¥¢¯®à浪®¢ ­®î ¢¨¡÷મî,  ¡® ª®¬¡÷­ æ÷õî.

�®§¬÷饭­ï ¡¥§ ¯®¢â®à¥­ì ¯à¨ n = k ­ §¨¢ îâì ¯¥à¥áâ ¢«¥­­ï¬ ¬­®-¦¨­¨ A.

�áª÷«ìª¨ ¤«ï  ­ «÷§ã ¢« á⨢®á⥩ ¢¨¡÷ப ¯à¨à®¤  ¥«¥¬¥­â÷¢ aj ­¥¬ õ §­ ç¥­­ï, ¢¨¡÷àªã ¤®¢¦¨­®î k § ¬­®¦¨­¨ A ¯®â㦭÷áâî n ­ §¨¢ -îâì ¢¨¡÷àª®î § n §  k.

�ਪ« ¤ 4.4. �¥å © ¢ ãà­÷ ¬÷áâïâìáï 3 ­ã¬¥à®¢ ­÷ ªã«÷ (ª1, ª2, ª3).�®âà÷¡­® ¯÷¤à å㢠â¨, áª÷«ìª®¬  ᯮᮡ ¬¨ ¬®¦­  ¢¨âï£â¨ 2 ªã«÷ §  â -ª¨å 㬮¢:

1. �¨âãâ  ªã«ï ­¥ ¯®¢¥àâ õâìáï ¤® ãà­¨; ¯®à冷ª ¢¨âï£ã¢ ­­ï ­¥¢à å®¢ãõâìáï, ⮡⮠¢¨¡÷ન ⨯㠪i, ªj â  ªj, ªi ¢¢ ¦ îâì ®¤­÷õî ¢¨¡÷à-ª®î. �祢¨¤­®, ¬®¦«¨¢÷ â ª÷ ¢ à÷ ­â¨:

ª1, ª2; ª1, ª3; ª2, ª3.

2. �¨âãâ  ªã«ï ­¥ ¯®¢¥àâ õâìáï ¤® ãà­¨; ¯®à冷ª ¢¨âï£ã¢ ­­ï ¢à -客ãõâìáï, ⮡⮠¢¨¡÷ન ⨯㠪i, ªj â  ªj, ªi ¢¢ ¦ îâì à÷§­¨¬¨ ¢¨¡÷ઠ-¬¨. �祢¨¤­®, ¬®¦«¨¢÷ â ª÷ ¢ à÷ ­â¨:

ª1, ª2; ª1, ª3; ª2, ª3;

ª2, ª1; ª3, ª1; ª3, ª2.

3. �¨âãâ  ªã«ï ¯®¢¥àâ õâìáï ¤® ãà­¨ ÷ ¬®¦¥ ¡ã⨠¢¨âãâ  §­®¢ã;¯®à冷ª ¢¨âï£ã¢ ­­ï ­¥ ¢à å®¢ãõâìáï. �祢¨¤­®, ¬®¦«¨¢÷ â ª÷ ¢ à÷ ­â¨:

ª1, ª2; ª1, ª3; ª2, ª3; ª1, ª1; ª2, ª2; ª3, ª3.

59

Page 62: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 4. �«¥¬¥­â¨ ª®¬¡÷­ â®à¨ª¨

4. �¨âãâ  ªã«ï ¯®¢¥àâ õâìáï ¤® ãà­¨ ÷ ¬®¦¥ ¡ã⨠¢¨âãâ  §­®¢ã;¯®à冷ª ¢¨âï£ã¢ ­­ï ¢à å®¢ãõâìáï. �祢¨¤­®, ¬®¦«¨¢÷ â ª÷ ¢ à÷ ­â¨:

ª1, ª2; ª1, ª3; ª2, ª3; ª2, ª1; ª3, ª1; ª3, ª2.

ª1, ª1; ª2, ª2; ª3, ª3.

�祢¨¤­®, é® ç®â¨à¨ ஧£«ï­ãâ÷ á¨âã æ÷ù ¢÷¤¯®¢÷¤ îâì ¢¨¡÷ઠ¬ § 3§  2 § ¯®¢â®à¥­­ï¬¨ (ªã«÷ ¯®¢¥àâ îâìáï ÷ ¬®¦ãâì ¡ã⨠¢¨âãâ÷ §­®¢ã)â  ¡¥§ ¯®¢â®à¥­ì (ªã«÷ ­¥ ¯®¢¥àâ îâìáï), ¢¯®à浪®¢ ­¨¬ (§ ãà å㢠­­ï¬¯®à浪ã) â  ­¥¢¯®à浪®¢ ­¨¬ (¡¥§ ãà å㢠­­ï ¯®à浪ã).

�®§¢'易­­ï ç®â¨àì®å ¯à®¡«¥¬ ¯à¨ª«. 4.4 ¢ § £ «ì­®¬ã ¢¨¯ ¤ªã (¢ãà­÷ n ­ã¬¥à®¢ ­¨å ªã«ì, ¢¨âï£ãõâìáï k ªã«ì) §¢®¤¨âìáï ¤® ¯÷¤à åã­-ªã § £ «ì­®ù ª÷«ìª®áâ÷ ஧¬÷饭ì â  ª®¬¡÷­ æ÷© § ¯®¢â®à¥­­ï¬¨ â  ¡¥§¯®¢â®à¥­ì § n §  k.

4.2. �®§¬÷饭­ï § ¯®¢â®à¥­­ï¬¨â  ¡¥§ ¯®¢â®à¥­ì

� æ쮬㠯÷¤à®§¤÷«÷ ¯÷¤à åãõ¬® ª÷«ìª÷áâì ஧¬÷é¥­ì § ¯®¢â®à¥­­ï¬¨â  ¡¥§ ¯®¢â®à¥­ì § n §  k.

4.2.1. �®§¬÷饭­ï ¡¥§ ¯®¢â®à¥­ì�÷«ìª÷áâì ஧¬÷é¥­ì ¡¥§ ¯®¢â®à¥­ì § n §  k ¯®§­ ç îâì ç¥à¥§ P k

n  ¡®Ak

n. �÷«ìª÷áâì ¯¥à¥áâ ¢«¥­ì (¢¨¯ ¤®ª n = k) ¯®§­ ç â¨¬¥¬® ç¥à¥§ Pn.�¥®à¥¬  4.1. P k

n = n(n− 1) · · · (n− k + 1) = n!(n−k)!

.

�®¢¥¤¥­­ï. �¥å © A = {a1, a2, . . . , an}. �®à¬ã¢ ­­ï ஧¬÷饭­ï ¡¥§¯®¢â®à¥­­ï § n §  k, ⮡⮠¢¯®à浪®¢ ­®ù ¢¨¡÷ન ¯®¯ à­® à÷§­¨å ¥«¥-¬¥­â÷¢ aj1 , aj2 , . . . , ajk

, ¬®¦­  ஧¡¨â¨ ­  k ¯®á«÷¤®¢­¨å ¯÷¤¤÷© { ¢¨¡÷५¥¬¥­â  aj1 , ¢¨¡÷à ¥«¥¬¥­â  aj2 , . . . , ¢¨¡÷à ¥«¥¬¥­â  ajk

. �¥à訩 ¥«¥-¬¥­â (aj1) ¬®¦¥¬® ¢¨¡à â¨ n ᯮᮡ ¬¨, ¤à㣨© (aj2) { n− 1 ᯮᮡ ¬¨,®áª÷«ìª¨ aj2 6= aj1 ÷ â. ¤. �¥¯¥à ⢥द¥­­ï ⥮६¨ ¢¨¯«¨¢ õ § ¯à¨­æ¨¯ã¤®¡ãâªã.

� á«÷¤®ª 4.1.1. Pn = n!.

60

Page 63: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

4.3. �®¬¡÷­ æ÷ù § ¯®¢â®à¥­­ï¬¨ â  ¡¥§ ¯®¢â®à¥­ì

4.2.2. �®§¬÷饭­ï § ¯®¢â®à¥­­ï¬¨�÷«ìª÷áâì ஧¬÷é¥­ì § ¯®¢â®à¥­­ï¬¨ § n §  k ¯®§­ ç â¨¬¥¬® ç¥à¥§ P k

n .

�¥®à¥¬  4.2. P kn = nk.

�®¢¥¤¥­­ï. �¥å © A = {a1, a2, . . . , an}. �®à¬ã¢ ­­ï ஧¬÷饭­ï §¯®¢â®à¥­­ï¬¨ § n §  k, ⮡⮠¢¯®à浪®¢ ­®ù ¢¨¡÷ન ­¥ ®¡®¢'離®¢® à÷§-­¨å ¥«¥¬¥­â÷¢ aj1 , aj2 , . . . , ajk

, ¬®¦­  ஧¡¨â¨ ­  k ¯®á«÷¤®¢­¨å ¯÷¤¤÷© {¢¨¡÷à ¥«¥¬¥­â  aj1 , ¢¨¡÷à ¥«¥¬¥­â  aj2 , . . . , ¢¨¡÷à ¥«¥¬¥­â  ajk

. �¥à訩¥«¥¬¥­â (aj1) ¬®¦¥¬® ¢¨¡à â¨ n ᯮᮡ ¬¨, ¤à㣨© (aj2) { â ª®¦ n ᯮá®-¡ ¬¨, ¢à å®¢ãîç¨ ¬®¦«¨¢¨© ¢¨¯ ¤®ª aj2 = aj1 ÷ â. ¤. �¥¯¥à ⢥द¥­­ï⥮६¨ ¢¨¯«¨¢ õ § ¯à¨­æ¨¯ã ¤®¡ãâªã.

4.3. �®¬¡÷­ æ÷ù § ¯®¢â®à¥­­ï¬¨â  ¡¥§ ¯®¢â®à¥­ì

� æ쮬㠯÷¤à®§¤÷«÷ ¯÷¤à åãõ¬® ª÷«ìª÷áâì ª®¬¡÷­ æ÷© § ¯®¢â®à¥­­ï¬¨ â ¡¥§ ¯®¢â®à¥­ì § n §  k.

4.3.1. �®¬¡÷­ æ÷ù ¡¥§ ¯®¢â®à¥­ì�÷«ìª÷áâì ª®¬¡÷­ æ÷© ¡¥§ ¯®¢â®à¥­ì § n §  k ¯®§­ ç îâì ç¥à¥§ Ck

n

 ¡®(

nk

). � æ쮬㠯®á÷¡­¨ªã ¢¨ª®à¨á⮢㢠⨬¥¬® ¯¥àè¥ ¯®§­ ç¥­­ï, 瘟

¯à¨©­ïâ® ã ¢÷â稧­ï­÷© «÷â¥à âãà÷.

�¥®à¥¬  4.3. Ckn = n(n−1)...(n−k+1)

k!= n!

(n−k)!k!.

�®¢¥¤¥­­ï. �¥å © A = {a1, a2, . . . , an}. �  ¬­®¦¨­÷ ¢á÷å ஧¬÷饭졥§ ¯®¢â®à¥­ì § n §  k ¢¢¥¤¥¬® ¢÷¤­®è¥­­ï ¥ª¢÷¢ «¥­â­®áâ÷:

((ai1 , . . . , aik) ∼ (aj1 , . . . , ajk)) ⇔ ({ai1 , . . . , aik} = {aj1 , . . . , ajk

}),⮡⮠¥ª¢÷¢ «¥­â­¨¬¨ ¢¢ ¦ õ¬® â÷ ÷ â÷«ìª¨ â÷ ஧¬÷饭­ï, ïª÷ ¢÷¤à÷§-­ïîâìáï «¨è¥ ¯®à浪®¬ ¥«¥¬¥­â÷¢ (÷ §¡÷£ îâìáï ïª ¬­®¦¨­¨). �®¦¥­ª« á ¥ª¢÷¢ «¥­â­®áâ÷ [(ai1 , . . . , aik)] §  ¢¨§­ ç¥­­ï¬ ¬÷áâ¨âì ஧¬÷饭­ï,é® áª« ¤ îâìáï § ®¤­¨å ÷ â¨å á ¬¨å ¥«¥¬¥­â÷¢ ai1 , . . . , aik ÷ ¢÷¤à÷§­ïîâì-áï «¨è¥ ¯®à浪®¬. �⦥, ª®¦­®¬ã ª« áã ¥ª¢÷¢ «¥­â­®áâ÷ [(ai1 , . . . , aik)]

61

Page 64: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 4. �«¥¬¥­â¨ ª®¬¡÷­ â®à¨ª¨

®¤­®§­ ç­® ¢÷¤¯®¢÷¤ õ ª®¬¡÷­ æ÷ï ¡¥§ ¯®¢â®à¥­ì {ai1 , . . . , aik}. � ª¥ §÷-áâ ¢«¥­­ï õ ¢§ õ¬­® ®¤­®§­ ç­¨¬, ®áª÷«ìª¨ ª®¦¥­ ª« á ¥ª¢÷¢ «¥­â­®áâ÷¢¨§­ ç õ à÷¢­® ®¤­ã ª®¬¡÷­ æ÷î (­¥¢¯®à浪®¢ ­ã ¯÷¤¬­®¦¨­ã), ÷ ª®¦­ ª®¬¡÷­ æ÷ï ¢÷¤¯®¢÷¤ õ ®¤­®¬ã ª« áã ¥ª¢÷¢ «¥­â­®áâ÷.

� ª¨¬ 稭®¬, ª÷«ìª÷áâì ª« á÷¢ ¥ª¢÷¢ «¥­â­®áâ÷ (¢÷¤­®á­® ¢¢¥¤¥­®£®¢÷¤­®è¥­­ï ¥ª¢÷¢ «¥­â­®áâ÷ ­  ¬­®¦¨­÷ ஧¬÷é¥­ì ¡¥§ ¯®¢â®à¥­ì § n§  k) ¤®à÷¢­îõ Ck

n. � à¥èâ÷, ®áª÷«ìª¨ ª®¦¥­ ª« á ¥ª¢÷¢ «¥­â­®áâ÷ ¬÷á-â¨âì k! ஧¬÷饭ì (§  ª÷«ìª÷áâî ¯¥à¥áâ ¢«¥­ì ­  ¬­®¦¨­÷ {ai1 , . . . , aik}),¬ õ¬®:

P kn = k!Ck

n,

§¢÷¤ª¨ ­¥£ ©­® ¢¨¯«¨¢ õ ⢥द¥­­ï ⥮६¨.

�¨á«  Ckn = n!

(n−k)!k!(0 ≤ k ≤ n) ­ §¨¢ îâì ¡÷­®¬÷ «ì­¨¬¨ ª®¥ä÷æ÷õ­-

â ¬¨.� ã¢ ¦¥­­ï 4.1. �÷­®¬÷ «ì­¨¬ ª®¥ä÷æ÷õ­â ¬ Ck

n ç áâ® ­ ¤ îâì ᥭá ÷¯à¨ k > n, ¢áâ ­®¢«îîç¨ ¤«ï æ쮣® ¢¨¯ ¤ªã Ck

n = 0. � ª¥ 㧠£ «ì­¥­­ïæ÷«ª®¬ ¯à¨à®¤­¥, ®áª÷«ìª¨ ª÷«ìª÷áâì ¢¨¡÷ப ¡¥§ ¯®¢â®à¥­ì § n §  k ¯à¨k > n ¤®à÷¢­îõ ­ã«î.

�ਪ« ¤ 4.5. �®§£«ï­¥¬® â ª §¢ ­ã «¯à®¡«¥¬ã ¤¥â «¥©». �¥å © 㪮஡æ÷ ¬÷áâ¨âìáï n ¤¥â «¥© m á®àâ÷¢: n1 ¤¥â «¥© ¯¥à讣® á®àâã, n2 ¤¥-â «¥© ¤à㣮£® á®àâã, . . . , nm ¤¥â «¥© m-£® á®àâã. � ª®à®¡ª¨ ­ ¢¬ ­­ï,¡¥§ ãà å㢠­­ï ¯®à浪ã, ¢¨âï£ãîâì k ¤¥â «¥©. �÷¤à å㢠⨠ª÷«ìª÷áâì ­¥-¢¯®à浪®¢ ­¨å ¢¨¡÷ப, ª®«¨ ¡ã¤¥ ¢¨âãâ® à÷¢­® k1 ¤¥â «¥© ¯¥à讣®á®àâã, k2 ¤¥â «¥© ¤à㣮£® á®àâã, . . . , km ¤¥â «¥© m-£® á®àâã (0 ≤ kj ≤ mj).

�áª÷«ìª¨ ¯®à冷ª ¢¨¡÷ન ã æ÷© § ¤ ç÷ ­¥ ¬ õ §­ ç¥­­ï, ¢¢ ¦ â¨¬¥¬®,é® á¯®ç âªã ¢¨âï£ãîâì ¤¥â «÷ ¯¥à讣® á®àâã, ¯®â÷¬ { ¤à㣮£®, ÷ â. ¤.�®¤÷ ª÷«ìª÷áâì ¢¨¡÷ப, é® § ¤®¢®«ì­ïîâì § ¤ ­ã 㬮¢ã, ¯÷¤à å®¢ãîâ짠 ¯à ¢¨«®¬ ¤®¡ãâªã: Ck1

n1Ck2

n2· · ·Ckm

nm.

4.3.2. �®¬¡÷­ æ÷ù § ¯®¢â®à¥­­ï¬¨�÷«ìª÷áâì ª®¬¡÷­ æ÷© § ¯®¢â®à¥­­ï¬¨ § n §  k ¡ã¤¥¬® ¯®§­ ç â¨

ç¥à¥§ Ckn.

�¥®à¥¬  4.4. Ckn = Ck

n+k−1.

62

Page 65: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

4.3. �®¬¡÷­ æ÷ù § ¯®¢â®à¥­­ï¬¨ â  ¡¥§ ¯®¢â®à¥­ì

�®¢¥¤¥­­ï. �¥å © A = {a1, a2, . . . , an}. �®¦­  ª®¬¡÷­ æ÷ï § ¯®¢â®à¥­-­ï¬¨ ¤®¢¦¨­®î k ­  ¬­®¦¨­÷ A ®¤­®§­ ç­® ¢¨§­ ç õâìáï ª÷«ìª÷áâî kj

¢å®¤¦¥­ì ¤® ª®¬¡÷­ æ÷ù ª®¦­®£® § ¥«¥¬¥­â÷¢ aj (1 ≤ j ≤ n). �⦥, ª®¦-­  ª®¬¡÷­ æ÷ï ¢§ õ¬­® ®¤­®§­ ç­® ¢¨§­ ç õâìáï ¢¯®à浪®¢ ­¨¬ ­ ¡®à®¬ç¨á¥«

(k1, . . . , kn) : k1 + · · ·+ kn = k, kj ≥ 0 (1 ≤ j ≤ n).

�«ï ¯÷¤à å㭪㠪÷«ìª®áâ÷ ­ ¡®à÷¢ ­¥¢÷¤'õ¬­¨å æ÷«¨å ç¨á¥« (k1, . . . , kn),â ª¨å, é® k1 + · · · + kn = k, ஧£«ï­¥¬® ¬®¤¥«ì ஧â è㢠­­ï n − 1 ­¥-­ã¬¥à®¢ ­¨å ªã«ì ¯® n + k − 1 ­ã¬¥à®¢ ­¨å ª®¬÷ઠå (ã ª®¦­÷© ª®¬÷àæ÷¢¬÷éãõâìáï ®¤­  ªã«ï). �÷¤ªà¥á«¨¬®, é® ªã«÷ ­¥­ã¬¥à®¢ ­÷, ⮡⮠¯®-¯ à­® ­¥ ஧à÷§­ïîâìáï. �®¦­®¬ã ஧â è㢠­­î ªã«ì §÷áâ ¢¨¬® ­ ¡÷à­¥¢÷¤'õ¬­¨å æ÷«¨å ç¨á¥« (k1, . . . , kn):

¤ . . . ¤︸ ︷︷ ︸k1

¥¤ . . . ¤︸ ︷︷ ︸k2

¥ . . . . . . ¥¤ . . . ¤︸ ︷︷ ︸kn−1

¥ ¤ . . . ¤︸ ︷︷ ︸kn

k1 { ª÷«ìª÷áâì ª®¬÷ப ¤® ¯¥àè®ù § ©­ïâ®ù (­¥ ¢à å®¢ãî稧 ©­ïâã);

k2 { ª÷«ìª÷áâì ª®¬÷ப ¬÷¦ ¯¥àè®î â  ¤àã£®î § ©­ï⨬¨;k3 { ª÷«ìª÷áâì ª®¬÷ப ¬÷¦ ¤à㣮î â  âà¥âì®î § ©­ï⨬¨;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kn−1 { ª÷«ìª÷áâì ª®¬÷ப ¬÷¦ ¯¥à¥¤®áâ ­­ì®î â  ®áâ ­­ì®î

§ ©­ï⨬¨;kn { ª÷«ìª÷áâì ª®¬÷ப ¯÷á«ï ®áâ ­­ì®ù § ©­ïâ®ù.

�⦥, ª®¦­®¬ã ஧â è㢠­­î ªã«ì ¢ ®¯¨á ­÷© ¬®¤¥«÷ ¢§ õ¬­® ®¤­®-§­ ç­® §÷áâ ¢«¥­® ­ ¡÷à ­¥¢÷¤'õ¬­¨å æ÷«¨å ç¨á¥« (k1, . . . , kn), â ª¨å, é®k1 + · · · + kn = k. �«ï § ¢¥à襭­ï ¤®¢¥¤¥­­ï ⥮६¨ § §­ ç¨¬®, 鮪÷«ìª÷áâì ¬®¦«¨¢¨å ஧â è㢠­ì n− 1 ­¥­ã¬¥à®¢ ­¨å ªã«ì ¯® n + k− 1­ã¬¥à®¢ ­¨å ª®¬÷àª å ¤®à÷¢­îõ Cn−1

n+k−1 = Ckn+k−1 (ª÷«ìª÷áâì ­¥¢¯®à浪®-

¢ ­¨å ¢¨¡®à÷¢ k ª®¬÷ப, é® § «¨è âìáï ¢÷«ì­¨¬¨, § n + k − 1 § £ «ì­®ùª÷«ìª®áâ÷ ª®¬÷ப).

�ਪ« ¤ 4.6. 1. �÷¤à åãõ¬®, áª÷«ìª®¬  ᯮᮡ ¬¨ ¬®¦­  ஧¡¨â¨ç¨á«® k ­  áã¬ã n ­¥¢÷¤'õ¬­¨å ¤®¤ ­ª÷¢: k1 + · · ·+ kn = k.

�ª ¢¨¯«¨¢ õ § ¤®¢¥¤¥­­ï ⥮६¨ 4.4, ª÷«ìª÷áâì â ª¨å ஧¡¨ââ÷¢ ¤®-à÷¢­îõ Ck

n = Ckn+k−1.

63

Page 66: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 4. �«¥¬¥­â¨ ª®¬¡÷­ â®à¨ª¨

�¯à ¢  4.1. �§ £ «ì­¨â¨ 楩 १ã«ìâ â ­  ¢¨¯ ¤®ª, ª®«¨ k1 ≥ m1,k2 ≥ m2, . . . , kn ≥ mn, ¤¥ mj (1 ≤ j ≤ n) { § ¤ ­÷ æ÷«÷ ç¨á« .

2. �÷¤à åãõ¬® ª÷«ìª÷áâì ª÷á⮪ ¤®¬÷­®.�ª ¢÷¤®¬®, ª®¦­  ª÷á⪠ ¤®¬÷­® ¢§ õ¬­® ®¤­®§­ ç­® ¢¨§­ ç õâìáï ­¥-

¢¯®à浪®¢ ­®î ¯ à®î ç¨á¥« {n,m}, â ª¨å, é® 0 ≤ m ≤ 6, 0 ≤ n ≤ 6,¢ª«îç îç¨ ¢¨¯ ¤®ª n = m. �⦥, ª÷«ìª÷áâì ª÷á⮪ ¤®¬÷­®

C27 = C2

7+2−1 = C28 =

8 · 72

= 28.

4.4. �¯®à浪®¢ ­÷ ஧¡¨ââï�®§£«ï­¥¬® ⠪㠯஡«¥¬ã: ¯®âà÷¡­® ஧â è㢠⨠¥«¥¬¥­â¨ ¬­®¦¨-

­¨ A = {a1, a2, . . . , an} ¯® k ­ã¬¥à®¢ ­¨å ª®¬÷ઠå õ¬­÷áâî n1, n2, . . . , nk

¢÷¤¯®¢÷¤­®, ¯à¨ç®¬ã n1 + · · ·+nk = n. �î ¯à®¡«¥¬ã ­ §¨¢ îâì 㯮à浪®-¢ ­¨¬ ஧¡¨ââï¬ ¬­®¦¨­¨ A ¯® k 㯮à浪®¢ ­¨å ª®¬÷ઠå. � §­ ç¨¬®,é® ¯®à冷ª ஧â è㢠­­ï ¥«¥¬¥­â÷¢ ã ª®¦­÷© ª®¬÷àæ÷ ­¥ ¬ õ §­ ç¥­­ï {­ á æ÷ª ¢¨âì «¨è¥ â¥, ¢ ïªã ª®¬÷àªã ¯®âà ¯¨âì ª®¦¥­ § ¥«¥¬¥­â÷¢ ¬­®-¦¨­¨ A. �÷«ìª÷áâì 㯮à浪®¢ ­¨å ஧¡¨ââ÷¢ §  áä®à¬ã«ì®¢ ­¨¬¨ ¯ à -¬¥âà ¬¨ ¯®§­ ç â¨¬¥¬® ç¥à¥§ Cn1,n2,...,nk

n .�«ï ¯÷¤à å㭪㠪÷«ìª®áâ÷ ¢¯®à浪®¢ ­¨å ஧¡¨ââ÷¢ ᪮à¨áâ õ¬®áì

¯à¨­æ¨¯®¬ ¤®¡ãâªã: ᯮç âªã § ¯®¢­¨¬® ¯¥àèã ª®¬÷àªã, ¯®â÷¬ { ¤àã£ã÷ â. ¤. �祢¨¤­®, ¯¥àèã ª®¬÷àªã ¬®¦­  § ¯®¢­¨â¨ Cn1

n ᯮᮡ ¬¨, ¤àã-£ã { Cn2

n−n1ᯮᮡ ¬¨, âà¥âî { Cn3

n−n1−n2ᯮᮡ ¬¨ ÷ â. ¤. �  ¯à¨­æ¨¯®¬

¤®¡ãâªã ¬ õ¬®:

Cn1,n2,...,nkn = Cn1

n Cn2n−n1

Cn3n−n1−n2

· · ·Cnkn−n1−···−nk−1

. (4.1)

� ã¢ ¦¥­­ï 4.2. �áâ ­­÷© ¬­®¦­¨ª Cnkn−n1−···−nk−1

= Cnknk

= 1 (ïª÷ ®ç÷ªã¢ «¨, ®áª÷«ìª¨ ®áâ ­­î ª®¬÷àªã ¬®¦¥¬® § ¯®¢­¨â¨ «¨è¥ ®¤-­¨¬ ᯮᮡ®¬).

�¥§¯®á¥à¥¤­÷© ¯÷¤à åã­®ª ¤®§¢®«ïõ §­ ç­® á¯à®áâ¨â¨ ¢¨à § 㠯ࠢ÷©ç á⨭÷ (4.1):

Cn1,n2,...,nkn =

n!

n1!n2! · · ·nk!.

64

Page 67: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

4.5. �÷­®¬÷ «ì­  â  ¯®«÷­®¬÷ «ì­  ä®à¬ã«¨. �ਪãâ­¨ª � áª «ï

� §­ ç¨¬®, é® ã ¢¨¯ ¤ªã k = 2 ¬ õ¬® ª« á¨ç­¨© ¢¨¯ ¤®ª ª®¬¡÷­ æ÷© ¡¥§¯®¢â®à¥­ì (­¥¢¯®à浪®¢ ­¨© ¢¨¡÷à ¥«¥¬¥­â÷¢ ¤«ï ®¤­÷õù § ¤¢®å ª®¬÷ப):

Cn1,n2n =

n!

n1!n2!= Cn1

n = Cn2n .

�¯à ¢  4.2. �§ £ «ì­¨â¨ ä®à¬ã«ã ¤«ï Cn1,n2,...,nkn ­  ¢¨¯ ¤®ª, ª®«¨

n1 + · · ·+ nk ≤ n.

�ਪ« ¤ 4.7. �÷¤à åãõ¬®, áª÷«ìª¨ á«÷¢ (¤®¢÷«ì­¨å ¯®á«÷¤®¢­®á⥩«÷â¥à) ¬®¦­  ᪫ á⨠§ è¥á⨠ª à⮪, ­  âàì®å § ïª¨å ¯®§­ ç¥­  «÷â¥à «�», ­  ¤¢®å { «÷â¥à  «�», ­  ®¤­÷© { «�»:

� � � � � �

�«ï ஧¢'易­­ï § ¤ ç÷ ஧£«ï­¥¬® ⠪㠬®¤¥«ì: õ âਠª®¬÷ન «�»,«�» â  «�» õ¬­®áâﬨ 3, 2 â  1 ¢÷¤¯®¢÷¤­®, ã 直å âॡ  ஧¬÷áâ¨â¨¥«¥¬¥­â¨ ¬­®¦¨­¨ X = {1, 2, 3, 4, 5, 6}. �®¤÷ ª®¦­®¬ã á«®¢ã ®¤­®§­ ç-­® ¢÷¤¯®¢÷¤ õ ஧¡¨ââï ¬­®¦¨­¨ X ¯® ª®¬÷àª å «�», «�» â  «�» { ª®-¦¥­ ¥«¥¬¥­â ¬­®¦¨­¨ X ¢÷¤¯®¢÷¤ õ ­®¬¥àã «÷â¥à¨ ¢ á«®¢÷, é® áª« ¤ -õâìáï. �⦥, ª÷«ìª÷áâì á«÷¢ ®¡ç¨á«îõâìáï ïª ª÷«ìª÷áâì 㯮à浪®¢ ­¨å஧¡¨ââ÷¢:

C3,2,16 =

6!

3!2!1!= 60.

4.5. �÷­®¬÷ «ì­  â  ¯®«÷­®¬÷ «ì­  ä®à¬ã«¨.�ਪãâ­¨ª � áª «ï

4.5.1. �« á⨢®áâ÷ ¡÷­®¬÷ «ì­¨å ª®¥ä÷æ÷õ­â÷¢� £ ¤ õ¬® (¤¨¢. á. 62), é® ç¨á«  Ck

n (0 ≤ k ≤ n) ­ §¨¢ îâì ¡÷­®¬÷- «ì­¨¬¨ ª®¥ä÷æ÷õ­â ¬¨. �®§£«ï­¥¬® ª÷«ìª  ­ ©¢ ¦«¨¢÷è¨å ¢« á⨢®á-⥩ ¡÷­®¬÷ «ì­¨å ª®¥ä÷æ÷õ­â÷¢.

1. Ckn = Cn−k

n ;2. C0

n = Cnn = 1, C1

n = Cn−1n = n;

3. Ckn + Ck+1

n = Ck+1n+1.

�¯à ¢  4.3. �®¢¥á⨠¢ª § ­÷ â®â®¦­®áâ÷.

65

Page 68: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 4. �«¥¬¥­â¨ ª®¬¡÷­ â®à¨ª¨

4.5.2. �÷­®¬÷ «ì­  â  ¯®«÷­®¬÷ «ì­  ä®à¬ã«¨� ªãàáã ¬ â¥¬ â¨ç­®£®  ­ «÷§ã ¢÷¤®¬  ä®à¬ã«  ¤«ï «à®§ªà¨ââï ¤ã-

¦®ª» ã ¢¨à §÷ (a + b)n:

(a + b)n =n∑

k=0

Cknakbn−k. (4.2)

�®à¬ã«ã (4.2), ïª ¢÷¤®¬®, ­ §¨¢ îâì ¡÷­®¬®¬ �ìîâ®­ ,  ¡® ¡÷­®¬÷ «ì-­®î ä®à¬ã«®î, §¢÷¤ª¨ ¤÷áâ «¨ ­ §¢ã ª®¥ä÷æ÷õ­â¨ Ck

n.� ã¢ ¦¥­­ï 4.3. � §¢  «¡÷­®¬ �ìîâ®­ » ¤¢÷ç÷ ­¥¯à ¢¨«ì­ : ¯®-

¯¥àè¥, ­÷ ¯à ¢ , ­÷ «÷¢  ç á⨭  ä®à¬ã«¨ (4.2) ­¥ õ ¡÷­®¬®¬ (¤¢ãç«¥­®¬);¯®-¤à㣥, ä®à¬ã«  (4.2) ¡ã«  ¢÷¤®¬  ÷ ¤® ஡÷â �ìîâ®­  (öá  ªã �ìîâ®-­ã ­ «¥¦¨âì ¢ ¦«¨¢¥ 㧠£ «ì­¥­­ï ä®à¬ã«¨ (4.2) ­  ¢¨¯ ¤®ª ¤®¢÷«ì­®£®n ∈ R).

�®¢¥¤¥¬® ¡÷­®¬÷ «ì­ã ä®à¬ã«ã (4.2) ¬¥â®¤ ¬¨ ª®¬¡÷­ â®à¨ª¨. �®§-ªà¨õ¬® ¤ã¦ª¨ ã ¢¨à §÷ (a + b)n, ­¥ ª®à¨áâãîç¨áì ª®¬ãâ â¨¢­÷áâî ¬­®-¦¥­­ï ¤÷©á­¨å ç¨á¥«:

(a + b)n = (a + b) · · · (a + b)︸ ︷︷ ︸n

= aa · · · a︸ ︷︷ ︸n

+ ba · · · a︸ ︷︷ ︸n

+ ab · · · a︸ ︷︷ ︸n

+ · · ·+ bb · · · b︸ ︷︷ ︸n

.

�÷á«ï §¢¥¤¥­­ï ¯®¤÷¡­¨å ç«¥­÷¢ (¢¨ª®à¨á⮢ãîç¨ ª®¬ãâ â¨¢­÷áâì ¬­®-¦¥­­ï) ¤÷áâ ­¥¬®:

(a + b)n =n∑

k=0

ckakbn−k,

¤¥ ck { ª÷«ìª÷áâì ¤®¤ ­ª÷¢ ¢¨£«ï¤ã a1 · · · an (aj ∈ {a, b}), â ª¨å, é® ¬­®¦-­¨ª a ¬÷áâ¨âìáï ¢ ¤®¡ãâªã a1 · · · an à÷¢­® k à §÷¢ (¬­®¦­¨ª b ¬÷áâ¨âìáï¢÷¤¯®¢÷¤­® n− k à §÷¢).

�«ï ®¡ç¨á«¥­­ï ª®¥ä÷æ÷õ­â÷¢ ck ஧£«ï­¥¬® ª®¬¡÷­ â®à­ã ¬®¤¥«ì ஧-â è㢠­­ï ¬­®¦­¨ª÷¢ aj (1 ≤ j ≤ n) ¯® ª®¬÷ઠå a â  b õ¬­®áâﬨ k â n − k ¢÷¤¯®¢÷¤­®. �祢¨¤­®, ª®¦­¥ â ª¥ ஧â è㢠­­ï ®¤­®§­ ç­® ¢÷¤-¯®¢÷¤ õ ®¤­®¬ã § ¤®¤ ­ª÷¢ a1 · · · an, é® ¬÷áâ¨âì k ¬­®¦­¨ª÷¢ a â  n − k¬­®¦­¨ª÷¢ b. �⦥,

ck = Ck,n−kn = Ck

n,

é® ÷ âॡ  ¡ã«® ¤®¢¥áâ¨.

66

Page 69: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

4.5. �÷­®¬÷ «ì­  â  ¯®«÷­®¬÷ «ì­  ä®à¬ã«¨. �ਪãâ­¨ª � áª «ï

�®¬¡÷­ â®à­¥ ¤®¢¥¤¥­­ï ä®à¬ã«¨ (4.2) ¯à¨à®¤­® ¯®è¨àîõâìáï ¤«ï¢¨à §ã (a1 + a2 + · · ·+ am)n:

(a1 + a2 + · · ·+ am)n =∑

k1,k2,...,km≥0k1+···+km=n

Ck1,...,kmn ak1

1 · · · akmm . (4.3)

�¯à ¢  4.4. �஢¥á⨠¤®¢¥¤¥­­ï ä®à¬ã«¨ (4.3).

�®à¬ã«  (4.3), §   ­ «®£÷õî § ¡÷­®¬÷ «ì­®î ä®à¬ã«®î, ¤÷áâ «  ­ -§¢ã ¯®«÷­®¬÷ «ì­  ä®à¬ã« . � §­ ç¨¬®, é® ª÷«ìª÷áâì ¤®¤ ­ª÷¢ 㠯ࠢ÷©ç á⨭÷ ä®à¬ã«¨ (4.3) ®¡ç¨á«îõâìáï ïª ª÷«ìª÷áâì ஧¡¨ââ÷¢ ç¨á«  n ­ m ­¥¢÷¤'õ¬­¨å æ÷«¨å ¤®¤ ­ª÷¢, ⮡⮠ç¥à¥§ ª®¬¡÷­ æ÷ù § ¯®¢â®à¥­­ï¬¨:Cn

m = Cnm+n−1. � ª, ¯à¨ m = 2 (¢¨¯ ¤®ª ¡÷­®¬÷ «ì­®ù ä®à¬ã«¨) ¬ â¨¬¥-

¨: Cnn+1 = n + 1.

�ਪ« ¤ 4.8. 1. �®à¨áâãîç¨áì ¯®«÷­®¬÷ «ì­®î ä®à¬ã«®î, ஧ªà¨-õ¬® ¤ã¦ª¨ ã ¢¨à §÷ (a + b + c)3:

(a + b + c)3 = C3,0,03︸ ︷︷ ︸=1

a3b0c0 + b3 + c3+

+ C2,1,03︸ ︷︷ ︸=3

a2b1c0 + 3ab2 + 3a2c + 3ac2 + 3b2c + 3bc2 + C1,1,13︸ ︷︷ ︸=6

a1b1c1.

2. �¥ ஧ªà¨¢ îç¨ ¯®¢­÷áâî ¤ã¦ª¨ ã ¢¨à §÷ (a+b+c+d)132, ®¡ç¨á«¨¬®ª®¥ä÷æ÷õ­â ¯à¨ ¤®¤ ­ªã a131b:

C131,1,0,0132 =

132!

131!1!0!0!= 132.

� §­ ç¨¬®, é® § £ «ì­  ª÷«ìª÷áâì ¤®¤ ­ª÷¢ ¯÷á«ï ஧ªà¨ââï ¤ã¦®ª â §¢¥¤¥­­ï ¯®¤÷¡­¨å ç«¥­÷¢ áâ ­®¢¨âì C132

4 = 400995.

4.5.3. �ਪãâ­¨ª � áª «ï�¤¥¡÷«ì讣® (§®ªà¥¬ , ¤«ï ®¡ç¨á«¥­­ï ª®¥ä÷æ÷õ­â÷¢ ã ¡÷­®¬÷ �ìîâ®-

­ ) ¡÷­®¬÷ «ì­÷ ª®¥ä÷æ÷õ­â¨ §àãç­® ஧â è®¢ã¢ â¨ ã ä®à¬÷ â ª §¢ ­®£®âਪãâ­¨ª  � áª «ï:

67

Page 70: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 4. �«¥¬¥­â¨ ª®¬¡÷­ â®à¨ª¨

C00

C01 C1

1

C02 C1

2 C22

C03 C1

3 C23 C3

3

. . . . . . . . . . . . . . . . . .

 ¡®

C00

C01 C1

1

C02 C1

2 C22

C03 C1

3 C23 C3

3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�ਪãâ­¨ª � áª «ï, ®ç¥¢¨¤­®, ­¥áª÷­ç¥­­¨©, ¯à®â¥ ­  ¯à ªâ¨æ÷ ®¡ç¨á-«îîâì ª÷«ìª  ¯¥àè¨å à浪÷¢ (â ª, ¤«ï ஧ª« ¤ ­­ï (a + b)5 ¯®âà÷¡­÷¯¥àè÷ 6 à浪÷¢).

�¡ç¨á«îîç¨ ¯¥àè÷ à浪¨ âਪãâ­¨ª  � áª «ï (ã «¯àאַªãâ­÷©»ç¨ «à÷¢­®¡¥¤à¥­÷©» ä®à¬÷), ïª ¯à ¢¨«®, ¢¨¯¨áãîâì ®¤¨­¨ç­÷ ¥«¥¬¥­-⨠«¡÷ç­¨å áâ®à÷­» âਪãâ­¨ª , ¯÷á«ï 箣® ¢¨ª®à¨á⮢ãîâì â®â®¦­÷áâìCk

n + Ck+1n = Ck+1

n+1.

�ਪ« ¤ 4.9. �¡ç¨á«¨¬® ¯¥àè÷ ¯'ïâì à浪÷¢ âਪãâ­¨ª  � áª «ï(ã «¯àאַªãâ­÷©» ä®à¬÷):

11 11 1 + 1 = 2 11 1 + 2 = 3 2 + 1 = 3 11 1 + 3 = 4 3 + 3 = 6 3 + 1 = 4 1

4.6. � áâ®á㢠­­ï ª®à¥­¥¢¨å ¤¥à¥¢ã ª®¬¡÷­ â®à­¨å § ¤ ç å

� £ â® ª®¬¡÷­ â®à­¨å ¯à®¡«¥¬ ­¥ ¬®¦­  ®¯¨á â¨ ¦®¤­®î § ª« á¨ç-­¨å ª®¬¡÷­ â®à­¨å ¬®¤¥«¥©. � â ª¨å á¨âã æ÷ïå, ª®«¨ ¬ ©¦¥ õ¤¨­¨© ¬¥-⮤ { ¡¥§¯®á¥à¥¤­÷© ¯¥à¥¡÷à ¢á÷å ¢ à÷ ­â÷¢, §àãç­® ª®à¨áâ㢠â¨áï £à -ä ¬¨ ᯥæ÷ «ì­®£® ¢¨¤ã { â ª §¢ ­¨¬¨ ª®à¥­¥¢¨¬¨ ¤¥à¥¢ ¬¨. �®à¥­¥¢¥¤¥à¥¢® ¢¨§­ ç õâìáï ïª ¤¥à¥¢® § ¢¨¤÷«¥­®î ¢¥à設®î { ª®à¥­¥¬ (â®ç­÷¢¨§­ ç¥­­ï ­ ¢¥¤¥¬® ¤ «÷, ¯÷¤ ç á ¢¨¢ç¥­­ï £à ä÷¢ ᯥæ÷ «ì­¨å ⨯÷¢).�÷¤ ç á ¯¥à¥¡®àã ¢ à÷ ­â÷¢ ª®¦­÷© ¢¥à設÷ ¤¥à¥¢  (¯®ç¨­ îç¨ § ª®à¥­ï)¢÷¤¯®¢÷¤ õ ¯¥¢­  £à㯠 ¢ à÷ ­â÷¢; ïªé® £à㯠 ¢ à÷ ­â÷¢ ஧¡¨¢ õâìáï ­ n ¬­®¦¨­, § ¢÷¤¯®¢÷¤­®ù ¢¥à設¨ ¤¥à¥¢  ¢¨å®¤¨âì n ॡ¥à. �®¦­®¬ã «¨á-âªã («§ ª«îç­¨¬» ¢¥à設 ¬ ¤¥à¥¢ ) ¢÷¤¯®¢÷¤ õ ¤®áâ â­ì® ¯à®áâ  ¬­®-¦¨­  ¢ à÷ ­â÷¢ (­ ©ç áâ÷è¥ ª®¦­®¬ã «¨áâªã ¢÷¤¯®¢÷¤ õ ®¤¨­ ¢ à÷ ­â).

68

Page 71: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

4.6. � áâ®á㢠­­ï ª®à¥­¥¢¨å ¤¥à¥¢ ã ª®¬¡÷­ â®à­¨å § ¤ ç å

�ਪ« ¤ 4.10. � ¤¥ïª®¬ã ( ¡áâࠪ⭮¬ã) ª §÷­® £à  ¯à®å®¤¨âì § â ª¨¬¨ ¯à ¢¨« ¬¨: ã à §÷ ¢¨£à è㠣ࠢ¥æì ®âਬãõ ¢¨£à è ã ஧¬÷à÷áâ ¢ª¨ (⮡â®, ¯®áâ ¢¨¢è¨ k £à¨¢¥­ì, £à ¢¥æì ã à §÷ ¢¨£à èã § ¡¥à¥ 2k£à¨¢¥­ì); ¯à®£à ¢è¨, £à ¢¥æì ¢âà ç õ ᢮î áâ ¢ªã.

�¥å © ¤¥åâ® ( ¡áâࠪ⭨© £à ¢¥æì) ¯à¨©è®¢ ã ª §÷­® § ®¤­÷õî £à¨¢-­¥î ÷ ¢¨à÷訢 £à â¨ ¤®â¨, ¤®ª¨ ¢ ­ì®£® õ £à®è÷,  «¥ ­¥ ¡÷«ìè¥ âàì®å ÷£®à,áâ ¢«ïç¨ ­  ª®¦­ã £àã ®¤­ã £à¨¢­î.�®§â èãõ¬® ¬®¦«¨¢÷ ¢ à÷ ­â¨ ஧¢¨âªã ¯®¤÷©

1

2

3 1

0

4 2 2 0

––

++

+

+

�¨á. 4.1

ã ¢¨£«ï¤÷ ª®à¥­¥¢®£® ¤¥à¥¢  (à¨á. 4.1). �¥¡à®,é® ¯®§­ ç¥­¥ §­ ª®¬ «+», ¢÷¤¯®¢÷¤ õ ¢¨£à è㢠ª®­ªà¥â­÷© £à÷; ॡà®, é® ¯®§­ ç¥­¥ §­ ª®¬«−», ¢÷¤¯®¢÷¤ õ ¯à®£à èã. �®¦­ã ¢¥à設㠤¥-ॢ  ¯®§­ ç â¨¬¥¬® á㬮î (¢ £à¨¢­ïå), é® § -«¨è¨« áï 㠣ࠢæï. �¨á⪨ ¤¥à¥¢  (¢ à÷ ­â¨ § -ª÷­ç¥­­ï á¥à÷ù ÷£®à) ¯®§­ ç¨¬® §®¢­÷è­÷¬ ª¢ ¤-à â®¬. �ª ¢¨¤­® § à¨á. 4.1, ã âàì®å § ¯'ï⨠¢ à÷- ­â÷¢ § ª÷­ç¥­­ï á¥à÷ù £à ¢¥æì ¢¨£à õ, ÷ ¢ ¤¢®å {¯à®£à õ. �¢¨ç ©­®, §¢÷¤á¨ ­¥ ¢¨¯«¨¢ õ, é® ¢ á¥-।­ì®¬ã £à ¢¥æì ¡ã¤¥ ¢¨£à ¢ â¨, ®áª÷«ìª¨ ­¥¢á÷ ¢ à÷ ­â¨ § ª÷­ç¥­­ï ¬ îâì ®¤­ ª®¢ã ©¬®¢÷à­÷áâì.

69

Page 72: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5

�¥®à÷ï £à ä÷¢

5.1. �á­®¢­÷ ¯®­ïââï ⥮à÷ù £à ä÷¢�§­ ç¥­­ï 5.1. �à ä®¬ (£¥®¬¥âà¨ç­¨¬ £à ä®¬) G ­ §¨¢ îâì ä÷-

£ãàã ­  ¯«®é¨­÷, 猪 ᪫ ¤ õâìáï § ­¥¯®à®¦­ì®ù áª÷­ç¥­­®ù ¬­®¦¨­¨ Vâ®ç®ª (¢¥à設) ÷ áª÷­ç¥­­®ù ¬­®¦¨­¨ E ®à÷õ­â®¢ ­¨å ç¨ ­¥ ®à÷õ­â®¢ ­¨å«÷­÷© (ॡ¥à), é® §'õ¤­ãîâì ¤¥ïª÷ ¯ à¨ ¢¥à設.

� ¤ «÷, ïªé® ­¥ ¢ª § ­® ÷­è¥, ¢¥à設¨ ¯®§­ ç â¨¬¥¬® «÷â¥à®î v§ ÷­¤¥ªá ¬¨ ç¨ ¡¥§: v, v2, v2,34; à¥¡à  { «÷â¥à®î e § ÷­¤¥ªá ¬¨ ç¨ ¡¥§:e, e6, e8,3,97.

�¥¡à®, é® §'õ¤­ãõ ¤¥ïªã ¢¥à設ã ᠬ㠧 ᮡ®î, ­ §¨¢ îâì ¯¥â«¥î.�¥¡à , é® §'õ¤­ãîâì ®¤­ã © âã ᠬ㠯 àã ¢¥à設, ­ §¨¢ îâì ¬ã«ìâ¨à¥-¡à ¬¨. �à ä, é® ­¥ ¬÷áâ¨âì ¬ã«ìâ¨à¥¡¥à â  ¯¥â¥«ì, ­ §¨¢ îâì ¯à®á⨬£à ä®¬,  ¡® ¯à®á⮣à ä®¬. �à ä, ¢ 类¬ã ¤®¯ã᪠îâìáï ¬ã«ìâ¨à¥¡à  稯¥â«÷, ­ §¨¢ îâì ¬ã«ì⨣à ä®¬ (¤¨¢. ¯à¨ª«. 5.1).

�à ä, ãá÷ à¥¡à  ïª®£® ­¥®à÷õ­â®¢ ­÷, ­ §¨¢ îâì ­¥®à÷õ­â®¢ ­¨¬ £à -䮬; £à ä, ãá÷ à¥¡à  ïª®£® ®à÷õ­â®¢ ­÷ { ®à÷õ­â®¢ ­¨¬ £à ä®¬,  ¡® ®à-£à ä®¬; ¬÷è ­÷ £à ä¨ (¬÷áâïâì ïª ®à÷õ­â®¢ ­÷, â ª ÷ ­¥®à÷õ­â®¢ ­÷ ॡà )¬¨ ­¥ ஧£«ï¤ â¨¬¥¬®. � ®à£à ä å ¯ à¨ ¯à®â¨­ ¯àשׂ¥­¨å ¬ã«ìâ¨à¥-¡¥à, é® §'õ¤­ãîâì ®¤­ã © âã ᠬ㠯 àã ¢¥à設, ç áâ® §®¡à ¦ãîâì ®¤­÷õî«÷­÷õî §÷ áâà÷«ª ¬¨ ­  ¯à®â¨«¥¦­¨å ª÷­æïå.

�ਪ« ¤ 5.1. �  à¨á. 5.1 §®¡à ¦¥­® ®à÷õ­â®¢ ­¨© ¬ã«ì⨣à ä G1,­¥®à÷õ­â®¢ ­¨© ¯à®á⮣à ä G2 â  ­¥®à÷õ­â®¢ ­¨© ¬ã«ì⨣à ä G3. �¥à-設¨ v1 â  v3 £à äã G1 §'õ¤­ãîâìáï ¤¢®¬  ¯à®â¨­ ¯àשׂ¥­¨¬¨ ¬ã«ìâ¨-

70

Page 73: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.1. �á­®¢­÷ ¯®­ïââï ⥮à÷ù £à ä÷¢

ॡࠬ¨ (§®¡à ¦¥­÷ «÷­÷õî § ¤¢®¬  áâà÷«ª ¬¨). �  ¢¥à設÷ v4 ­¥®à÷õ­â®-¢ ­®£® ¬ã«ì⨣à äã G3 «¢¨á¨âì» ¯¥â«ï.

v2v2 v2

v3

v3 v3

v1

v1 v1

v4

v4v4 v5v5

G1

G2 G3

�¨á. 5.1

� ¤ «÷, ïªé® ­¥ ¢ª § ­® ÷­è¥, £à ä¨ ¢¢ ¦ â¨¬¥¬® ­¥®à÷õ­â®¢ ­¨¬¨.�¥à設¨ v1 â  v2 ­ §¨¢ îâì áã¬÷¦­¨¬¨, ïªé® ¢®­¨ §'õ¤­ ­÷ ॡ-

஬ e. � â ª®¬ã à §÷ ª ¦ãâì, é® ¢¥à設¨ v1 â  v2 ÷­æ¨¤¥­â­÷ ॡàã e; ­ «®£÷ç­®, ॡ஠e ÷­æ¨¤¥­â­¥ ¢¥à設 ¬ v1 â  v2.

�«ï宬 ã £à ä÷, é® ¯®ç¨­ õâìáï ã ¢¥à設÷ v1 ÷ § ª÷­çãõâìáï ã ¢¥à-設÷ v2, ­ §¨¢ îâì ¯®á«÷¤®¢­÷áâì ¢¥à設 â  à¥¡¥à ¢¨£«ï¤ã:

v1ei1vi1ei2vi2ei3 . . . vin−1einv2,

¤¥ ª®¦­¥ ॡ஠÷­æ¨¤¥­â­¥ ®¡®¬ ¢¥à設 ¬, ïª÷ õ ¤«ï ­ì®£® áãá÷¤­÷¬¨ ¢ ¯®-á«÷¤®¢­®áâ÷ (ॡ஠ei1 ÷­æ¨¤¥­â­¥ ¢¥à設 ¬ v1 â  vi1 , ॡ஠ei2 ÷­æ¨¤¥­â-­¥ ¢¥à設 ¬ vi1 â  vi2 ÷ â. ¤.). � §­ ç¨¬®, é® è«ïå ã £à ä÷ ®¤­®§­ ç­®¢¨§­ ç õâìáï ¯¥àè®î ÷ ®áâ ­­ì®î ¢¥à設 ¬¨ (v1 â  v2) â  ¯®á«÷¤®¢­÷áâîॡ¥à, ⮡⮠¯à®¬÷¦­÷ ¢¥à設¨ ¬®¦­  ­¥ ¢ª §ã¢ â¨:

v1ei1ei2ei3 . . . einv2.

�à÷¬ ⮣®, ¤«ï ¯à®á⮣à ä÷¢ ( «¥ ­¥ ¤«ï ¬ã«ì⨣à ä÷¢) è«ïå ®¤­®-§­ ç­® ¢¨§­ ç õâìáï ¯®á«÷¤®¢­÷áâî ¢¥à設:

v1vi1vi2 . . . vin−1v2.

� §­ ç¨¬®, é® ¤«ï ®à÷õ­â®¢ ­¨å £à ä÷¢ è«ïå ¢¨§­ ç õâìáï  ­ «®£÷ç-­®,  «¥ § ãà å㢠­­ï¬ ®à÷õ­â æ÷ù ॡ¥à: ॡ஠ei1 ¬ õ ¢¥á⨠¢÷¤ v1 ¤® vi1 ,ॡ஠ei2 { ¢÷¤ vi1 ¤® vi2 ÷ â. ¤.

71

Page 74: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5. �¥®à÷ï £à ä÷¢

�«ïå, 直© ­¥ ¬÷áâ¨âì ¯®¢â®à¥­ì ¢¥à設 ÷ ॡ¥à, ªà÷¬, ¬®¦«¨¢®,¤¢®å ªà ©­÷å ¢¥à設 v1 â  v2, ­ §¨¢ îâì ¯à®á⨬ è«ï宬. �¥£ª® ¯¥à¥-¢÷à¨â¨, é® ¯®¢â®à¥­­ï ॡ¥à ã è«ïåã ¢¥¤¥ ¤® ¯®¢â®à¥­­ï ¢¥à設 (®¤­ ª¬®¦«¨¢®, é® ¯®¢â®à⨬ãâìáï «¨è¥ ¤¢÷ ªà ©­÷ ¢¥à設¨).

� ¬ª­¥­¨© è«ïå (v1 = v2) ­ §¨¢ îâì 横«®¬. �à®á⨩ § ¬ª­¥­¨©è«ïå ­ §¨¢ îâì ¯à®á⨬ 横«®¬.

�¥¬  5.1. �ã¤ì-直© è«ïå, é® §'õ¤­ãõ ¢¥à設¨ v1 â  v2 (v1 6= v2),¬÷áâ¨âì ¯à®á⨩ è«ïå, é® §'õ¤­ãõ â÷ ¦ ¢¥à設¨ v1 â  v2.

�®¢¥¤¥­­ï. �«ï ¤®¢¥¤¥­­ï «¥¬¨ ¤®áâ â­ì® ¢¨¤ «¨â¨ ÷§ è«ïåã ¢á÷横«¨, é® ¢¨­¨ª îâì §  ¡ã¤ì-类£® ¯®¢â®à¥­­ï ¢¥à設.

�ਪ« ¤ 5.2. �®§£«ï­¥¬® £à ä, §®¡à ¦¥­¨© ­  à¨á. 5.2.v2

e1

e3

e2 e4

v3

v1

v4

�¨á. 5.2

�«ïå v1e1e2e3v1 ã æ쮬㠣à ä÷ { ¯à®á⨩ 横«,è«ïå v1e1e4v4 { ¯à®á⨩ è«ïå ( «¥ ­¥ 横«, ®á-ª÷«ìª¨ v1 6= v4), è«ïå v1e1e1v1 { 横« ( «¥ ­¥ ¯à®-á⨩ 横«, ®áª÷«ìª¨ ¯®¢â®àîõâìáï ॡ஠e1).

� ¤ «÷, ïªé® ­¥ ¢ª § ­® ÷­è¥, £à ä¨ ¢¢ ¦ â¨¬¥¬® ÷ ­¥®à÷õ­â®¢ ­¨-¬¨, ÷ ¯à®á⨬¨.

5.2. �⥯¥­÷ ¢¥à設 £à äã.�¥®à¥¬  ¯à® á⥯¥­÷ ¢¥à設

�§­ ç¥­­ï 5.2. �⥯¥­¥¬ dv ¢¥à設¨ v ­ §¨¢ îâì ª÷«ìª÷áâì ॡ¥à,÷­æ¨¤¥­â­¨å v. �ªé® dv = 0, ¢¥à設ã v ­ §¨¢ îâì ÷§®«ì®¢ ­®î. �¥à設㯠୮£® á⥯¥­ï ­ §¨¢ îâì ¯ à­®î, ­¥¯ à­®£® á⥯¥­ï { ­¥¯ à­®î.

�ਪ« ¤ 5.3. �®§£«ï­¥¬® £à ä ­  à¨á. 5.3.v2

v3

v1

v4

v5

�¨á. 5.3

�«ï æ쮣® £à äã ¬ õ¬® ¢¥à設¨ ÷§ áâ¥-¯¥­ï¬¨: dv1 = dv3 = 2, dv2 = 3, dv4 = 1,dv5 = 0. �⦥, ¢¥à設  v5 ÷§®«ì®¢ ­ .

72

Page 75: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.2. �⥯¥­÷ ¢¥à設 £à äã. �¥®à¥¬  ¯à® á⥯¥­÷ ¢¥à設

�祢¨¤­®, á⥯÷­ì ¢¥à設¨ ¢ ¯à®áâ¨å £à ä å (  á ¬¥ ¯à®áâ÷ £à ä¨¬¨ § à § ஧£«ï¤ õ¬®) «¥¦¨âì ã ¬¥¦ å ¢÷¤ 0 ¤® nv−1, ¤¥ nv = card(V ) {§ £ «ì­  ª÷«ìª÷áâì ¢¥à設 ã £à ä÷. �à ä, ãá÷ ¢¥à設¨ 类£® ÷§®«ì®¢ ­÷,­ §¨¢ îâì ¯®à®¦­÷¬ £à ä®¬. �à ä, ãá÷ ¢¥à設¨ 类£® ¬ îâì á⥯÷­ìnv − 1, ­ §¨¢ îâì ¯®¢­¨¬ £à ä®¬. �祢¨¤­®, ¢ ¯®à®¦­ì®¬ã £à ä÷ ª÷«ì-ª÷áâì ॡ¥à ne = card(E) = 0, ¢ ¯®¢­®¬ã £à ä÷ ª÷«ìª÷áâì ॡ¥à ne = C2

nv.

�¥®à¥¬  5.1. �®¢÷«ì­¨© (¯à®á⨩ â  ­¥®à÷õ­â®¢ ­¨©) £à ä ¬÷á-â¨âì ¯à¨­ ©¬­÷ ¤¢÷ ¢¥à設¨ ®¤­ ª®¢®£® á⥯¥­ï.

�®¢¥¤¥­­ï. �ਯãáâ÷¬®, é® ¢ £à ä÷ G ¢á÷ ¢¥à設¨ ¬ îâì à÷§­÷ áâ¥-¯¥­÷. �®¤÷, ®áª÷«ìª¨ á⥯÷­ì ¢¥à設¨ õ æ÷«¨¬ ç¨á«®¬ ã ¬¥¦ å ¢÷¤ 0 ¤®nv − 1 (¢á쮣® nv ¬®¦«¨¢¨å §­ ç¥­ì), £à ä G ¬ õ ¬÷áâ¨â¨ ¢¥à設¨ ¢á÷åá⥯¥­÷¢ ¢÷¤ 0 ¤® nv−1. �⦥, £à ä G ¬ õ ¬÷áâ¨â¨ ÷§®«ì®¢ ­ã ¢¥à設ã v0

(dv0 = 0) â  ¢¥à設ã vnv−1 á⥯¥­ï nv − 1, é® ­¥¬®¦«¨¢®: ¢¥à設  vnv−1

¬ õ ¡ã⨠áã¬÷¦­®î § ãá÷¬  ¢¥à設 ¬¨ £à äã G, §®ªà¥¬  § ÷§®«ì®¢ ­®î¢¥à設®î v0.

�§­ ç¥­­ï 5.3. �¥å © G { £à ä § ¬­®¦¨­®î ¢¥à設 V â  ¬­®¦¨-­®î ॡ¥à E. �à ä G1 § ¬­®¦¨­®î ¢¥à設 V1 â  ¬­®¦¨­®î ॡ¥à E1

­ §¨¢ îâì ¯÷¤£à ä®¬ £à äã G, ïªé® V1 ⊂ V â  E1 ⊂ E.

� ¦«¨¢¨¬ ª« á®¬ ¯÷¤£à ä÷¢ õ £à ä¨, ïª÷ ®âਬãîâì ®¯¥à æ÷ﬨ ¢¨-¤ «¥­­ï ¢¥à設 â  ¢¨¤ «¥­­ï ॡ¥à { § £ «ì­¨© §¬÷áâ æ¨å ®¯¥à æ÷© §à®-§ã¬÷«® § ­ §¢¨. �¢ ¦ îâì, é® ã à §÷ ¢¨¤ «¥­­ï ¢¥à設¨ v à §®¬ ÷§ ¢¥à-設®î v ¢¨¤ «ïîâìáï ¢á÷ ॡà , ïª÷ ù© ÷­æ¨¤¥­â­÷; ã à §÷ ¢¨¤ «¥­­ï ॡࠬ­®¦¨­  ¢¥à設 ­¥ §¬÷­îõâìáï.

�ਪ« ¤ 5.4. �  à¨á. 5.4 £à ä¨ G2 â  G3 ®âਬ ­÷ § G1 ¢¨¤ «¥­­ï¬¢¥à設¨ v2 â  à¥¡à  e ¢÷¤¯®¢÷¤­®.

G1 G2G3

v3

v1

v4

v2

v3

v1

v4

v2

e

v3

v1

v4

�¨á. 5.4

73

Page 76: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5. �¥®à÷ï £à ä÷¢

�¥®à¥¬  5.2 (⥮६  ¯à® á⥯¥­÷ ¢¥à設). �㬠 á⥯¥­÷¢ ãá÷墥à設 £à äã ¤®à÷¢­îõ ¯®¤¢÷©­÷© ª÷«ìª®áâ÷ ॡ¥à:

∑v∈V

dv = 2ne, ¤¥ ne = card(E) { ª÷«ìª÷áâì ॡ¥à ã £à ä÷.

�®¢¥¤¥­­ï. � áâ®áãõ¬® ¬¥â®¤ ¬ â¥¬ â¨ç­®ù ÷­¤ãªæ÷ù §  ne.1. � §  ÷­¤ãªæ÷ù. ne = 0. �祢¨¤­®, ¤«ï ¯®à®¦­ì®£® £à äã ⢥द¥­-

­ï ⥮६¨ á¯à ¢¤¦ãõâìáï.2. �ਯã饭­ï ÷­¤ãªæ÷ù. �¥å © ¤«ï £à ä÷¢ § ne ≤ n ⢥द¥­­ï ⥮-

६¨ á¯à ¢¥¤«¨¢¥.3. �ப ÷­¤ãªæ÷ù. �¥å © £à ä G ¬ õ ne = n + 1 ॡà®. �«ï ¤®¢¥¤¥­­ï

⥮६¨ ¢¨¤ «¨¬® ã £à ä÷ G ¤®¢÷«ì­¥ ॡ஠e. �âਬãõ¬® £à ä G § ª÷«ì-ª÷áâî ॡ¥à ne− 1 = n, ¤«ï 类£® ⢥द¥­­ï ⥮६¨, §  ¯à¨¯ã饭­ï¬÷­¤ãªæ÷ù, á¯à ¢¥¤«¨¢¥. �⦥, ¤«ï G ¬ õ¬®:

∑v∈V

dv = 2(ne − 1), ¤¥ dv { á⥯÷­ì ¢¥à設¨ v ã £à ä÷ G.

� à¥èâ÷, ®áª÷«ìª¨ ¢¨¤ «¥­¥ ॡ஠e §¡÷«ìè㢠«® áã¬ã á⥯¥­÷¢ ¢¥à設­  2 (¯® 1 ­  ª®¦­ã § ¤¢®å ¢¥à設, ÷­æ¨¤¥­â­¨å e), ¤«ï £à äã G ¬ õ¬®:

∑v∈V

dv = 2(ne − 1) + 2 = 2ne.

� ã¢ ¦¥­­ï 5.1. �¥®à¥¬  5.2 § «¨è õâìáï ¯à ¢¨«ì­®î ÷ ¤«ï ¬ã«ì-⨣à ä÷¢, ïªé® ¢¨§­ ç îç¨ á⥯÷­ì ¢¥à設¨ ¢¢ ¦ â¨, é® ª®¦­  ¯¥â«ï§¡÷«ìèãõ á⥯÷­ì ¢÷¤¯®¢÷¤­®ù ¢¥à設¨ ­  2. �®¢¥¤¥­­ï ⥮६¨ ¯à¨ æ쮬ã¯à ªâ¨ç­® ­¥ §¬÷­îõâìáï.

�ਪ« ¤ 5.5. �«ï £à äã, §®¡à ¦¥­®£® ­  à¨á. 5.5, ¬ õ¬® â ª÷ á⥯¥­÷¢¥à設:

v2 v3v1

v4 v5

�¨á. 5.5

dv1 = dv2 = dv3 = 2, dv4 = 3 (¯¥â«ï §¡÷«ì訫 á⥯÷­ì ­  2), dv5 = 3. �⦥,

∑v∈V

dv =5∑

k=1

dvk= 12 = 2ne.

74

Page 77: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.3. �¢'吝÷áâì £à ä÷¢

5.3. �¢'吝÷áâì £à ä÷¢�§­ ç¥­­ï 5.4. �à ä G ­ §¨¢ îâì §¢'吝¨¬, ïªé® ¡ã¤ì-ïª÷ ¤¢÷ ©®£®

¢¥à設¨ ¬®¦ãâì ¡ã⨠§'õ¤­ ­÷ è«ï宬. � ªá¨¬ «ì­¨© §  ¢ª«î祭­ï¬(«⊂») §¢'吝¨© ¯÷¤£à ä £à äã G ­ §¨¢ îâì §¢'吝®î ª®¬¯®­¥­â®î,  ¡®®¡« áâî §¢'吝®áâ÷.

�祢¨¤­®, £à ä §¢'吝¨© ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ ¢÷­ á ¬ õ ®¡« áâ'吝®áâ÷; ã § £ «ì­®¬ã ¢¨¯ ¤ªã ª®¦¥­ £à ä õ ®¡'õ¤­ ­­ï¬ áª÷­ç¥­­®ùª÷«ìª®áâ÷ ®¡« á⥩ §¢'吝®áâ÷.

�ਪ« ¤ 5.6. �®§£«ï­¥¬® £à ä, §®¡à ¦¥­¨© ­  à¨á. 5.6.

�¥© £à ä ¬÷áâ¨âì âਠ®¡« á-â÷ §¢'吝®áâ÷: ¯÷¤£à ä § ¢¥àè¨-­ ¬¨ v1, v2, v3, v4, ¯÷¤£à ä §¢¥à設 ¬¨ v5, v6, v7 â  ¯÷¤-£à ä, é® ¬÷áâ¨âì ®¤­ã ÷§®«ì®-¢ ­ã ¢¥à設ã v8.

G

v2 v6

v3

v7

v1 v5

v4 v8

�¨á. 5.6

�§­ ç¥­­ï 5.5. �à ä G ­ §¨¢ îâì ¤®¯®¢­¥­­ï¬ (¤®¯®¢­ï«ì­¨¬£à ä®¬) ¤® £à äã G, ïªé®:

• ¬­®¦¨­¨ ¢¥à設 £à ä÷¢ G â  G §¡÷£ îâìáï;• ¢¥à設¨ v1 â  v2 áã¬÷¦­÷ ¢ £à ä÷ G ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ ¢®­¨ ­¥

áã¬÷¦­÷ ¢ £à ä÷ G.

�祢¨¤­®, ¯¥à¥à÷§ £à ä÷¢ G â  G { ¯®à®¦­÷© £à ä, ®¡'õ¤­ ­­ï Gâ  G { ¯®¢­¨© £à ä.

�¥®à¥¬  5.3. �ਭ ©¬­÷ ®¤¨­ ÷§ £à ä÷¢ G  ¡® G §¢'吝¨©.

�®¢¥¤¥­­ï. �ਯãáâ÷¬®, é® £à ä G ­¥ §¢'吝¨©. �®¢¥¤¥¬®, é® ¢ æì®-¬ã à §÷ £à ä G §¢'吝¨©.

�áª÷«ìª¨ £à ä G ­¥ §¢'吝¨©, ã G §­ ©¤¥âìáï ¯à¨­ ©¬­÷ ®¤­  ®¡-« áâì §¢'吝®áâ÷ G0 6= G. � ä÷ªáãõ¬® ¤®¢÷«ì­ã ¢¥à設ã v0 ∈ G0 â  ¤®¢÷-«ì­ã ¢¥à設ã v /∈ G0. �  ¢¨§­ ç¥­­ï¬ ®¡« áâ÷ §¢'吝®áâ÷ ¢¥à設  v0 ­¥õ áã¬÷¦­®î (÷ ­ ¢÷âì ­¥ §'õ¤­ ­  ¦®¤­¨¬ è«ï宬) ã £à ä÷ G § ¢¥àè¨-­®î v. �®¤÷, §  ¢¨§­ ç¥­­ï¬ ¤®¯®¢­ï«ì­®£® £à äã, ¢¥à設  v0 áã¬÷¦­ 

75

Page 78: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5. �¥®à÷ï £à ä÷¢

§ ¢¥à設®î v ã £à ä÷ G. �⦥, ¤¢÷ ¡ã¤ì-ïª÷ ¢¥à設¨ v1 â  v2 ã £à ä÷G ¡ã¤ãâì §'õ¤­ ­÷ è«ï宬 ¤®¢¦¨­¨ ­¥ ¡÷«ìè¥ §  2: ¢¥à設¨ v1 â  v2 áã-¬÷¦­÷ (§'õ¤­ ­÷ ®¤­¨¬ ॡ஬), ïªé® à÷¢­® ®¤­  § æ¨å ¢¥à設 ­ «¥¦¨âìG0; ¢¥à設¨ v1 â  v2 §'õ¤­ ­÷ è«ï宬 ¤®¢¦¨­¨ 2, é® ¯à®å®¤¨âì ç¥à¥§¤®¢÷«ì­ã ¢¥à設ã v0 ∈ G0, ïªé® v1, v2 /∈ G0; ¢¥à設¨ v1 â  v2 §'õ¤­ ­÷è«ï宬 ¤®¢¦¨­¨ 2, é® ¯à®å®¤¨âì ç¥à¥§ ¤®¢÷«ì­ã ¢¥à設ã v /∈ G0, ïªé®v1, v2 ∈ G0.

�ਪ« ¤ 5.7. �  à¨á. 5.7 §®¡à ¦¥­® £à ä G â  ©®£® ¤®¯®¢­ï«ì­¨©G. �à ä G ­¥ õ §¢'吝¨¬, ®¤­ ª ¤®¯®¢­ï«ì­¨© £à ä G { §¢'吝¨©.

G

v2

v6v3

v1

v5

v4

G

v2

v6v3

v1

v5

v4

�¨á. 5.7

�¯à ¢  5.1. � ¢¥á⨠¯à¨ª« ¤ £à äã, §¢'吝®£® à §®¬ ÷§ ᢮ù¬ ¤®-¯®¢­¥­­ï¬.

�§­ ç¥­­ï 5.6. �®á⮬ ­ §¨¢ îâì ॡ஠£à äã, ¢¨¤ «¥­­ï 类£®¢¥¤¥ ¤® §¡÷«ì襭­ï ®¡« á⥩ §¢'吝®áâ÷. �®çª®î §'õ¤­ ­­ï ­ §¨¢ îâ좥à設㠣à äã, ¢¨¤ «¥­­ï 类ù ¢¥¤¥ ¤® §¡÷«ì襭­ï ®¡« á⥩ §¢'吝®áâ÷.

�祢¨¤­®, ¤«ï §¢'吝®£® £à äã ¢¨¤ «¥­­ï ¬®áâ  ç¨ â®çª¨ §'õ¤­ ­­ï¢¥¤¥ ¤® ¢âà â¨ §¢'吝®áâ÷.

� áâ㯭¥ ⢥द¥­­ï ­¥£ ©­® ¢¨¯«¨¢ õ § ¢¨§­ ç¥­­ï §¢'吝®áâ÷ â â¢¥à¤¦¥­­ï «¥¬¨ 5.1.

�¥¬  5.2. �¥¡à® õ ¬®á⮬ ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ ¢®­® ­¥ ¢å®¤¨âìã ¦®¤­¨© ¯à®á⨩ 横«.

76

Page 79: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.4. �©«¥à®¢÷ ÷ ­ ¯÷¢¥©«¥à®¢÷ £à ä¨

�ਪ« ¤ 5.8. �®§£«ï­¥¬® £à ä, §®¡à ¦¥­¨© ­  à¨á. 5.8.�¥£ª® ¯¥à¥¢÷à¨â¨, é® ¢¥à設  v2 { â®çª  §'õ¤­ ­­ï,ॡ஠e { ¬÷áâ. � §­ ç¨¬®, é® æ¥© £à ä ¬÷áâ¨âì ®¤¨­¯à®á⨩ 横« v1v2v3, 直© ¯à®å®¤¨âì ç¥à¥§ ãá÷ ॡࠣà äã, ªà÷¬ à¥¡à  e.

v2

e

v3

v1

v4

�¨á. 5.8

5.4. �©«¥à®¢÷ ÷ ­ ¯÷¢¥©«¥à®¢÷ £à ä¨�§­ ç¥­­ï 5.7. �©«¥à®¢¨¬ è«ï宬 ã £à ä÷ ­ §¨¢ îâì è«ïå, 直©

¬÷áâ¨âì ª®¦­¥ ॡ஠£à äã à÷¢­® ®¤¨­ à § (¯à®å®¤¨âì ç¥à¥§ ª®¦­¥ ॡ஡¥§ ¯®¢â®à¥­ì). � ¬ª­¥­¨© ¥©«¥à÷¢ è«ïå ­ §¨¢ îâì ¥©«¥à®¢¨¬ 横«®¬.�¢'吝¨© £à ä, é® ¤®¯ã᪠õ ¯®¡ã¤®¢ã ¥©«¥à®¢®£® 横«ã (è«ïåã), ­ §¨-¢ îâì ¥©«¥à®¢¨¬ (­ ¯÷¢¥©«¥à®¢¨¬).

�஡«¥¬  ஧¯÷§­ ¢ ­­ï ¥©«¥à®¢®áâ÷ â  ­ ¯÷¢¥©«¥à®¢®áâ÷ £à ä÷¢ ÷á-â®à¨ç­® ¯®¢'易­  ÷§ ¢÷¤®¬®î ¯à®¡«¥¬®î ª¥­÷£á¡¥à§ìª¨å ¬®áâ÷¢. �  ¯®-ç âªã XVIII á⮫÷ââï ¢ ¬÷áâ÷ �¥­÷£á¡¥à§÷ (­¨­÷ { � «÷­÷­£à ¤) ¡ã«® á÷¬¬®áâ÷¢, é® ¢¥«¨ ç¥à¥§ à÷çªã �ॣ¥«ì.

�  à¨á. 5.9 §®¡à ¦¥­® áå¥-

AA

B B

C

C

D

D

�¨á. 5.9

¬ã ஧â è㢠­­ï ª¥­÷£á¡¥à§ì-ª¨å ¬®áâ÷¢ â  ¢÷¤¯®¢÷¤­¨© ¬ã«ì-⨣à ä: ª®¦­÷© §¢'吝÷© ®¡« á-â÷ áãè÷ ¢÷¤¯®¢÷¤ õ ¢¥à設  £à -äã, ª®¦­®¬ã ¬®áâã { ॡà®.

�஡«¥¬ : ç¨ ¬®¦­  ®¡÷©â¨¢á÷ ¬®á⨠à÷¢­® ¯® ®¤­®¬ã à -§ã, ¯®¢¥à­ãâ¨áì ã ¢¨å÷¤­¨© ¯ã­ªâ? �祢¨¤­®, ¢ â¥à¬÷­ å ⥮à÷ù £à ä÷¢¯à®¡«¥¬  ª¥­÷£á¡¥à§ìª¨å ¬®áâ÷¢ §¢®¤¨âìáï ¤® ஧¯÷§­ ¢ ­­ï ¥©«¥à®¢®áâ÷¢÷¤¯®¢÷¤­®£® £à äã. �î ¯à®¡«¥¬ã ¢ § £ «ì­®¬ã ¢¨¯ ¤ªã ஧¢'易¢ §­ -¬¥­¨â¨© ã祭¨© XVIII áâ®à÷ççï �¥®­ à¤ �©«¥à (á ¬¥ ©®£® ÷¬'ï¬ ­ §¢ ­÷横«¨, é® ¬÷áâïâì ª®¦­¥ ॡ஠£à äã ¡¥§ ¯®¢â®à¥­ì).

�¥®à¥¬  5.4 (�. �©«¥à, 1736 à.). �¢'吝¨© £à ä õ ¥©«¥à®¢¨¬ ⮤÷÷ â÷«ìª¨ ⮤÷, ª®«¨ ¢á÷ ©®£® ¢¥à設¨ ¯ à­÷.

77

Page 80: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5. �¥®à÷ï £à ä÷¢

�®¢¥¤¥­­ï. �¥®¡å÷¤­÷áâì. �¥å © £à ä (§¢'吝¨©) õ ¥©«¥à®¢¨¬. �á-ª÷«ìª¨ ¥©«¥à÷¢ 横« ¬÷áâ¨âì ¢á÷ à¥¡à  £à äã ¡¥§ ¯®¢â®à¥­ì, ª®¦­  ¢¥à-設 , é® ¢å®¤¨âì ¤® 横«ã k à §÷¢, ¢å®¤¨âì ã 横« § ¯ à­®î ª÷«ìª÷áâî2k ÷­æ¨¤¥­â­¨å ù© ॡ¥à. �⦥, á⥯÷­ì ª®¦­®ù ¢¥à設¨ £à äã õ ¯ à­¥ç¨á«® 2k, ¤¥ k { ª÷«ìª÷áâì ¢å®¤¦¥­ì ¢¥à設¨ ¤® ¥©«¥à®¢®£® 横«ã.

�®áâ â­÷áâì. �¥å © ¢á÷ ¢¥à設¨ §¢'吝®£® £à äã G ¯ à­÷. �¢ ¦ -⨬¥¬®, é® G ­¥ ¯®à®¦­÷© (¢¨¯ ¤®ª ¯®à®¦­ì®£® £à äã, ®ç¥¢¨¤­®, ­¥¯®âॡãõ ¤®¢¥¤¥­­ï). �®¢¥¤¥­­ï ¥©«¥à®¢®áâ÷ £à äã G ¯à®¢¥¤¥¬® ¢ ¤¢ ¥â ¯¨.

A. � ä÷ªáãõ¬® ¤®¢÷«ì­ã ¢¥à設ã v0 ∈ V ÷, ¯®ç¨­ îç¨ § v0, ¯®¡ã¤ãõ¬®æ¨ª«, é® ¬÷áâ¨âì ¡¥§ ¯®¢â®à¥­ì ¤¥ïª÷ (­¥ ®¡®¢'離®¢® ¢á÷) à¥¡à  £à äã G.�áª÷«ìª¨ G { §¢'吝¨© £à ä, ÷á­ãõ ¯à¨­ ©¬­÷ ®¤­¥ ॡ஠e1, ÷­æ¨¤¥­â­¥¢¥à設÷ v0. �¥¡à® e1 ¢¥¤¥ ¢÷¤ v0 ¤® ¤¥ïª®ù ¢¥à設¨ v1 6= v0. �áª÷«ìª¨ v1

¯ à­ , ÷á­ãõ ¯à¨­ ©¬­÷ ®¤­¥ ॡ஠e2 6= e1, ÷­æ¨¤¥­â­¥ ¢¥à設÷ v1.� § £ «ì­®¬ã ¢¨¯ ¤ªã, ­¥å © ­  n-¬ã ªà®æ÷ ¬¨ ¯®¡ã¤ã¢ «¨ è«ïå

v0e1v1 . . . envn, â ª¨©, é® vk 6= v0 ¯à¨ 0 < k < n â  ek 6= ej ¯à¨ k 6= j(¯÷¤ªà¥á«¨¬®, é® ¢¥à設¨ ¢ ¯®¡ã¤®¢ ­®¬ã è«ïåã ¬®¦ãâì ¯®¢â®à-â¨áì). �ªé® vn = v0, ¯®¡ã¤®¢ ­¨© è«ïå õ 横«®¬. �¥å © vn 6= v0. �¥å ©¢¥à設  vn ¢å®¤¨âì ã ¯®¡ã¤®¢ ­¨© è«ïå m à §÷¢. �®¤÷ ¯®¡ã¤®¢ ­¨© è«ïå¬÷áâ¨âì 2m−1 ॡ¥à, ÷­æ¨¤¥­â­¨å vn: ¯à¨ ¢á÷å ¢å®¤¦¥­­ïå, ®ªà÷¬ ®áâ ­-­ì®£®, ¢¥à設  vn ¢å®¤¨âì § ¤¢®¬  ÷­æ¨¤¥­â­¨¬¨ ù© ॡࠬ¨, ¯à¨ ®áâ ­-­ì®¬ã ¢å®¤¦¥­­÷ ¤®¤ õâìáï ॡ஠en. �⦥, ¬ õ ÷á­ã¢ â¨ ¯à¨­ ©¬­÷ ®¤­¥à¥¡à® en+1, ÷­æ¨¤¥­â­¥ vn, é® ­¥ ¢å®¤¨âì ã ¯®¡ã¤®¢ ­¨© è«ïå. �®¤ ¬® à¥-¡à® en+1 ¤® ¯®¡ã¤®¢ ­®£® è«ïåã, ®âਬãîç¨ è«ïå v0e1v1 . . . envnen+1vn+1,÷ â. ¤. �¥© ¯à®æ¥á ¬ õ § ª÷­ç¨â¨áì (­  ¢¥à設÷ v0) §  áª÷­ç¥­­ã ª÷«ìª÷áâìªà®ª÷¢, ®áª÷«ìª¨ £à ä G ¬ õ áª÷­ç¥­­ã ª÷«ìª÷áâì ॡ¥à.

B. �¥å © 横« P , ¯®¡ã¤®¢ ­¨© ­  ¯¥à讬㠥⠯÷, ¬÷áâ¨âì ­¥ ¢á÷ ॡࠣà äã G (÷­ ªè¥ ¯®¡ã¤®¢ ­¨© 横« P { ¥©«¥à÷¢). �®§£«ï­¥¬® £à ä G1,®âਬ ­¨© § £à äã G ¢¨¤ «¥­­ï¬ ãá÷å ॡ¥à, ïª÷ ã¢÷©è«¨ ¢ 横« P .�祢¨¤­®, G1 ¬÷áâ¨âì â÷ ÷ â÷«ìª¨ â÷ ॡà , ïª÷ ­¥ ã¢÷©è«¨ ¢ P . �¢÷¤á¨¢¨¯«¨¢ õ, é® ª®¦­  ¢¥à設  £à äã G1 ¯ à­ . �áª÷«ìª¨ £à ä G §¢'吝¨©,横« P ¬÷áâ¨âì ¯à¨­ ©¬­÷ ®¤­ã ¢¥à設ã vk, 猪 ÷­æ¨¤¥­â­  ¤¥ïª®¬ãॡàã £à äã G1. � áâ®á㢠¢è¨  «£®à¨â¬ ¯¥à讣® ¥â ¯ã ¤«ï £à äã G1 §¯®ç âª®¢®î ¢¥à設®î vk, ¯®¡ã¤ãõ¬® 横« Q, é® ¬÷áâ¨âì ¡¥§ ¯®¢â®à¥­ì¤¥ïª÷ (¬®¦«¨¢®, ­¥ ¢á÷) à¥¡à  £à äã G1.

78

Page 81: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.4. �©«¥à®¢÷ ÷ ­ ¯÷¢¥©«¥à®¢÷ £à ä¨

� à¥èâ÷, ¯®¡ã¤ãõ¬® 横«P1 = vkPvkQvk, é® ¬÷á-â¨âì ¡¥§ ¯®¢â®à¥­ì ¢á÷ à¥-¡à , ïª÷ ã¢÷©è«¨ ¢ 横«¨P â  Q. �® áãâ÷, ¬¨ ⨬-ç á®¢® «à®§¬¨ª õ¬®» 横«P ã ¢¥à設÷ vk ÷ ¤®¤ õ¬®æ¨ª« Q (à¨á. 5.10). �祢¨¤-­®, 楩 ¯à®æ¥á ¬ õ § ª÷­-ç¨â¨áì §  áª÷­ç¥­­ã ª÷«ì-ª÷áâì ªà®ª÷¢ ¯®¡ã¤®¢®î ¥©-«¥à®¢®£® 横«ã ¢ £à ä÷ G.

vk

P

P1: –1 2–3v vk k– –4–5–6–7–8–9–

Q12

3

45

6 7

89

�¨á. 5.10

� á«÷¤®ª. �¢'吝¨© £à ä õ ­ ¯÷¢¥©«¥à®¢¨¬ ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨¢÷­ ¬÷áâ¨âì ­¥ ¡÷«ìè¥ ïª ¤¢÷ ­¥¯ à­÷ ¢¥à設¨.

�®¢¥¤¥­­ï. �¥®¡å÷¤­÷áâì. �¥å © £à ä õ ­ ¯÷¢¥©«¥à®¢¨¬,  «¥ ­¥ ¥©«¥-஢¨¬ (¤«ï ¥©«¥à®¢®£® £à äã ¢á÷ ¢¥à設¨ ¯ à­÷). �«ï ¤®¢¥¤¥­­ï ÷á­ã-¢ ­­ï à÷¢­® ¤¢®å ­¥¯ à­¨å ¢¥à設 ¤®áâ â­ì® §'õ¤­ â¨ ¯®ç â®ª â  ª÷­¥æ쥩«¥à®¢®£® è«ïåã ÷ § áâ®á㢠⨠¤® ®âਬ ­®£® £à äã ⢥द¥­­ï ®á­®¢-­®ù ⥮६¨.

�®áâ â­÷áâì. �¥å © £à ä ¬ õ ¤¢÷ ­¥¯ à­÷ ¢¥à設¨ (á¨âã æ÷ï ®¤­÷õù­¥¯ à­®ù ¢¥à設¨ ­¥¬®¦«¨¢  ç¥à¥§ ⥮६ã 5.2 { ¯à® á⥯¥­÷ ¢¥à設).�«ï ¤®¢¥¤¥­­ï ­ ¯÷¢¥©«¥à®¢®áâ÷ ¤®áâ â­ì® §'õ¤­ â¨ ॡ஬ ¤¢÷ ­¥¯ à­÷¢¥à設¨ ÷ § áâ®á㢠⨠⢥द¥­­ï ®á­®¢­®ù ⥮६¨.

� ã¢ ¦¥­­ï 5.2. �¥£ª® §à®§ã¬÷â¨, é® §  ­ ï¢­®áâ÷ à÷¢­® ¤¢®å ­¥¯ à-­¨å ¢¥à設 ã §¢'吝®¬ã £à ä÷ ¥©«¥à÷¢ è«ïå ¬ õ ¯®ç¨­ â¨áì â  § ª÷­çã-¢ â¨áì á ¬¥ ¢ ­¥¯ à­¨å ¢¥à設 å.

�¯à ¢  5.2. �§ £ «ì­¨â¨ ¤®¢¥¤¥­­ï ⥮६¨ 5.4 â  ùù ­ á«÷¤ªã ­  ¢¨-¯ ¤®ª ¬ã«ì⨣à ä÷¢ (­ £ ¤ õ¬®, é® ¯¥â«ï §¡÷«ìèãõ á⥯÷­ì ¢¥à設¨ ­  2).

�ਪ« ¤ 5.9. �à ä «ª¥­÷£á¡¥à§ìª÷ ¬®á⨻ (¤¨¢. à¨á. 5.9) ­¥ õ ­÷¥©«¥à®¢¨¬, ­÷ ­ ¢÷âì ­ ¯÷¢¥©«¥à®¢¨¬, ®áª÷«ìª¨ ¢á÷ ©®£® ¢¥à設¨ ­¥¯ à­÷.

�® ஧¯÷§­ ¢ ­­ï ¥©«¥à®¢®áâ÷ (­ ¯÷¢¥©«¥à®¢®áâ÷) £à ä÷¢ §¢®¤¨âìá冷¡à¥ ¢÷¤®¬  ¤ ¢­ï ¯à®¡«¥¬ : ­ ¬ «î¢ â¨ ä÷£ãàã, ­¥ ¢÷¤à¨¢ îç¨ ®«÷-¢¥æì ¢÷¤ ¯ ¯¥àã, § ¯®¢¥à­¥­­ï¬ (¡¥§ ¯®¢¥à­¥­­ï) ¤® ¢¨å÷¤­®ù â®çª¨.

79

Page 82: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5. �¥®à÷ï £à ä÷¢

�ਪ« ¤ 5.10. �®§£«ï­¥¬® £à ä, §®¡à ¦¥­¨© ­  à¨á. 5.11.�¥© £à ä ¢÷¤¯®¢÷¤ õ áâ à®¤ ¢­÷©

v4

v2

v5 v6

v3v1

�¨á. 5.11

(¯à¨¡«¨§­® â¨áïç  à®ª÷¢) ¯à®¡-«¥¬÷ «è ¡«¥© � £®¬¥â » { âॡ ­ ¬ «î¢ â¨ «è ¡«÷ � £®¬¥â »,­¥ ¢÷¤à¨¢ îç¨ ®«÷¢¥æì ¢÷¤ ¯ ¯¥àã.�祢¨¤­®, ¯à®¡«¥¬  ¬ õ ஧¢'ï-§®ª, ®áª÷«ìª¨ £à ä ¥©«¥à÷¢ (ãá÷¢¥à設¨ ¯ à­÷). �¤­¨¬ § ¬®¦-«¨¢¨å ( «¥ ­¥ õ¤¨­¨¬) ¥©«¥à®¢¨å

横«÷¢ ã æ쮬㠣à ä÷ õ 横« v1v2v6v5v4v2v3v5v1.�«ï ¯à ªâ¨ç­®ù ¯®¡ã¤®¢¨ ¥©«¥à®¢®£® 横«ã (è«ïåã) ¬®¦­  ᪮à¨á-

â â¨áì ¤ã¦¥ ¯à®á⨬ â  ¥ä¥ªâ¨¢­¨¬  «£®à¨â¬®¬ �«¥à÷ .

5.4.1. �«£®à¨â¬ �«¥à÷

1. �©«¥à÷¢ 横« ¬®¦­  ¯®ç¨­ â¨ § ¡ã¤ì-类ù ¢¥à設¨ (¥©«¥à÷¢ è«ïåâॡ  ¯®ç¨­ â¨ § ®¤­÷õù § ­¥¯ à­¨å ¢¥à設).

2. �÷¤ ç á ¯®¡ã¤®¢¨ ¥©«¥à®¢®£® 横«ã (è«ïåã) § £à äã ¢¨¤ «ïîâìॡà , é® ¢å®¤ïâì ¤® 横«ã.

3. �  ª®¦­®¬ã ªà®æ÷ ¬®¦­  ¢¨¡¨à â¨ ¤®¢÷«ì­¥ ॡà®, 瘟, §  ¬®¦«¨-¢®áâ÷, ­¥ õ ¬®á⮬ (§ ãà å㢠­­ï¬ ¢¨¤ «¥­­ï ॡ¥à ­  ¯®¯¥à¥¤­÷å ªà®-ª å); ¬÷áâ ¬®¦­  ®¡¨à â¨ «¨è¥ ⮤÷, ª®«¨ ¢á÷ ॡà , ÷­æ¨¤¥­â­÷ ¤ ­÷©¢¥à設÷, õ ¬®áâ ¬¨.

�¡óàã­â㢠­­ï ª®à¥ªâ­®áâ÷  «£®à¨â¬ã �«¥à÷ ¤¨¢., ­ ¯à¨ª« ¤, ¢ [8].�ਪ« ¤ 5.11. �®§£«ï­¥¬® £à ä ­  à¨á. 5.12.

v2

e1

e3e2

e5

e6

e7

e8

e4

v3v1

v4v5

�¨á. 5.12

�¥© £à ä õ ­ ¯÷¢¥©«¥à®¢¨¬, ®áª÷«ìª¨ ¬ õ à÷¢­®¤¢÷ ­¥¯ à­÷ ¢¥à設¨ (v4 â  v5). � áâ®á®¢ãîç¨  «-£®à¨â¬ �«¥à÷, ®âਬãõ¬® ®¤¨­ ÷§ ¬®¦«¨¢¨å ¥©«¥-஢¨å è«ïå÷¢: v4e1v1e2v2e3v3e4v5e5v1e6v3e7v4e8v5.� §­ ç¨¬®, é® ­  âàì®å ®áâ ­­÷å ªà®ª å ®¡à ­®¬®á⨠e6, e7 â  e8, ®áª÷«ìª¨ ¡ã«® ­¥¬®¦«¨¢® ¢¨-¡à â¨ ॡà®, 瘟 ­¥ õ ¬®á⮬.

80

Page 83: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.5. �®­ïââï ¯à® £ ¬÷«ìâ®­®¢÷ â  ­ ¯÷¢£ ¬÷«ìâ®­®¢÷ £à ä¨

5.5. �®­ïââï ¯à® £ ¬÷«ìâ®­®¢÷â  ­ ¯÷¢£ ¬÷«ìâ®­®¢÷ £à ä¨

�§­ ç¥­­ï 5.8. � ¬÷«ìâ®­®¢¨¬ è«ï宬 ã £à ä÷ ­ §¨¢ îâì ¯à®á⨩è«ïå, 直© ¬÷áâ¨âì ª®¦­ã ¢¥à設㠣à äã à÷¢­® ®¤¨­ à § (¯à®å®¤¨âìç¥à¥§ ª®¦­ã ¢¥à設㠡¥§ ¯®¢â®à¥­ì). � ¬ª­¥­¨© £ ¬÷«ìâ®­÷¢ è«ïå ­ -§¨¢ îâì £ ¬÷«ìâ®­®¢¨¬ 横«®¬. �à ä, é® ¤®¯ã᪠õ ¯®¡ã¤®¢ã £ ¬÷«ìâ®-­®¢®£® 横«ã, ­ §¨¢ îâì £ ¬÷«ìâ®­®¢¨¬. �à ä, é® ¤®¯ã᪠õ ¯®¡ã¤®¢ã£ ¬÷«ìâ®­®¢®£® è«ïåã, ­ §¨¢ îâì ­ ¯÷¢£ ¬÷«ìâ®­®¢¨¬.

öáâ®à¨ç­® ¯à®¡«¥¬  ஧¯÷§­ ¢ ­­ï£ ¬÷«ìâ®­®¢®áâ÷ £à äã ¯®¢'易­  § £®-«®¢®«®¬ª®î «ªà㣮á¢÷â­ï ¯®¤®à®¦»,§ ¯à®¯®­®¢ ­®î 1859 பã ÷à« ­¤áì-ª¨¬ ¬ â¥¬ â¨ª®¬ �÷«ìאַ¬ � ¬÷«ìâ®-­®¬: ª®¦­÷© § ¤¢ ¤æï⨠¢¥à設 ¤®¤¥ª -¥¤à  (à¨á. 5.13) ¢÷¤¯®¢÷¤ õ ­ §¢  ®¤­®-£® § ¢¥«¨ª¨å ¬÷áâ á¢÷âã; ¯®âà÷¡­®, ¯¥à¥-á㢠îç¨áì ¯® ॡà å £à äã, ®¡÷©â¨ ¢á÷¢¥à設¨ à÷¢­® ¯® ®¤­®¬ã à §ã â  ¯®-¢¥à­ãâ¨áì 㠯㭪⠯®ç âªã ¯®¤®à®¦÷. �¨á. 5.13

�஡«¥¬¨ ஧¯÷§­ ¢ ­­ï ¥©«¥à®¢®áâ÷ (­ ¯÷¢¥©«¥à®¢®áâ÷) â  £ ¬÷«ìâ®-­®¢®áâ÷ (­ ¯÷¢£ ¬÷«ìâ®­®¢®áâ÷) £à ä÷¢, ­¥§¢ ¦ îç¨ ­  ùå §®¢­÷è­î áå®-¦÷áâì, ¯à¨­æ¨¯®¢® à÷§­÷. �«ï ஧¯÷§­ ¢ ­­ï ¥©«¥à®¢®áâ÷ £à äã ÷á­ãõ¥ä¥ªâ¨¢­¨© ªà¨â¥à÷© (⥮६  5.4),   ¤«ï ¯à ªâ¨ç­®ù ¯®¡ã¤®¢¨ ¥©«¥à®-¢®£® 横«ã ¬®¦­  ᪮à¨áâ â¨áì ¯à®á⨬ â  §àãç­¨¬  «£®à¨â¬®¬ �«¥à÷.

�¨âã æ÷ï 鮤® £ ¬÷«ìâ®­®¢®áâ÷ ­ ¡ £ â® ᪫ ¤­÷è  { á쮣®¤­÷ ­¥ ÷á-­ãõ ¥ä¥ªâ¨¢­®£® ªà¨â¥à÷î (⥮६¨ ¯à® ­¥®¡å÷¤­÷ â  ¤®áâ â­÷ 㬮¢¨) £ -¬÷«ìâ®­®¢®áâ÷ (­ ¯÷¢£ ¬÷«ìâ®­®¢®áâ÷) £à ä÷¢. �à®â¥ ÷á­ãõ àï¤ â¥®à¥¬ ¯à®­¥®¡å÷¤­÷ 㬮¢¨ â  àï¤ â¥®à¥¬ ¯à® ¤®áâ â­÷ 㬮¢¨ £ ¬÷«ìâ®­®¢®áâ÷ (­ -¯÷¢£ ¬÷«ìâ®­®¢®áâ÷). �¥ïª÷ § æ¨å ⥮६ ஧£«ï­¥¬® ¢ æ쮬㠯÷¤à®§¤÷«÷.

5.5.1. �¥®¡å÷¤­÷ 㬮¢¨ £ ¬÷«ìâ®­®¢®áâ÷ £à ä÷¢� áâ㯭  «¥¬  ­ ¢®¤¨âì ¤¢  ®ç¥¢¨¤­¨å ⨯¨ £à ä÷¢, ­ «¥¦­÷áâì ¤®

ïª¨å ¢¨ª«îç õ ¬®¦«¨¢÷áâì £ ¬÷«ìâ®­®¢®áâ÷.

81

Page 84: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5. �¥®à÷ï £à ä÷¢

�¥¬  5.3. �®¤¥­ £à ä, é® ¬÷áâ¨âì â®çªã §'õ¤­ ­­ï  ¡® ¬÷áâ, ­¥õ £ ¬÷«ìâ®­®¢¨¬.

�¢¥à¤¦¥­­ï «¥¬¨ 5.3 ¢¨¯«¨¢ õ ¡¥§¯®á¥à¥¤­ì® § ¢¨§­ ç¥­­ï ¬®áâ  â â®çª¨ §'õ¤­ ­­ï.

�®§£«ï­¥¬® é¥ ®¤¨­ ¢ ¦«¨¢¨© ª« á £à ä÷¢, ­ «¥¦­÷áâì ¤® 类£® ¢¨-ª«îç õ ¬®¦«¨¢÷áâì £ ¬÷«ìâ®­®¢®áâ÷.

�§­ ç¥­­ï 5.9. �à ä G ­ §¨¢ îâì Θ-£à ä®¬ (â¥â -£à ä®¬), ïªé®¢÷­ ᪫ ¤ õâìáï § ¤¢®å ¢¥à設 á⥯¥­÷ 3, ᯮ«ã祭¨å âà쮬  ¯à®á⨬¨è«ïå ¬¨ ¤®¢¦¨­®î ­¥ ¬¥­è¥ 2, é® ¯®¯ à­® ­¥ ¯¥à¥â¨­ îâìáï (¦®¤-­÷ ¤¢  § æ¨å âàì®å è«ïå÷¢ ­¥ ¬ îâì á¯÷«ì­¨å ¢¥à設, ®ªà÷¬ á¯÷«ì­®£®¯®ç âªã â  á¯÷«ì­®£® ª÷­æï).

�ਪ« ¤ 5.12. �à ä¨ G1 â  G2, §®¡à ¦¥­÷ ­  à¨á. 5.14, { ¯à¨ª« ¤¨Θ-£à ä÷¢, ®¤­ ª £à ä G3 ­¥ õ Θ-£à ä®¬.

v8

v7

v2 v2

v2 v6

v6

v3 v3v3

v1 v1v1 v4

v4

v4

v5v5

v5

G1 G2 G3

�¨á. 5.14

�¥®à¥¬  5.5. �®¤¥­ Θ-£à ä ­¥ õ £ ¬÷«ìâ®­®¢¨¬.

�®¢¥¤¥­­ï. �ਯãáâ÷¬®, é® â¢¥à¤¦¥­­ï ⥮६¨ ­¥ á¯à ¢¤¦ãõâìáï.

v2

v1

S1 S3S2

�¨á. 5.15

�¥å © Θ-£à ä G ¬÷áâ¨âì ¤¢÷ ¢¥à設¨ v1 â  v2, ᯮ«ã祭÷âà쮬  è«ïå ¬¨ S1, S2, S3 ¤®¢¦¨­®î ­¥ ¬¥­è¥ 2, é® ¯®-¯ à­® ­¥ ¯¥à¥â¨­ îâìáï (à¨á. 5.15). �ਯãáâ÷¬®, é® £à äG õ £ ¬÷«ìâ®­®¢¨¬. �áª÷«ìª¨ è«ïå¨ S1, S2, S3 ¬÷áâïâì¯à¨­ ©¬­÷ ¯® ®¤­÷© ¢¥à設÷ (­¥ ¢à å®¢ãîç¨ v1 â  v2), £ -¬÷«ìâ®­÷¢ 横« ¬ õ ¯à®å®¤¨â¨ à÷¢­® ¯® ®¤­®¬ã à §ã ç¥à¥§ª®¦¥­ ÷§ è«ïå÷¢ S1, S2 â  S3. �«¥ ⮤÷, ¢à å®¢ãîç¨ § ¬ª-­¥­÷áâì, 横« ¬ õ ¯à®©â¨ ¤¢÷ç÷ ¯® ¢¥à設 å v1 â  v2, é®á㯥à¥ç¨âì ¢¨§­ ç¥­­î £ ¬÷«ìâ®­®¢®áâ÷ 横«ã.

82

Page 85: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.5. �®­ïââï ¯à® £ ¬÷«ìâ®­®¢÷ â  ­ ¯÷¢£ ¬÷«ìâ®­®¢÷ £à ä¨

� ã¢ ¦¥­­ï 5.3. �®¤¥­ Θ-£à ä ­¥ õ £ ¬÷«ìâ®­®¢¨¬, ®¤­ ª ª®¦¥­Θ-£à ä õ ­ ¯÷¢£ ¬÷«ìâ®­®¢¨¬. � ª, Θ-£à ä¨ G1 â  G2 § ¯à¨ª«. 5.12 ¤®-¯ã᪠îâì £ ¬÷«ìâ®­®¢÷ è«ïå¨ v3v1v2v5v4 (G1) â  v6v3v1v2v5v8v7v4 (G2).

5.5.2. �®áâ â­÷ 㬮¢¨ £ ¬÷«ìâ®­®¢®áâ÷ £à ä÷¢� ¢¥¤¥¬® ¡¥§ ¤®¢¥¤¥­­ï ¤¥ïª÷ ¤®áâ â­÷ 㬮¢¨ £ ¬÷«ìâ®­®¢®áâ÷ â  ­ -

¯÷¢£ ¬÷«ìâ®­®¢®áâ÷ £à ä÷¢.

�¥®à¥¬  5.6 (�. �à¥, 1960 à.). �¥å © G { §¢'吝¨© £à ä § ª÷«ì-ª÷áâî ¢¥à設 n = card(V ) ≥ 3.

1. �ªé® ¤«ï ¡ã¤ì-类ù ¯ à¨ ­¥áã¬÷¦­¨å ¢¥à設 u â  v ¢¨ª®­ãõâìáï­¥à÷¢­÷áâì du + dv ≥ n, £à ä G { £ ¬÷«ìâ®­÷¢.

2. �ªé® ¤«ï ¡ã¤ì-类ù ¯ à¨ ­¥áã¬÷¦­¨å ¢¥à設 u â  v ¢¨ª®­ãõâìáï­¥à÷¢­÷áâì du + dv ≥ n− 1, £à ä G { ­ ¯÷¢£ ¬÷«ìâ®­÷¢.

� ⥮६¨ 5.6 ­¥£ ©­® ¢¨¯«¨¢ õ â ª¨© १ã«ìâ â (¤®¢¥¤¥­¨©, 鮯ࠢ-¤ , ­  ª÷«ìª  ப÷¢ à ­÷è¥ â¥®à¥¬¨ 5.6).

�¥®à¥¬  5.7 (�. �÷à ª, 1953 à.). �¥å © G { §¢'吝¨© £à ä § ª÷«ì-ª÷áâî ¢¥à設 n = card(V ) ≥ 3. �ªé® ¤«ï ¡ã¤ì-类ù ¢¥à設¨ v ∈ V¢¨ª®­ãõâìáï ­¥à÷¢­÷áâì dv ≥ n/2, £à ä G õ £ ¬÷«ìâ®­®¢¨¬.

�¥ ®¤­  ¤®áâ â­ï 㬮¢  £ ¬÷«ìâ®­®¢®áâ÷ ¯®¢'易­  § ­ ï¢­÷áâîΘ-¯÷¤£à ä÷¢.

�¥®à¥¬  5.8. �ã¤ì-直© §¢'吝¨© ­¥£ ¬÷«ìâ®­÷¢ £à ä ¡¥§ ¬®áâ÷¢ â â®ç®ª §'õ¤­ ­­ï ¬÷áâ¨âì Θ-¯÷¤£à ä.

�à ªâ¨ç­¥ § áâ®á㢠­­ï ⥮६¨ 5.8 ¯®¢'易­¥ §  ­ «÷§®¬ ­ ï¢­®áâ÷Θ-¯÷¤£à ä÷¢: §¢'吝¨© £à ä ¡¥§ ¬®áâ÷¢ â®ç®ª §'õ¤­ ­­ï, é® ­¥ ¬÷áâ¨âìΘ-¯÷¤£à ä÷¢, §  ⥮६®î 5.8 õ £ ¬÷«ìâ®­®¢¨¬.

�à® ÷­è÷ ¤®áâ â­÷ 㬮¢¨ £ ¬÷«ìâ®­®¢®áâ÷ ¤¨¢. [8].� §­ ç¨¬®, é® â¥®à¥¬¨ 5.6, 5.7 â  5.8 ¤ îâì «¨è¥ ¤®áâ â­÷,  «¥ ­¥

­¥®¡å÷¤­÷ 㬮¢¨ £ ¬÷«ìâ®­®¢®áâ÷ £à äã.

�ਪ« ¤ 5.13. �¤­¥ § ­ ©¢ ¦«¨¢÷è¨å § áâ®á㢠­ì ⥮à÷ù £ ¬÷«ì-â®­®¢¨å £à ä÷¢ ¯®¢'易­¥ § ¯à®¡«¥¬®î ªã¯æï (ª®¬÷¢®ï¦¥à ). � ¢¥¤¥¬®

83

Page 86: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5. �¥®à÷ï £à ä÷¢

¤¥é® á¯à®é¥­¥ ä®à¬ã«î¢ ­­ï æ÷õù ¯à®¡«¥¬¨: ªã¯¥æì ¯®¢¨­¥­, ª®à¨á-âãîç¨áì á¨á⥬®î ¤®à÷£, ¯®¡ã¢ â¨ ¢ ãá÷å ­ á¥«¥­¨å ¯ã­ªâ å ªà ù­¨ â ¯®¢¥à­ãâ¨áì ¤® ¯ã­ªâã ¯®ç âªã ¯®¤®à®¦÷ (¯®à÷¢­ï©â¥ § £®«®¢®«®¬ª®î�. � ¬÷«ìâ®­ ). �祢¨¤­®, ¯à®¡«¥¬  §¢®¤¨âìáï ¤® ஧¯÷§­ ¢ ­­ï £ ¬÷«ì-â®­®¢®áâ÷ ¢÷¤¯®¢÷¤­®£® £à äã.

�ਪ« ¤ 5.14. �¥ ®¤­¥ æ÷ª ¢¥ § áâ®á㢠­­ï ⥮à÷ù £ ¬÷«ìâ®­®¢¨å£à ä÷¢ ¯®¢'易­¥ § ¯à®¡«¥¬®î ®¡å®¤ã è å®¢¨¬ ª®­¥¬ ¢á÷å ª«÷⨭®ª è -å÷¢­¨æ÷ à÷¢­® ¯® ®¤­®¬ã à §ã, § ¯®¢¥à­¥­­ï¬ ç¨ ¡¥§ ¯®¢¥à­¥­­ï ¤® ¯®-ç âª®¢®£® ¯®«ï. �ï ¯à®¡«¥¬  §¢®¤¨âìáï ¤® ஧¯÷§­ ¢ ­­ï £ ¬÷«ìâ®­®¢®á-â÷ (­ ¯÷¢£ ¬÷«ìâ®­®¢®áâ÷) £à äã § 64 ¢¥à設 ¬¨: ª®¦­  ¢¥à設  £à äã¢÷¤¯®¢÷¤ õ ¯¥¢­®¬ã ¯®«î è å÷¢­¨æ÷; áã¬÷¦­¨¬¨ õ â÷ ÷ â÷«ìª¨ â÷ ¢¥à設¨,ïª÷ ¬®¦ãâì ¡ã⨠§'õ¤­ ­÷ ­  è å÷¢­¨æ÷ 室®¬ ª®­ï.

�ª ¢÷¤®¬®, æï ¯à®¡«¥¬  ¬ õ ஧¢'燐ª: ¢á÷ ¯®«ï è å÷¢­¨æ÷ ¬®¦­  ®¡÷©-⨠室®¬ ª®­ï, ¯®¢¥à­ã¢è¨áì ¤® ¯®ç âª®¢®£® ¯®«ï. � §­ ç¨¬®, é® ¤®¢÷¤¯®¢÷¤­®£® £à äã ­¥ ¬®¦­  § áâ®á㢠⨠¦®¤­ã § ⥮६ 5.6, 5.7  ¡®5.8 { 㬮¢¨ æ¨å ⥮६ ­¥ ¢¨ª®­ãîâìáï, ¯à®â¥ £à ä õ £ ¬÷«ìâ®­®¢¨¬.

5.6. �¯¥æ÷ «ì­÷ ⨯¨ £à ä÷¢5.6.1. �¥£ã«ïà­÷ £à ä¨

�§­ ç¥­­ï 5.10. �¥£ã«ïà­¨¬ £à ä®¬ ­ §¨¢ îâì £à ä, ãá÷ ¢¥à設¨ïª®£® ¬ îâì ®¤­ ª®¢¨© á⥯÷­ì.

�ਪ« ¤ 5.15. �¥£ã«ïà­¨¬ £à ä®¬, ®ç¥¢¨¤­®, õ ¤®¢÷«ì­¨© ¯®¢­¨©£à ä (dv = n − 1, ¤¥ n = card(V )),   â ª®¦ ¤®¢÷«ì­¨© ¯®à®¦­÷© £à ä(dv = 0).

�ਪ« ¤ 5.16. �à ä, §®¡à ¦¥­¨© ­  à¨á. 5.16, { ॣã«ïà­¨©: dv = 2¤«ï ¢á÷å v ∈ V .

�¨á. 5.16

84

Page 87: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.6. �¯¥æ÷ «ì­÷ ⨯¨ £à ä÷¢

5.6.2. �¢®¤®«ì­÷ £à ä¨�§­ ç¥­­ï 5.11. �¢®¤®«ì­¨¬ ­ §¨¢ îâì £à ä, ¬­®¦¨­ã ¢¥à設

类£® ¬®¦­  ஧¡¨â¨ ­  ¤¢÷ ­¥¯®à®¦­÷ ¯÷¤¬­®¦¨­¨ (¤®«÷) V1 â  V2

(V1 ∩ V2 = ∅) â ª, é® ¡ã¤ì-ïª÷ ¤¢÷ ¢¥à設¨ § ®¤­÷õù ¤®«÷ Vk (k = 1, 2)õ ­¥áã¬÷¦­¨¬¨.

�ਪ« ¤ 5.17. �à ä, §®¡à ¦¥­¨© ­  à¨á. 5.17, õ ¤¢®¤®«ì­¨¬:V1 = {v1, v3, v5}, V2 = {v2, v4, v6}.

v2v3

v1v4

v5

v6

�¨á. 5.17

�¥®à¥¬  5.9 (�. �ì®­÷£, 1936 à.). �à ä õ ¤¢®¤®«ì­¨¬ ⮤÷ ÷ â÷«ìª¨â®¤÷, ª®«¨ ¢á÷ ©®£® 横«¨ ¬ îâì ¯ à­ã ¤®¢¦¨­ã.

�®¢¥¤¥­­ï ­¥®¡å÷¤­®áâ÷. �¥å © £à ä G § ¬­®¦¨­®î ¢¥à設 V õ ¤¢®-¤®«ì­¨¬. �®¤÷ ¬­®¦¨­  V ¬®¦¥ ¡ã⨠§®¡à ¦¥­  ã ä®à¬÷ V = V1 ∪ V2,V1∩V2 = ∅ â ª, é® ¡ã¤ì-ïª÷ ¤¢÷ ¢¥à設¨ § ®¤­÷õù ¯÷¤¬­®¦¨­¨ Vk (k = 1, 2)õ ­¥áã¬÷¦­¨¬¨.

�®§£«ï­¥¬® ¤®¢÷«ì­¨© 横« v1v2 . . . vn (vn = v1). �¥§ ¢âà â¨ § £ «ì-­®áâ÷ ¯à¨¯ãáâ÷¬®, é® v1 ∈ V1. �®¤÷, ¢à å®¢ãîç¨ áã¬÷¦­÷áâì v1 â  v2, ®âà¨-¬ãõ¬®, é® v2 /∈ V1, ⮡⮠v2 ∈ V2. �­ «®£÷ç­®, v3 ∈ V1, v4 ∈ V2 ÷ â. ¤., ⮡â®v2k+1 ∈ V1, v2k ∈ V2 (0 ≤ 2k ≤ n). �áª÷«ìª¨ vn = v1 ∈ V1, ®âਬãõ¬®, é®n = 2k + 1 ÷ ¤®¢¦¨­  横«ã n− 1 = 2k { ¯ à­¥ ç¨á«®.

�¯à ¢  5.3. � ¬®áâ÷©­® ¤®¢¥á⨠¤®áâ â­÷áâì 㬮¢¨ ¯ à­®áâ÷ ¢á÷å横«÷¢ ¤«ï ¤¢®¤®«ì­®áâ÷ £à äã.

�ª §÷¢ª . �®áâ â­ì® ®¡¬¥¦¨â¨áì ¢¨¯ ¤ª®¬ §¢'吝®£® £à äã, ®áª÷«ìª¨­¥§¢'吝¨© £à ä õ ®¡'õ¤­ ­­ï¬ áª÷­ç¥­­®ù ª÷«ìª®áâ÷ ®¡« á⥩ §¢'吝®áâ÷.�«ï §¢'吝®£® £à äã, é® ¬÷áâ¨âì «¨è¥ 横«¨ ¯ à­®ù ¤®¢¦¨­¨, ஧£«ï­ì-⥠⠪¥ ¢÷¤­®è¥­­ï ¥ª¢÷¢ «¥­â­®áâ÷ ­  ¬­®¦¨­÷ ¢¥à設 V : v1 ∼ v2 ⮤÷÷ â÷«ìª¨ ⮤÷, ª®«¨ v1 â  v2 §'õ¤­ ­÷ «¨è¥ è«ïå ¬¨ ¯ à­®ù ¤®¢¦¨­¨. �¥-ॢ÷àâ¥, é® ¢¢¥¤¥­¥ ¢÷¤­®è¥­­ï á¯à ¢¤÷ õ ¢÷¤­®è¥­­ï¬ ¥ª¢÷¢ «¥­â­®áâ÷,÷ ä ªâ®à-¬­®¦¨­  V

/∼ = {V1, V2} ¤ õ è㪠­¥ ஧¡¨ââï ¬­®¦¨­¨ V .

85

Page 88: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5. �¥®à÷ï £à ä÷¢

5.6.3. �¥à¥¢ �¥à¥¢®¬ ­ §¨¢ îâì §¢'吝¨© £à ä, é® ­¥ ¬÷áâ¨âì ¯à®áâ¨å 横«÷¢.

�÷ᮬ ­ §¨¢ îâì £à ä, é® õ ®¡'õ¤­ ­­ï¬ ¤¥à¥¢, ïª÷ ¯®¯ à­® ­¥ ¯¥à¥à÷-§ îâìáï.

�ਪ« ¤ 5.18. �à ä, §®¡à ¦¥­¨© ­  à¨á. 5.18, õ «÷ᮬ (®¡'õ¤­ ­­ï¤¢®å ¤¥à¥¢, ïª÷ ­¥ ¯¥à¥à÷§ îâìáï).

�¨á. 5.18

�¤¥¡÷«ì讣® ¤®æ÷«ì­® ¢¨¤÷«¨â¨ ®¤­ã § ¢¥à設 ¤¥à¥¢  ïª ¯®ç âª®-¢ã (¢¥à設 , § 类ù ¤¥à¥¢® «§à®áâ õ»). �¥à¥¢® § ¢¨¤÷«¥­®î ¢¥à設®î­ §¨¢ îâì ª®à¥­¥¢¨¬ ¤¥à¥¢®¬, ¢¨¤÷«¥­ã ¢¥à設㠭 §¨¢ îâì ª®à¥­¥¢®î¢¥à設®î,  ¡® ª®à¥­¥¬. �÷¤ªà¥á«¨¬®, é® ª®à¥­¥¬ ¬®¦­  ¢¨¡à â¨ ¤®¢÷«ì-­ã ¢¥à設㠤¥à¥¢ ; ¤®æ÷«ì­÷áâì ¢¨¡®àã ª®à¥­¥¢®ù ¢¥à設¨ ¢¨§­ ç õâìáï¯à®¡«¥¬®î, 猪 ஧¢'ï§ãõâìáï §  ¤®¯®¬®£®î ¤ ­®£® ¤¥à¥¢ . �ª ¯à ¢¨«®,ª®à¥­¥¢÷ ¤¥à¥¢  §®¡à ¦ãîâì â ª, 鮡 ¤¥à¥¢® «§à®áâ «®» ¢÷¤ ª®à¥­ï ¢®¤­®¬ã ä÷ªá®¢ ­®¬ã ­ ¯àשׁã { ¢­¨§, ¢£®àã, ¢¯à ¢®  ¡® ¢«÷¢®.

�÷¢­¥¬ ¢¥à設¨ ª®à¥­¥¢®£® ¤¥à¥¢  ­ §¨¢ îâì ¤®¢¦¨­ã ¯à®á⮣®è«ïåã, é® §'õ¤­ãõ æî ¢¥à設㠧 ª®à¥­¥¬. �­®¦¨­ã ¢¥à設 n-£® à÷¢-­ï ­ §¨¢ îâì n-¬ ïàãᮬ ª®à¥­¥¢®£® ¤¥à¥¢ . �祢¨¤­®, ïàãá à÷¢­ï 0§ ¢¦¤¨ ¬÷áâ¨âì «¨è¥ ᠬ㠪®à¥­¥¢ã ¢¥à設ã.

� ¦ãâì, é® ¢¥à設  v1 n-£® à÷¢­ï ¯®à®¤¦ãõ ¢¥à設ã v2 (n + 1)-£®à÷¢­ï, ïªé® ¢¥à設¨ v1 ÷ v2 áã¬÷¦­÷. �¥à設㠪®à¥­¥¢®£® ¤¥à¥¢ , é® ­¥¯®à®¤¦ãõ ¦®¤­ã ¢¥à設㠤 ­®£® ¤¥à¥¢ , ç áâ® ­ §¨¢ îâì «¨á⪮¬.

�ਪ« ¤ 5.19. �¥à¥¢®, é® §®¡à ¦¥­¥ ­  à¨á. 5.19, ¬®¦­  ஧£«ï¤ -â¨ ïª ª®à¥­¥¢¥ § ª®à¥­¥¢®î ¢¥à設®î v.

v2,1v2,2

v2,3

v2v1,1

v1,2

v1

v

�¨á. 5.19

�àãá à÷¢­ï 0 ¬÷áâ¨âì ª®à¥­¥¢ã ¢¥à設ã v; ïàãá à÷¢-­ï 1 ¬÷áâ¨âì ¢¥à設¨ v1 â  v2 (¯®à®¤¦ãîâìáï ¢¥à-設®î v); ïàãá à÷¢­ï 2 ¬÷áâ¨âì ¢¥à設¨ v1,1 â  v1,2

(¯®à®¤¦ãîâìáï ¢¥à設®î v1),   â ª®¦ v2,1 â  v2,2 â v2,3 (¯®à®¤¦ãîâìáï ¢¥à設®î v2). �祢¨¤­®, «¨áâ-ª ¬¨ æ쮣® ¤¥à¥¢  õ ¢¥à設¨ v1,1, v1,2, v2,1, v2,2, v2,3.

86

Page 89: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.7. ö§®¬®àä÷§¬ ÷ £®¬¥®¬®àä÷§¬ £à ä÷¢

�«÷¤ §¢¥à­ã⨠㢠£ã ­  ¡ £ â®÷­¤¥ªá­ã ­ã¬¥à æ÷î ¢¥à設 ª®à¥­¥¢®£®¤¥à¥¢  ¢ ¯à¨ª«. 5.19:

• ª®à¥­¥¢÷© ¢¥à設÷ ¯à¨á¢®îõâìáï «¯®à®¦­÷©» ­®¬¥à (¢¥à設  v);• ¢¥à設¨, é® ¯®à®¤¦¥­÷ ¢¥à設®î vs, ­ã¬¥àãîâìáï (ã ¤®¢÷«ì­®¬ã

¯®à浪ã) ïª ¢¥à設¨ vs,i, i = 1, 2, . . . , m.� ¯à®¯®­®¢ ­¨© ᯮá÷¡ ­ã¬¥à æ÷ù ¢¥à設 ª®à¥­¥¢®£® ¤¥à¥¢  (÷­®¤÷ ©®-

£® ­ §¨¢ îâì 㯠ª®¢ ­®î  ¤à¥á æ÷õî) ¤®§¢®«ïõ ®¤­®§­ ç­® ¢¨§­ ç¨â¨,ïª÷ ¢¥à設¨ ¤¥à¥¢  áã¬÷¦­÷, ÷ ç áâ® ¢¨ª®à¨á⮢ãõâìáï ¯÷¤ ç á  ­ «÷§ãáâàãªâãਠ¤¥à¥¢  ª®¬¯'îâ¥à­¨¬¨  «£®à¨â¬ ¬¨.

� §­ ç¨¬®, é® ®¤­¥ § ¢ ¦«¨¢¨å § áâ®á㢠­ì ª®à¥­¥¢¨å ¤¥à¥¢ { ஧-¢'易­­ï ª®¬¡÷­ â®à­¨å § ¤ ç { ஧£«ï­ãâ® ¢ ¯÷¤à®§¤. 4.6.

5.6.4. �®­ïââï ¯à® ¬÷祭÷ £à ä¨�§­ ç¥­­ï 5.12. �÷祭¨¬ £à ä®¬,  ¡® ¬¥à¥¦¥î ­ §¨¢ îâì £à ä,

¢¥à設 ¬  ¡® (â ) ॡࠬ 类£® §÷áâ ¢«ïõâìáï ¯¥¢­  ¬÷⪠.

�÷⪠¬¨ ¬÷祭®£® £à äã ¬®¦ãâì ¡ã⨠¥«¥¬¥­â¨ ¤®¢÷«ì­®ù ¬­®¦¨­¨.� ª, ஧£«ï¤ îç¨ ¯à®¡«¥¬ã ª®¬÷¢®ï¦¥à  (¤¨¢. ¯à¨ª«. 5.13) ¤®æ÷«ì­® à¥-¡à ¬ £à äã ¯à¨á¢®ù⨠¤®¢¦¨­ã ¢÷¤¯®¢÷¤­®ù ¤÷«ï­ª¨ è«ïåã,   ¢¥à設 ¬{ ç á ­  ¯¥à¥¡ã¢ ­­ï ã ¢÷¤¯®¢÷¤­®¬ã ¬÷áâ÷.

�¥ ®¤­¥ ¢ ¦«¨¢¥ § áâ®á㢠­­ï ¬÷祭¨å £à ä÷¢ ¯®¢'易­¥ § ä à¡ã¢ ­-­ï¬ ¢¥à設  ¡® ॡ¥à (¬÷⪠¬¨ õ ª®«ì®à¨). � à¡ã¢ ­­ï ¢¥à設 £à äã஧£«ï­¥¬® ¤ «÷ ¢ ¯÷¤à®§¤. 5.14.

5.7. ö§®¬®àä÷§¬ ÷ £®¬¥®¬®àä÷§¬ £à ä÷¢�§­ ç¥­­ï 5.13. �à ä¨ G1 ÷ G2 § ¬­®¦¨­ ¬¨ ¢¥à設 V1 â  V2 ­ -

§¨¢ îâì ÷§®¬®àä­¨¬¨, ïªé® ÷á­ãõ â ª  ¡÷õªæ÷ï (÷§®¬®àä÷§¬) f : V1 → V2,é®:

∀u, v ∈ V1 : (u, v { áã¬÷¦­÷ ¢ G1) ⇔ (f(u), f(v) { áã¬÷¦­÷ ¢ G2).

�⦥, ÷§®¬®àä÷§¬ £à ä÷¢ ¬®¦­  ஧ã¬÷â¨ ïª ¢§ õ¬­® ®¤­®§­ ç­¥ ¢÷-¤®¡à ¦¥­­ï, é® §¡¥à÷£ õ áã¬÷¦­÷áâì ¢¥à設.

87

Page 90: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5. �¥®à÷ï £à ä÷¢

�ਪ« ¤ 5.20. �à ä¨ G1 â  G2, §®¡à ¦¥­÷ ­  à¨á. 5.20, ÷§®¬®àä­÷;¬®¦«¨¢¨© ( «¥ ­¥ õ¤¨­¨©) ÷§®¬®àä÷§¬ f : uk 7→ vk, k = 1, 2, 3, 4.

u2v2

u3v3

u1

v1

u4

v4

G1 G2

�¨á. 5.20

� ã¢ ¦¥­­ï 5.4. �¨§­ ç¥­­ï ÷§®¬®àä­®áâ÷ ¯à¨à®¤­® ¯¥à¥­®á¨âìáï ­ ¢¨¯ ¤®ª ®à÷õ­â®¢ ­¨å â  ­¥®à÷õ­â®¢ ­¨å ¬ã«ì⨣à ä÷¢: ÷§®¬®àä÷§¬ ¬ã«ì-⨣à ä÷¢ ¬ õ §¡¥à÷£ â¨ ª÷«ìª÷áâì ॡ¥à ¬÷¦ ¤ ­¨¬¨ ¢¥à設 ¬¨,   ¤«ï®à£à ä÷¢ { ª÷«ìª÷áâì ॡ¥à ¬÷¦ ¤ ­¨¬¨ ¢¥à設 ¬¨, é® ¢¥¤ãâì ã ¤ ­®¬ã­ ¯àשׁã.

� ¤ «÷ ­ ¬ §­ ¤®¡¨âìáï ®¯¥à æ÷ï ¯÷¤à®§¡¨ââï à¥¡à  £à äã.�¥å © ॡ஠e ÷­æ¨¤¥­â­¥ ¢¥à設 ¬ v1 â  v2. �÷¤à®§-

v2 v2

v

v1v1

e1e

e2

�¨á. 5.21

¡¨ââï à¥¡à  e ¯®«ï£ õ ã ¢¨¤ «¥­­÷ e â  ¤®¤ ¢ ­­÷ ¤¢®å­®¢¨å ॡ¥à e1, e2 ÷ ­®¢®ù ¢¥à設¨ v â ª, é®: ॡ஠e1

÷­æ¨¤¥­â­¥ ¢¥à設 ¬ v1 ÷ v, ॡ஠e2 ÷­æ¨¤¥­â­¥ ¢¥à-設 ¬ v ÷ v2 (à¨á. 5.21). �® áãâ÷, ¯÷¤à®§¡¨ââï ॡà e §¢®¤¨âìáï (§ â®ç­÷áâî ¤® ÷§®¬®àä÷§¬ã) ¤® «­ ¢÷èã-

¢ ­­ï» ­  ॡ஠e ­®¢®ù ¢¥à設¨ v.

�§­ ç¥­­ï 5.14. �à ä¨ G1 ÷ G2 ­ §¨¢ îâì £®¬¥®¬®àä­¨¬¨, ïªé®ùå ¬®¦­  ®âਬ â¨ § ÷§®¬®àä­¨å £à ä÷¢ áª÷­ç¥­­®î ª÷«ìª÷áâî ®¯¥à æ÷©¯÷¤à®§¡¨ââï ॡ¥à.

�ਪ« ¤ 5.21. �à ä¨ G1 â  G2, §®¡à ¦¥­÷ ­  à¨á. 5.22, £®¬¥®¬®àä-­÷, ®áª÷«ìª¨ ùå ¬®¦­  ®âਬ â¨ § ÷§®¬®àä­¨å £à ä÷¢ G′

1 â  G′2 ¯÷¤à®§-

¡¨ââï¬ à¥¡¥à.

G1 G1

G2G2`

`

�¨á. 5.22

88

Page 91: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.8. � âà¨æï áã¬÷¦­®áâ÷ £à äã

� ã¢ ¦¥­­ï 5.5. �¨§­ ç¥­­ï ®¯¥à æ÷ù ¯÷¤à®§¡¨ââï ॡ¥à â  £®¬¥®-¬®àä­®áâ÷ £à ä÷¢ ¯à¨à®¤­® ¯®è¨àîõâìáï ­  ¢¨¯ ¤®ª ®à÷õ­â®¢ ­¨å â ­¥®à÷õ­â®¢ ­¨å ¬ã«ì⨣à ä÷¢.

5.8. � âà¨æï áã¬÷¦­®áâ÷ £à äã� æ쮬㠯÷¤à®§¤÷«÷ ¯à æ⨬¥¬® § ®à÷õ­â®¢ ­¨¬¨ £à ä ¬¨, ¤¢÷ à÷§-

­÷ ¢¥à設¨ ïª¨å ­¥ ¬®¦ãâì ¡ã⨠§'õ¤­ ­÷ ¤¢®¬   ¡® ¡÷«ìè¥ à¥¡à ¬¨, 鮢¥¤ãâì ¢ ®¤­®¬ã ­ ¯àשׁã. ö­ ªè¥ ª ¦ãç¨, ¯à æ⨬¥¬® § ®à£à ä -¬¨, ¢ ïª¨å ¤®§¢®«ïõ¬® ¯¥â«÷ â  ¯ à¨ ¯à®â¨­ ¯àשׂ¥­¨å ¬ã«ìâ¨à¥¡¥à.

�§­ ç¥­­ï 5.15. �¥å © £à ä G, é® § ¤®¢®«ì­ïõ ¢¨¬®£¨ æ쮣® ¯÷¤-஧¤÷«ã, ¬ õ ¬­®¦¨­ã ¢¥à設 V = {v1, . . . , vn}. � âà¨æ¥î áã¬÷¦­®áâ÷£à äã G ­ §¨¢ îâì ¬ âà¨æî MG ஧¬÷஬ n× n, â ªã é®:

(MG)i,j =

{1, ¢÷¤ vi ¤® vj ¢¥¤¥ ॡà®;

0, ¢÷¤ vi ¤® vj ­¥ ¢¥¤¥ ॡà®.

�¥£ª® §à®§ã¬÷â¨, é® ¢¨£«ï¤ ¬ âà¨æ÷ áã¬÷¦­®áâ÷ æ쮣® £à äã § «¥-¦¨âì ¢÷¤ ¯®à浪㠭㬥à æ÷ù ¢¥à設; §¬÷­  ¯®à浪㠭㬥à æ÷ù ¢¥à設§ã¬®¢«îõ ¯¥à¥áâ ¢«¥­­ï ¢÷¤¯®¢÷¤­¨å à浪÷¢ â  á⮢¯æ÷¢ ¬ âà¨æ÷ áã¬÷¦-­®áâ÷.

�ਪ« ¤ 5.22. �  à¨á. 5.23 §®¡à ¦¥­® £à ä ÷ ¢÷¤¯®¢÷¤­ã ¬ âà¨æîáã¬÷¦­®áâ÷.

v2

v3

v1

v4

0 0 1 00 0 0 11 1 0 10 0 0 1

�¨á. 5.23

� áâ㯭¥ ⢥द¥­­ï ¢¨¯«¨¢ õ ¡¥§¯®á¥à¥¤­ì® § ¢¨§­ ç¥­­ï ÷§®¬®à-ä÷§¬ã £à ä÷¢.

89

Page 92: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5. �¥®à÷ï £à ä÷¢

�¥¬  5.4. �à ä¨ G1 ÷ G2 ÷§®¬®àä­÷ ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ ÷á­ãõâ ª  ­ã¬¥à æ÷ï ¢¥à設 £à äã G1, é® ¬ âà¨æ÷ áã¬÷¦­®áâ÷ MG1 ÷ MG2

§¡÷£ îâìáï.

�à÷õ­â®¢ ­÷ ¬ã«ì⨣à ä¨ ¡¥§ ®¤­®­ ¯àשׂ¥­¨å ¬ã«ìâ¨à¥¡¥à § áâ®-ᮢãîâì ¤«ï §®¡à ¦¥­­ï ¡÷­ à­®£® ¢÷¤­®è¥­­ï ­  áª÷­ç¥­­÷© ¬­®¦¨­÷(¤¨¢. ஧¤. 3). � â¥à¬÷­ å ⥮à÷ù ¢÷¤­®è¥­ì ¬ âà¨æï áã¬÷¦­®áâ÷ £à äãG õ ¬ âà¨æ¥î ¡÷­ à­®£® ¢÷¤­®è¥­­ï, 瘟 § ¤ ­® £à ä®¬ G. �¥§ ¢âà â¨§ £ «ì­®áâ÷ ¢¢ ¦ â¨¬¥¬®, é® ¡÷­ à­¥ ¢÷¤­®è¥­­ï, ¢¨§­ ç¥­¥ £à ä®¬ G,§ ¤ ­® ­  ¬­®¦¨­÷ ¢¥à設 V £à äã G.

� £ ¤ õ¬®, é® ¤«ï ¬ âà¨æì áã¬÷¦­®áâ÷ A â  B ஧¬÷஬ n×n ¢¨§­ -祭¨© ««®£÷ç­¨© ¤®¡ã⮪» AB { § ¬÷áâì  à¨ä¬¥â¨ç­¨å ®¯¥à æ÷© áã¬¨â  ¤®¡ãâªã ¢¨ª®à¨á⮢ãîâìáï ¢÷¤¯®¢÷¤­÷ «®£÷ç­÷ ®¯¥à æ÷ù ¤¨§'î­ªæ÷ù â ª®­'î­ªæ÷ù (¤¨¢. ®§­ ç¥­­ï 3.3). �¢ ¦ â¨¬¥¬®, é® á⥯÷­ì Ak (k ∈ N)¬ âà¨æ÷ áã¬÷¦­®áâ÷ A â ª®¦ ¢¨§­ ç¥­® ç¥à¥§ ««®£÷ç­¨© ¤®¡ã⮪».

�­ «÷â¨ç­¨©  ¯ à â, ¯®¢'易­¨© § ¬ âà¨æ¥î áã¬÷¦­®áâ÷, ¤ õ §¬®£ã®æ÷­¨â¨ ª÷«ìª÷áâì ªà®ª÷¢, ¯®âà÷¡­¨å ¤«ï ®¡ç¨á«¥­­ï âà ­§¨â¨¢­®£® § -¬¨ª ­­ï ¡÷­ à­®£® ¢÷¤­®è¥­­ï ­  áª÷­ç¥­­÷© ¬­®¦¨­÷, ⮡⮠¤ õ §¬®£ã¤®¢¥á⨠⥮६ã 3.2. �¥¯¥à ⥮६  3.2 õ ¯àﬨ¬ ­ á«÷¤ª®¬ ­ áâ㯭®£®¯à®á⮣® ⢥द¥­­ï.

�¥®à¥¬  5.10. �¥å © G { ®à÷õ­â®¢ ­¨© ¬ã«ì⨣à ä ¡¥§ ®¤­®­ ¯-àשׂ¥­¨å ¬ã«ìâ¨à¥¡¥à, MG { ¬ âà¨æï áã¬÷¦­®áâ÷ £à äã G, á⥯÷­ìMk

G (k ∈ N) ¢¨§­ ç¥­® ç¥à¥§ ««®£÷ç­¨© ¤®¡ã⮪». �®¤÷((Mk

G)i,j = 1) ⇔ (� £à ä÷ G ÷á­ãõ è«ïå ¤®¢¦¨­®î k ¢÷¤ vi ¤® vj).

�®¢¥¤¥­­ï. �¥®à¥¬ã ¬®¦­  ¤®¢¥á⨠¬¥â®¤®¬ ¬ â¥¬ â¨ç­®ù ÷­¤ãªæ÷ù §  k.

�¯à ¢  5.4. �®¢¥á⨠⥮६ã á ¬®áâ÷©­®.

�ª §÷¢ª . �¢¥à¤¦¥­­ï æ÷õù ⥮६¨ õ ¯¥à¥ä®à¬ã«î¢ ­­ï¬ ⢥द¥­-­ï ¢¯à ¢¨ 3.1.

�ਪ« ¤¨ ®¡ç¨á«¥­­ï âà ­§¨â¨¢­®£® § ¬¨ª ­­ï ¡÷­ à­®£® ¢÷¤­®è¥­-­ï ­ ¢¥¤¥­÷ ¢¨é¥ (¤¨¢. ¯à¨ª«. 3.19).

90

Page 93: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.9. �«®áª÷ â  ¯« ­ à­÷ £à ä¨

5.9. �«®áª÷ â  ¯« ­ à­÷ £à ä¨�§­ ç¥­­ï 5.16. �à ä G ­ §¨¢ îâì ¯«®áª¨¬, ïªé®:• ¦®¤­¥ ॡ஠e £à äã G ­¥ ¬ õ â®ç®ª á ¬®¯¥à¥â¨­ã;• ¦®¤­÷ ¤¢  à¥¡à  e1 â  e2 £à äã G ­¥ ¬ îâì â®ç®ª ¯¥à¥â¨­ã, ®ªà÷¬

¢¥à設, ÷­æ¨¤¥­â­¨å ®¡®¬ ॡࠬ e1 â  e2.�à ä, ÷§®¬®àä­¨© ¯«®áª®¬ã, ­ §¨¢ îâì ¯« ­ à­¨¬.

�ਪ« ¤ 5.23. �  à¨á. 5.24 §®¡à ¦¥­® ¯« ­ à­¨© £à ä G1, ÷§®¬®àä-­¨© ¯«®áª®¬ã £à äã G2.

G1 G2

�¨á. 5.24

�ਪ« ¤ 5.24. �  à¨á. 5.25 §®¡à ¦¥­® ­¥¯« ­ à­÷ £à ä¨ G1 («�÷à-ª ») â  G2 («�ਠªà¨­¨æ÷»).

v2v2

v3

v3

v1v1 v4

v4

v5

v6v5

G1 («Зірка )» G2 («Три криниці )»

�¨á. 5.25

�à ä G1, ®ç¥¢¨¤­®, õ ¯®¢­¨¬ £à ä®¬ § ¢¥à設 ¬¨ v1{v5 (­ §¢  «�÷à-ª » §ã¬®¢«¥­  §®¢­÷è­÷¬ ¢¨£«ï¤®¬ æ쮣® £à äã). �à ä G2 { ¤¢®¤®«ì­¨©£à ä § ¤®«ï¬¨ {v1, v2, v3} â  {v4, v5, v6}, â ª¨©, é® ¡ã¤ì-ïª÷ ¤¢÷ ¢¥à設¨ §à÷§­¨å ¤®«¥© áã¬÷¦­÷. � §¢  «�ਠªà¨­¨æ÷» ¯®å®¤¨âì ¢÷¤ ¢÷¤®¬®ù ¯à®¡«¥-¬¨ ¯à® âਠ¡ã¤¨­ª¨ â  âਠªà¨­¨æ÷: ¬÷¦ âà쮬  ¡ã¤¨­ª ¬¨ (v1, v2, v3) â âà쮬  ªà¨­¨æﬨ (v4, v5, v6) âॡ  ¯à®ª« á⨠¤¥¢'ïâì è«ïå÷¢ ¡¥§ â®ç®ª¯¥à¥â¨­ã â ª, 鮡 ÷á­ã¢ ¢ è«ïå ¢÷¤ ª®¦­®£® ¡ã¤¨­ªã ¤® ª®¦­®ù ªà¨­¨æ÷.

�¥¯« ­ à­÷áâì £à ä÷¢ G1 â  G2 ¡ã¤¥ ¤®¢¥¤¥­® ¢ ¯÷¤à®§¤. 5.13.� ¢¥¤¥¬® ¡¥§ ¤®¢¥¤¥­­ï ¢÷¤®¬¨© ªà¨â¥à÷© ¯« ­ à­®áâ÷, ®âਬ ­¨©

­¥§ «¥¦­® �. �. �®­âàï£÷­¨¬ (1927 à.) â  �. �ãà â®¢á쪨¬ (1930 à.).

91

Page 94: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5. �¥®à÷ï £à ä÷¢

�¥®à¥¬  5.11 (⥮६  �®­âàï£÷­  { �ãà â®¢á쪮£®). �à ä õ¯« ­ à­¨¬ ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ ¢÷­ ­¥ ¬÷áâ¨âì ¯÷¤£à ä÷¢, £®¬¥®-¬®àä­¨å £à ä ¬ «�÷ઠ» â  «�ਠªà¨­¨æ÷» (à¨á. 5.25).

� ⥮६¨ �®­âàï£÷­  { �ãà â®¢á쪮£® ­¥£ ©­® ¢¨¯«¨¢ õ, é® ¡ã¤ì-直© ¯®¢­¨© £à ä § 5 â  ¡÷«ìè¥ ¢¥à設 ¬¨ ­¥¯« ­ à­¨©, ÷ ¡ã¤ì-直©£à ä § 4 â  ¬¥­è¥ ¢¥à設 ¬¨ ¯« ­ à­¨©. � §­ ç¨¬®, é® ­¥®¡å÷¤-­÷áâì 㬮¢¨ ⥮६¨ ¢¨¯«¨¢ õ § ­¥¯« ­ à­®áâ÷ £à ä÷¢ G1 â  G2 (¤¨¢.¯÷¤à®§¤. 5.13). �®¢­¥ ¤®¢¥¤¥­­ï ⥮६¨ �®­âàï£÷­  { �ãà â®¢á쪮£®,  â ª®¦ ¥ä¥ªâ¨¢­¨©  «£®à¨â¬ ¯®¡ã¤®¢¨ ÷§®¬®àä­®£® ¯«®áª®£® £à äã, ¤¨¢.,­ ¯à¨ª« ¤, ¢ [8].

� ã¢ ¦¥­­ï 5.6. �®­ïââï ¯«®áª®£® â  ¯« ­ à­®£® £à ä÷¢ ¯à¨à®¤­®¯®è¨àîõâìáï ­  ¢¨¯ ¤®ª ¬ã«ì⨣à ä÷¢.

5.10. �à ­÷ £à äã. �®à¬ã«  �©«¥à � æ쮬㠯÷¤à®§¤÷«÷ ¢á÷ £à ä¨ ¢¢ ¦ â¨¬¥¬® ¯«®áª¨¬¨ ­¥®à÷õ­â®¢ ­¨-

¬¨ ¬ã«ì⨣à ä ¬¨.

5.10.1. �à ­÷ ¯«®áª®£® £à äã�§­ ç¥­­ï 5.17. �à ­­î £à äã G ­ §¨¢ îâì ¬ ªá¨¬ «ì­ã §  ¢÷¤-

­®è¥­­ï¬ ¢ª«î祭­ï («⊂») ®¡« áâì ¯«®é¨­¨ r, â ªã, é®: ¡ã¤ì-ïª÷ ¤¢÷â®çª¨ a, b ∈ r ¬®¦ãâì ¡ã⨠§'õ¤­ ­÷ ­¥¯¥à¥à¢­®î ªà¨¢®î, 猪 ­¥ ¬ õá¯÷«ì­¨å â®ç®ª § ॡࠬ¨ £à äã G, ®ªà÷¬, ¬®¦«¨¢®, á ¬¨å â®ç®ª a â  b.�­®¦¨­ã ॡ¥à, é® ­ «¥¦ âì £à ­÷, ­ §¨¢ îâì ¬¥¦¥î £à ­÷.

�à ­÷ £à äã ¯®§­ ç â¨¬¥¬® «÷â¥à®î r § ÷­¤¥ªá ¬¨ ç¨ ¡¥§ (r, r1, r22,11),¬­®¦¨­ã £à ­¥© £à äã G ¯®§­ ç â¨¬¥¬® ç¥à¥§ R.

� ¢¥¤¥¬® ª÷«ìª  ®ç¥¢¨¤­¨å ⢥द¥­ì, é® ­¥£ ©­® ¢¨¯«¨¢ îâì §®§­ ç¥­­ï 5.17.

�¥¬  5.5. �®¦­  â®çª  ¯«®é¨­¨ ­ «¥¦¨âì ¯à¨­ ©¬­÷ ®¤­÷© £à ­÷¤ ­®£® £à äã.

�¥¬  5.6. �«ï ª®¦­®£® £à äã ÷á­ãõ à÷¢­® ®¤­  ­¥®¡¬¥¦¥­  £à ­ì(£à ­ì ­¥áª÷­ç¥­­®ù ¯«®é÷).

92

Page 95: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.10. �à ­÷ £à äã. �®à¬ã«  �©«¥à 

�¥®¡¬¥¦¥­ã £à ­ì £à äã ­ §¨¢ îâì §®¢­÷è­ì®î, ÷­è÷ (®¡¬¥¦¥­÷)£à ­÷ { ¢­ãâà÷è­÷¬¨.

�¥¬  5.7. �®¦­¥ ॡà®, é® ­¥ õ ¬®á⮬, ­ «¥¦¨âì ¬¥¦÷ à÷¢­®¤¢®å £à ­¥©. �®¦¥­ ¬÷áâ ­ «¥¦¨âì ¬¥¦ ¬ à÷¢­® ®¤­÷õù £à ­÷.

�ਪ« ¤ 5.25. �«ï £à äã, §®¡à ¦¥­®£® ­  à¨á. 5.26, ¬­®¦¨­  £à -­¥© R = {r1, r2, r3, r4}, §®¢­÷è­ì®î õ £à ­ì r4 § ¬¥¦¥î {e1, e2, e7, e8}. �ç¥-¢¨¤­®, ¬÷áâ e8 ­ «¥¦¨âì ¬¥¦÷ «¨è¥ ®¤­÷õù £à ­÷ (r4).

e3

r3

e2

r2

e5

e7e6 e4

r4

e1

r1

e8

�¨á. 5.26

5.10.2. �®à¬ã«  �©«¥à  ¤«ï ¯«®áª¨å £à ä÷¢�¥®à¥¬  5.12 (ä®à¬ã«  �©«¥à  ¤«ï ¯«®áª¨å £à ä÷¢). �¥å ©

G { ¯«®áª¨© §¢'吝¨© £à ä § nv ¢¥à設 ¬¨, ne ॡࠬ¨ â  nr £à ­ï¬¨.�®¤÷

nv − ne + nr = 2.

�®¢¥¤¥­­ï.1. �¥å © £à ä G { ¤¥à¥¢®. �®¢¥¤¥­­ï ¯à®¢®¤¨â¨¬® ÷­¤ãªæ÷õî §  ª÷«ì-

ª÷áâî ॡ¥à ne.A. � §  ÷­¤ãªæ÷ù: ne = 0 (¯®à®¦­÷© £à ä § ®¤­÷õî ¢¥à設®î). �á-

ª÷«ìª¨ ne = 0, nr = 1, ®âਬãõ¬®:

nv − ne + nr = 1− 0 + 1 = 2.

B. �ਯã饭­ï ÷­¤ãªæ÷ù: ­¥å © ¯à¨ ne ≤ n ⢥द¥­­ï ⥮६¨á¯à ¢¤¦ãõâìáï.

93

Page 96: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5. �¥®à÷ï £à ä÷¢

C. �ப ÷­¤ãªæ÷ù: ­¥å © ne = n + 1. �¨¤ «¨¬® ã £à ä÷ G ¤®¢÷«ì­¥à¥¡à® e. �âਬãõ¬® £à ä G, 直© õ ®¡'õ¤­ ­­ï¬ ¤¢®å §¢'吝¨å ª®¬¯®­¥­âG1 â  G2. �祢¨¤­®, £à ä¨ G1 â  G2 õ ¤¥à¥¢ ¬¨, é® ¬÷áâïâì ­¥ ¡÷«ìè ïª nॡ¥à. �⦥, §  ¯à¨¯ã饭­ï¬ ÷­¤ãªæ÷ù, ¤«ï G1 â  G2 ⢥द¥­­ï ⥮à¥-¬¨ á¯à ¢¤¦ãõâìáï. �®§­ ç¨¢è¨ ç¥à¥§ ni,v, ni,e, ni,r ª÷«ìª÷áâì ¢÷¤¯®¢÷¤­®¢¥à設, ॡ¥à â  £à ­¥© ã £à ä÷ Gi (i = 1, 2), ¤÷áâ ­¥¬®:

ni,v − ni,e + ni,r = 2, i = 1, 2.

�áª÷«ìª¨ ¢ ¤®¢÷«ì­®¬ã ¤¥à¥¢÷, ç¥à¥§ ¢÷¤áãâ­÷áâì ¯à®áâ¨å 横«÷¢, ÷á­ãõ«¨è¥ ®¤­  (§®¢­÷è­ï) £à ­ì, ¬ õ¬®: n1,r = n2,r = 1. �⦥, ¤«ï £à äã G¬ â¨¬¥¬®:

nv − ne + nr = (n1,v + n2,v)− (n1,e + n2,e + 1) + 1 =

= (n1,v − n1,e + 1) + (n2,v − n2,e + 1)− 2 = 2.

2. �¥å © G { ¤®¢÷«ì­¨© ¯«®áª¨© §¢'吝¨© £à ä. �®¢¥¤¥­­ï ¢ § £ «ì-­®¬ã ¢¨¯ ¤ªã ¯à®¢®¤¨â¨¬¥¬® â ª®¦ ÷­¤ãªæ÷õî §  ª÷«ìª÷áâî ॡ¥à ne.

A. � §  ÷­¤ãªæ÷ù: ne = 0 ¤«ï æ쮣® ¢¨¯ ¤ªã ⢥द¥­­ï ⥮६¨¢¦¥ ¤®¢¥¤¥­®.

B. �ਯã饭­ï ÷­¤ãªæ÷ù: ­¥å © ¯à¨ ne ≤ n ⢥द¥­­ï ⥮६¨á¯à ¢¤¦ãõâìáï.

C. �ப ÷­¤ãªæ÷ù: ஧£«ï­¥¬® £à ä G § ne = n + 1 ॡࠬ¨. �¥å ©G ­¥ õ ¤¥à¥¢®¬ (¤«ï ¤¥à¥¢ ⢥द¥­­ï ⥮६¨ ¢¦¥ ¤®¢¥¤¥­®), ⮤÷, ç¥-१ ­ ï¢­÷áâì ¯à¨­ ©¬­÷ ®¤­®£® ¯à®á⮣® 横«ã, ¬ õ ÷á­ã¢ â¨ ¯à¨­ ©¬­÷®¤­¥ ॡ஠e, é® ­¥ õ ¬®á⮬ («¥¬  5.2). �¨¤ «¨¢è¨ ã £à ä÷ G ॡà®e, ®âਬãõ¬® §¢'吝¨© £à ä G § nv ¢¥à設 ¬¨ â  ne − 1 = n ॡࠬ¨.�áª÷«ìª¨ §  «¥¬®î 5.7 ॡ஠e (­¥ ¬÷áâ) ­ «¥¦¨âì ¬¥¦÷ ¤¢®å £à ­¥©,¢¨¤ «¥­­ï à¥¡à  e §¬¥­èãõ ª÷«ìª÷áâì £à ­¥© ­  1. �⦥, £à ä G ¬÷á-â¨âì nr − 1 £à ­¥©. �  ¯à¨¯ã饭­ï¬ ÷­¤ãªæ÷ù, ¤«ï £à äã G ⢥द¥­­ï⥮६¨ á¯à ¢¥¤«¨¢¥, ÷ ¤«ï ¢¨å÷¤­®£® £à äã G ®âਬãõ¬®:

nv − ne + nr = nv − (ne − 1) + (nr − 1) = 2.

�⦥, ⢥द¥­­ï ⥮६¨ ¢ § £ «ì­®¬ã ¢¨¯ ¤ªã ¤®¢¥¤¥­®.

94

Page 97: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.11. �ã «ì­÷ £à ä¨

�ਪ« ¤ 5.26. �¥à¥¢÷ਬ® á¯à ¢¥¤«¨¢÷áâì ä®à¬ã«¨ �©«¥à  ¤«ï£à äã, §®¡à ¦¥­®£® ­  à¨á. 5.27:

nv − ne + nr = 4− 6 + 4 = 2.

�ਪ« ¤ 5.27. � ⥮६÷ 5.12 㬮¢  §¢'吝®áâ÷ £à äã áãââõ¢ . � ª,¤«ï £à äã, §®¡à ¦¥­®£® ­  à¨á. 5.28, ®âਬãõ¬®:

nv − ne + nr = 3− 1 + 1 = 3 6= 2.

�¨á. 5.27 �¨á. 5.28

5.11. �ã «ì­÷ £à ä¨� æ쮬㠯÷¤à®§¤÷«÷ ¢á÷ £à ä¨ ¢¢ ¦ â¨¬¥¬® ¯«®áª¨¬¨ ­¥®à÷õ­â®¢ ­¨-

¬¨ ¬ã«ì⨣à ä ¬¨.

5.11.1. �¨§­ ç¥­­ï ¤ã «ì­®£® £à äã�§­ ç¥­­ï 5.18. �¥å © G { ¯«®áª¨© £à ä § ª÷«ìª÷áâî ¢¥à設, à¥-

¡¥à ÷ £à ­¥© nv, ne â  nr ¢÷¤¯®¢÷¤­®. �«®áª¨© £à ä G∗ § ª÷«ìª÷áâî ¢¥à-設, ॡ¥à â  £à ­¥© nv, ne â  nr ¢÷¤¯®¢÷¤­® ­ §¨¢ îâì ¤ã «ì­¨¬ ¤®£à äã G, ïªé®:

1. ne = ne, nv = nr.2. �®¦­  £à ­ì r £à äã G ¬÷áâ¨âì à÷¢­® ®¤­ã ¢¥à設ã v∗ £à äã G∗

(¢¥à設  v∗ £à äã G∗ ¢÷¤¯®¢÷¤ õ £à ­÷ r £à äã G).3. �®¦­¥ ॡ஠e £à äã G ¯¥à¥â¨­ õâìáï à÷¢­® § ®¤­¨¬ ॡ஬ e∗

£à äã G∗ (ॡ஠e £à äã G ¢÷¤¯®¢÷¤ õ ॡàã e∗ £à äã G∗).� ®§­ ç¥­­ï 5.18 ¢¨¯«¨¢ õ, é® ¤«ï ª®¦­®£® ¯«®áª®£® £à äã G ÷á­ãõ

õ¤¨­¨©, § â®ç­÷áâî ¤® ÷§®¬®àä÷§¬ã, ¤ã «ì­¨© £à ä G∗. �à®â¥ ã ÷§®¬®àä-­¨å £à ä÷¢ G1 â  G2 ¬®¦ãâì ¡ã⨠­¥÷§®¬®àä­÷ ¤ã «ì­÷ G∗

1 â  G∗2.

95

Page 98: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5. �¥®à÷ï £à ä÷¢

�ਪ« ¤ 5.28. �  à¨á. 5.29 §®¡à ¦¥­® ÷§®¬®àä­÷ £à ä¨ G1 â  G2,  â ª®¦ ùå ¤ã «ì­÷ G∗

1 â  G∗2 (à¥¡à  ¤ã «ì­¨å £à ä÷¢ ¯®§­ ç¥­® ¯ã­ªâ¨à®¬).

�祢¨¤­®, ¤ã «ì­÷ £à ä¨ G∗1 â  G∗

2 ­¥÷§®¬®àä­÷ { £à ä G∗1 ¬÷áâ¨âì ¤¢÷

¢¥à設¨ á⥯¥­÷¢ 3 â  7, ®¤­ ª ®¡¨¤¢÷ ¢¥à設¨ £à äã G∗2 ¬ îâì á⥯÷­ì 5.

G G2 2,G1, G1 **

�¨á. 5.29

� ã¢ ¦¥­­ï 5.7. ö§ ¯®¡ã¤®¢¨ ¤ã «ì­®£® £à äã «¥£ª® ¡ ç¨â¨, 鮤㠫쭨© £à ä G∗ §¢'吝¨©, ­¥§ «¥¦­® ¢÷¤ §¢'吝®áâ÷ ¢¨å÷¤­®£® £à äãG (⢥द¥­­ï «¥£ª® ¤®¢¥á⨠÷­¤ãªæ÷õî §  ª÷«ìª÷áâî ॡ¥à ã £à ä÷ G).

5.11.2. �à㣨© ¤ã «ì­¨© £à ä�à㣨¬ ¤ã «ì­¨¬ ¤® £à äã G ­ §¨¢ â¨¬¥¬® £à ä G∗∗ = (G∗)∗. �à ä

G∗, ¤ã «ì­¨© ¤® G, ­ §¢¥¬® â ª®¦ ¯¥à訬 ¤ã «ì­¨¬.� áâ㯭¨© ¯à¨ª« ¤ ¤¥¬®­áâàãõ §¢'燐ª ¬÷¦ £à ä ¬¨ G∗∗ â  G.

�ਪ« ¤ 5.29. �  à¨á. 5.30 §®¡à ¦¥­® ¯®¡ã¤®¢ã ¯¥à讣® â  ¤à㣮£®¤ã «ì­¨å ¤® £à ä÷¢ G1 â  G2 (¤ã «ì­÷ £à ä¨ ¯®§­ ç¥­÷ ¯ã­ªâ¨à®¬).

G1

G2G2 G2®

G1 G1®

G2 G2®G1 G1® *

**

**

**

*

�¨á. 5.30

96

Page 99: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.12. �⥯÷­ì £à ­÷ ¯«®áª®£® £à äã. �¥®à¥¬  ¯à® á⥯¥­÷ £à ­¥©

� à¨áã­ª  ¢¨¤­®, é® £à ä¨ G2 â  G∗∗2 ÷§®¬®àä­÷, ®¤­ ª £à ä¨ G1 â 

G∗∗1 ­¥÷§®¬®àä­÷. � §­ ç¨¬®, é® £à ä¨ G1 â  G∗∗

1  ¯à÷®à÷ ­¥ ¬®£«¨ ¡ãâ¨÷§®¬®àä­¨¬¨, ®áª÷«ìª¨ £à ä G1 ­¥§¢'吝¨© (¤¨¢. § ã¢. 5.7).

� áâ㯭  ⥮६  ¤ õ ­¥®¡å÷¤­ã ÷ ¤®áâ â­î 㬮¢ã ÷§®¬®àä­®áâ÷ £à -ä÷¢ G â  G∗∗.

�¥®à¥¬  5.13. �à ä¨ G â  G∗∗ ÷§®¬®àä­÷ ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨£à ä G §¢'吝¨©.

�®¢¥¤¥­­ï. �¥®¡å÷¤­÷áâì. �¥å © G â  G∗∗ ÷§®¬®àä­÷. �®¤÷ §¢'ï§-­÷áâì G ¢¨¯«¨¢ õ ÷§ §¢'吝®áâ÷ G∗∗ (¤¨¢. § ã¢. 5.7).

�®áâ â­÷áâì. �¥å © £à ä G §¢'吝¨©. �«ï ¤®¢¥¤¥­­ï ÷§®¬®àä­®á-â÷ G â  G∗∗ ¤®áâ â­ì® ¯®ª § â¨, é® £à ä G õ ¤ã «ì­¨¬ ¤® G∗ (­ £ ¤ õ¬®,é® ¤ã «ì­¨© £à ä ¢¨§­ ç õâìáï ®¤­®§­ ç­®, § â®ç­÷áâî ¤® ÷§®¬®àä÷§¬ã).�®¢¥¤¥¬®, é® G õ ¤ã «ì­¨¬ ¤® G∗, ¯¥à¥¢÷à¨¢è¨ ã¬®¢¨ ®§­ ç¥­­ï 5.18.

�¥å © £à ä G ¬ õ nv ¢¥à設, ne ॡ¥à â  nr £à ­¥©. �®¤÷, §  ®§­ ç¥­-­ï¬ 5.18, £à ä G∗ ¬ õ nr ¢¥à設 â  ne ॡ¥à. � áâ®á®¢ãîç¨ ¤® £à ä÷¢ Gâ  G∗ ä®à¬ã«ã �©«¥à  (⥮६  5.12), ®âਬãõ¬®, é® £à ä G∗ ¬ õ nv

£à ­¥©.�áª÷«ìª¨ ª®¦­  ¢¥à設  £à äã G ­ «¥¦¨âì à÷¢­® ®¤­÷© £à ­÷ £à -

äã G∗, ª®¦­  £à ­ì £à äã G∗ ¬÷áâ¨âì ¯à¨­ ©¬­÷ ®¤­ã ¢¥à設㠣à äã G,÷ ª÷«ìª÷áâì ¢¥à設 £à äã G §¡÷£ õâìáï § ª÷«ìª÷áâî £à ­¥© £à äã G∗, ®âà¨-¬ãõ¬®, é® ª®¦­  £à ­ì £à äã G∗ ¬÷áâ¨âì à÷¢­® ®¤­ã ¢¥à設㠣à äã G.

� à¥èâ÷, §  ®§­ ç¥­­ï¬ 5.18, ª®¦­¥ ॡ஠£à äã G∗ ¯¥à¥â¨­ õâìáïà÷¢­® § ®¤­¨¬ ॡ஬ £à äã G.

�⦥, ¢¨ª®­ãîâìáï ¢á÷ 㬮¢¨ ®§­ ç¥­­ï 5.18, ÷ £à ä G ¤ã «ì­¨© ¤®£à äã G∗, ⮡⮠£à ä¨ G∗∗ ÷ G ÷§®¬®àä­÷.

5.12. �⥯÷­ì £à ­÷ ¯«®áª®£® £à äã.�¥®à¥¬  ¯à® á⥯¥­÷ £à ­¥©

� æ쮬㠯÷¤à®§¤÷«÷, ïªé® ­¥ ¢ª § ­® ÷­è¥, ¢á÷ £à ä¨ ¢¢ ¦ â¨¬¥¬®¯«®áª¨¬¨ ­¥®à÷õ­â®¢ ­¨¬¨ ¬ã«ì⨣à ä ¬¨.

�§­ ç¥­­ï 5.19. �⥯¥­¥¬ dr £à ­÷ r ¯«®áª®£® £à äã G ­ §¨¢ îâìª÷«ìª÷áâì ॡ¥à £à äã G, é® ­ «¥¦¨âì ¬¥¦÷ £à ­÷ r, ¯à¨ç®¬ã ª®¦¥­ ¬÷á⧡÷«ìèãõ á⥯÷­ì ­  2.

97

Page 100: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5. �¥®à÷ï £à ä÷¢

�祢¨¤­®, é®, §  ®§­ ç¥­­ï¬ 5.18, á⥯÷­ì £à ­÷ r £à äã G §¡÷£ õâìáï÷§ á⥯¥­¥¬ ¢÷¤¯®¢÷¤­®ù ¢¥à設¨ v∗ ¤ã «ì­®£® £à äã G∗.

�ਪ« ¤ 5.30. �à ä G, §®¡à ¦¥­¨© ­  à¨á. 5.31, ¬ õ ¤¢÷ £à ­÷ {¢­ãâà÷è­î r1 ÷ §®¢­÷è­î r2. �⥯¥­÷ £à ­¥© r1 â  r2 §¡÷£ îâìáï ÷§ áâ¥-¯¥­ï¬¨ ¢÷¤¯®¢÷¤­¨å ¢¥à設 v∗1 â  v∗2 ¤ã «ì­®£® £à äã G∗: dr1 = dv∗1 = 1,dr2 = dv∗2 = 3.

r1

r2 e1

e1

e2

e2

v1

v2

*

*

*

*

G G® *G

�¨á. 5.31

�⦥, ¬÷áâ e2 §¡÷«ì訢 á⥯÷­ì £à ­÷ r2 ­  2, é® ¤«ï ¤ã «ì­®£® £à äãG∗ ¢÷¤¯®¢÷¤ õ §¡÷«ì襭­î á⥯¥­ï ¢¥à設¨ v∗2 ­  2 §  à åã­®ª ¯¥â«÷ e∗2.

�¥®à¥¬  5.14 (⥮६  ¯à® á⥯¥­÷ £à ­¥©). �㬠 á⥯¥­÷¢ £à -­¥© ¯«®áª®£® ¬ã«ì⨣à äã G ¤®à÷¢­îõ ¯®¤¢÷©­÷© ª÷«ìª®áâ÷ ॡ¥à:

∑r∈R

dr = 2ne, ¤¥ ne = card(E) { ª÷«ìª÷áâì ॡ¥à ã £à ä÷.

�®¢¥¤¥­­ï. �«ï ¤®¢¥¤¥­­ï ⥮६¨ ஧£«ï­¥¬® ¤ã «ì­¨© £à ä G∗.�áª÷«ìª¨ á⥯÷­ì ª®¦­®ù £à ­÷ £à äã G §¡÷£ õâìáï ÷§ á⥯¥­¥¬ ¢÷¤¯®¢÷¤-­®ù ¢¥à設¨ ¤ã «ì­®£® £à äã G∗, §  ⥮६®î ¯à® á⥯¥­÷ ¢¥à設 (⥮-६  5.2) ®âਬãõ¬®:

∑r∈R

dr =∑

v∗∈V ∗dv∗ = 2ne, ¤¥ V ∗ { ¬­®¦¨­  ¢¥à設 £à äã G∗.

5.13. �¤¨­ ­ á«÷¤®ª § ä®à¬ã«¨ �©«¥à ¤«ï ¯«®áª¨å £à ä÷¢

�®à¬ã«  �©«¥à  (⥮६  5.12), à §®¬ ÷§ ⥮६®î ¯à® á⥯¥­÷ £à -­¥© 5.14, ¤®§¢®«ïõ ¢¨¢¥á⨠ª®à¨á­ã ­¥à÷¢­÷áâì, é® ¯®¢'ï§ãõ ª÷«ìª÷áâì ¢¥à-設 â  à¥¡¥à ¯« ­ à­®£® £à äã.

98

Page 101: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.13. �¤¨­ ­ á«÷¤®ª § ä®à¬ã«¨ �©«¥à  ¤«ï ¯«®áª¨å £à ä÷¢

�¯®ç âªã ­ ¢¥¤¥¬® ¯à®á⥠⢥द¥­­ï, 瘟 ¢¨¯«¨¢ õ ¡¥§¯®á¥à¥¤­ì®§ ¢¨§­ ç¥­­ï á⥯¥­÷ £à ­÷.

�¥¬  5.8. �«ï ¯à®á⮣® §¢'吝®£® £à äã § âà쮬   ¡® ¡÷«ìè¥ ¢¥à-設 ¬¨ á⥯÷­ì ¤®¢÷«ì­®ù £à ­÷ dr ≥ 3.

�®¢¥¤¥­­ï. �¯à ¢¤÷, ïªé® dr = 1, £à ­ì r ¬ õ ¡ã⨠®¡¬¥¦¥­  ¯¥â«¥î,é® á㯥à¥ç¨âì ¯à®áâ®â÷ £à äã. �ªé® dr = 2, £à ­ì r ¬ õ ¡ã⨠®¡¬¥¦¥-­   ¡® ¯ à®î ¬ã«ìâ¨à¥¡¥à (é® á㯥à¥ç¨âì ¯à®áâ®â÷ £à äã),  ¡® ®¤­¨¬¬®á⮬ (é® ­¥¬®¦«¨¢® ¤«ï §¢'吝®£® £à äã § âà쮬   ¡® ¡÷«ìè¥ ¢¥àè¨-­ ¬¨). � à¥èâ÷, ¢¨¯ ¤®ª dr = 0 ¬®¦«¨¢¨© «¨è¥ ¤«ï ¯®à®¦­ì®£® £à äã,é® á㯥à¥ç¨âì 㬮¢÷ §¢'吝®áâ÷ ¯à¨ âàì®å  ¡® ¡÷«ìè¥ ¢¥à設 å.

� ã¢ ¦¥­­ï 5.8. � ⥮६¨ 5.9 ¢¨¯«¨¢ õ ¯÷¤á¨«¥­¨© ¢ à÷ ­â ⢥à¤-¦¥­­ï «¥¬¨ 5.8 ¤«ï ¤¢®¤®«ì­¨å £à ä÷¢: ã ¤¢®¤®«ì­®¬ã ¯à®á⮬㠧¢'吝®-¬ã £à ä÷ § âà쮬   ¡® ¡÷«ìè¥ ¢¥à設 ¬¨ á⥯÷­ì ¤®¢÷«ì­®ù £à ­÷ dr ≥ 4.

�¥¯¥à ¤®¢¥¤¥¬® ®á­®¢­¥ ⢥द¥­­ï æ쮣® ¯÷¤à®§¤÷«ã, 瘟 §àãç­® ¢¨-ª®à¨á⮢㢠⨠¤«ï ¤®¢¥¤¥­­ï ­¥¯« ­ à­®áâ÷ ¤¥ïª¨å £à ä÷¢.

�¥®à¥¬  5.15. �«ï ¯à®á⮣® ¯« ­ à­®£® (­¥ ®¡®¢'離®¢® ¯«®áª®£®)§¢'吝®£® £à äã § nv ¢¥à設 ¬¨ â  ne ॡࠬ¨ ¯à¨ nv ≥ 3 ¢¨ª®­ãõâìáï­¥à÷¢­÷áâì:

ne ≤ 3nv − 6.

�®¢¥¤¥­­ï. �¥å © G { ¯«®áª¨© £à ä, ÷§®¬®àä­¨© G, nr = card(R)

{ ª÷«ìª÷áâì £à ­¥© ã £à ä÷ G. �  ⥮६®î ¯à® á⥯¥­÷ £à ­¥© (⥮à¥-¬  5.14) â  «¥¬®î 5.8 ®âਬãõ¬®:

2ne =∑r∈R

dr ≥ 3nr.

�¥¯¥à ⢥द¥­­ï ⥮६¨ ¢¨¯«¨¢ õ § ä®à¬ã«¨ �©«¥à  ¤«ï ¯«®áª¨å £à -ä÷¢ (⥮६  5.4):

ne ≥ 3

2(2− nv + ne) ⇒ ne ≤ 3nv − 6.

99

Page 102: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5. �¥®à÷ï £à ä÷¢

� ã¢ ¦¥­­ï 5.9. �«ï ¤¢®¤®«ì­¨å £à ä÷¢ १ã«ìâ â ⥮६¨ 5.15 ¬®¦¥¡ã⨠¯÷¤á¨«¥­¨©:

ne ≤ 2nv − 4

(¤®¢¥¤¥­­ï ¯®¢­÷áâî  ­ «®£÷ç­¥ ¤®¢¥¤¥­­î ⥮६¨ 5.15, § ãà å㢠­­ï¬§ ã¢. 5.8).

�÷¤ªà¥á«¨¬®, é® â¥®à¥¬  5.15 ¤®§¢®«ïõ ¢áâ ­®¢¨â¨ (¯à¨ ne � 3nv−6)«¨è¥ ­¥¯« ­ à­÷áâì, ®áª÷«ìª¨ ­¥à÷¢­÷áâì ne ≤ 3nv−6 ¬®¦¥ ¢¨ª®­ã¢ â¨áìïª ¤«ï ¯« ­ à­¨å, â ª ÷ ¤«ï ­¥¯« ­ à­¨å £à ä÷¢.

�ਪ« ¤ 5.31. 1. �à ä «�÷ઠ» (£à ä G1 ­  à¨á. 5.25) ­¥ õ ¯« ­ à-­¨¬, ®áª÷«ìª¨ ¤«ï æ쮣® £à äã ­¥ ¢¨ª®­ãõâìáï ⢥द¥­­ï ⥮६¨ 5.15:

ne = 10 � 3nv − 6 = 9.

2. �à ä «�ਠªà¨­¨æ÷» (£à ä G2 ­  à¨á. 5.25) ­¥¯« ­ à­¨©, ®¤­ ª¤«ï æ쮣® £à äã ¢¨ª®­ãõâìáï ⢥द¥­­ï ⥮६¨ 5.15:

ne = 9 ≤ 3nv − 6 = 12.

�¥¯« ­ à­÷áâì £à äã «�ਠªà¨­¨æ÷» ¬®¦­  ¤®¢¥áâ¨, ¢¨ª®à¨á⮢ãî稯÷¤á¨«¥­¨© ¢ à÷ ­â ⥮६¨ 5.15 ¤«ï ¤¢®¤®«ì­¨å £à ä÷¢ (§ ã¢. 5.9):

ne = 9 � 2nv − 4 = 8.

5.14. � à¡ã¢ ­­ï ¢¥à設 â  £à ­¥© £à äã� æ쮬ã ஧¤÷«÷, ïªé® ­¥ ¢ª § ­® ÷­è¥, ¢á÷ £à ä¨ ¢¢ ¦ â¨¬¥¬® ¯à®-

á⨬¨ â  ­¥®à÷õ­â®¢ ­¨¬¨.

5.14.1. � à¡ã¢ ­­ï ¢¥à設 £à äã�÷¤ ç á ஧¢'易­­ï ¡ £ âì®å ¯à®¡«¥¬ ¤®æ÷«ì­® ஧£«ï¤ â¨ £à ä¨ §

ä à¡®¢ ­¨¬¨ ¢¥à設 ¬¨ { ¬÷祭÷ £à ä¨, ¤«ï ïª¨å ª®¦­÷© ¢¥à設÷ v §÷-áâ ¢«ïõâìáï ¤¥ïª¨© ª®«÷à cv (¢¥à設  v ä à¡ãõâìáï ¢ ª®«÷à cv), ¯à¨ç®¬ãáã¬÷¦­÷ ¢¥à設¨ ä à¡ãîâìáï ¢ à÷§­÷ ª®«ì®à¨.

�÷­÷¬ «ì­ã ª÷«ìª÷áâì ª®«ì®à÷¢, ¤®áâ â­÷å ¤«ï ä à¡ã¢ ­­ï ¢¥à設£à äã, ­ §¨¢ îâì å஬ â¨ç­¨¬ ç¨á«®¬. �஬ â¨ç­¥ ç¨á«® £à äã G¯®§­ ç â¨¬¥¬® ç¥à¥§ qG. �à ä § å஬ â¨ç­¨¬ ç¨á«®¬ k ­ §¨¢ îâìk-ª®«÷à­¨¬.

100

Page 103: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.14. � à¡ã¢ ­­ï ¢¥à設 â  £à ­¥© £à äã

�ਪ« ¤ 5.32. �®¢­¨© £à ä § n ¢¥à設 ¬¨ õ n-ª®«÷à­¨¬, ¯®à®¦­÷©£à ä (­¥§ «¥¦­® ¢÷¤ ª÷«ìª®áâ÷ ¢¥à設) { ®¤­®ª®«÷à­¨¬.

�ਪ« ¤ 5.33. �®§£«ï­¥¬® £à ä, §®¡à ¦¥­¨© ­  à¨á. 5.32.

�¥© £à ä âਪ®«÷à­¨©: § ®¤­®£® ¡®ªã, âàì®åª®«ì®à÷¢ (¡÷«¨©, ¦®¢â¨© â  ç®à­¨©) ¤®áâ â­ì®¤«ï ä à¡ã¢ ­­ï ¢¥à設, ÷ ⮬ã qG ≤ 3; § ¤àã-£®£® ¡®ªã, £à ä G ¬÷áâ¨âì ¯÷¤£à ä, é® õ ¯®-¢­¨¬ £à ä®¬ § âà쮬  ¢¥à設 ¬¨ (v2, v3, v4),÷ ⮬ã qG ≥ 3.

v2 (жовтий)

v3 (білий)

v1 (білий)

v4 (чорний)

G

�¨á. 5.32� áâ㯭  ⥮६  ®¤­®§­ ç­® å à ªâ¥à¨§ãõ ª« á ¤¢®ª®«÷à­¨å £à ä÷¢.�¥®à¥¬  5.16. �¥¯®à®¦­÷© £à ä G ¤¢®ª®«÷à­¨© ⮤÷ ÷ â÷«ìª¨ ⮤÷,

ª®«¨ ¢÷­ ¤¢®¤®«ì­¨©.�®¢¥¤¥­­ï. �¢®ª®«÷à­÷áâì ­¥¯®à®¦­ì®£® £à äã G, §  ¢¨§­ ç¥­­ï¬,

¥ª¢÷¢ «¥­â­  â ª®¬ã ⢥द¥­­î: ¬­®¦¨­ã ¢¥à設 V £à äã G ¬®¦­ à®§¡¨â¨ ­  ­¥¯®à®¦­÷ ¯÷¤¬­®¦¨­¨ V1, V2 (V1 ∩ V2 = ∅) â ª, é® ¡ã¤ì-ïª÷¤¢÷ ¢¥à設¨ § ®¤­÷õù ¯÷¤¬­®¦¨­¨ Vk (k = 1, 2) õ ­¥áã¬÷¦­¨¬¨. �®¡â®, § ®§­ ç¥­­ï¬ 5.11, ¤¢®ª®«÷à­÷áâì ­¥¯®à®¦­ì®£® £à äã ¥ª¢÷¢ «¥­â­  ©®£®¤¢®¤®«ì­®áâ÷.

�¤­¥ § ¢ ¦«¨¢¨å § áâ®á㢠­ì ä à¡ã¢ ­­ï ¢¥à設 £à äã ¯®¢'易­¥ §â ª §¢ ­®î «â¥®à÷õî ஧ª« ¤÷¢». � áâ㯭¨© ¯à¨ª« ¤ ¤¥¬®­áâàãõ (ã §­ -ç­® á¯à®é¥­®¬ã ¢¨£«ï¤÷) §¢¥¤¥­­ï ¯à®¡«¥¬¨ ᪫ ¤ ­­ï ®¯â¨¬ «ì­®£®à®§ª« ¤ã ¤® ä à¡ã¢ ­­ï ¢¥à設 £à äã.

�ਪ« ¤ 5.34. �«ï ­ ¢ç «ì­®£® ¯à®æ¥áã á¥à¥¤­ì®ù 誮«¨ ¯®âà÷¡­®áª« á⨠஧ª« ¤ § ­ïâì â ª, 鮡 ãá÷ ãப¨ ¢ 誮«÷ ¯à®â¬ ⨦­ï ¡ã-«¨ ¯à®¢¥¤¥­÷ §  ¬÷­÷¬ «ì­ã ª÷«ìª÷áâì ­ ¢ç «ì­¨å £®¤¨­. �¢ ¦ îâì, 鮪÷«ìª÷áâì ­ ¢ç «ì­¨å  ã¤¨â®à÷© ­¥®¡¬¥¦¥­ , ¯à®â¥ § ª®¦­®£® ¯à¥¤¬¥â õ â÷«ìª¨ ®¤¨­ ¢¨ª« ¤ ç (®¤¨­ ¯à¥¤¬¥â ­¥ ¬®¦¥ ¢¨ª« ¤ â¨áì ¢®¤­®ç á 㤢®å £à㯠å).

�®§£«ï­¥¬® £à ä G, é® ¢÷¤¯®¢÷¤ õ â ª¨¬ ¢¨¬®£ ¬:• ª®¦­  ¢¥à設  £à äã õ ¯ à®î ⨯ã (〈ª« á〉, 〈¯à¥¤¬¥â〉) ÷ ¢÷¤¯®¢÷-

¤ õ ãப㠧 ¢ª § ­®£® ¯à¥¤¬¥â , 直© ¯®âà÷¡­® ¯à®¢¥á⨠¯à®â¬â¨¦­ï § ãç­ï¬¨ ¢ª § ­®£® ª« áã (­ ¯à¨ª« ¤, (10-�, �÷§¨ª ));

101

Page 104: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5. �¥®à÷ï £à ä÷¢

• áã¬÷¦­¨¬¨ õ â÷ ÷ â÷«ìª¨ â÷ ¢¥à設¨, ïª÷ ¢÷¤¯®¢÷¤ îâì ãப ¬, é®­¥ ¬®¦ãâì ¡ã⨠¯à®¢¥¤¥­÷ ¢®¤­®ç á (®¤¨­ ¢¨ª« ¤ ç ­¥ ¬®¦¥ ¢¥á⨢®¤­®ç á ¤¢  ãப¨, ÷ ¤¢  ãப¨ ­¥ ¬®¦­  ¯à®¢®¤¨â¨ ¢®¤­®ç á §®¤­¨¬ ª« á®¬).

�祢¨¤­®, é® ª÷«ìª÷áâì ¢¥à設 ã £à ä÷ G ¤®à÷¢­îõ § £ «ì­÷© ª÷«ì-ª®áâ÷ ãப÷¢, ïª÷ âॡ  ¯à®¢¥á⨠§ ãç­ï¬¨ 誮«¨ ¯à®â¬ ⨦­ï, ÷ ¯à®-¡«¥¬  ᪫ ¤ ­­ï ®¯â¨¬ «ì­®£® ஧ª« ¤ã §¢®¤¨âìáï ¤® ¯®èãªã å஬ -â¨ç­®£® ç¨á«  ¯®¡ã¤®¢ ­®£® £à äã.

�«ï ¯®èãªã å஬ â¨ç­®£® ç¨á«  ÷á­ãîâì â®ç­÷  «£®à¨â¬¨ (¤¨¢., ­ -¯à¨ª« ¤, [9]), ïª÷ £ à ­âãîâì §­ å®¤¦¥­­ï â®ç­®£® §­ ç¥­­ï å஬ â¨ç-­®£® ç¨á« .

�¤­ ª §  §à®áâ ­­ï ª÷«ìª®áâ÷ ¢¥à設 § áâ®á㢠­­ï â®ç­¨å  «£®à¨â-¬÷¢ ä à¡ã¢ ­­ï áâ õ, ç¥à¥§ 袨¤ª¥ §à®áâ ­­ï ®¡áï£ã ®¡ç¨á«¥­ì, ¤ã¦¥¯à®¡«¥¬ â¨ç­¨¬. �®¬ã ¤®æ÷«ì­® ஧£«ï¤ â¨ ¯à®áâ÷ â  ¥ä¥ªâ¨¢­÷  «£®-à¨â¬¨ «­ ¡«¨¦¥­®£®» ä à¡ã¢ ­­ï £à äã § ª÷«ìª÷áâî ª®«ì®à÷¢, ¡«¨§ì-ª¨¬ ¤® å஬ â¨ç­®£® ç¨á« . �¤¨­ § â ª¨å  «£®à¨â¬÷¢, § ¯à®¯®­®¢ ­¨©�. �¥«è¥¬ (D. Welsh) ÷ �. � ã¥««®¬ (M. Powell):

1. �¥à設¨ £à äã ¢¯®à浪®¢ãîâìáï §  ­¥§à®áâ ­­ï¬ á⥯¥­÷¢.2. �¥à設  v, é® ¯¥àè  ¢ ᯨáªã, ä à¡ãõâìáï ¢ ª®«÷à c.3. � ª®«÷à c ä à¡ãîâìáï ¢ ¯®à浪㠧  ᯨ᪮¬ ãá÷ ¢¥à設¨, ­¥áã¬÷¦­÷

§ ¢¥à設 ¬¨, é® ­  ¤ ­®¬ã ªà®æ÷ ¯®ä à¡®¢ ­÷ ¢ ª®«÷à c1.4. �®ä à¡®¢ ­÷ ¢¥à設¨ ¢¨ªà¥á«îîâì ÷§ ᯨáªã.5. �®¢â®àîõ¬® ¯ã­ªâ¨ 2{4, ¯®ª¨ ¢ ᯨáªã õ ­¥ä à¡®¢ ­÷ ¢¥à設¨.

�ਪ« ¤ 5.35. �®ä à¡ãõ¬® ¢¥à設¨ £à äã G, §®¡à ¦¥­®£® ­ à¨á. 5.33, § áâ®á®¢ãîç¨ ­ ¡«¨¦¥­¨©  «£®à¨â¬ �¥«è  { � ã¥«« .

1. �®§â èãõ¬® ¢¥à設¨ §  ­¥§à®áâ ­­ï¬ á⥯¥­÷¢:

v2

v3

v1

v4

G

�¨á. 5.33

v2, v3, v1, v4.2. �÷áâ ¢¨¬® ¢¥à設÷ v2 ª®«÷à c1; ¢¨ªà¥á«¨¬® ¢¥à-

設ã v2 §÷ ᯨáªã.3. �¥à設ã v3 (¯¥àèã, é® § «¨è¨« áì ã ᯨáªã)

¯®ä à¡ãõ¬® ¢ ª®«÷à c2 ÷ ¢¨ªà¥á«¨¬® §÷ ᯨáªã.4. �¥à設ã v1 (¯¥àèã, é® § «¨è¨« áì ã ᯨáªã)

¯®ä à¡ãõ¬® ¢ ª®«÷à c3; ã 楩 ¦¥ ª®«÷à ¯®ä à¡ãõ¬® ¢¥à-設ã v4, ­¥áã¬÷¦­ã § v1; ¢¥à設¨ v4 â  v1 ¢¨ªà¥á«¨¬® §÷ ᯨáªã.

102

Page 105: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.14. � à¡ã¢ ­­ï ¢¥à設 â  £à ­¥© £à äã

�⦥, £à ä G ¢¤ «®áï ¯®ä à¡ã¢ â¨ âà쮬  ª®«ì®à ¬¨. � §­ ç¨¬®,é® ¤«ï ¤ ­®£® £à äã ­ ¡«¨¦¥­¨©  «£®à¨â¬ ¤ ¢ â®ç­¥ §­ ç¥­­ï å஬ -â¨ç­®£® ç¨á« : £à ä G õ á ¬¥ âਪ®«÷à­¨¬ (  ­¥ ®¤­®- ç¨ ¤¢®ª®«÷à­¨¬),®áª÷«ìª¨ ¬÷áâ¨âì ¯®¢­¨© £à ä § âà쮬  ¢¥à設 ¬¨.

� ã¢ ¦¥­­ï 5.10. �஡«¥¬ã ä à¡ã¢ ­­ï ¢¥à設 ¬®¦­  ஧£«ï¤ â¨÷ ¤«ï ¬ã«ì⨣à ä÷¢ ¡¥§ ¯¥â¥«ì (ä à¡ã¢ â¨ ¢¥à設¨ £à ä÷¢ § ¯¥â«ï¬¨­¥¬®¦«¨¢®, ®áª÷«ìª¨ ¢¥à設  § ¯¥â«¥î áã¬÷¦­  á ¬÷© ᮡ÷).

5.14.2. � à¡ã¢ ­­ï £à ­¥© £à äã� «÷ ¤® ª÷­æï ¯÷¤à®§¤÷«ã ¢á÷ £à ä¨ ¢¢ ¦ â¨¬¥¬® ¯«®áª¨¬¨ ­¥®à÷õ­-

⮢ ­¨¬¨ ¬ã«ì⨣à ä ¬¨.�«ï ª®à¥ªâ­®£® ¢¨§­ ç¥­­ï ¯à®¡«¥¬¨ ä à¡ã¢ ­­ï £à ­¥© ­ ¬ §­ ¤®-

¡¨âìáï ¯®­ïââï áã¬÷¦­®áâ÷ £à ­¥©.

�§­ ç¥­­ï 5.20. �à ­÷ r1 â  r2 £à äã G ­ §¨¢ îâì áã¬÷¦­¨¬¨, ïªé®÷á­ãõ ¯à¨­ ©¬­÷ ®¤­¥ ॡà®, é® ­ «¥¦¨âì ®¡®¬ £à ­ï¬.

�ਪ« ¤ 5.36. �®§£«ï­¥¬® £à ä ­ à¨á. 5.34. �®¢­÷è­ï £à ­ì r4 æ쮣® £à -äã áã¬÷¦­  § £à ­ï¬¨ r1, r2 â  r3; £à ­ìr2 áã¬÷¦­  § r1 â  r4 ÷ ­¥áã¬÷¦­  § r3.

r3r2

r1r4

�¨á. 5.34�஡«¥¬  ä à¡ã¢ ­­ï £à ­¥© £à äã ¯®«ï£ õ ã §÷áâ ¢«¥­­÷ ª®¦­÷© £à -

­÷ ¤¥ïª®ù ¬÷⪨ { ª®«ì®àã (ä à¡ã¢ ­­ï £à ­÷), ¯à¨ç®¬ã áã¬÷¦­÷ £à ­÷á«÷¤ ¯®ä à¡ã¢ â¨ à÷§­¨¬¨ ª®«ì®à ¬¨. �÷¤ ç á ä à¡ã¢ ­­ï £à ­¥©, ïª ÷¯÷¤ ç á ä à¡ã¢ ­­ï ¢¥à設, ­ ¬ £ îâìáï ¢¨ª®à¨á⮢㢠⨠節 ©¬¥­è¥ª®«ì®à÷¢.

�祢¨¤­®, é® £à ­÷ £à äã § ¬®áâ ¬¨ ä à¡ã¢ â¨ ­¥¬®¦«¨¢®, ®áª÷«ìª¨£à ­ì, 猪 ¬÷áâ¨âì ¬÷áâ, áã¬÷¦­  á ¬÷© ᮡ÷.

�áª÷«ìª¨ áã¬÷¦­÷áâì £à ­¥© r1 â  r2 £à äã G ¥ª¢÷¢ «¥­â­  áã¬÷¦­®áâ÷¢÷¤¯®¢÷¤­¨å ¢¥à設 v∗1 â  v∗2 ¤ã «ì­®£® £à äã G∗, ¯à®¡«¥¬  ä à¡ã¢ ­­ï£à ­¥© §¢®¤¨âìáï ¤® ä à¡ã¢ ­­ï ¢¥à設 ¤ã «ì­®£® £à äã.

�¤­¨¬ § ¯¥àè¨å (¬®¦«¨¢®, ¯¥à訬) § áâ®á㢠­ì ä à¡ã¢ ­­ï £à ­¥©£à äã õ ä à¡ã¢ ­­ï £¥®£à ä÷ç­®ù ª à⨠⠪, 鮡 áãá÷¤­÷ ªà ù­¨ ¡ã«¨

103

Page 106: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 5. �¥®à÷ï £à ä÷¢

¯®ä à¡®¢ ­÷ à÷§­¨¬¨ ª®«ì®à ¬¨. � §¢'離㠧 ¯®è㪮¬ ¬÷­÷¬ «ì­®ù ª÷«ì-ª®áâ÷ ª®«ì®à÷¢, ¯®âà÷¡­¨å ¤«ï ä à¡ã¢ ­­ï ª àâ¨, ¢ á¥à¥¤¨­÷ XIX á⮫÷ââï¡ã«  áä®à¬ã«ì®¢ ­  â ª §¢ ­  «¯à®¡«¥¬  ç®â¨àì®å ª®«ì®à÷¢», ïªã ­ ¢¥-¤¥¬® (¡¥§ ¤®¢¥¤¥­­ï) ¢ ¥ª¢÷¢ «¥­â­®¬ã ä®à¬ã«î¢ ­­÷ ¤«ï ä à¡ã¢ ­­ï¢¥à設 ¯« ­ à­®£® £à äã.

�¥®à¥¬  5.17 (¯à®¡«¥¬  ç®â¨àì®å ª®«ì®à÷¢). �«ï ä à¡ã¢ ­­ï¢¥à設 ¯« ­ à­®£® £à äã ¤®áâ â­ì® 4 ª®«ì®à÷¢.

� §­ ç¨¬®, é® ¯à®¡«¥¬ã ç®â¨àì®å ª®«ì®à÷¢ ¡ã«® ¤®¢¥¤¥­® «¨è¥1976 à®ªã  ¬¥à¨ª ­á쪨¬¨ ¢ç¥­¨¬¨ �. �¯¯¥«¥¬ (K. Appel) â  �. �¥©ª¥-­¥¬ (W. Haken) § ¢¨ª®à¨áâ ­­ï¬ ª®¬¯'îâ¥à­¨å â¥å­®«®£÷©.

5.15. �®­ïââï ¯à® ®à÷õ­â®¢ ­÷ £à ä¨� æ쮬㠯÷¤à®§¤÷«÷ ¢á÷ £à ä¨ ¢¢ ¦ â¨¬¥¬® ¯à®á⨬¨ ®à£à ä ¬¨

(¯à®á⨬¨ ®à÷õ­â®¢ ­¨¬¨ £à ä ¬¨).�§­ ç¥­­ï 5.21. �à£à ä ­ §¨¢ îâì ¯®¢­¨¬, ïªé® ¡ã¤ì-猪 ¯ à 

©®£® ¢¥à設 (u, v) (u 6= v) §'õ¤­ ­  ॡ஬.�祢¨¤­®, é® ¯®¢­÷ ®à£à ä¨ § ®¤­ ª®¢®î ª÷«ìª÷áâî ¢¥à設 ¬®¦ãâì

¡ã⨠­¥÷§®¬®àä­¨¬¨. � ª, ¯®¢­÷ £à ä¨ G1 â  G2, §®¡à ¦¥­÷ ­  à¨á. 5.35,¬ îâì ®¤­ ª®¢ã ª÷«ìª÷áâì ¢¥à設,  «¥ ­¥ ÷§®¬®àä­÷.

�§­ ç¥­­ï 5.22. �⥯¥­¥¬ d+v ¢¥à設¨ v §  ¢å®¤®¬ ­ §¨¢ îâì ª÷«ì-

ª÷áâì ॡ¥à, é® ¢¥¤ãâì ¤® ¢¥à設¨ v, á⥯¥­¥¬ d−v ¢¥à設¨ v §  ¢¨å®¤®¬­ §¨¢ îâì ª÷«ìª÷áâì ॡ¥à, é® ¢¥¤ãâì ¢÷¤ v. �¥à設ã v ­ §¨¢ îâì ¢¨â®-ª®¬, ïªé® d+

v = 0; ¢¥à設ã v ­ §¨¢ îâì á⮪®¬, ïªé® d−v = 0.�ਪ« ¤ 5.37. �à ä, §®¡à ¦¥­¨© ­  à¨á. 5.36, ¬ õ áâ÷ª v6 (d−v6

= 0,d+

v6= 2) ÷ ­¥ ¬ õ ¦®¤­®£® ¢¨â®ªã.

G1G2

�¨á. 5.35

v2

v3v1

v4

v5

v6

�¨á. 5.36

104

Page 107: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

5.15. �®­ïââï ¯à® ®à÷õ­â®¢ ­÷ £à ä¨

�¥®à¥¬  5.18. �®¢­¨© ®à£à ä ­¥ ¬®¦¥ ¬ â¨ ¡÷«ìè¥ ®¤­®£® ¢¨â®ªã÷ ­¥ ¬®¦¥ ¬ â¨ ¡÷«ìè¥ ®¤­®£® á⮪ã.

�®¢¥¤¥­­ï. �®¢¥¤¥¬®, é® ¯®¢­¨© ®à£à ä ­¥ ¬®¦¥ ¬ â¨ ¡÷«ìè¥ ®¤­®£®¢¨â®ªã (⢥द¥­­ï ¯à® á⮪¨ ¤®¢®¤¨âìáï  ­ «®£÷ç­®).

�ਯãáâ÷¬®, é® ¢ ¯®¢­®¬ã ®à£à ä÷ G ÷á­ãîâì ¢¨â®ª¨ v1 â  v2. �á-ª÷«ìª¨ £à ä ¯®¢­¨©, ¢¥à設¨ v1 â  v2 ¬ îâì ¡ã⨠§'õ¤­ ­÷ ॡ஬; ­¥¯®àãèãîç¨ § £ «ì­®áâ÷ ¯à¨¯ãáâ÷¬®, é® à¥¡à® ¢¥¤¥ ¢÷¤ v1 ¤® v2. �âਬã-õ¬® á㯥à¥ç­÷áâì (¤® ¢¨â®ªã v2 ¢¥¤¥ ॡà®), é® ¤®¢®¤¨âì ⥮६ã.

�«ï ®à£à ä÷¢ ÷á­ãõ æ÷ª ¢¥ 㧠£ «ì­¥­­ï ⥮६¨ ¯à® á⥯¥­÷ ¢¥à設.

�¥®à¥¬  5.19 (⥮६  ¯à® á⥯¥­÷ ¢¥à設 ¤«ï ®à£à ä÷¢).�㬠 á⥯¥­÷¢ ¢¥à設 £à äã §  ¢å®¤®¬ ¤®à÷¢­îõ cã¬÷ á⥯¥­÷¢ ¢¥à-

設 £à äã §  ¢¨å®¤®¬ ÷ ¤®à÷¢­îõ ª÷«ìª®áâ÷ ॡ¥à:∑v∈V

d+v =

∑v∈V

d−v = ne, ¤¥ ne = card(E) { ª÷«ìª÷áâì ॡ¥à ã £à ä÷.

�¯à ¢  5.5. �®¢¥á⨠⥮६ã 5.19 á ¬®áâ÷©­®, §   ­ «®£÷õî ¤® ¤®¢¥-¤¥­­ï ⥮६¨ 5.2.

105

Page 108: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6

�«¥¬¥­â¨ ⥮à÷ù £àã¯

6.1. �«£¥¡à¨ç­÷ áâàãªâãਠ§ ®¤­÷õî¡÷­ à­®î ®¯¥à æ÷õî

�¥å © A { ­¥¯®à®¦­ï ¬­®¦¨­ , n ∈ N ∪ {0}.�ã­ªæ÷î f : A×n → A § ®¡« áâî ¢¨§­ ç¥­­ï D ⊂ A×n ­ §¨¢ îâì

n- à­®î ®¯¥à æ÷õî ­  ¬­®¦¨­÷ A. �ªé® n = 1, â® ®¯¥à æ÷î f ­ §¨¢ îâìã­ à­®î, ïªé® n = 2 { ¡÷­ à­®î. �ªé® n = 0, ¯÷¤ ®¯¥à æ÷õî f ஧ã¬÷îâìä÷ªá®¢ ­¨© ¥«¥¬¥­â f ∈ A; ®¯¥à æ÷î f ã æ쮬ã à §÷ ­ §¨¢ îâì ­ã«ì- à­®î. �ªé® D = A×n (⮡⮠äã­ªæ÷ï f õ ¢÷¤®¡à ¦¥­­ï¬), ®¯¥à æ÷î f­ §¨¢ îâì § ¬ª­¥­®î.

�«ï ¡÷­ à­®ù ®¯¥à æ÷ù ç áâ® ¢¨ª®à¨á⮢ãîâì â ª §¢ ­ã ÷­ä÷ªá­ã ä®à-¬ã § ¯¨áã { ᨬ¢®« ®¯¥à æ÷ù § ¯¨áãîâì ¬÷¦ ¤¢®¬  ùù  à£ã¬¥­â ¬¨: xfy§ ¬÷áâì f(x, y). � à §÷ ¢¨ª®à¨áâ ­­ï ÷­ä÷ªá­®ù ä®à¬¨ § ¯¨áã ¤«ï ¡÷­ à-­®ù ®¯¥à æ÷ù ç áâ® ¢¦¨¢ îâì âà ¤¨æ÷©­÷ ¯®§­ ç¥­­ï: «+», «·», «◦» â  ÷­.�  ¡áâࠪ⭮¬ã ¢¨¯ ¤ªã (¡¥§ ä÷ªá®¢ ­®£® §¬÷áâã ¡÷­ à­®ù ®¯¥à æ÷ù) ¡ã-¤¥¬® ¢¨ª®à¨á⮢㢠⨠¯®§­ ç¥­­ï «∗».

�÷­ à­ã ®¯¥à æ÷î «∗» ­  ¬­®¦¨­÷ A ­ §¨¢ îâì ª®¬ãâ â¨¢­®î, ïªé®

a ∗ b = b ∗ a ∀ a, b ∈ A.

�÷­ à­ã ®¯¥à æ÷î «∗» ­  ¬­®¦¨­÷ A ­ §¨¢ îâì  á®æ÷ â¨¢­®î, ïªé®

(a ∗ b) ∗ c = a ∗ (b ∗ c) ∀ a, b, c ∈ A.

106

Page 109: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.1. �«£¥¡à¨ç­÷ áâàãªâãਠ§ ®¤­÷õî ¡÷­ à­®î ®¯¥à æ÷õî

�«ï  á®æ÷ â¨¢­®ù ¡÷­ à­®ù ®¯¥à æ÷ù «∗» § ¬÷áâì (a ∗ b) ∗ c  ¡® a ∗ (b ∗ c)ç áâ® ¯¨èãâì a ∗ b ∗ c, ®áª÷«ìª¨ ¯®à冷ª ¢¨ª®­ ­­ï  á®æ÷ â¨¢­®ù ®¯¥à æ÷ù­¥ ¬ õ §­ ç¥­­ï.

�ªé® ­ ¢¥¤¥­¥ á¯÷¢¢÷¤­®è¥­­ï ª®¬ãâ â¨¢­®áâ÷ ­¥ ¢¨ª®­ãõâìáï ¯à¨-­ ©¬­÷ ¤«ï ¤¢®å ¥«¥¬¥­â÷¢ a, b ∈ A, ®¯¥à æ÷î ­ §¨¢ îâì ­¥ª®¬ãâ â¨¢-­®î. �ªé® ­ ¢¥¤¥­¥ á¯÷¢¢÷¤­®è¥­­ï  á®æ÷ â¨¢­®áâ÷ ­¥ ¢¨ª®­ãõâìáï ¯à¨-­ ©¬­÷ ¤«ï âàì®å ¥«¥¬¥­â÷¢ a, b, c ∈ A, ®¯¥à æ÷î ­ §¨¢ îâì ­¥ á®æ÷ â¨¢-­®î.

�¯®à浪®¢ ­ã ¯ àã 〈A, ∗〉, ¤¥ «∗» { ¡÷­ à­  ®¯¥à æ÷ï ­  ¬­®¦¨­÷A 6= ∅, ­ §¨¢ îâì  «£¥¡à¨ç­®î áâàãªâãà®î § ¡÷­ à­®î ®¯¥à æ÷õî.

� ã¢ ¦¥­­ï 6.1. �¢¨ç ©­®, ¬®¦­  ஧£«ï¤ â¨  «£¥¡à¨ç­÷ áâàãªâã-ਠ§ ¤®¢÷«ì­®î (÷ ­ ¢÷âì § ­¥áª÷­ç¥­­®î) ª÷«ìª÷áâî ®¯¥à æ÷© ¤®¢÷«ì­®ù à­®áâ÷. � ª, ã ஧¤. 7 ¡ã¤¥ ஧£«ï­ãâ®  «£¥¡à¨ç­ã áâàãªâãàã § ¤¢®¬ ¡÷­ à­¨¬¨ ®¯¥à æ÷ﬨ.

�§­ ç¥­­ï 6.1. �«£¥¡à¨ç­ã áâàãªâãàã 〈A, ∗〉 ­ §¨¢ â¨¬¥¬® ®¯¥à -⨢®¬, ïªé® ®¯¥à æ÷ï «∗» § ¬ª­¥­ . �¯¥à â¨¢ §  á®æ÷ â¨¢­®î ®¯¥à æ÷õî­ §¨¢ îâì ¯÷¢£à㯮î. �«£¥¡à¨ç­ã áâàãªâãàã § ª®¬ãâ â¨¢­®î ®¯¥à æ÷õî­ §¨¢ îâì ª®¬ãâ â¨¢­®î, § ­¥ª®¬ãâ â¨¢­®î ®¯¥à æ÷õî { ­¥ª®¬ãâ â¨¢-­®î.

�ਪ« ¤ 6.1. 1. �âàãªâãà  〈Z,−〉 { ®¯¥à â¨¢, ®áª÷«ìª¨ ¤«ï ¤®¢÷«ì-­¨å n,m ∈ Z ®âਬãõ¬® n−m ∈ Z.

2. �âàãªâãà  〈N,−〉 ­¥ õ ®¯¥à â¨¢®¬: â ª, ­ ¯à¨ª« ¤, 1−2 = −1 /∈ N.3. �¯¥à æ÷ï «−» ­  ¬­®¦¨­÷ R ­¥ õ ­÷ ª®¬ãâ â¨¢­®î, ­÷  á®æ÷ â¨¢­®î.4. �¯¥à æ÷ï «+» ­  ¬­®¦¨­÷ R õ ª®¬ãâ â¨¢­®î â   á®æ÷ â¨¢­®î. �â-

¦¥, 〈R, +〉 { ª®¬ãâ â¨¢­  ¯÷¢£à㯠.5. �¯¥à æ÷ï «·» õ ª®¬ãâ â¨¢­®î â   á®æ÷ â¨¢­®î ­  ¬­®¦¨­÷ R (¤®-

¡ã⮪ ¤÷©á­¨å ç¨á¥«). �⦥, 〈R, ·〉 { ª®¬ãâ â¨¢­  ¯÷¢£à㯠.6. �  ¬­®¦¨­÷ Mn×n ¬ âà¨æì n× n ®¯¥à æ÷ï «·» õ  á®æ÷ â¨¢­®î,  «¥

¯à¨ n ≥ 2 ­¥ õ ª®¬ãâ â¨¢­®î. �⦥, 〈Mn×n, ·〉 { ¯÷¢£à㯠 (ã ¢¨¯ ¤ªãn ≥ 2 { ­¥ª®¬ãâ â¨¢­ ).

� ã¢ ¦¥­­ï 6.2. �ãâ ÷ ¤ «÷, ïªé® ­¥ ¢ª § ­® ÷­è¥, ஧£«ï­ãâ® ¬ âà¨æ÷§ ¥«¥¬¥­â ¬¨ ÷§ R.

107

Page 110: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�§­ ç¥­­ï 6.2. �¥å © 〈A, ∗〉 { ®¯¥à â¨¢. �«¥¬¥­â er ∈ A ­ §¨¢ îâì¯à ¢¨¬ ­¥©âà «ì­¨¬, ïªé®

a ∗ er = a ∀ a ∈ A.

�«¥¬¥­â el ∈ A ­ §¨¢ îâì «÷¢¨¬ ­¥©âà «ì­¨¬, ïªé®

el ∗ a = a ∀ a ∈ A.

�à ¢¨© â  «÷¢¨© ­¥©âà «ì­÷ ¥«¥¬¥­â¨ ­ §¨¢ îâì ®¤­®áâ®à®­­÷¬¨ ­¥©-âà «ì­¨¬¨.

�«¥¬¥­â e ∈ A ­ §¨¢ îâì ­¥©âà «ì­¨¬ (¤¢®áâ®à®­­÷¬ ­¥©âà «ì­¨¬),ïªé® ¢÷­ õ ®¤­®ç á­® ¯à ¢¨¬ ÷ «÷¢¨¬ ­¥©âà «ì­¨¬.

�§­ ç¥­­ï 6.3. �÷¢£àã¯ã § ­¥©âà «ì­¨¬ ¥«¥¬¥­â®¬ ­ §¨¢ îâì ¬®-­®ù¤®¬.

� ã¢ ¦¥­­ï 6.3. �®¢÷«ì­   «£¥¡à¨ç­  áâàãªâãà  § ¡÷­ à­®î ®¯¥à -æ÷õî ¬®¦¥ ­¥ ¬÷áâ¨â¨ ­÷ ¤¢®áâ®à®­­÷å, ­÷ ­ ¢÷âì ®¤­®áâ®à®­­÷å ­¥©âà «ì-­¨å ¥«¥¬¥­â÷¢.

�ਪ« ¤ 6.2. 1. �  «£¥¡à¨ç­÷© áâàãªâãà÷ 〈Z,−〉 ÷á­ãõ ¯à ¢¨© ­¥©â-à «ì­¨© 0,  «¥ ­¥¬ õ ¤¢®áâ®à®­­ì®£® ­¥©âà «ì­®£®.

2. �  «£¥¡à¨ç­÷© áâàãªâãà÷ 〈R3,×〉 (¢¥ªâ®à­¨© ¤®¡ã⮪ ¢¥ªâ®à÷¢ ã R3)­¥ ÷á­ãõ ¦®¤­®£® (®¤­®- ç¨ ¤¢®áâ®à®­­ì®£®) ­¥©âà «ì­®£® ¥«¥¬¥­â .

3. �  «£¥¡à¨ç­÷© áâàãªâãà÷ 〈Mn×n, ·〉 ÷á­ãõ ¤¢®áâ®à®­­÷© ­¥©âà «ì-­¨© I (®¤¨­¨ç­  ¬ âà¨æï). �⦥, ¢à å®¢ãîç¨  á®æ÷ â¨¢­÷áâì ¤®¡ãâªã¬ âà¨æì, 〈Mn×n, ·〉 { ¬®­®ù¤ (¯à¨ n ≥ 2 { ­¥ª®¬ãâ â¨¢­¨©).

�¥®à¥¬  6.1. �ªé® ¢ ®¯¥à â¨¢÷ 〈A, ∗〉 ÷á­ãõ ¯à ¢¨© er ÷ «÷¢¨© el

­¥©âà «ì­÷ ¥«¥¬¥­â¨, â®er = el.

�®¢¥¤¥­­ï. �  ¢¨§­ ç¥­­ï¬ ¯à ¢®£® â  «÷¢®£® ­¥©âà «ì­¨å ¬ õ¬®:

el = el ∗ er; er = el ∗ er,

§¢÷¤ª¨ el = er.

108

Page 111: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.1. �«£¥¡à¨ç­÷ áâàãªâãਠ§ ®¤­÷õî ¡÷­ à­®î ®¯¥à æ÷õî

� á«÷¤®ª. �ªé® ¢  «£¥¡à¨ç­÷© áâàãªâãà÷ 〈A, ∗〉 ÷á­ãõ å®ç  ¡ ®¤¨­¯à ¢¨© er ÷ å®ç  ¡ ®¤¨­ «÷¢¨© el ­¥©âà «ì­÷ ¥«¥¬¥­â¨, â® ¢ áâàãªâãà÷÷á­ãõ ¤¢®áâ®à®­­÷© ­¥©âà «ì­¨© ¥«¥¬¥­â e = er = el, ¯à¨ç®¬ã ¢á÷ ÷­è÷®¤­®- â  ¤¢®áâ®à®­­÷ ­¥©âà «ì­÷ ¥«¥¬¥­â¨ §¡÷£ â¨¬ãâìáï § e.

� ã¢ ¦¥­­ï 6.4. � ⥮६¨ 6.1 ®¤à §ã ¢¨¯«¨¢ õ õ¤¨­÷áâì ¤¢®áâ®à®­-­ì®£® ­¥©âà «ì­®£®,  «¥ ®¤­®áâ®à®­­÷å ­¥©âà «ì­¨å ¬®¦¥ ¡ã⨠¤®¢÷«ì­ ª÷«ìª÷áâì.

�ਪ« ¤ 6.3. �¥å © ­  ­¥¯®à®¦­÷© ¬­®¦¨­÷ A ¡÷­ à­  ®¯¥à æ÷ï «∗»¢¨§­ ç¥­  ïª ¯à®¥ªæ÷ï ­  ¯¥à訩  à£ã¬¥­â:

a ∗ b = a ∀ a, b ∈ A.

�¥£ª® ¯¥à¥¢÷à¨â¨, é® ¢  «£¥¡à¨ç­÷© áâàãªâãà÷ 〈A, ∗〉 ª®¦­¨© ¥«¥¬¥­âb ∈ A õ ¯à ¢¨¬ ­¥©âà «ì­¨¬.

�§­ ç¥­­ï 6.4. �¥å © 〈A, ∗〉 { ®¯¥à â¨¢ § ­¥©âà «ì­¨¬ ¥«¥¬¥­â®¬e, a { ä÷ªá®¢ ­¨© ¥«¥¬¥­â ¢ A. �«¥¬¥­â a−1,r ∈ A ­ §¨¢ îâì ¯à ¢¨¬®¡¥à­¥­¨¬ ¤® a, ïªé®

a ∗ a−1,r = e.

�«¥¬¥­â a−1,l ∈ A ­ §¨¢ îâì «÷¢¨¬ ®¡¥à­¥­¨¬ ¤® a, ïªé®

a−1,l ∗ a = e.

�à ¢¨© â  «÷¢¨© ®¡¥à­¥­÷ ¥«¥¬¥­â¨ ­ §¨¢ îâì ®¤­®áâ®à®­­÷¬¨ ®¡¥à-­¥­¨¬¨.

�«¥¬¥­â a−1 ∈ A ­ §¨¢ îâì ®¡¥à­¥­¨¬ ¤® a (¤¢®áâ®à®­­÷¬ ®¡¥à­¥-­¨¬), ïªé® ¢÷­ õ ®¤­®ç á­® ¯à ¢¨¬ ÷ «÷¢¨¬ ®¡¥à­¥­¨¬ ¤® a.

�¥®à¥¬  6.2. �ªé® ¢ ¬®­®ù¤÷ 〈A, ∗〉 ÷á­ãõ ¯à ¢¨© a−1,r ÷ «÷¢¨© a−1,l

®¡¥à­¥­÷ ¤® ¤¥ïª®£® ¥«¥¬¥­â  a ∈ A, â®

a−1,r = a−1,l.

�®¢¥¤¥­­ï. �¥å © e { ­¥©âà «ì­¨© ¥«¥¬¥­â. �  ¢¨§­ ç¥­­ï¬ ¯à ¢®£®â  «÷¢®£® ®¡¥à­¥­¨å ÷, ¢à å®¢ãîç¨  á®æ÷ â¨¢­÷áâì, ¬ õ¬®

a−1,l = a−1,l ∗ e = a−1,l ∗ (a ∗ a−1,r) = (a−1,l ∗ a) ∗ a−1,r = e ∗ a−1,r = a−1,r.

109

Page 112: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�®¡ ã­¨ª­ã⨠ª®­ä«÷ªâã ¢ ¯®§­ ç¥­­ïå, ¤«ï ®¡¥à­¥­®£® ¥«¥¬¥­â ÷­®¤÷ ¢ª §ãîâì ®¯¥à æ÷î, ¢÷¤­®á­® 类ù ®¡ç¨á«¥­® ®¡¥à­¥­¨© ¥«¥¬¥­â:a−1,∗ { ¥«¥¬¥­â, ®¡¥à­¥­¨© ¤® a ¢÷¤­®á­® ®¯¥à æ÷ù «∗».

�ਪ« ¤ 6.4. 1. � ¬®­®ù¤÷ 〈R, ·〉 ®¡¥à­¥­¨© ¬ îâì ãá÷ ¥«¥¬¥­â¨, ªà÷¬¥«¥¬¥­â  0: a−1,· = a−1( = 1

a) (a 6= 0).

2. � ¬®­®ù¤÷ 〈R, +〉 ®¡¥à­¥­¨© ¬ îâì ãá÷ ¥«¥¬¥­â¨: a−1,+ = −a.

�§­ ç¥­­ï 6.5. �àã¯®î ­ §¨¢ îâì ¬®­®ù¤, ¢ 类¬ã ¤«ï ª®¦­®£®¥«¥¬¥­â  ÷á­ãõ ®¡¥à­¥­¨©. �®¬ãâ â¨¢­ã £àã¯ã ­ §¨¢ îâì  ¡¥«¥¢®î1.

�ਪ« ¤ 6.5. 1. �«£¥¡à¨ç­  áâàãªâãà  〈Z, +〉 { ª®¬ãâ â¨¢­  £à㯠.2. �«£¥¡à¨ç­  áâàãªâãà  〈Z, ·〉 { ª®¬ãâ â¨¢­¨© ¬®­®ù¤ (­¥©âà «ì­¨©

¥«¥¬¥­â e = 1),  «¥ ­¥ £à㯠, ®áª÷«ìª¨ ®¡¥à­¥­÷ ¥«¥¬¥­â¨ ÷á­ãîâì «¨è¥¤«ï ¥«¥¬¥­â÷¢ 1 â  −1.

3. �«£¥¡à¨ç­  áâàãªâãà  〈Mn×n, ·〉 { ¬®­®ù¤, ­¥ª®¬ãâ â¨¢­¨© ¯à¨n ≥ 2; ­¥©âà «ì­¨© ¥«¥¬¥­â e = I. �ï áâàãªâãà  ­¥ õ £à㯮î, ®áª÷«ìª¨®¡¥à­¥­÷ ÷á­ãîâì «¨è¥ ¤«ï ­¥¢¨à®¤¦¥­¨å ¬ âà¨æì.

4. �¥å © GLn { ¬­®¦¨­  ­¥¢¨à®¤¦¥­¨å ª¢ ¤à â­¨å ¬ âà¨æì ஧¬÷-஬ n × n. �«£¥¡à¨ç­  áâàãªâãà  〈GLn, ·〉 { £à㯠, ­¥ª®¬ãâ â¨¢­  ¯à¨n ≥ 2; ­¥©âà «ì­¨© ¥«¥¬¥­â e = I; ®¡¥à­¥­¨© ¥«¥¬¥­â A−1 §¡÷£ õâìáï §®¡¥à­¥­®î ¬ âà¨æ¥î.

5. �¥å © R∗ = R \ {0}. �«£¥¡à¨ç­  áâàãªâãà  〈R∗, ·〉 õ ª®¬ãâ â¨¢­®î£à㯮î. �祢¨¤­®, é® R∗ = GL1.

6. �¥å © A { ¤®¢÷«ì­  ­¥¯®à®¦­ï ¬­®¦¨­ , G { ¬­®¦¨­  ¡÷õªæ÷©f : A → A. ö§ ¢« á⨢®á⥩ ¡÷õªâ¨¢­¨å ¢÷¤®¡à ¦¥­ì ¢¨¯«¨¢ õ, é® 〈G, ◦〉 {£à㯠 («◦» { ®¯¥à æ÷ï ª®¬¯®§¨æ÷ù). �¥©âà «ì­¨¬ ¥«¥¬¥­â®¬ £à㯨 õ â®-⮦­¥ ¢÷¤®¡à ¦¥­­ï, ®¡¥à­¥­¨¬ { ¢÷¤¯®¢÷¤­¥ ®¡¥à­¥­¥ ¢÷¤®¡à ¦¥­­ï.

�àã¯ã § ®¯¥à æ÷õî,  ­ «®£÷ç­®î ®¯¥à æ÷ù ¤®¤ ¢ ­­ï, ç áâ® ­ §¨¢ -îâì  ¤¨â¨¢­®î; £àã¯ã § ®¯¥à æ÷õî,  ­ «®£÷ç­®î ®¯¥à æ÷ù ¤®¡ãâªã, ç áâ®­ §¨¢ îâì ¬ã«ì⨯«÷ª â¨¢­®î.

�ਪ« ¤ 6.6. �®  ¤¨â¨¢­¨å £à㯠¢÷¤­®áïâì 〈Z, +〉, 〈R, +〉, 〈Mn×n, +〉.�® ¬ã«ì⨯«÷ª â¨¢­¨å ¬®¦­  ¢÷¤­¥á⨠£à㯨 〈R∗, ·〉, 〈GLn, ·〉, 〈{1,−1}, ·〉.

1�¡¥«ì �÷«ìá �¥­à÷ª (1802{1829) { ­®à¢¥§ìª¨© ¬ â¥¬ â¨ª; ¤®¢÷¢,  ªâ¨¢­® ¢¨ª®à¨-á⮢ãîç¨ ¢« á⨢®áâ÷ ª®¬ãâ â¨¢­¨å £àã¯, ­¥à®§¢'吝÷áâì  «£¥¡à¨ç­¨å à÷¢­ï­ì 5-£® ÷¢¨é¨å ¯®à浪÷¢ ã § £ «ì­®¬ã ¢¨£«ï¤÷ ç¥à¥§ à ¤¨ª «¨.

110

Page 113: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.2. �á­®¢­÷ ¢« á⨢®áâ÷ £àã¯. �⥯÷­ì ¥«¥¬¥­â 

� ã¢ ¦¥­­ï 6.5. �¢¨ç ©­®, ¢¨¤÷«¥­­­ï ª« á÷¢  ¤¨â¨¢­¨å ÷ ¬ã«ìâ¨-¯«÷ª â¨¢­¨å £à㯠¤®á¨âì 㬮¢­¥, ®áª÷«ìª¨ ¡ã¤ì-ïªã ¡÷­ à­ã ®¯¥à æ÷¦­  (¯à¨­ ©¬­÷, ä®à¬ «ì­®) ¯®§­ ç¨â¨ ïª á¨¬¢®«®¬ «+», â ª ÷ ᨬ-¢®«®¬ «·». �à®â¥, ïªé® ©¤¥âìáï ¯à®  ¤¨â¨¢­ã (¬ã«ì⨯«÷ª â¨¢­ã) £àã¯ã,¬ îâì ­  㢠§÷ § £ «ì­®¯à¨©­ï⨩ á¥­á ®¯¥à æ÷© «+» â  «·». �÷«ìè¥ â®-£®, ¢¨ª®à¨á⮢ãîç¨ ­ §¢ã «¬ã«ì⨯«÷ª â¨¢­  ( ¤¨â¨¢­ ) £à㯠», ᠬ㮯¥à æ÷î ç áâ® ­¥ ¢ª §ãîâì. � ª, ç áâ® ¯¨èãâì « ¤¨â¨¢­  £à㯠 Mn×n»§ ¬÷áâì «£à㯠 〈Mn×n, +〉», «¬ã«ì⨯«÷ª â¨¢­  £à㯠 GLn» § ¬÷áâì «£àã-¯  〈GLn, ·〉», «¬ã«ì⨯«÷ª â¨¢­  £à㯠 R∗» § ¬÷áâì «£à㯠 〈R∗, ·〉» â®é®.

� ã¢ ¦¥­­ï 6.6. �®§­ ç¥­­ï GLn â  R∗ õ áâ «¨¬¨ ¤«ï ¢÷¤¯®¢÷¤­¨å¬ã«ì⨯«÷ª â¨¢­¨å £àã¯, ­ ¢÷âì ¡¥§ ª®­ªà¥â¨§ãî箣® ¥¯÷â¥â  «¬ã«ìâ¨-¯«÷ª â¨¢­ ».

� ¯®á÷¡­¨ªã ஧£«ï­ãâ® «¨è¥ ­ ©£®«®¢­÷è÷  á¯¥ªâ¨ ⥮à÷ù £àã¯. �¥-â «ì­÷è¥ ¯à® ⥮à÷î  «£¥¡à¨ç­¨å áâàãªâãà (§®ªà¥¬ , ⥮à÷î £àã¯) ¬®¦-­  ¤÷§­ â¨áï, ­ ¯à¨ª« ¤, § ¯à æì [10{ 13].

6.2. �á­®¢­÷ ¢« á⨢®áâ÷ £àã¯.�⥯÷­ì ¥«¥¬¥­â 

�®§£«ï­¥¬® ­ ©¯à®áâ÷è÷ ¢« á⨢®áâ÷ £à㯨 〈G, ∗〉 § ­¥©âà «ì­¨¬e ∈ G.

1. �¥å © a, b ∈ G. �®¤÷ à÷¢­ï­­ï a ∗ x = b ¢÷¤­®á­® x ∈ G ¬ õ õ¤¨­¨©à®§¢'燐ª x = a−1 ∗ b.

�®¢¥¤¥­­ï. öá­ã¢ ­­ï ஧¢'離ã: ¥«¥¬¥­â x = a−1 ∗ b ¤÷©á­® õ ஧¢'ï§-ª®¬ à÷¢­ï­­ï a ∗ x = b, ®áª÷«ìª¨

a ∗ (a−1 ∗ b) = (a ∗ a−1) ∗ b = e ∗ b = b.

ô¤¨­÷áâì ஧¢'離ã:

(a ∗ x = b) ⇒ (a−1 ∗ a ∗ x = a−1 ∗ b) ⇒ (x = a−1 ∗ b).

�¯à ¢  6.1. �®¢¥áâ¨, é® à÷¢­ï­­ï y ∗ a = b ¬ õ ¢÷¤­®á­® y ∈ Gõ¤¨­¨© ஧¢'燐ª y = b ∗ a−1.

111

Page 114: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

2. �à ¢¨«  «÷¢®£® â  ¯à ¢®£® ᪮à®ç¥­­ï (a, b, x, y ∈ G):

(a ∗ x = b ∗ x) ⇔ (a = b) (¯à ¢¥ ᪮à®ç¥­­ï); (6.1)(y ∗ a = y ∗ b) ⇔ (a = b) («÷¢¥ ᪮à®ç¥­­ï). (6.2)

�¯à ¢  6.2. �®¢¥á⨠¯à ¢¨«  ᪮à®ç¥­­ï á ¬®áâ÷©­®.

3. ∀ a, b ∈ G : (a ∗ b)−1 = b−1 ∗ a−1.

�®¢¥¤¥­­ï. �¥à¥¢÷ਬ®, é® b−1 ∗ a−1 õ ¯à ¢¨¬ ®¡¥à­¥­¨¬ ¤® a ∗ b:

(a ∗ b) ∗ (b−1 ∗ a−1) = (a ∗ b ∗ b−1) ∗ a−1 = a ∗ e ∗ a−1 = a ∗ a−1 = e.

� ã¢ ¦¨¬®, é® ¬®¦­  ­¥ ¯à®¢®¤¨â¨  ­ «®£÷ç­ã ¯¥à¥¢÷àªã ä ªâã, é®b−1 ∗ a−1 õ «÷¢¨¬ ®¡¥à­¥­¨¬ ¤® a ∗ b, ®áª÷«ìª¨ ­¥®¡å÷¤­¨© १ã«ìâ â ¢¨-¯«¨¢ õ § ⥮६¨ 6.2 (¢à å®¢ãîç¨ ÷á­ã¢ ­­ï ¤¢®áâ®à®­­ì®£® ®¡¥à­¥­®£®©  á®æ÷ â¨¢­÷áâì £à㯮¢®ù ®¯¥à æ÷ù).

�¯à ¢  6.3. �®¢¥á⨠㧠£ «ì­¥­­ï ¢« á⨢®áâ÷ 3:

∀ a1, a2, . . . , an ∈ G : (a1 ∗ a2 ∗ · · · ∗ an)−1 = a−1n ∗ · · · ∗ a−1

2 ∗ a−11 .

�¥å © a ∈ G. �¨§­ ç¨¬® á⥯÷­ì ak ¤«ï k ∈ Z.�«ï n > 0 ¯®ª« ¤¥¬® §  ¢¨§­ ç¥­­ï¬:• an = a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸

n

;

• a−n = (a−1)n;

• a0 = e.� ã¢ ¦¥­­ï 6.7. ö§ १ã«ìâ âã ¢¯à ¢¨ 6.3 ®¤à §ã ¢¨¯«¨¢ õ

a−n = (a−1)n

= (an)−1.

�«ï á⥯¥­ï ¥«¥¬¥­â  £à㯨 «¥£ª® ¤®¢¥á⨠⠪÷ ¢« á⨢®áâ÷ (¯à®¤®¢-¦¥­® § £ «ì­ã ­ã¬¥à æ÷î ¢« á⨢®á⥩).

4. an+m = an ∗ am.5. an·m = (an)m.

�¯à ¢  6.4. �®¢¥á⨠¢« á⨢®áâ÷ 4 â  5 á ¬®áâ÷©­®.

112

Page 115: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.3. �à㯠 ¯÷¤áâ ­®¢®ª

�ª §÷¢ª . �®¢¥á⨠¢« á⨢®áâ÷ ᯮç âªã ¤«ï n,m > 0,   ¢ § £ «ì­®¬ã¢¨¯ ¤ªã ᪮à¨áâ â¨áï ¢¨§­ ç¥­­ï¬ ak ¤«ï k < 0 § ãà å㢠­­ï¬ § ã¢. 6.7(¢¨¯ ¤ª¨ n = 0 â  ( ¡®) m = 0 á«÷¤ ஧£«ï­ã⨠®ªà¥¬®).

�®¡ ã­¨ª­ã⨠ª®­ä«÷ªâã ¢ ¯®§­ ç¥­­ïå (§®ªà¥¬ , ஧£«ï¤ î稠¤¨â¨¢­÷ £à㯨), ¤«ï á⥯¥­ï ¥«¥¬¥­â  ÷­®¤÷ ¢ª §ãîâì £à㯮¢ã ®¯¥à æ÷î:an,∗ { á⥯÷­ì an ã £àã¯÷ § ®¯¥à æ÷õî «∗».

�ਪ« ¤ 6.7. 1. � £àã¯÷ 〈R∗, ·〉 á⥯÷­ì ¥«¥¬¥­â  §¡÷£ õâìáï § ¢÷¤-¯®¢÷¤­¨¬ ª« á¨ç­¨¬ ( à¨ä¬¥â¨ç­¨¬) á⥯¥­¥¬:

an,· = a · a · · · · · a︸ ︷︷ ︸n

= an.

2. �  ¤¨â¨¢­÷© £àã¯÷ Z (⮡⮠¢ £àã¯÷ 〈Z, +〉 (¤¨¢. § ã¢. 6.5)), á⥯÷­ì¥«¥¬¥­â  a ®¡ç¨á«îîâì ïª  à¨ä¬¥â¨ç­¨© ¤®¡ã⮪ ç¨á«  a ­  ¯®ª §­¨ªá⥯¥­ï:

an,+ = a + a + · · ·+ a︸ ︷︷ ︸n

= n · a.

6.3. �à㯠 ¯÷¤áâ ­®¢®ª� ¦«¨¢¨© ª« á £à㯠¯®¢'易­¨© § ¡÷õªâ¨¢­¨¬¨ ¢÷¤®¡à ¦¥­­ï¬¨ (¯÷¤-

áâ ­®¢ª ¬¨) ­  áª÷­ç¥­­÷© ¬­®¦¨­÷ A.�áª÷«ìª¨ ¯÷¤ ç á ¢¨¢ç¥­­ï ¢« á⨢®á⥩ ¯÷¤áâ ­®¢®ª ¯à¨à®¤  ¥«¥¬¥­-

â÷¢ ¬­®¦¨­¨ A ­¥ ¬ õ §­ ç¥­­ï (áãââõ¢¨¬ 䠪⮬ õ «¨è¥ ¯®â㦭÷áâ쬭®¦¨­¨ A), ¡ã¤¥¬® ¢¢ ¦ â¨ A = {1, 2, . . . , n} (n ≥ 1).

6.3.1. � £ «ì­÷ ¯®­ïââï ⥮à÷ù ¯÷¤áâ ­®¢®ª�§­ ç¥­­ï 6.6. �¥à¥áâ ­®¢ª®î ¬­®¦¨­¨ A = {1, 2, . . . , n} ­ §¨¢ -

îâì ¤®¢÷«ì­¨© «÷­÷©­® ¢¯®à浪®¢ ­¨© ­ ¡÷à i = (i1, i2, . . . , in), â ª¨©, é®:• ik ∈ A ¯à¨ 1 ≤ k ≤ n;• ik1 6= ik2 ¯à¨ k1 6= k2.

�祢¨¤­®, ¢á쮣® ­  ¬­®¦¨­÷ A ¢¨§­ ç¥­® n! ¯¥à¥áâ ­®¢®ª.

113

Page 116: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�ਪ« ¤ 6.8. 1. �ਠn = 1 ¢¨§­ ç¥­  ®¤­  ¯¥à¥áâ ­®¢ª  (1). �¥©¢¨¯ ¤®ª ­¥æ÷ª ¢¨© ÷ ©®£®, ïª ¯à ¢¨«®, ­¥ ஧£«ï¤ îâì.

2. �ਠn = 2 ¢¨§­ ç¥­® ¤¢÷ ¯¥à¥áâ ­®¢ª¨: (1, 2), (2, 1).3. �ਠn = 3 ¢¨§­ ç¥­® 3! = 6 ¯¥à¥áâ ­®¢®ª: (1, 2, 3), (1, 3, 2), (2, 1, 3),

(2, 3, 1), (3, 1, 2), (3, 2, 1).

�§­ ç¥­­ï 6.7. �÷¤áâ ­®¢ª®î c ­  ¬­®¦¨­÷ A = {1, 2, . . . , n} ­ §¨-¢ îâì ¤®¢÷«ì­¥ ¡÷õªâ¨¢­¥ ¢÷¤®¡à ¦¥­­ï c : A → A.

�÷¤áâ ­®¢ªã e, 猪 ¢¨§­ ç õ â®â®¦­¥ ¢÷¤®¡à ¦¥­­ï, ­ §¨¢ îâì â®-⮦­®î.

�祢¨¤­®, ¢á쮣® ­  ¬­®¦¨­÷ A ¢¨§­ ç¥­® n! ¯÷¤áâ ­®¢®ª.�÷¤áâ ­®¢ªã c : A → A §àãç­® §®¡à ¦ã¢ â¨ ã ¢¨£«ï¤÷ ¬ âà¨æ÷ ஧¬÷-

஬ 2× n:

c =

(i1 i2 . . . inj1 j2 . . . jn

)⇔

c : i1 7→ j1,

c : i2 7→ j2,

. . .

c : in 7→ jn.

�«ï ¯¥à¥áâ ­®¢®ª i = (i1, i2, . . . , in), j = (j1, j2, . . . , jn) ¯®§­ ç¨¬®(

ij

)=

(i1 i2 . . . inj1 j2 . . . jn

).

�¥£ª® §à®§ã¬÷â¨, é® ª®¦­ã ¯÷¤áâ ­®¢ªã (¯à¨ n ≥ 2) ¬®¦­  §®¡à §¨â¨ã ¢¨£«ï¤÷ ¬ âà¨æ÷ ª÷«ìª®¬  ᯮᮡ ¬¨, ¯¥à¥áâ ¢«ïîç¨ á⮢¯æ÷ ¬ âà¨æ÷(ª®¦­÷© ¯÷¤áâ ­®¢æ÷ ­  ¬­®¦¨­÷ A ¢÷¤¯®¢÷¤ õ n! ¬ âà¨æì).

�ਪ« ¤ 6.9. �÷¤áâ ­®¢ªã c : {1, 2} → {1, 2}, â ªã, é® c(1) = 2,c(2) = 1, ¬®¦­  §®¡à §¨â¨ ã ¢¨£«ï¤÷ ¬ âà¨æ÷ ¤¢®¬  ᯮᮡ ¬¨:

c =

(1 22 1

)=

(2 11 2

).

�¥£ª® ¯¥à¥¢÷à¨â¨ ¯®¤ ­¥ ­¨¦ç¥ ⢥द¥­­ï.

114

Page 117: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.3. �à㯠 ¯÷¤áâ ­®¢®ª

�¥¬  6.1. �¥å © c { ¤®¢÷«ì­  ¯÷¤áâ ­®¢ª  ­  ¬­®¦¨­÷ A.1. �«ï ¤®¢÷«ì­®ù ¯¥à¥áâ ­®¢ª¨ i = (i1, i2, . . . , in) ÷á­ãõ õ¤¨­  ¯¥à¥áâ -

­®¢ª  j = (j1, j2, . . . , jn), â ª , é®

c =

(ij

)=

(i1 i2 . . . inj1 j2 . . . jn

).

2. �«ï ¤®¢÷«ì­®ù ¯¥à¥áâ ­®¢ª¨ j = (j1, j2, . . . , jn) ÷á­ãõ õ¤¨­  ¯¥à¥-áâ ­®¢ª  i = (i1, i2, . . . , in), â ª , é®

c =

(ij

)=

(i1 i2 . . . inj1 j2 . . . jn

).

�¥¬  6.1 ¤®§¢®«ïõ ஧£«ï¤ â¨ ¯÷¤áâ ­®¢ªã c ïª ¡÷õªâ¨¢­¥ ¢÷¤®¡à -¦¥­­ï ­  ¬­®¦¨­÷ ¯¥à¥áâ ­®¢®ª ¬­®¦¨­¨ A = {1, 2, . . . , n}:

c(i) = j ⇔ c =

(ij

), ¤¥ i = (i1, i2, . . . , in), j = (j1, j2, . . . , jn).

�ਪ« ¤ 6.10. �¥å © c =

(1 22 1

)=

(2 11 2

). �®¤÷ c((1, 2)) = (2, 1),

c((2, 1)) = (1, 2).� ª¨© ¯÷¤å÷¤ ª®à¨á­® ¢¨ª®à¨á⮢㢠⨠¯÷¤ ç á ¢¨¢ç¥­­ï ¢« á⨢®á⥩

¯÷¤áâ ­®¢®ª. �à®â¥, ïªé® ­¥ ¢ª § ­® ÷­è¥, ஧£«ï¤ â¨¬¥¬® ¯÷¤áâ ­®¢ªãïª ¢÷¤®¡à ¦¥­­ï ­  ¬­®¦¨­÷ A.

�«ï ¯÷¤áâ ­®¢®ª c1,c2 : A → A ¢¨§­ ç¥­® ª®¬¯®§¨æ÷î c2 ◦ c1, ïªã÷­®¤÷ ­ §¨¢ îâì ¤®¡ã⪮¬ ¯÷¤áâ ­®¢®ª .

�ਪ« ¤ 6.11. �¥å © c1 =

(1 2 32 3 1

), c2 =

(1 2 33 2 1

).

�®¤÷ c2 ◦ c1 =

(1 2 32 1 3

), c1 ◦ c2 =

(1 2 31 3 2

).

� ã¢ ¦¥­­ï 6.8. �¥§ã«ìâ â ª®¬¯®§¨æ÷ù c = c2 ◦ c1, ®ç¥¢¨¤­®, ­¥ §¬÷-­¨âìáï, ïªé® ஧£«ï¤ â¨ c1 â  c2 ïª ¢÷¤®¡à ¦¥­­ï ­  ¬­®¦¨­÷ ¯¥à¥-áâ ­®¢®ª. �¥, à §®¬ § «¥¬®î 6.1, 㬮¦«¨¢«îõ â ª¨© ᯮá÷¡ ®¡ç¨á«¥­­ïª®¬¯®§¨æ÷ù ¯÷¤áâ ­®¢®ª:

1) ¯÷¤áâ ­®¢ª¨ c1 â  c2 §®¡à ¦ãîâì ã ¢¨£«ï¤÷ ¬ âà¨æì â ª, 鮡 ­¨¦-­÷© à冷ª ¬ âà¨æ÷ c1 §¡÷£ ¢áï § ¢¥àå­÷¬ à浪®¬ ¬ âà¨æ÷ c2:

c1 =

(ij

), c2 =

(jk

)

115

Page 118: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

(æ¥ ¬®¦­  §à®¡¨â¨, ¢¨ª®à¨á⮢ãîç¨ à¥§ã«ìâ â «¥¬¨ 6.1, ¤® ⮣® ¦ n!ᯮᮡ ¬¨);

2) ஧£«ï¤ îç¨ ¯÷¤áâ ­®¢ª¨ ïª ¢÷¤®¡à ¦¥­­ï ­  ¬­®¦¨­÷ ¯¥à¥áâ ­®-¢®ª, ®âਬãîâì

c2 ◦ c1 =

(jk

)◦

(ij

)=

(ik

).

�ਪ« ¤ 6.12. �¥å © c1 =

(1 2 32 3 1

), c2 =

(1 2 33 2 1

). �®¤÷, §¬÷­î-

îç¨ ¯®âà÷¡­¨¬ 稭®¬ §®¡à ¦¥­­ï ¯÷¤áâ ­®¢ª¨ c2, ®âਬãõ¬®

c2 ◦ c1 =

(1 2 33 2 1

)◦

(1 2 32 3 1

)=

(2 3 12 1 3

)◦

(1 2 32 3 1

)=

(1 2 32 1 3

).

�§­ ç¥­­ï 6.8. �¥å © c { ¯÷¤áâ ­®¢ª  ­  ¬­®¦¨­÷ A. �÷¤áâ ­®¢ª®î,®¡¥à­¥­®î ¤® c, ­ §¨¢ îâì ¯÷¤áâ ­®¢ªã c−1 ­  ¬­®¦¨­÷ A, â ªã, é®

c ◦ c−1 = c−1 ◦ c = e,

¤¥ e { â®â®¦­  ¯÷¤áâ ­®¢ª .� ­ ¢¥¤¥­®£® ®§­ ç¥­­ï ®¡¥à­¥­®ù ¯÷¤áâ ­®¢ª¨ ¢¨¯«¨¢ õ, é® c−1 õ

¢÷¤®¡à ¦¥­­ï¬, ®¡¥à­¥­¨¬ ¤® ¢÷¤®¡à ¦¥­­ï c.�祢¨¤­®, é® ¤«ï ®¡ç¨á«¥­­ï ®¡¥à­¥­®ù ¯÷¤áâ ­®¢ª¨ ¤®áâ â­ì® ¯®¬÷-

­ï⨠¬÷áæﬨ ¢¥àå­÷© ÷ ­¨¦­÷© à浪¨ ¬ âà¨æ÷ ¢¨å÷¤­®ù ¯÷¤áâ ­®¢ª¨:(

ij

)−1

=

(ji

).

�ਪ« ¤ 6.13. �¡ç¨á«¨¬® ®¡¥à­¥­ã ¤«ï(

1 2 32 3 1

)−1

:

(1 2 32 3 1

)−1

=

(2 3 11 2 3

)=

(1 2 33 1 2

).

�⦥, ¬­®¦¨­  ¯÷¤áâ ­®¢®ª ­  ä÷ªá®¢ ­÷© ¬­®¦¨­÷ A = {1, 2, . . . , n}ã⢮àîõ £àã¯ã §  ®¯¥à æ÷õî «◦» (ª®¬¯®§¨æ÷ï), ïªã ­ §¨¢ îâì £à㯮î¯÷¤áâ ­®¢®ª ,  ¡® ᨬ¥âà¨ç­®î £à㯮î á⥯¥­ï n. � §­ ç¨¬®, é® £à㯠¯÷¤áâ ­®¢®ª ­  áª÷­ç¥­­÷© ¬­®¦¨­÷ A õ ®ªà¥¬¨¬ ¢¨¯ ¤ª®¬ £à㯨 ¡÷õªæ÷©­  ¤®¢÷«ì­÷© ¬­®¦¨­÷ A (¤¨¢. ¯à¨ª«. 6.5).

�«ï £à㯨 ¯÷¤áâ ­®¢®ª á⥯¥­ï n ¢¨ª®à¨á⮢ãîâì ¯®§­ ç¥­­ï Sn.

116

Page 119: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.3. �à㯠 ¯÷¤áâ ­®¢®ª

�ਪ« ¤ 6.14. �®§£«ï­¥¬® £à㯨 S2 â  S3.1. �à㯠 S2 ᪫ ¤ õâìáï § 2! = 2 ¯÷¤áâ ­®¢®ª:

t =

(1 22 1

), e =

(1 21 2

).

�÷ï «◦» ­  S2 ¢¨§­ ç õâìáï â ¡«. 6.1 (¥«¥¬¥­â c2 ◦ c1 §­ å®¤¨âìáï ­ ¯¥à¥â¨­÷ à浪  § ¬÷⪮î c2 â  á⮢¯æï § ¬÷⪮î c1).

� ¡«¨æï 6.1. �÷­ à­  ®¯¥à æ÷ï ¤«ï £à㯨 S2

◦ e te e tt t e

�÷­ à­ã ®¯¥à æ÷î ­  £à㯠å ÷§ áª÷­ç¥­­®î ª÷«ìª÷áâî ¥«¥¬¥­â÷¢ ç á⮧ ¤ îâì ç¥à¥§ â ¡«¨æî ⨯ã â ¡«. 6.1. � ¡«¨æî â ª®£® ⨯㠭 §¨¢ îâìâ ¡«¨æ¥î �¥«÷1.

�¡¥à­¥­÷ ¥«¥¬¥­â¨ ¢ £àã¯÷ S2, ®ç¥¢¨¤­®, ¬ îâì â ª¨© ¢¨£«ï¤:t−1 = t, e−1 = e.

2. �à㯠 S3 ᪫ ¤ õâìáï § 3! = 6 ¯÷¤áâ ­®¢®ª:

c1 =

(1 2 31 3 2

), c2 =

(1 2 33 2 1

), c3 =

(1 2 32 1 3

),

f1 =

(1 2 32 3 1

), f2 =

(1 2 33 1 2

), e =

(1 2 31 2 3

).

�¯à ¢  6.5. � ¬®áâ÷©­® § ¯®¢­¨â¨ â ¡«¨æî �¥«÷ ¤«ï £à㯨 S3, §¢÷-à¨¢è¨ à¥§ã«ìâ â §  â ¡«. 6.2.

�¡¥à­¥­÷ ¥«¥¬¥­â¨ ¢ £àã¯÷ S3, ïª ¢¨¤­® § â ¡«. 6.2, ¬ îâì â ª¨© ¢¨-£«ï¤:

c−1i = ci (i = 1, 2, 3), e−1 = e, f−1

1 = f2, f−12 = f1.

�®§­ ç¥­­ï, ¢¨ª®à¨áâ ­÷ ¤«ï ¯÷¤áâ ­®¢®ª S3 ã æ쮬㠯ਪ« ¤÷, ¢¨ª®-à¨á⮢㢠⨬ãâìáï ÷ ¤ «÷.

1�¥«÷ (�¥©«÷) �àâãà (1821{1895) {  ­£«÷©á쪨© ¬ â¥¬ â¨ª;  ¢â®à ç¨á«¥­­¨å ஡÷⧠ «£¥¡à¨,  ­ «÷â¨ç­®ù £¥®¬¥âà÷ù, ⥮à÷ù ¤¨ä¥à¥­æ÷ «ì­¨å à÷¢­ï­ì â®é® (஡®â¨ �¥«÷¢¨¤ ­® ¢ 13-⨠⮬ å). � ¬¥ �¥«÷ ¢¢÷¢ ¯®­ïââï  ¡áâࠪ⭮ù £à㯨.

117

Page 120: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

� ¡«¨æï 6.2. � ¡«¨æï �¥«÷ ¤«ï £à㯨 S3

◦ e c1 c2 c3 f1 f2

e e c1 c2 c3 f1 f2

c1 c1 e f1 f2 c2 c3

c2 c2 f2 e f1 c3 c1

c3 c3 f1 f2 e c1 c2

f1 f1 c3 c1 c2 f2 ef2 f2 c2 c3 c1 e f1

6.3.2. �®§ª« ¤ ­­ï ¯÷¤áâ ­®¢ª¨ ¢ ª®¬¯®§¨æ÷î 横«÷¢�§­ ç¥­­ï 6.9. �¨ª«®¬ (i 1, i 2, . . . , ik) ­ §¨¢ îâì ¯÷¤áâ ­®¢ªã

¢¨£«ï¤ã (i1 i2 . . . ik−1 ik ik+1 . . . ini2 i3 . . . ik i1 ik+1 . . . in

).

�¨á«® k ­ §¨¢ îâì ¤®¢¦¨­®î 横«ã. �¨ª« ¤®¢¦¨­®î 2 ­ §¨¢ îâìâ࠭ᯮ§¨æ÷õî.

� ã¢ ¦¥­­ï 6.9. �¨ª« (i1, i2, . . . , ik) õ ¯÷¤áâ ­®¢ª®î, é® §¬÷­îõ (§áã-¢ õ §  横«®¬) ¥«¥¬¥­â¨ i1, i2, . . . , ik, § «¨è îç¨ ÷­è÷ ¥«¥¬¥­â¨ ­  ¬÷áæ÷.

�ਪ« ¤ 6.15. 1. �¨ª« ¤®¢¦¨­®î 1 §  ®§­ ç¥­­ï¬ 6.9 õ â®â®¦­®î¯÷¤áâ ­®¢ª®î.

2. �¨ª« ¤®¢¦¨­®î 2 õ â࠭ᯮ§¨æ÷õî (横« (i1, i2) ¬÷­ïõ ¬÷áæﬨ ¥«¥-¬¥­â¨ i1 â  i2, § «¨è îç¨ ÷­è÷ ¥«¥¬¥­â¨ ­  ¬÷áæ÷).

� ã¢ ¦¥­­ï 6.10. �®§­ ç¥­­ï (i1, . . . , ik), 瘟 ¢¨ª®à¨á⮢ãîâì ¤«ï横«ã ¤®¢¦¨­®î k, §  ä®à¬®î §¡÷£ õâìáï § ¯®§­ ç¥­­ï¬ ¯¥à¥áâ ­®¢ª¨.�¤­ ª æ¥ ­¥ ¯à¨¢®¤¨âì ¤® ª®­ä«÷ªâã ¯®§­ ç¥­ì, ®áª÷«ìª¨ § ª®­â¥ªáâ㧠¢¦¤¨ §à®§ã¬÷«®, õ ¤ ­¨© ®¡'õªâ ¯÷¤áâ ­®¢ª®î (横«®¬) ç¨ ¯¥à¥áâ ­®¢-ª®î.

�¯à ¢  6.6. �®¢¥áâ¨, é® ¯à¨ k ≥ 2 ¢ £àã¯÷ Sn ¬÷áâ¨âìáï 1kP k

n à÷§­¨å横«÷¢ ¤®¢¦¨­®î k.

� १ã«ìâ âã ¢¯à ¢¨ 6.6, §®ªà¥¬ , ¢¨¯«¨¢ õ (¯à¨ k = 2), é® ¢ £àã¯÷ Sn

¬÷áâ¨âìáï C2n â࠭ᯮ§¨æ÷©.

118

Page 121: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.3. �à㯠 ¯÷¤áâ ­®¢®ª

�ਪ« ¤ 6.16. �÷¤à åãõ¬®, áª÷«ìª¨ 横«÷¢ ¬÷áâ¨âìáï ¢ £à㯠åS3 â  S4.

1. � £àã¯÷ S3 ¢á÷ ­¥â®â®¦­÷ ¯÷¤áâ ­®¢ª¨ õ 横« ¬¨ (12P 2

3 = 3 â࠭ᯮ-§¨æ÷ù â  1

3P 3

3 = 2 横«¨ ¤®¢¦¨­®î 3):

c1 = (2, 3), c2 = (1, 3), c3 = (1, 2), f1 = (1, 2, 3), f2 = (1, 3, 2).

2. � £àã¯÷ S4 ¬÷áâ¨âìáï 12P 2

4 = 6 â࠭ᯮ§¨æ÷©, 13P 3

4 = 8 横«÷¢ ¤®¢¦¨-­®î 3 â  1

4P 4

4 = 6 横«÷¢ ¤®¢¦¨­®î 4. �⦥, S4 ¬÷áâ¨âì âਠ­¥â®â®¦­÷¯÷¤áâ ­®¢ª¨, ïª÷ ­¥ õ 横« ¬¨:

(1 2 3 42 1 4 3

),

(1 2 3 43 4 1 2

),

(1 2 3 44 3 2 1

).

�§­ ç¥­­ï 6.10. �¨ª«¨ (i1, i2, . . . , ik1), (j1, j2, . . . , jk2) ­ §¨¢ îâì ­¥-§ «¥¦­¨¬¨, ïªé®

{i1, i2, . . . , ik1} ∩ {j1, j2, . . . , jk2} = ∅,

⮡⮠im1 6= jm2 ¤«ï ¢á÷å m1, m2 (1 ≤ m1 ≤ k1, 1 ≤ m2 ≤ k2).

�ਪ« ¤ 6.17. 1. �¨ª«¨ (1, 2, 4) â  (3, 5) ­¥§ «¥¦­÷.2. �¨ª«¨ (1, 3, 5), (2, 6), (4, 7) ¯®¯ à­® ­¥§ «¥¦­÷.3. �¨ª«¨ (1, 4) â  (3, 7, 4, 2) ­¥ ­¥§ «¥¦­÷.

�¯à ¢  6.7. �®¢¥áâ¨, é® ­¥§ «¥¦­÷ 横«¨ ª®¬ãâãîâì, ⮡â®

c2 ◦ c1 = c1 ◦ c2,

¤¥ c1, c2 { ­¥§ «¥¦­÷ 横«¨.

�¯à ¢  6.8. �®¢¥áâ¨, é® ª®¦­  â࠭ᯮ§¨æ÷ï ¤®à÷¢­îõ ᢮ù© ®¡¥à-­¥­÷©, ⮡â®

(i1, i2)−1 = (i1, i2).

�¥®à¥¬  6.3. �®¦­ã ¯÷¤áâ ­®¢ªã ¬®¦­  §®¡à §¨â¨ ïª ª®¬¯®§¨æ÷î­¥§ «¥¦­¨å 横«÷¢.

119

Page 122: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�奬  ¤®¢¥¤¥­­ï. � ¢¥¤¥¬®  «£®à¨â¬ §®¡à ¦¥­­ï ¯÷¤áâ ­®¢ª¨ c∈Sn

ïª ª®¬¯®§¨æ÷î ­¥§ «¥¦­¨å 横«÷¢.�®§£«ï­¥¬® ¯®á«÷¤®¢­÷áâì i0, i1, i2, . . . , ¯®¡ã¤®¢ ­ã §  á奬®î:

i0 = 1, i1 = c(1), i2 = c(i1) = c2(1), i3 = c(i2) = c3(1), . . . , ik = ck(1), . . .

�à å®¢ãîç¨ áª÷­ç¥­­÷áâì ¬­®¦¨­¨ A = {1, 2, . . . , n}, ¥«¥¬¥­â¨ ¯®á«÷-¤®¢­®áâ÷ ik (k ≥ 0) ¯®ç­ãâì ¯®¢â®àâ¨áï, ¯®ç¨­ îç¨ § ¤¥ïª®£® ­®¬¥-à  m1:

• im1 = im0 ¤«ï ¤¥ïª®£® m0 (0 ≤ m0 < m1 ≤ n);• ik1 6= ik2 , ïªé® 0 ≤ k1 < k2 < m1.

�®¢¥¤¥¬®, é® m0 = 0. �ਯã᪠îç¨, é® 1 ≤ m0 < m1, ®âਬãõ¬®

c(cm1−1(1)

)= c

(cm0−1(1)

)¯à¨ cm1−1(1) 6= cm0−1(1),

é® á㯥à¥ç¨âì ÷­'õªâ¨¢­®áâ÷ ¢÷¤®¡à ¦¥­­ï c.�⦥, m0 = 0, ⮡⮠im1 = cm1(1) = i0. � ª¨¬ 稭®¬, ¯®¡ã¤®¢ ­ 

¯®á«÷¤®¢­÷áâì (i0, i1, . . . , im1−1) (im1 = i0) ¢¨§­ ç õ 横« ¤®¢¦¨­®î m1,¤÷ï 类£® ­  ¬­®¦¨­÷ {i0, i1, . . . , im1−1} §¡÷£ õâìáï § ¤÷õî ¯÷¤áâ ­®¢ª¨ c.

� «÷ ¡ã¤ãõ¬® ­ áâ㯭¨© 横« {i0, i1, . . . , im2−1}, ®¡¨à îç¨ i0 â ª¨¬,é® ­¥ ¢å®¤¨âì ã ¯®¡ã¤®¢ ­¨© 横« (i0, i1, . . . , im1−1). �¯¨á ­ã ¯à®æ¥¤ã-àã ¯®¢â®àîõ¬® ¤®â¨, ¤®ª¨ § «¨è õâìáï å®ç  ¡ ®¤¨­ ¥«¥¬¥­â ¬­®¦¨­¨A = {1, 2, . . . , n}, é® ­¥ ã¢÷©è®¢ ¤® ¯®¡ã¤®¢ ­¨å 横«÷¢.

�¥£ª® §à®§ã¬÷â¨, é® ª®¬¯®§¨æ÷ï ¢á÷å ¯®¡ã¤®¢ ­¨å 横«÷¢ §¡÷£ õâìáï§ ¯÷¤áâ ­®¢ª®î c (¤÷ï ¢÷¤®¡à ¦¥­­ï c ­  ¤®¢÷«ì­¨© ¥«¥¬¥­â ik ∈ A §¡÷-£ õâìáï § ¤÷õî ­  楩 ¥«¥¬¥­â ¢÷¤¯®¢÷¤­®£® 横«ã, ¤® 类£® ¢å®¤¨âì ik).� à¥èâ÷, ­¥§ «¥¦­÷áâì ¯®¡ã¤®¢ ­¨å 横«÷¢ ¢¨¯«¨¢ õ § ÷­'õªâ¨¢­®áâ÷ ¢÷-¤®¡à ¦¥­­ï c.

�ਪ« ¤ 6.18. �®¡à §¨¬® ã ¢¨£«ï¤÷ ª®¬¯®§¨æ÷ù ­¥§ «¥¦­¨å 横«÷¢¯÷¤áâ ­®¢ªã c =

(1 2 3 4 5 6 7 82 5 8 6 4 1 7 3

):

1) ¯®¡ã¤ãõ¬® ¯¥à訩 横«, ¯®ç¨­ îç¨ § ¥«¥¬¥­â  1:

1, c(1) = 2, c(2) = 5, c(5) = 4, c(4) = 6, c(6) = 1,

120

Page 123: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.3. �à㯠 ¯÷¤áâ ­®¢®ª

⮡⮠®âਬãõ¬® 横« ¤®¢¦¨­®î 5: (1, 2, 5, 4, 6); ¯à®æ¥¤ãà  ¬ õ ¯à®¤®¢-¦ã¢ â¨áï, ®áª÷«ìª¨ ÷á­ãîâì ¥«¥¬¥­â¨ (­ ¯à¨ª« ¤, 3), é® ­¥ ã¢÷©è«¨ ¤®¯®¡ã¤®¢ ­®£® 横«ã;

2) ¯®¡ã¤ãõ¬® ¤à㣨© 横«, ¯®ç¨­ îç¨ § ¥«¥¬¥­â  3:3, c(3) = 8, c(8) = 3,

⮡⮠®âਬãõ¬® 横« ¤®¢¦¨­®î 2: (3, 8); ¯à®æ¥¤ãà  ¬ õ ¯à®¤®¢¦ã¢ â¨-áï, ®áª÷«ìª¨ § «¨è¨¢áï ¥«¥¬¥­â 7, é® ­¥ ã¢÷©è®¢ ¤® ¯®¡ã¤®¢ ­¨å 横«÷¢;

3) ¯®¡ã¤ãõ¬® âà¥â÷© 横«, ¯®ç¨­ îç¨ § ¥«¥¬¥­â  7:7, c(7) = 7,

⮡⮠®âਬãõ¬® 横« ¤®¢¦¨­®î 1 (â®â®¦­ã ¯÷¤áâ ­®¢ªã): (7) = e.�⦥, ¯÷¤áâ ­®¢ª  c ¤®¯ã᪠õ â ª¨© ஧ª« ¤ ã ª®¬¯®§¨æ÷î ­¥§ «¥¦-

­¨å 横«÷¢:c = (1, 2, 5, 4, 6) ◦ (3, 8) ◦ (7).

�¢'燐ª ¯®¡ã¤®¢ ­¨å 横«÷¢ § ¯÷¤áâ ­®¢ª®î c æ÷ª ¢® ¯à®á⥦¨â¨, ¯¥-à¥áâ ¢¨¢è¨ ¢÷¤¯®¢÷¤­® á⮢¯æ÷ ¬ âà¨æ÷ c:

c =

(1 2 5 4 6 3 8 72 5 4 6 1 8 3 7

).

� ã¢ ¦¥­­ï 6.11. ö§  «£®à¨â¬ã, § ¯à®¯®­®¢ ­®£® ¢ á奬÷ ¤®¢¥¤¥­­ï⥮६¨ 6.3, «¥£ª® ¯®¡ ç¨â¨ õ¤¨­÷áâì §®¡à ¦¥­­ï ¯÷¤áâ ­®¢ª¨ ã ¢¨£«ï-¤÷ ª®¬¯®§¨æ÷ù ­¥§ «¥¦­¨å 横«÷¢ (§ â®ç­÷áâî ¤® ¯¥à¥áâ ¢«¥­­ï 横«÷¢ { à£ã¬¥­â÷¢ ª®¬¯®§¨æ÷ù). �÷©á­®, § ¯à®¯®­®¢ ­¨©  «£®à¨â¬ ®¤­®§­ ç­®¢¨§­ ç õ ª®¦¥­ 横«, ¤® 类£® ¬ õ ¢å®¤¨â¨ ª®¦­¥ ik ∈ {1, 2, . . . , n}, §¢÷¤-ª¨, ¢à å®¢ãîç¨ ­¥§ «¥¦­÷áâì 横«÷¢, ÷ ¢¨¯«¨¢ õ õ¤¨­÷áâì §®¡à ¦¥­­ï.

�¥®à¥¬  6.4. �®¦­ã ¯÷¤áâ ­®¢ªã c ­  ¬­®¦¨­÷ A ¬®¦­  §®¡à §¨-⨠㠢¨£«ï¤÷ ª®¬¯®§¨æ÷ù áª÷­ç¥­­®ù ª÷«ìª®áâ÷ â࠭ᯮ§¨æ÷©.

�«ï ¤®¢¥¤¥­­ï ⥮६¨ §­ ¤®¡¨âìáï ®¤¨­ ¯à®á⨩ १ã«ìâ â, 直©,¯à®â¥, ¬ õ á ¬®áâ÷©­¥ §­ ç¥­­ï.

�¥¬  6.2 (á®àâ㢠­­ï ¯¥à¥áâ ­®¢ª¨ â࠭ᯮ§¨æ÷ﬨ). ö§ ¤®-¢÷«ì­®ù ¯¥à¥áâ ­®¢ª¨ i = (i1, i2, . . . , in), § áâ®á®¢ãîç¨ áª÷­ç¥­­ã ª÷«ì-ª÷áâì â࠭ᯮ§¨æ÷© tk (1 ≤ k ≤ m), ¬®¦­  ®âਬ â¨ ¯¥à¥áâ ­®¢ªã(1, 2, . . . , n), ⮡â®

(1, 2, . . . , n) = (tm ◦ tm−1 ◦ . . . t2 ◦ t1)(i).

121

Page 124: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�®¢¥¤¥­­ï «¥¬¨. �㤥¬® á®àâ㢠⨠¥«¥¬¥­â¨, § áâ®á®¢ãîç¨ ­  ª®¦-­®¬ã ¥â ¯÷ ­¥ ¡÷«ìè¥ ®¤­÷õù â࠭ᯮ§¨æ÷ù: ᯮç âªã ¯®áâ ¢¨¬® «­  ᢮õ¬÷á楻 (­  ¯¥àèã ª®®à¤¨­ âã) ¥«¥¬¥­â 1, ¯®â÷¬ { ¥«¥¬¥­â 2 ÷ â ª ¤ «÷,¯®ª¨ ¢á÷ ¥«¥¬¥­â¨ ¯¥à¥áâ ­®¢ª¨ ­¥ ¡ã¤ãâì áâ®ï⨠­  ᢮ùå ¬÷áæïå, ⮡⮯®ª¨ ­¥ ®âਬ õ¬® ¯¥à¥áâ ­®¢ªã (1, 2, . . . , n). �¯¨è¥¬® ¤¥â «ì­® ¯¥àè÷¤¢  ªà®ª¨ ¯à®æ¥¤ãਠá®àâ㢠­­ï (¤ «÷ ¯à®æ¥¤ãà  ¯à®¤®¢¦ãõâìáï §   ­ -«®£÷õî).

1. �¤¨­ § ¥«¥¬¥­â÷¢ ¢¨å÷¤­®ù ¯¥à¥áâ ­®¢ª¨ i (ïª ÷ ¡ã¤ì-类ù ÷­è®ù) ¬ õ¤®à÷¢­î¢ â¨ 1. �¥å © ik = 1. �ªé® k = 1, ⮡⮠㠢¨å÷¤­÷© ¯¥à¥áâ ­®¢æ÷i ¯¥à訩 ¥«¥¬¥­â i1 = 1, ¢áâ ­®¢«îõ¬® i1 = i â  ¯¥à¥å®¤¨¬® ¤® ¤à㣮£®ªà®ªã. ö­ ªè¥, ¢¨¡¥à¥¬® â࠭ᯮ§¨æ÷î l1 = (i1, 1) ÷ ¢áâ ­®¢¨¬® i1 = l1(i);⮤÷ ¯¥à訩 ¥«¥¬¥­â ¯¥à¥áâ ­®¢ª¨ i1 ¤®à÷¢­îõ 1, ⮡â®

i1 = l1(i) = (1, i12, i13, . . . , i

1n).

2. �¤¨­ § ¥«¥¬¥­â÷¢ ¯¥à¥áâ ­®¢ª¨ i1 ¬ õ ¤®à÷¢­î¢ â¨ 2. �¥å © i1k = 2(k ≥ 2, ®áª÷«ìª¨ i11 = 1). �ªé® k = 2, ⮡⮠¢ ¯¥à¥áâ ­®¢æ÷ i1 ¤à㣨©¥«¥¬¥­â i12 = 2, ¢áâ ­®¢«îõ¬® i2 = i1 â  ¯¥à¥å®¤¨¬® ¤® ­ áâ㯭®£® ªà®ªã.ö­ ªè¥, ¢¨¡¥à¥¬® â࠭ᯮ§¨æ÷î l2 = (i12, 2) ÷ ¢áâ ­®¢¨¬® i2 = l2(i

1); ⮤÷¤à㣨© ¥«¥¬¥­â ¯¥à¥áâ ­®¢ª¨ i2 ¤®à÷¢­îõ 2, ⮡â®

i2 = l2(i1) = (1, 2, i23, . . . , i

2n).

�§ £ «÷, ­  m-¬ã ªà®æ÷ áâ ¢¨¬® «­  ᢮õ ¬÷á楻 ¥«¥¬¥­â m, § áâ®á®-¢ãîç¨ §  ¯®âॡ¨ ¢÷¤¯®¢÷¤­ã â࠭ᯮ§¨æ÷î.

�⦥, ­¥ ¯÷§­÷è¥ ­÷¦ §  n ªà®ª÷¢ (  ­ á¯à ¢¤÷ ­¥ ¯÷§­÷è¥ ­÷¦ §  n− 1ªà®ª÷¢, ®áª÷«ìª¨ ¥«¥¬¥­â n ®¯¨­¨âìáï «­  ᢮õ¬ã ¬÷áæ÷» ¢¦¥ ­  (n−1)-¬ãªà®æ÷ ¡¥§ § áâ®á㢠­­ï ®ªà¥¬®ù â࠭ᯮ§¨æ÷ù) ®âਬãõ¬® è㪠­¥ §®¡à -¦¥­­ï

(tm ◦ tm−1 ◦ . . . t2 ◦ t1)(i) = (1, 2, . . . , n), m ≤ n− 1,

¤¥ tk (1 ≤ k ≤ m) { â࠭ᯮ§¨æ÷ù, é® ¤®à÷¢­îîâì ¢÷¤¯®¢÷¤­¨¬ â࠭ᯮ-§¨æ÷ï¬ lj (1 ≤ j ≤ m).

� ã¢ ¦¥­­ï 6.12. �à®æ¥¤ãà , § áâ®á®¢ ­  ¤«ï ¤®¢¥¤¥­­ï «¥¬¨ 6.2,¢¨§­ ç õ ¤®á¨âì ¥ä¥ªâ¨¢­¨©  «£®à¨â¬ á®àâ㢠­­ï, 直© ¤«ï ¬­®¦¨­¨§ n ¥«¥¬¥­â÷¢ § ª÷­çãõ ஡®âã ­¥ ¯÷§­÷è¥ ­÷¦ §  n − 1 ªà®ª÷¢, ¯à¨ç®¬ã­  ª®¦­®¬ã ªà®æ÷ ¢¨ª®­ãõâìáï ®¯¥à æ÷ï ¯¥à¥áâ ¢«¥­­ï ¤¢®å ¥«¥¬¥­â÷¢¬­®¦¨­¨.

122

Page 125: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.3. �à㯠 ¯÷¤áâ ­®¢®ª

�®¢¥¤¥­­ï ⥮६¨. �¥å © c =

(1 2 . . . ni1 i2 . . . in

).

�£÷¤­® § ¤®¢¥¤¥­®î «¥¬®î, ¤«ï ¯¥à¥áâ ­®¢ª¨ i = (i1, i2, . . . , in) á¯à -¢¥¤«¨¢¥ §®¡à ¦¥­­ï

(tm ◦ tm−1 ◦ . . . t2 ◦ t1)(i) = (1, 2, . . . , n),

¤¥ tk (1 ≤ k ≤ n) { â࠭ᯮ§¨æ÷ù. �®¤÷, ïª ­¥¢ ¦ª® ¯¥à¥¢÷à¨â¨,

c−1 =

(i1 i2 . . . in1 2 . . . n

)= tm ◦ tm−1 ◦ . . . t2 ◦ t1.

� à¥èâ÷, ®áª÷«ìª¨ ª®¦­  â࠭ᯮ§¨æ÷ï ¤®à÷¢­îõ ᢮ù© ®¡¥à­¥­÷© (à¥-§ã«ìâ â ¢¯à ¢¨ 6.8), ®âਬãõ¬®

c = t−11 ◦ t−1

2 ◦ . . . t−1m = t1 ◦ t2 ◦ . . . tm.

�ਪ« ¤ 6.19. �®¡à §¨¬® ¯÷¤áâ ­®¢ªã c =

(1 2 3 4 5 65 1 6 4 3 2

)

ã ¢¨£«ï¤÷ ª®¬¯®§¨æ÷ù â࠭ᯮ§¨æ÷©, ¤«ï 箣® ¢÷¤á®àâãõ¬® ¯¥à¥áâ ­®¢ªãi = (5, 1, 6, 4, 3, 2), § áâ®á®¢ãîç¨ ¯à®æ¥¤ãàã á®àâ㢠­­ï, ã§ïâã § ¤®¢¥¤¥­-­ï «¥¬¨ 6.2.

1. �«ï ¢¨å÷¤­®ù ¯¥à¥áâ ­®¢ª¨ 1 = i2, i1 = 5. �⦥, ­  ¯¥à讬㠪à®æ÷§ áâ®á®¢ãõ¬® â࠭ᯮ§¨æ÷î l1 = (5, 1):

i1 = (5, 1)(i) = (1, 5, 6, 4, 3, 2).

2. �áª÷«ìª¨ 2 = i16, i12 = 5, § áâ®á®¢ãõ¬® â࠭ᯮ§¨æ÷î l2 = (5, 2):

i2 = (5, 2)(i1) = (1, 2, 6, 4, 3, 5).

3. �áª÷«ìª¨ 3 = i25, i23 = 6, § áâ®á®¢ãõ¬® â࠭ᯮ§¨æ÷î l3 = (6, 3):

i3 = (6, 3)(i2) = (1, 2, 3, 4, 6, 5).

4. �áª÷«ìª¨ i34 = 4 (¥«¥¬¥­â 4 ஧â è®¢ ­¨© «­  ᢮õ¬ã ¬÷áæ÷»), ¢áâ -­®¢«îõ¬® i4 = i3 ÷ ¯¥à¥å®¤¨¬® ¤® ­ áâ㯭®£® ¯ã­ªâã.

5. �áª÷«ìª¨ 5 = i46, i45 = 6, § áâ®á®¢ãõ¬® â࠭ᯮ§¨æ÷î l4 = (6, 5):

i5 = (6, 5)(i4) = (1, 2, 3, 4, 5, 6).

123

Page 126: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�⦥, ¤«ï ¯¥à¥áâ ­®¢ª¨ (5, 1, 6, 4, 3, 2) ®âਬ «¨ §®¡à ¦¥­­ï((6, 5) ◦ (6, 3) ◦ (5, 2) ◦ (5, 1)) ((5, 1, 6, 4, 3, 2)) = (1, 2, 3, 4, 5, 6).

� ª¨¬ 稭®¬, ¤«ï ¯÷¤áâ ­®¢ª¨ c ®âਬãõ¬® ஧ª« ¤

c =

(1 2 3 4 5 65 1 6 4 3 2

)= (5, 1) ◦ (5, 2) ◦ (6, 3) ◦ (6, 5).

�®¡à ¦¥­­ï ¯÷¤áâ ­®¢ª¨ ã ¢¨£«ï¤÷ ª®¬¯®§¨æ÷ù â࠭ᯮ§¨æ÷© ­÷ª®«¨­¥ õ õ¤¨­¨¬ (­  ¢÷¤¬÷­ã ¢÷¤ §®¡à ¦¥­­ï ¯÷¤áâ ­®¢ª¨ ïª ª®¬¯®§¨æ÷ù ­¥-§ «¥¦­¨å 横«÷¢). �®ªà¥¬ , ¤® ª®¬¯®§¨æ÷ù â࠭ᯮ§¨æ÷© § ¢¦¤¨ ¬®¦­ «¤®¯¨á â¨» ¢¨à § t ◦ t, ¤¥ t { ¤®¢÷«ì­  â࠭ᯮ§¨æ÷ï (  ®â¦¥, t ◦ t = e).�à÷¬ ⮣®, ¬®¦­  §¬÷­¨â¨ ç¥à£®¢÷áâì ஧â è®¢ã¢ ­­ï ¥«¥¬¥­â÷¢ «­  ᢮ù¬÷áæï» (ã ­ ¢¥¤¥­®¬ã  «£®à¨â¬÷ ¡ã«® § áâ®á®¢ ­® ç¥à£®¢÷áâì ¢÷¤ 1 ¤® n),é®, ïª ¯à ¢¨«®, á¯à¨ç¨­îõ ÷­è¨© ¢ à÷ ­â ஧ª« ¤ã.

�ਪ« ¤ 6.20. � ¢¥¤¥¬® ÷­è÷ ¢ à÷ ­â¨ §®¡à ¦¥­­ï ïª ª®¬¯®§¨æ÷ùâ࠭ᯮ§¨æ÷© ¤«ï ¯÷¤áâ ­®¢ª¨ c ÷§ ¯à¨ª«. 6.19:

c =

(1 2 3 4 5 65 1 6 4 3 2

)= (5, 1) ◦ (5, 2) ◦ (6, 3) ◦ (6, 5) =

= (6, 2) ◦ (3, 5) ◦ (2, 3) ◦ (1, 2) = (1, 2) ◦ (1, 6) ◦ (1, 5) ◦ (3, 5) =

= (5, 1) ◦ (5, 2) ◦ (6, 3) ◦ (6, 5) ◦ (2, 4) ◦ (2, 4) =

= (5, 1) ◦ (1, 3) ◦ (1, 3) ◦ (5, 2) ◦ (6, 3) ◦ (6, 5).

�¥à訩 ஧ª« ¤ ®âਬ ­®  «£®à¨â¬®¬, § ¯à®¯®­®¢ ­¨¬ ã ¤®¢¥¤¥­­÷«¥¬¨ 6.2 (¤¨¢. ¯à¨ª«. 6.19). �à㣨© ÷ âà¥â÷© ஧ª« ¤¨ ®âਬ ­® §¬÷­®îç¥à£®¢®áâ÷ ஧â è®¢ã¢ ­­ï ¥«¥¬¥­â÷¢: ¡ã¤ãîç¨ ¤à㣨© ஧ª« ¤, ᯮç â-ªã ஧â è㢠«¨ «­  ᢮õ¬ã ¬÷áæ÷» ¥«¥¬¥­â 6, ¯®â÷¬ { ¥«¥¬¥­â 5, ÷ â ª ¤ «÷¤® 1; ¡ã¤ãîç¨ âà¥â÷© ஧ª« ¤, ᯮç âªã ஧â è㢠«¨ «­  ᢮ùå ¬÷áæï廯 à­÷ ¥«¥¬¥­â¨,   ¯®â÷¬ { ­¥¯ à­÷. �¥â¢¥à⨩ ÷ ¯'ï⨩ ஧ª« ¤¨ ®âਬ -­® § ¯¥à讣® ¤®¤ ¢ ­­ï¬ ¤® ª®¬¯®§¨æ÷ù â࠭ᯮ§¨æ÷© ¤¥ïª®ù «â®â®¦­®ù¯ à¨» t ◦ t, ¤¥ t { â࠭ᯮ§¨æ÷ï.

6.3.3. � à­÷ â  ­¥¯ à­÷ ¯÷¤áâ ­®¢ª¨�®§£«ï­¥¬® ¤¢  ¥ª¢÷¢ «¥­â­÷ ¯÷¤å®¤¨ ¤® ¢¨§­ ç¥­­ï ¯ à­®áâ÷ ¯÷¤áâ -

­®¢®ª: ¯÷¤å÷¤, ¯®¢'易­¨© § ¯®­ïââï¬ ÷­¢¥àá÷ù, â  ¯÷¤å÷¤, ¯®¢'易­¨© ÷§§®¡à ¦¥­­ï¬ ¯÷¤áâ ­®¢ª¨ ã ¢¨£«ï¤÷ ª®¬¯®§¨æ÷ù â࠭ᯮ§¨æ÷©.

124

Page 127: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.3. �à㯠 ¯÷¤áâ ­®¢®ª

�§­ ç¥­­ï 6.11. � ¦ãâì, é® ­¥¢¯®à浪®¢ ­  ¯ à  ¥«¥¬¥­â÷¢ ik1 , ik2

ã⢮àîõ ÷­¢¥àá÷î ¢ ¯¥à¥áâ ­®¢æ÷ i = (i1, i2, . . . , in), ïªé® ¢¨ª®­ãõâìáï ®¤-­  § ¤¢®å ¯ à 㬮¢:

• k1 < k2 â  ik1 > ik2 ;• k1 > k2 â  ik1 < ik2 ,

⮡⮠¡÷«ì訩 § ¥«¥¬¥­â÷¢ ik1 , ik2 ஧â è®¢ ­¨© ã ¯¥à¥áâ ­®¢æ÷ i §«÷¢  ¢÷¤¬¥­è®£®.

�ਪ« ¤ 6.21. � ¯¥à¥áâ ­®¢æ÷ i = (1, 4, 3, 2) ÷­¢¥àá÷î ã⢮àîîâìâ ª÷ ¯ à¨ ¥«¥¬¥­â÷¢ (­ £ ¤ õ¬®, é® ¯®à冷ª ¥«¥¬¥­â÷¢ ã ¯ à÷ ik1 , ik2 ­¥¢à å®¢ãîâì):

• ÷­¢¥àá÷©, é® ¬÷áâïâì ¥«¥¬¥­â 1, ­¥¬ õ (¥«¥¬¥­â 1 õ ­ ©¬¥­è¨¬, ÷ ¢¯¥à¥áâ ­®¢æ÷ ­¥¬ õ ¦®¤­®£® ¥«¥¬¥­â  §«÷¢  ¢÷¤ ­ì®£®);

• ÷­¢¥àá÷ù, ã⢮७÷ ¥«¥¬¥­â®¬ 4 â  ¥«¥¬¥­â ¬¨, ஧â è®¢ ­¨¬¨ ¢ ¯¥-à¥áâ ­®¢æ÷ ¯à ¢®àãç ¢÷¤ 4:

{4, 3}, {4, 2};

• ÷­¢¥àá÷ù, ã⢮७÷ ¥«¥¬¥­â®¬ 3 â  ¥«¥¬¥­â ¬¨, ஧â è®¢ ­¨¬¨ ¢ ¯¥-à¥áâ ­®¢æ÷ ¯à ¢®àãç ¢÷¤ 3:

{3, 2}.

�⦥, ¢ª § ­® ¢á÷ ÷­¢¥àá÷ù, ¯®¢'易­÷ § ¯¥à¥áâ ­®¢ª®î i = (1, 4, 3, 2),§®ªà¥¬  © â÷, é® ¬÷áâïâì ¥«¥¬¥­â 2. �«÷¤ ¯ ¬'ïâ â¨, é® ÷­¢¥àá÷ù, §  ®§­ -祭­ï¬ 6.11, ã⢮àîîâìáï ­¥¢¯®à浪®¢ ­¨¬¨ ¯ à ¬¨ (§®ªà¥¬ , ­¥ ¯®-âà÷¡­® ®ªà¥¬® ¢à å®¢ã¢ â¨ ÷­¢¥àá÷î {2, 3}, ®áª÷«ìª¨ ¢¦¥ ¢ª § ­® ÷­¢¥àá÷î{3, 2}).

�§­ ç¥­­ï 6.12. �¥à¥áâ ­®¢ªã ­ §¨¢ îâì ¯ à­®î, ïªé® ¢®­  ¤®-¯ã᪠õ ¯ à­ã ª÷«ìª÷áâì ÷­¢¥àá÷©, ÷ ­¥¯ à­®î, ïªé® ¢®­  ¤®¯ã᪠õ ­¥¯ à-­ã ª÷«ìª÷áâì ÷­¢¥àá÷©. � à­÷áâî ¯¥à¥áâ ­®¢ª¨ i = (i1, i2, . . . , in) ­ §¢¥¬®ç¨á«®

k(i) =

{0, ïªé® i ¯ à­ ,

1, ïªé® i ­¥¯ à­ .

125

Page 128: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�¥ à § ­ £ ¤ õ¬®, é® ¯¥à¥áâ ­®¢ª¨ ã⢮àîîâìáï ­¥¢¯®à浪®¢ ­¨¬¨¯ à ¬¨,   ®â¦¥, ­¥ ¯®âà÷¡­® ¢à å®¢ã¢ â¨ ®¤­ã ÷­¢¥àá÷î {ik1 , ik2} ¤¢÷ç÷, ®á-ª÷«ìª¨ ­¥¢¯®à浪®¢ ­÷ ¯ à¨ {ik1 , ik2} â  {ik2 , ik1} §¡÷£ îâìáï. � ã¢ ¦¨¬®,é® ïªé® á¯à®¡ã¢ â¨ ¯÷¤à å㢠⨠®¤­ã ÷­¢¥àá÷î ¤¢÷ç÷, â® ¢á÷ ¯¥à¥áâ ­®¢ª¨¢¨ï¢«ïâìáï ¯ à­¨¬¨.

�ਪ« ¤ 6.22. 1. �¥à¥áâ ­®¢ª  (1, 4, 3, 2) ¤®¯ã᪠õ âਠ÷­¢¥àá÷ù({4, 3}, {4, 2}, {3, 2}),   ®â¦¥, õ ­¥¯ à­®î (¯ à­÷áâì 1).

2. �¥à¥áâ ­®¢ª  (2, 3, 1, 4) ¤®¯ã᪠õ ¤¢÷ ÷­¢¥àá÷ù ({2, 1}, {3, 1}),   ®â¦¥,õ ¯ à­®î (¯ à­÷áâì 0).

3. �¥à¥áâ ­®¢ª  ¢¨£«ï¤ã (1, 2, . . . , n) ­¥ ¤®¯ã᪠õ ¦®¤­®ù ÷­¢¥àá÷ù,  ®â¦¥, õ ¯ à­®î (0 { ¯ à­¥ ç¨á«®).

�¥¬  6.3. � áâ®á㢠­­ï â࠭ᯮ§¨æ÷ù §¬÷­îõ ¯ à­÷áâì ¯¥à¥áâ -­®¢ª¨, ⮡â®

k(i) 6= k(t(i)),

¤¥ t { â࠭ᯮ§¨æ÷ï; i = (i1, i2, . . . , in) { ¯¥à¥áâ ­®¢ª .

�®¢¥¤¥­­ï. �¥å © i = (i1, . . . , ik1 , . . . , ik2 , . . . , in), t = (ik1 , ik2) (k2 > k1).�®¤÷ t(i) = (i1, . . . , ik2 , . . . , ik1 , . . . , in).

�«ï ¤®¢¥¤¥­­ï «¥¬¨ ஧£«ï­¥¬®, ïª÷ ¯ à¨ ¥«¥¬¥­â÷¢ {im1 , im2} ¬ îâì«à÷§­ã ÷­¢¥àá÷©­÷áâì» ã ¯¥à¥áâ ­®¢ª å i â  t(i), ⮡⮠ã⢮àîîâì ÷­¢¥à-á÷î ¢ ¯¥à¥áâ ­®¢æ÷ i â  ­¥ ã⢮àîîâì ÷­¢¥àá÷î ¢ t(i),  ¡® ­ ¢¯ ª¨ { ã⢮-àîîâì ÷­¢¥àá÷î ¢ t(i) â  ­¥ ã⢮àîîâì ¢ i. �ªé® ª÷«ìª÷áâì â ª¨å ¯ à¢¨ï¢¨âìáï ­¥¯ à­®î, «¥¬ã ¡ã¤¥ ¤®¢¥¤¥­®.

1. �®§£«ï­¥¬® ¯ àã {im1 , im2}, ïªé® {im1 , im2} ∩ {ik1 , ik2} = ∅. � ª ¯ à  ¬ õ ®¤­ ª®¢ã ÷­¢¥àá÷©­÷áâì ã ¯¥à¥áâ ­®¢ª å i â  t(i), (⮡⮠¢ ®¡®å¯¥à¥áâ ­®¢ª å õ ÷­¢¥àá÷õî  ¡® ¢ ®¡®å ¯¥à¥áâ ­®¢ª å ­¥ õ ÷­¢¥àá÷õî), ®á-ª÷«ìª¨ â࠭ᯮ§¨æ÷ï t = (ik1 , ik2) ­¥ §¬÷­îõ ஧â è㢠­­ï ¥«¥¬¥­â÷¢ im1

â  im2 .2. �®§£«ï­¥¬® ¯ àã {ik, im}, ïªé® 1 ≤ k < k1, m ∈ {k1, k2}. � ª  ¯ à 

¬ õ ®¤­ ª®¢ã ÷­¢¥àá÷©­÷áâì ã ¯¥à¥áâ ­®¢ª å i â  t(i), ®áª÷«ìª¨ â࠭ᯮ-§¨æ÷ï t ­¥ §¬÷­îõ ¢§ õ¬­®£® ஧â è㢠­­ï ¥«¥¬¥­â÷¢ ik â  im.

3. �­ «®£÷ç­® ¯®¯¥à¥¤­ì®¬ã ¯ã­ªâã, ¯ à  ¥«¥¬¥­â÷¢ {im, ik} ¯à¨k2 < k ≤ n, m ∈ {k1, k2} â ª®¦ ¬ õ ®¤­ ª®¢ã ÷­¢¥àá÷©­÷áâì ã ¯¥à¥áâ -­®¢ª å i â  t(i).

4. �¥å © k1 < k < k2, ⮤÷:

126

Page 129: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.3. �à㯠 ¯÷¤áâ ­®¢®ª

• ¯ à  {ik1 , ik} ¬ õ à÷§­ã ÷­¢¥àá÷©­÷áâì ã ¯¥à¥áâ ­®¢ª å i â  t(i), ®á-ª÷«ìª¨ â࠭ᯮ§¨æ÷ï t §¬÷­îõ ¢§ õ¬­¥ ஧â è㢠­­ï ¥«¥¬¥­â÷¢ ik1

â  ik. �祢¨¤­®, é® ¢á쮣® ÷á­ãõ k2 − k1 − 1 ¯ à ¢¨£«ï¤ã {ik1 , ik}(k1 < k < k2);

• ¯ à  {ik, ik2} ¬ õ à÷§­ã ÷­¢¥àá÷©­÷áâì ã ¯¥à¥áâ ­®¢ª å i â  t(i), ®á-ª÷«ìª¨ â࠭ᯮ§¨æ÷ï t §¬÷­îõ ¢§ õ¬­¥ ஧â è㢠­­ï ¥«¥¬¥­â÷¢ ikâ  ik2 . �祢¨¤­®, é® ¢á쮣® ÷á­ãõ k2 − k1 − 1 ¯ à ¢¨£«ï¤ã {ik, ik2}(k1 < k < k2).

5. � à  {ik1 , ik2} (®áâ ­­ï, é® § «¨è¨« áì ­¥à®§£«ï­ãâ®î) ¬ õ à÷§­ã÷­¢¥àá÷©­÷áâì ã ¯¥à¥áâ ­®¢ª å i â  t(i), ®áª÷«ìª¨ â࠭ᯮ§¨æ÷ï t §¬÷­îõ¢§ õ¬­¥ ஧â è㢠­­ï ¥«¥¬¥­â÷¢ ik1 â  ik2 .

�⦥, ¢á쮣® ÷á­ãõ 2(k2−k1−1)+1 (­¥¯ à­  ª÷«ìª÷áâì) ¯ à, ïª÷ ¬ îâìà÷§­ã ÷­¢¥àá÷©­÷áâì ã ¯¥à¥áâ ­®¢ª å i â  t(i).

�¢¥à¤¦¥­­ï «¥¬¨ ¤®¢¥¤¥­®.

�ਪ« ¤ 6.23. �¥à¥áâ ­®¢ª  i = (1, 4, 3, 2) ¤®¯ã᪠õ âਠ÷­¢¥àá÷ù:{4, 3}, {4, 2}, {3, 2}. � áâ®á®¢ãîç¨ â࠭ᯮ§æ÷î t = (1, 3), ®âਬãõ¬® ¯¥-à¥áâ ­®¢ªã t(i) = (3, 4, 1, 2), 猪 ¤®¯ã᪠õ ç®â¨à¨ ÷­¢¥àá÷ù: {3, 1}, {3, 2},{4, 1}, {4, 2}. �⦥, ¯¥à¥áâ ­®¢ª  i = (1, 4, 3, 2) õ ­¥¯ à­®î,   ¯¥à¥áâ -­®¢ª  t(i) { ¯ à­®î.

�§­ ç¥­­ï 6.13 (¯¥àè¥ ®§­ ç¥­­ï ¯ à­®áâ÷ ¯÷¤áâ ­®¢ª¨). �÷¤-áâ ­®¢ªã c =

(ij

)­ §¨¢ îâì ¯ à­®î, ïªé® ¯¥à¥áâ ­®¢ª¨ i â  j ¬ îâì

®¤­ ª®¢ã ¯ à­÷áâì, ÷ ­¥¯ à­®î, ïªé® ¯¥à¥áâ ­®¢ª¨ i â  j ¬ îâì à÷§­ã¯ à­÷áâì. � à­÷áâî ¯÷¤áâ ­®¢ª¨ c ­ §¢¥¬® ç¨á«®

k(c) =

{0, ïªé® c ¯ à­ ,

1, ïªé® c ­¥¯ à­ .

�«ï ­ ¢¥¤¥­®£® ®§­ ç¥­­ï ¯ à­®áâ÷ ¯÷¤áâ ­®¢ª¨ ¯®âà÷¡­® ®¡óàã­âã-¢ ­­ï ª®à¥ªâ­®áâ÷ (­¥§ «¥¦­÷áâì ¯ à­®áâ÷ ¢÷¤ ¢¨¡®àã ¬ âà¨æ÷ ¤«ï §®¡à -¦¥­­ï ¯÷¤áâ ­®¢ª¨). �÷¤¯®¢÷¤­¥ ⢥द¥­­ï ¡ã¤¥ ­ ¢¥¤¥­® ¢ ⥮६÷ 6.5.

�ਪ« ¤ 6.24. 1. �¡ç¨á«¨¬® ¯ à­÷áâì ¯÷¤áâ ­®¢ª¨

c =

(1 2 3 43 2 1 4

).

127

Page 130: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�¥à¥áâ ­®¢ª  i = (1, 2, 3, 4) õ ¯ à­®î (­¥ ¬÷áâ¨âì ÷­¢¥àá÷©); ¯¥à¥áâ -­®¢ª  j = (3, 2, 1, 4) ¤®¯ã᪠õ âਠ÷­¢¥àá÷ù ({3, 2}, {3, 1}, {2, 1}),   ®â¦¥,õ ­¥¯ à­®î. � ª¨¬ 稭®¬, ¢¨å÷¤­  ¯÷¤áâ ­®¢ª  c =

(ij

)õ ­¥¯ à­®î,

®áª÷«ìª¨ ¯÷¤áâ ­®¢ª¨ i â  j ¬ îâì à÷§­ã ¯ à­÷áâì.2. �¡ç¨á«¨¬® ¯ à­÷áâì ¯÷¤áâ ­®¢ª¨ c =

(1 2 3 44 1 3 2

).

�¥à¥áâ ­®¢ª  i = (1, 2, 3, 4) õ ¯ à­®î (­¥ ¬÷áâ¨âì ÷­¢¥àá÷©); ¯¥à¥áâ -­®¢ª  j = (4, 1, 3, 2) ¤®¯ã᪠õ ç®â¨à¨ ÷­¢¥àá÷ù ({4, 1}, {4, 3}, {4, 2}, {3, 2}),  ®â¦¥, õ ¯ à­®î. � ª¨¬ 稭®¬, ¢¨å÷¤­  ¯÷¤áâ ­®¢ª  c =

(ij

)õ ¯ à­®î,

®áª÷«ìª¨ ¯÷¤áâ ­®¢ª¨ i â  j ¬ îâì ®¤­ ª®¢ã ¯ à­÷áâì.

�¯à ¢  6.9. �®¢¥á⨠⠪÷ ⢥द¥­­ï:1. �÷¤áâ ­®¢ª¨ c â  c−1 ¬ îâì ®¤­ ª®¢ã ¯ à­÷áâì.2. � à­÷áâì ª®¬¯®§¨æ÷ù c = c2 ◦ c1 ¬®¦­  ®¡ç¨á«¨â¨ §  ä®à¬ã«®î

k(c) = k(c1)⊕ k(c2),

⮡⮠c õ ¯ à­®î ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ c1 â  c2 ¬ îâì ®¤­ ª®¢ã ¯ à-­÷áâì.

�ª §÷¢ª . �ª®à¨áâ â¨áì § ã¢. 6.8.3. �®â®¦­  ¯÷¤áâ ­®¢ª  õ ¯ à­®î.4. �࠭ᯮ§¨æ÷ï õ ­¥¯ à­®î ¯÷¤áâ ­®¢ª®î.5. �¨ª« ¯ à­®ù ¤®¢¦¨­¨ õ ­¥¯ à­¨¬, 横« ­¥¯ à­®ù ¤®¢¦¨­¨ { ¯ à-

­¨¬.�ª §÷¢ª . �®¢¥áâ¨, é® æ¨ª« (i1, i2, . . . , ik) ¬®¦­  §®¡à §¨â¨ ã ¢¨£«ï¤÷

ª®¬¯®§¨æ÷ù k − 1 â࠭ᯮ§¨æ÷©:

(i1, i2, . . . , ik) = (i1, i2) ◦ (i2, i3) ◦ · · · ◦ (ik−1, ik),

¯÷á«ï 箣® ᪮à¨áâ â¨áï १ã«ìâ â ¬¨ ¯¯. 2 â  4.

� áâ㯭  ⥮६  ¯®áâã«îõ ª®à¥ªâ­÷áâì ®§­ ç¥­­ï 6.13.

�¥®à¥¬  6.5 (ª®à¥ªâ­÷áâì ®§­ ç¥­­ï ¯ à­®áâ÷ ¯÷¤áâ ­®¢ª¨).� à­÷áâì ¯÷¤áâ ­®¢ª¨ c ­¥ § «¥¦¨âì ¢÷¤ ᯮᮡ㠧®¡à ¦¥­­ï c ã ¢¨-£«ï¤÷ ¬ âà¨æ÷.

128

Page 131: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.3. �à㯠 ¯÷¤áâ ­®¢®ª

�®¢¥¤¥­­ï. �¢¥à¤¦¥­­ï ⥮६¨ õ ¯à®á⨬ ­ á«÷¤ª®¬ «¥¬¨ 6.3. �÷©á-­®, ¬ âà¨æî ¤«ï §®¡à ¦¥­­ï ¯÷¤áâ ­®¢ª¨ c =

(ij

)¬®¦­  §¬÷­î¢ â¨

«¨è¥ ¯¥à¥áâ ¢«¥­­ï¬ á⮢¯æ÷¢, ⮡⮠§ áâ®á㢠­­ï¬ ¤® ¯¥à¥áâ ­®¢®ª iâ  j ¤®¢÷«ì­®ù ¯÷¤áâ ­®¢ª¨ c0:

c =

(ij

)=

(c0(i)c0(j)

).

�ªé® c0 õ â࠭ᯮ§¨æ÷õî, ¯ à­÷áâì ¯¥à¥áâ ­®¢®ª i â  c0(i) à÷§­  («¥-¬  6.3). �«¥ ¯ à­÷áâì ¯¥à¥áâ ­®¢®ª j â  c0(j) â ª®¦ à÷§­ , ⮡⮠¯ à­÷áâì¯÷¤áâ ­®¢®ª

(ij

)â 

(c0(i)c0(j)

)(â®ç­÷è¥, à÷§­¨å §®¡à ¦¥­ì ®¤­÷õù ¯÷¤áâ -

­®¢ª¨ c) ®¤­ ª®¢ .� § £ «ì­®¬ã ¢¨¯ ¤ªã, ª®«¨ c0 õ ¤®¢÷«ì­®î ¯÷¤áâ ­®¢ª®î ­  ¬­®¦¨­÷

A = {1, 2, . . . , n}, ¤®áâ â­ì® §®¡à §¨â¨ c0 ã ¢¨£«ï¤÷ ª®¬¯®§¨æ÷ù â࠭ᯮ§¨-æ÷© (ä ªâ¨ç­® ®âਬãîç¨ ¬ âà¨æî

(c0(i)c0(j)

)÷§ ¬ âà¨æ÷

(ij

)§  ¤¥ª÷«ìª 

ªà®ª÷¢, ­  ª®¦­®¬ã ªà®æ÷ ¬÷­ïîç¨ ¬÷áæﬨ «¨è¥ ¤¢  á⮢¯æ÷).

�ਪ« ¤ 6.25. �®§£«ï­¥¬® ¯÷¤áâ ­®¢ªã c =

(1 2 32 3 1

). �¥à¥áâ ­®¢-

ª  i = (1, 2, 3) õ ¯ à­®î (­¥ ¬÷áâ¨âì ÷­¢¥àá÷©), ¯¥à¥áâ ­®¢ª  j = (2, 3, 1)â ª®¦ õ ¯ à­®î (¬÷áâ¨âì ¤¢÷ ÷­¢¥àá÷ù: {2, 1} ÷ {3, 1}). �⦥, ¢¨å÷¤­  ¯÷¤-áâ ­®¢ª  c =

(ij

)õ ¯ à­®î, ®áª÷«ìª¨ ¯¥à¥áâ ­®¢ª¨ i = (1, 2, 3) â 

j = (2, 3, 1) ¬ îâì ®¤­ ª®¢ã ¯ à­÷áâì.�¥¯¥à ã ¬ âà¨æ÷

(1 2 32 3 1

)¯®¬÷­ïõ¬® ¬÷áæﬨ ¯¥à訩 â  ®áâ ­­÷©

á⮢¯æ÷, ®âਬ ¢è¨ ÷­è¥ §®¡à ¦¥­­ï ¤«ï ¯÷¤áâ ­®¢ª¨ c:

c =

(3 2 11 3 2

).

�£÷¤­® § ⥮६®î 6.5, ¯ à­÷áâì ¯÷¤áâ ­®¢ª¨ c ­¥ ¬ õ § «¥¦ â¨ ¢÷¤¢¨¡®àã ¬ âà¨æ÷ ¤«ï ùù §®¡à ¦¥­­ï. �÷©á­®, ã æ쮬㠢¨¯ ¤ªã ¬ õ¬®: ¯¥-à¥áâ ­®¢ª  i = (3, 2, 1) ­¥¯ à­  (âਠ÷­¢¥àá÷ù: {3, 2}, {3, 1}, {2, 1}); ¯¥à¥-áâ ­®¢ª  j = (1, 3, 2) â ª®¦ ­¥¯ à­  (®¤­  ÷­¢¥àá÷ï: {3, 2}); ®â¦¥, ¬ âà¨-

129

Page 132: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

æï(

i

j

)â ª®¦ ¢¨§­ ç õ ¯ à­ã ¯÷¤áâ ­®¢ªã (¯¥à¥áâ ­®¢ª¨ i â  j ¬ îâì

®¤­ ª®¢ã ¯ à­÷áâì { ®¡¨¤¢÷ ­¥¯ à­÷).

�§­ ç¥­­ï 6.14 (¤à㣥 ®§­ ç¥­­ï ¯ à­®áâ÷ ¯÷¤áâ ­®¢ª¨). �÷¤-áâ ­®¢ªã ­ §¨¢ îâì ¯ à­®î, ïªé® ùù §®¡à ¦ãîâì ã ¢¨£«ï¤÷ ª®¬¯®§¨æ÷ù¯ à­®ù ª÷«ìª®áâ÷ â࠭ᯮ§¨æ÷©, ÷ ­¥¯ à­®î, ïªé® ùù §®¡à ¦ãîâì ã ¢¨£«ï¤÷ª®¬¯®§¨æ÷ù ­¥¯ à­®ù ª÷«ìª®áâ÷ â࠭ᯮ§¨æ÷©.

� §­ ç¨¬®, é® ¥ª¢÷¢ «¥­â­÷áâì ®§­ ç¥­ì 6.13 â  6.14,   §¢÷¤á¨ ÷ ª®-४â­÷áâì ®§­ ç¥­­ï 6.14 (­¥§ «¥¦­÷áâì ¢÷¤ ᯮᮡ㠧®¡à ¦¥­­ï ¯÷¤áâ -­®¢ª¨ ã ¢¨£«ï¤÷ ª®¬¯®§¨æ÷ù â࠭ᯮ§¨æ÷©), ®¤à §ã ¢¨¯«¨¢ õ § १ã«ìâ â÷¢¢¯à ¢¨ 6.9.

�ਪ« ¤ 6.26. �®§£«ï­¥¬® ¯÷¤áâ ­®¢ªã c =

(1 2 3 42 4 3 1

), 猪 õ ¯ à-

­®î ¢ ᥭá÷ ®§­ ç¥­­ï 6.13 (¯¥à¥áâ ­®¢ª¨ (1, 2, 3, 4) â  (2, 4, 3, 1) ®¡¨¤¢÷¯ à­÷).

�«ï § áâ®á㢠­­ï ®§­ ç¥­­ï 6.14 §®¡à §¨¬® ¯÷¤áâ ­®¢ªã c ã ¢¨£«ï¤÷ª®¬¯®§¨æ÷ù â࠭ᯮ§¨æ÷©:

(1 2 3 42 4 3 1

)= (2, 1) ◦ (2, 4).

�÷«ìª÷áâì â࠭ᯮ§¨æ÷© ¢ ®âਬ ­®¬ã §®¡à ¦¥­­÷ ¯ à­ , ®â¦¥, ¯÷¤-áâ ­®¢ª  c õ ¯ à­®î ÷ ¢ ᥭá÷ ®§­ ç¥­­ï 6.14.

�த¥¬®­áâàãõ¬® ­  ¯à¨ª« ¤÷ ¯÷¤áâ ­®¢ª¨ c ª®à¥ªâ­÷áâì ®§­ ç¥­-­ï 6.14, ⮡⮠¢¨¯¨è¥¬® ¤«ï c ª÷«ìª  ÷­è¨å ᯮᮡ÷¢ ஧ª« ¤ ­­ï ¢ª®¬¯®§¨æ÷î â࠭ᯮ§¨æ÷©:

c =

(1 2 3 42 4 3 1

)= (1, 4)◦(1, 2) = (2, 4)◦(1, 4) = (2, 1)◦(2, 3)◦(2, 3)◦(2, 4).

�ª ¡ ç¨¬®, ¢ ãá÷å ­ ¢¥¤¥­¨å ஧ª« ¤ å ª÷«ìª÷áâì â࠭ᯮ§¨æ÷© § «¨-è õâìáï ¯ à­®î (å®ç  á ¬  ª÷«ìª÷áâì ¬®¦¥ §¬÷­î¢ â¨áï).

�ਪ« ¤ 6.27. �¡ç¨á«¨¬® ¯ à­÷áâì ¯÷¤áâ ­®¢®ª ã £à㯠å S2 â  S3.�à㯠 S2 ¬÷áâ¨âì â®â®¦­ã ¯÷¤áâ ­®¢ªã e ÷ â࠭ᯮ§¨æ÷î t = (1, 2)

(¤¨¢. ¯à¨ª«. 6.14). � ª¨¬ 稭®¬, S2 ¬÷áâ¨âì ®¤­ã ¯ à­ã (â®â®¦­ã) ¯÷¤-áâ ­®¢ªã e â  ®¤­ã ­¥¯ à­ã ¯÷¤áâ ­®¢ªã (â࠭ᯮ§¨æ÷î) t.

130

Page 133: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.3. �à㯠 ¯÷¤áâ ­®¢®ª

�à㯠 S3 ¬÷áâ¨âì â®â®¦­ã ¯÷¤áâ ­®¢ªã e, âਠâ࠭ᯮ§¨æ÷ù c1, c2, c3,  â ª®¦ ¤¢  横«¨ ¤®¢¦¨­®î 3: f1 â  f2 (¤«ï ¯÷¤áâ ­®¢®ª £à㯨 S3

¢¨ª®à¨áâ õ¬® ¯®§­ ç¥­­ï § ¯à¨ª«. 6.14). �⦥, S3 ¬÷áâ¨âì âਠ¯ à­÷ ¯÷¤-áâ ­®¢ª¨ (横«¨ ­¥¯ à­®ù ¤®¢¦¨­¨ e, f1, f2) ÷ âਠ­¥¯ à­÷ ¯÷¤áâ ­®¢ª¨(â࠭ᯮ§¨æ÷ù c1, c2, c3).

�®¦­  § ஧£«ï­ãâ¨å £à㯠S2 â  S3 ¬÷áâ¨âì ®¤­ ª®¢ã ª÷«ìª÷áâì ¯ à-­¨å ÷ ­¥¯ à­¨å ¯÷¤áâ ­®¢®ª (®¤­  ¯ à­  © ®¤­  ­¥¯ à­  ¢ S2, ÷ âਠ¯ à­÷â  âਠ­¥¯ à­÷ ¢ S3). � «÷ (¯÷¤à®§¤. 6.12) ¡ã¤¥ ¤®¢¥¤¥­® ¡÷«ìè § £ «ì-­¨© ä ªâ: ª®¦­  £à㯠 Sn ¯à¨ n ≥ 2 ¬÷áâ¨âì n!

2¯ à­¨å â  n!

2­¥¯ à­¨å

¯÷¤áâ ­®¢®ª.

� ¢¥àèãîç¨ ¯÷¤à®§¤÷«, ­ ¢¥¤¥¬® ®¤¨­ ¯à¨ª« ¤ ¢¨ª®à¨áâ ­­ï ⥮à÷ù¯÷¤áâ ­®¢®ª ã «÷­÷©­÷©  «£¥¡à÷.

�ਪ« ¤ 6.28. � ªãàáã «÷­÷©­®ù  «£¥¡à¨ (­ ¯à¨ª« ¤, [10]) ¤®¡à¥ ¢÷-¤®¬® ä®à¬ã«ã ¤«ï ®¡ç¨á«¥­­ï ¢¨§­ ç­¨ª  ¬ âà¨æ÷:

∣∣∣∣∣∣∣∣

a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

. . . . . . . . . . . . . . . . . . .an,1 an,2 . . . an,n

∣∣∣∣∣∣∣∣=

∑c∈Sn

(−1)k(c) · a1,c(1) · a2,c(2) . . . an,c(n)

(¯÷¤á㬮¢ãîâìáï ¤®¤ ­ª¨ ¤«ï ¢á÷å c ∈ Sn; k(c), ïª ÷ à ­÷è¥, ¯®§­ ç õ¯ à­÷áâì ¯÷¤áâ ­®¢ª¨ c).

�®§£«ï­¥¬® ª®­ªà¥â­÷ ¢¨¯ ¤ª¨ ¤«ï n = 1, 2, 3.1. �à㯠 S1 ¬÷áâ¨âì ®¤­ã (â®â®¦­ã) ¯÷¤áâ ­®¢ªã e. �⦥, ®âਬãõ¬®

‖a1,1‖ =∑c∈S1

(−1)k(c)a1,c(1) = (−1)k(e)a1,e(1) = a1,1.

2. �à㯠 S2 ¬÷áâ¨âì ¤¢÷ ¯÷¤áâ ­®¢ª¨ { â®â®¦­ã ¯÷¤áâ ­®¢ªã e ÷ âà ­á-¯®§¨æ÷î c = (1, 2). �⦥, ®âਬãõ¬®

∣∣∣∣a1,1 a1,2

a2,1 a2,2

∣∣∣∣ =∑c∈S2

(−1)k(c)a1,c(1)a2,c(2) =

= (−1)k(e)a1,e(1)a2,e(2) + (−1)k(t)a1,t(1)a2,t(2) = a1,1a2,2 − a1,2a2,1.

131

Page 134: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

3. �à㯠 S3 ¬÷áâ¨âì â®â®¦­ã ¯÷¤áâ ­®¢ªã e, âਠâ࠭ᯮ§¨æ÷ù c1, c2,c3,   â ª®¦ ¤¢  横«¨ ¤®¢¦¨­®î 3: f1 â  f2 (¯®§­ ç¥­­ï § ¯à¨ª«. 6.9).�⦥, ¤«ï ¢¨§­ ç­¨ª  ¯®à浪ã 3 ®âਬãõ¬®

∣∣∣∣∣∣

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

∣∣∣∣∣∣=

∑c∈S3

(−1)k(c)a1,c(1)a2,c(2)a3,c(3) =

= (−1)k(e)a1,e(1)a2,e(2)a3,e(3) + (−1)k(c1)a1,c1(1)a2,c1(2)a3,c1(3)+

+(−1)k(c2)a1,c2(1)a2,c2(2)a3,c2(3) + (−1)k(c3)a1,c3(1)a2,c3(2)a3,c3(3)+

+(−1)k(f1)a1,f1(1)a2,f1(2)a3,f1(3) + (−1)k(f2)a1,f2(1)a2,f2(2)a3,f2(3) =

= a1,1a2,2a3,3 − a1,1a2,3a3,2 − a1,3a2,2a3,1−−a1,2a2,1a3,3 + a1,2a2,3a3,1 + a1,3a2,1a3,2.

�¥â «ì­÷è¥ ¯à® £àã¯ã Sn (§®ªà¥¬ , ¯à® ஧ª« ¤ ­­ï ¯÷¤áâ ­®¢-ª¨ ¢ ª®¬¯®§¨æ÷î ­¥§ «¥¦­¨å 横«÷¢) ¬®¦­  ¯à®ç¨â â¨, ­ ¯à¨ª« ¤,ã [7, 10, 14]. �¥ïª÷  «£®à¨â¬÷ç­÷  á¯¥ªâ¨ £à㯨 ¯÷¤áâ ­®¢®ª ¢¨á¢÷â-«¥­® ¢ [15].

6.4. �¤¨â¨¢­  â  ¬ã«ì⨯«÷ª â¨¢­ £à㯨 ª« á÷¢ «¨èª÷¢

6.4.1. �­®¦¨­  ª« á÷¢ «¨èª÷¢� æ쮬㠯÷¤à®§¤÷«÷ ¡ã¤¥ ஧£«ï­ãâ®  ¤¨â¨¢­ã â  ¬ã«ì⨯«÷ª â¨¢­ã

£à㯨, ¯®¢'易­÷ § ä ªâ®à-¬­®¦¨­®î Z/(mod n)

¬­®¦¨­¨ æ÷«¨å ç¨á¥« Z§  ¢÷¤­®è¥­­ï¬ ¥ª¢÷¢ «¥­â­®áâ÷ (mod n), ¤¥ n { ä÷ªá®¢ ­¥ ­ âãà «ì­¥ç¨á«®.

�÷¤­®è¥­­ï ¥ª¢÷¢ «¥­â­®áâ÷ (mod n) (§  ¬®¤ã«¥¬ n) ¤®á¨âì ¤¥â «ì-­® ஧£«ï­ãâ® ¢ ஧¤. 3, ¯à¨ª«. 3.20. � £ ¤ õ¬®, é® ä ªâ®à-¬­®¦¨­ Z

/(mod n)

¬ õ ¢¨£«ï¤

Z/( mod n)

= {0, 1, . . . , k, . . . , n− 1}, ¤¥ k = {nm + k : m ∈ Z}.�­®¦¨­¨ (ª« á¨ ¥ª¢÷¢ «¥­â­®áâ÷) k (0 ≤ k ≤ n − 1) ­ §¨¢ îâì ª« -

á ¬¨ «¨èª÷¢ §  ¬®¤ã«¥¬ n. �祢¨¤­®, ª®¦¥­ ª« á k ᪫ ¤ õâìáï § æ÷«¨åç¨á¥«, ¯÷á«ï ¤÷«¥­­ï ª®¦­®£® § ïª¨å ­  n ®¤¥à¦ãîâì ®áâ çã k.

132

Page 135: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.4. �¤¨â¨¢­  â  ¬ã«ì⨯«÷ª â¨¢­  £à㯨 ª« á÷¢ «¨èª÷¢

� ªâ®à-¬­®¦¨­ã Z/(mod n)

¯®§­ ç îâì ç¥à¥§ Zn:

Zn = Z/(mod n)

= {0, 1, . . . , k, . . . , n− 1}, ¤¥ k = {nm + k : m ∈ Z}.

�¥ à § ­ £®«®á¨¬®, é® ¥«¥¬¥­â ¬¨ ¬­®¦¨­¨ Zn õ ª« á¨ «¨èª÷¢, ⮡-â® ­¥ ®ªà¥¬÷ æ÷«÷ ç¨á« ,   ¬­®¦¨­¨ ç¨á¥«. � ¦«¨¢® â ª®¦ ¯ ¬'ïâ â¨, 鮢¨à § k ¬ õ á¥­á ¤«ï ¤®¢÷«ì­®£® k ∈ Z (­¥ â÷«ìª¨ ¤«ï 0 ≤ k ≤ n − 1).�à®â¥, ã ¬­®¦¨­÷ Zn ¬÷áâ¨âìáï à÷¢­® n à÷§­¨å ª« á÷¢, ÷ æ¥ á ¬¥ ª« á¨ k¯à¨ 0 ≤ k ≤ n−1; ª« á¨ k § ­®¬¥à ¬¨ k ≥ n â  k < 0 §¡÷£ îâìáï § ®¤­¨¬÷§ ª« á÷¢ k ¯à¨ 0 ≤ k ≤ n− 1:

n = 0, n + 1 = 1, − 1 = n− 1, . . . .

�§ £ «÷, «¥£ª® ¯®¡ ç¨â¨, é® k = k mod n. � £ ¤ õ¬®, é® k mod n õ§ £ «ì­®¯à¨©­ï⨬ ¯®§­ ç¥­­ï¬ ¤«ï ®áâ ç÷ ¢÷¤ ¤÷«¥­­ï k ­  n, ⮡â®ç¨á«® k0 = k mod n ®¤­®§­ ç­® ¢¨§­ ç õâìáï 㬮¢ ¬¨:

0 ≤ k0 ≤ n− 1; (6.3)k = n ·m + k0 ¤«ï ¤¥ïª®£® m ∈ Z. (6.4)

� §­ ç¨¬®, é® ç¨á«® m = k div n â ª®¦ ¢¨§­ ç õâìáï 㬮¢ ¬¨ (6.3)÷ (6.4) ®¤­®§­ ç­®:

m = max{p ∈ Z : k ≥ n · p}.�ਪ« ¤ 6.29. �®§£«ï­¥¬® ¬­®¦¨­¨ Z1, Z2 â  Z3.1. �­®¦¨­  Z1 = {0} ᪫ ¤ õâìáï § ®¤­®£® ¥«¥¬¥­â  0 = Z (¡ã¤ì-瘟

æ÷«¥ ç¨á«® ¤÷«¨âìáï ­  1 ¡¥§ ®áâ ç÷). �¥© ¢¨¯ ¤®ª ­¥æ÷ª ¢¨© ÷ ©®£®, 絛ࠢ¨«®, ­¥ ஧£«ï¤ îâì.

2. �­®¦¨­  Z2 = {0, 1} ¬÷áâ¨âì ¤¢  ¥«¥¬¥­â¨ { ¬­®¦¨­ã 0 ¯ à­¨åç¨á¥« ÷ ¬­®¦¨­ã 1 ­¥¯ à­¨å ç¨á¥«. � æ쮬㠢¨¯ ¤ªã

k = k mod 2 =

{0, ïªé® k ¯ à­¥,1, ïªé® k ­¥¯ à­¥.

�®ªà¥¬ : 0 = 2 = − 2 = 4 = − 4, 1 = − 1 = 3 = − 3.3. �­®¦¨­  Z3 = {0, 1, 2} ᪫ ¤ õâìáï § âàì®å ¥«¥¬¥­â÷¢:• ¬­®¦¨­¨ 0 ç¨á¥«, ïª÷ ¤÷«ïâìáï ­  3 ¡¥§ ®áâ ç÷;

133

Page 136: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

• ¬­®¦¨­¨ 1 ç¨á¥«, ïª÷ ¤÷«ïâìáï ­  3 § ®áâ ç¥î 1;• ¬­®¦¨­¨ 2 ç¨á¥«, ïª÷ ¤÷«ïâìáï ­  3 § ®áâ ç¥î 2.

� æ쮬㠢¨¯ ¤ªã, §®ªà¥¬ , ¬ õ¬®:

0 = 3 = − 3 = 6 = − 6, 1 = − 2 = 4, 2 = − 1 = 5.

6.4.2. �¤¨â¨¢­  £à㯠 Zn

� ä÷ªáãõ¬® n ∈ N.�  ¬­®¦¨­÷ Zn = {0, 1, . . . , n− 1} ¢¨§­ ç¨¬® ®¯¥à æ÷î «+»:

a + b = a + b, a, b ∈ Z.

� ¢¥¤¥­¥ ®§­ ç¥­­ï ¯®âॡãõ ®¡óàã­â㢠­­ï ª®à¥ªâ­®áâ÷: âॡ  ¤®-¢¥áâ¨, é® à¥§ã«ìâ â ®¯¥à æ÷ù a+ b ­¥ § «¥¦¨âì ¢÷¤ ¢¨¡®à㠯।áâ ¢­¨ª÷¢§ ª« á÷¢ a â  b.

�¥¬  6.4 (ª®à¥ªâ­÷áâì ®¯¥à æ÷ù «+» ­  Zn). �¥å © a1 = a, b1 = b.�®¤÷ a1 + b1 = a + b.

�®¢¥¤¥­­ï. �«ï ¤®¢¥¤¥­­ï à÷¢­®áâ÷ a1 + b1 = a + b ¤®áâ â­ì® ¯¥à¥¢÷-à¨â¨, é® ((a1 + b1)− (a + b)) mod n = 0.

�áª÷«ìª¨ a1 = a, b1 = b, ¬ õ¬®

a1 = a + m1n, b1 = b + m2n ¤«ï ¤¥ïª¨å m1, m2 ∈ Z.

�«¥ ⮤÷ ®âਬãõ¬®

(a1 + b1)− (a + b) = (a1 − a) + (b1 − b) = m1n + m2n = (m1 + m2)n,

⮡⮠((a1 + b1)− (a + b)) mod n = 0, é® ¤®¢®¤¨âì ⢥द¥­­ï «¥¬¨.

�⦥, ¯®¡ã¤®¢ ­® § ¬ª­¥­ã  «£¥¡à¨ç­ã áâàãªâãàã 〈Zn, +〉. �¥£ª® ¤®-¢¥áâ¨, é® â ª  áâàãªâãà  õ  ¡¥«¥¢®î £à㯮î, ®áª÷«ìª¨ £à㯮¢÷ ¢« áâ¨-¢®áâ÷ ( á®æ÷ â¨¢­÷áâì, ª®¬ãâ â¨¢­÷áâì, ­ ï¢­÷áâì ­¥©âà «ì­®£® ¥«¥¬¥­-â  e,   â ª®¦ ÷á­ã¢ ­­ï ®¡¥à­¥­®£® x−1,+ ¤«ï ª®¦­®£® x ∈ Z) ®¤à §ã¢¨¯«¨¢ îâì §  ­ «®£÷ç­¨å £à㯮¢¨å ¢« á⨢®á⥩ ¤«ï áâàãªâãਠ〈Z, +〉.� ª, ã áâàãªâãà÷ 〈Zn, +〉 ­¥©âà «ì­¨© ¥«¥¬¥­â e = 0, ®¡¥à­¥­¨© ¥«¥¬¥­â(a)

−1,+= − a = n− a.

134

Page 137: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.4. �¤¨â¨¢­  â  ¬ã«ì⨯«÷ª â¨¢­  £à㯨 ª« á÷¢ «¨èª÷¢

�¯à ¢  6.10. �஢¥á⨠¯®¢­¥ ¤®¢¥¤¥­­ï ä ªâã, é® áâàãªâãà 〈Zn, +〉 õ  ¡¥«¥¢®î £à㯮î.

�àã¯ã 〈Zn, +〉 ­ §¨¢ îâì  ¤¨â¨¢­®î £àã¯®î ª« á÷¢ «¨èª÷¢ §  ¬®-¤ã«¥¬ n. �«ï æ÷õù £à㯨 ç áâ® ¢¦¨¢ îâì ᪮à®ç¥­¥, ¡¥§ 㪠§ ­­ï ®¯¥-à æ÷ù, ¯®§­ ç¥­­ï Zn; ïªé® ¢¨­¨ª õ ¬®¦«¨¢÷áâì ª®­ä«÷ªâã ¯®§­ ç¥­ì,§ áâ®á®¢ãîâì ­ §¢ã « ¤¨â¨¢­  £à㯠 Zn», é® ¢ª §ãõ ­  ®¯¥à æ÷î «+»(¤¨¢. § ã¢. 6.5).

�ਪ« ¤ 6.30. �®§£«ï­¥¬® £à㯨 Z2 â  Z3.1. � ¢¥¤¥¬® â ¡«¨æî �¥«÷ ¤«ï  ¤¨â¨¢­®ù £à㯨 Z2 (â ¡«. 6.3).

� ¡«¨æï 6.3. � ¡«¨æï �¥«÷ ¤«ï  ¤¨â¨¢­®ù £à㯨 Z2

+ 0 10 0 11 1 0

�祢¨¤­®, ®¡¥à­¥­÷ ¥«¥¬¥­â¨ ¢ Z2 ¬ îâì ¢¨£«ï¤

(0)−1,+

= 0, (1)−1,+

= 1.

2. � ¢¥¤¥¬® â ¡«¨æî �¥«÷ ¤«ï  ¤¨â¨¢­®ù £à㯨 Z3 (â ¡«. 6.4).

� ¡«¨æï 6.4. � ¡«¨æï �¥«÷ ¤«ï  ¤¨â¨¢­®ù £à㯨 Z3

+ 0 1 20 0 1 21 1 2 02 2 0 1

�¥£ª® ¯¥à¥¢÷à¨â¨, é® ®¡¥à­¥­÷ ¥«¥¬¥­â¨ ¢ Z3 ¬ îâì ¢¨£«ï¤

(0)−1,+

= 0, (1)−1,+

= − 1 = 2, (2)−1,+

= − 2 = 1.

� ã¢ ¦¥­­ï 6.13. �¤¨â¨¢­  £à㯠 Zn õ ¯à¨ª« ¤®¬ § £ «ì­®£® ⨯ãáâàãªâãà { â ª §¢ ­¨å ä ªâ®à-£àã¯, ïª÷ ¡ã¤¥ ஧£«ï­ãâ® ¢ ¯÷¤à®§¤. 6.12.

135

Page 138: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

6.4.3. �ã«ì⨯«÷ª â¨¢­  £à㯠 Zp∗

� ä÷ªáãõ¬® p ∈ N.�  ¬­®¦¨­÷ Zp = {0, 1, . . . , p− 1} ¢¨§­ ç¨¬® ®¯¥à æ÷î ¬­®¦¥­­ï «·»:

a · b = ab, a, b ∈ Z.

�ª ÷ ã ¢¨¯ ¤ªã ®¯¥à æ÷ù «+», ®§­ ç¥­­ï ®¯¥à æ÷ù «·» â ª®¦ ¯®âॡãõ®¡óàã­â㢠­­ï ª®à¥ªâ­®áâ÷.

�¥¬  6.5 (ª®à¥ªâ­÷áâì ®¯¥à æ÷ù «·» ­  Zp). �¥å © a1 = a, b1 = b.�®¤÷ a1 · b1 = ab.

�®¢¥¤¥­­ï. �«ï ¤®¢¥¤¥­­ï à÷¢­®áâ÷ a1 · b1 = ab ¤®áâ â­ì® ¯¥à¥¢÷à¨â¨,é® (a1b1 − ab) mod p = 0.

�áª÷«ìª¨ a1 = a, b1 = b, ¬ õ¬®

a1 = a + m1p, b1 = b + m2p ¤«ï ¤¥ïª¨å m1,m2 ∈ Z.

�«¥ ⮤÷ ®âਬãõ¬®

a1b1 − ab = a1b1 − a1b + a1b− ab = a1(b1 − b) + b(a1 − a) = a1m2p + bm1p,

⮡⮠(a1b1 − ab) mod p = 0, é® ¤®¢®¤¨âì ⢥द¥­­ï «¥¬¨.

�⦥, ¯®¡ã¤®¢ ­® § ¬ª­¥­ã  «£¥¡à¨ç­ã áâàãªâãàã 〈Zp, ·〉. �¥£ª® ¤®¢¥-áâ¨, é® æï áâàãªâãà  õ ª®¬ãâ â¨¢­¨¬ ¬®­®ù¤®¬, ®áª÷«ìª¨ ­¥®¡å÷¤­÷ ¢« -á⨢®áâ÷ ( á®æ÷ â¨¢­÷áâì, ª®¬ãâ â¨¢­÷áâì ÷ ­ ï¢­÷áâì ­¥©âà «ì­®£® ¥«¥-¬¥­â ) ®¤à §ã ¢¨¯«¨¢ îâì §  ­ «®£÷ç­¨å ¢« á⨢®á⥩ ¤«ï ¬®­®ù¤  〈Z, ·〉.� ª, ã áâàãªâãà÷ 〈Zp, ·〉 ­¥©âà «ì­¨© ¥«¥¬¥­â e = 1.

�¤­ ª áâàãªâãà  〈Zp, ·〉, ïª ÷ 〈Z, ·〉 (¤¨¢. ¯à¨ª«. 6.5), §  ¦®¤­®£® p ≥ 2­¥ õ £à㯮î, ®áª÷«ìª¨ ¤«ï ¥«¥¬¥­â  0 ã æ쮬ã à §÷ ­¥ ÷á­ãõ ®¡¥à­¥­®£®.

�«ï ¯®¡ã¤®¢¨ ¬ã«ì⨯«÷ª â¨¢­®ù £à㯨 ­  ¬­®¦¨­÷ ª« á÷¢ «¨èª÷¢¡ã¤¥¬® ¤®¤ âª®¢® ¢¨¬ £ â¨, 鮡 p ∈ N ¡ã«® ¯à®á⨬ ç¨á«®¬1. �à÷¬ ⮣®,£àã¯ã ¡ã¤ã¢ â¨¬¥¬® ­  «¬­®¦¨­÷ ¡¥§ ­ã«ï»:

Zp∗ = Zp \ {0} = {1, 2, . . . , p− 1}.

1ö­®¤÷ ¢ «÷â¥à âãà÷, ®á®¡«¨¢® ¢ ¤¥ïª¨å èª÷«ì­¨å ¯÷¤àãç­¨ª å, ç¨á«® 1 ¢¢ ¦ îâì¯à®á⨬. �ã⠡㤥¬® ¢¢ ¦ â¨, é® ¯à®á⥠ç¨á«® ¯®¢¨­­® ¬ â¨ à÷¢­® ¤¢  à÷§­÷ ­ âã-à «ì­÷ ¤÷«ì­¨ª¨, ⮡⮠ç¨á«® 1 ­¥ õ ¯à®á⨬.

136

Page 139: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.4. �¤¨â¨¢­  â  ¬ã«ì⨯«÷ª â¨¢­  £à㯨 ª« á÷¢ «¨èª÷¢

�¥®à¥¬  6.6. �«£¥¡à¨ç­  áâàãªâãà  〈Zp∗, ·〉 ¤«ï ¯à®á⮣® p ∈ N õ

 ¡¥«¥¢®î £à㯮î.�®¢¥¤¥­­ï. �¥àè §  ¢á¥, ¯®âà÷¡­® ¤®¢¥á⨠§ ¬ª­¥­÷áâì áâàãªâãà¨

〈Zp∗, ·〉, ®áª÷«ìª¨ ¯à æîõ¬® ­¥ ­  ¢á÷© ¬­®¦¨­÷ ª« á÷¢ «¨èª÷¢. �«ï æ쮣®

­¥®¡å÷¤­® ¤®¢¥áâ¨, é® a · b ∈ Zp∗ ¯à¨ a, b ∈ Zp

∗, â®¡â® é® a · b 6= 0 ¤«ïa 6= 0, b 6= 0.

�ਯãáâ÷¬®, é® a · b = 0. �¥ ®§­ ç õ, é® ab mod p = 0, ⮡⮠¤®¡ã⮪ab ¤÷«¨âìáï ­  p ¡¥§ ®áâ ç÷. �«¥ ⮤÷, ®áª÷«ìª¨ ç¨á«® p õ ¯à®á⨬, ®¤­¥ §ç¨á¥« a ç¨ b ¬ õ ¤÷«¨â¨áï ­  p ¡¥§ ®áâ ç÷, é® á㯥à¥ç¨âì 㬮¢÷ a, b 6= 0.�⦥, § ¬ª­¥­÷áâì áâàãªâãਠ〈Zp

∗, ·〉 ¤®¢¥¤¥­®.�á®æ÷ â¨¢­÷áâì ÷ ª®¬ãâ â¨¢­÷áâì áâàãªâãਠ〈Zp

∗, ·〉 ¢¨¯«¨¢ õ §  ­ «®-£÷ç­¨å ¢« á⨢®á⥩ ã áâàãªâãà÷ 〈Zp, ·〉. �¥©âà «ì­¨¬ ¥«¥¬¥­â®¬ ã áâàãª-âãà÷ 〈Zp

∗, ·〉 õ ª« á 1 (§ §­ ç¨¬®, é® 1 6= 0).� à¥èâ÷, ¤®¢¥¤¥¬® ÷á­ã¢ ­­ï ®¡¥à­¥­®£® ¥«¥¬¥­â  ¤«ï ¤®¢÷«ì­®£®

a 6= 0 ¢÷¤­®á­® ®¯¥à æ÷ù ¬­®¦¥­­ï (⮡⮠¢ ¬¥¦ å áâàãªâãਠ〈Zp∗, ·〉).

� ä÷ªáãõ¬® ç¨á«® a, â ª¥, é® 1 ≤ a ≤ p − 1, ÷ ஧£«ï­¥¬® ­ ¡÷à ª« á÷¢«¨èª÷¢:

a · 1, a · 2, . . . , a · (p− 1). (6.5)ö§ ¢¨é¥¤®¢¥¤¥­®ù § ¬ª­¥­®áâ÷ 〈Zp

∗, ·〉 ¢¨¯«¨¢ õ, é® ak 6= 0 ¯à¨1 ≤ k ≤ p− 1, ⮡⮠­ ¡÷à ª« á÷¢ (6.5) «¥¦¨âì ã Zp

∗.�®¢¥¤¥¬® ¤ «÷, é® ¢á÷ ª« á¨ (6.5) ¯®¯ à­® à÷§­÷, ⮡⮠ak1 6= ak2 ¯à¨

1 ≤ k1 < k2 ≤ p− 1. �ਯãá⨢è¨, é® ak1 = ak2, ®âਬãõ¬®(ak2 − ak1) mod p = 0, ⮡⮠(a · (k2 − k1)) mod p = 0.

�¢÷¤á¨ ¢¨¯«¨¢ õ, é® ¬­®¦­¨ª a  ¡® ¬­®¦­¨ª (k2 − k1) ¬ õ ¤÷«¨â¨áï¡¥§ ®áâ ç÷ ­  ¯à®á⥠ç¨á«® p, é® á㯥à¥ç¨âì 㬮¢ ¬ 1 ≤ (k2− k1) ≤ p− 1â  1 ≤ a ≤ p− 1.

�⦥, ãá÷ ª« á¨ ¢ ­ ¡®à÷ (6.5) ¯®¯ à­® à÷§­÷, ⮡⮠­ ¡÷à (6.5) ¬÷á-â¨âì p − 1 ª« á÷¢ «¨èª÷¢, ª®¦¥­ § ïª¨å «¥¦¨âì ã Zp

∗. �«¥ Zp∗ â ª®¦

¬÷áâ¨âì p− 1 ¥«¥¬¥­â÷¢, ⮡⮠­¥ ¬®¦¥ ¬÷áâ¨â¨ ª« á÷¢, ïª÷ ­¥ ¢å®¤ïâì ¤®­ ¡®àã (6.5). �¥ ®§­ ç õ, é® ­ ¡÷à (6.5) §¡÷£ õâìáï § ¬­®¦¨­®î Zp

∗:

{1, 2, . . . , p− 1} = {a · 1, a · 2, . . . , a · (p− 1)}.�÷ §¡÷£ã ­ ¢¥¤¥­¨å ¬­®¦¨­ ¢¨¯«¨¢ õ, é® ®¤¨­ § ¥«¥¬¥­â÷¢ ¬­®¦¨­¨

{a · 1, a · 2, . . . , a · (p− 1)} ¬ õ ¤®à÷¢­î¢ â¨ 1; ¯®§­ ç¨¬® 楩 ¥«¥¬¥­â ç¥-१ a · ka, ¤¥ 1 ≤ ka ≤ p − 1. �«¥ ⮤÷ ª« á «¨èª÷¢ ka ∈ Zp

∗ ¢¨§­ ç õ

137

Page 140: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

¥«¥¬¥­â, ®¡¥à­¥­¨© ¤® a, ®áª÷«ìª¨ §  ¯®¡ã¤®¢®î

a · ka = a · ka = 1.

�¢¥à¤¦¥­­ï ⥮६¨ ¯®¢­÷áâî ¤®¢¥¤¥­®.

�àã¯ã 〈Zp∗, ·〉 (¤«ï ¯à®á⮣® ç¨á«  p) ­ §¨¢ îâì ¬ã«ì⨯«÷ª â¨¢-

­®î £àã¯®î ª« á÷¢ «¨èª÷¢ §  ¬®¤ã«¥¬ p; ¤«ï æ÷õù £à㯨 ç áâ® ¢¦¨¢ îâì᪮à®ç¥­¥, ¡¥§ 㪠§ ­­ï ®¯¥à æ÷ù, ¯®§­ ç¥­­ï Zp

∗; ïªé® ¢¨­¨ª õ ¬®¦-«¨¢÷áâì ª®­ä«÷ªâã ¯®§­ ç¥­ì, § áâ®á®¢ãîâì ­ §¢ã «¬ã«ì⨯«÷ª â¨¢­ £à㯠 Zp

∗», é® ¢ª §ãõ ­  ®¯¥à æ÷î «·» (¤¨¢. § ã¢. 6.5).�ਪ« ¤ 6.31. � ¢¥¤¥¬® â ¡«¨æî �¥«÷ ¤«ï £à㯨 Z5

∗ (â ¡«. 6.5).

� ¡«¨æï 6.5. � ¡«¨æï �¥«÷ ¤«ï ¬ã«ì⨯«÷ª â¨¢­®ù £à㯨 Z5∗

× 1 2 3 41 1 2 3 42 2 4 1 33 3 1 4 24 4 3 2 1

�¥£ª® ¯¥à¥¢÷à¨â¨, é® ®¡¥à­¥­÷ ¥«¥¬¥­â¨ ¢ Z5∗ ¬ îâì â ª¨© ¢¨£«ï¤:

(1)−1

= 1, (2)−1

= 3, (3)−1

= 2, (4)−1

= 4.

6.5. �®­ïââï ¯÷¤£à㯨. �à¨â¥à÷© ¯÷¤£à㯨�¥å © 〈G, ∗〉 { ¤®¢÷«ì­  £à㯠.�§­ ç¥­­ï 6.15. �÷¤£àã¯®î £à㯨 〈G, ∗〉 ­ §¨¢ îâì ¯÷¤¬­®¦¨­ã

H ⊂ G, 猪 õ £àã¯®î §  â÷õî á ¬®î ®¯¥à æ÷õî, é® ÷ £à㯠 〈G, ∗〉 (⮡â®áâàãªâãà  〈H, ∗〉 õ £à㯮î).

� ã¢ ¦¥­­ï 6.14. 1. �®«¨ ஧£«ï¤ îâì £àã¯ã 〈G, ∗〉, á«÷¤ ¢ª § â¨ ­¥â÷«ìª¨ ¬­®¦¨­ã G,  «¥ © ®¯¥à æ÷î «∗»; ª®«¨ ¦ ¡¥àãâì ¤® ஧£«ï¤ã ¯÷¤-£àã¯ã H ⊂ G, ¬®¦­  ­¥ ¢ª §ã¢ â¨ ®¯¥à æ÷î «∗», 猪, §  ®§­ ç¥­­ï¬¯÷¤£à㯨, ¬ õ §¡÷£ â¨áï § ®¯¥à æ÷õî £à㯨 〈G, ∗〉.

2. � ®§­ ç¥­­÷ ¯÷¤£ã¯¨ ­¥ ¢¨¬ £ õâìáï, 鮡 ­¥©âà «ì­¨© ¥«¥¬¥­â e1

¯÷¤£à㯨 H §¡÷£ ¢áï § ­¥©âà «ì­¨¬ ¥«¥¬¥­â®¬ e £à㯨 G, ®áª÷«ìª¨ 楩

138

Page 141: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.5. �®­ïââï ¯÷¤£à㯨. �à¨â¥à÷© ¯÷¤£à㯨

䠪⠫¥£ª® ¢¨¯«¨¢ õ § ¢« á⨢®á⥩ £à㯨. �÷©á­®, § ä÷ªá㢠¢è¨ ¤®¢÷«ì-­¨© ¥«¥¬¥­â h ∈ H, §  ¤®¬®¬®£®î ¯à ¢¨«  ᪮à®ç¥­­ï (6.1) ®âਬãõ¬®

(h = e ∗ h = e1 ∗ h) ⇒ (e = e1).

�ਪ« ¤ 6.32. 1. �­®¦¨­  Z õ ¯÷¤£àã¯®î £à㯨 〈Q, +〉.2. �­®¦¨­  Q õ ¯÷¤£àã¯®î £à㯨 〈R, +〉.3. �­®¦¨­  R õ ¯÷¤£àã¯®î £à㯨 〈C, +〉.4. �­®¦¨­  (0, +∞) õ ¯÷¤£àã¯®î £à㯨 〈R∗, ·〉.5. �­®¦¨­  {−1, 1} õ ¯÷¤£àã¯®î £à㯨 〈R∗, ·〉.6. �­®¦¨­  ­¥¢¨à®¤¦¥­¨å ­¨¦­÷å âਪãâ­¨å ¬ âà¨æì

{(a1,1 0a2,1 a2,2

): a1,1, a2,1, a2,2 ∈ R, a1,1a2,2 6= 0

}

õ ¯÷¤£àã¯®î ¬ã«ì⨯«÷ª â¨¢­®ù £à㯨 ¬ âà¨æì GL2.7. �­®¦¨­  ¬ âà¨æì § ®¤¨­¨ç­¨¬ ¢¨§­ ç­¨ª®¬

SLn = {A ∈ GLn : |A| = 1}õ ¯÷¤£àã¯®î ¬ã«ì⨯«÷ª â¨¢­®ù £à㯨 ¬ âà¨æì GLn. �¥© 䠪⠭¥£ ©­®¢¨¯«¨¢ õ § ä®à¬ã«¨, ¢÷¤®¬®ù § ªãàáã «÷­÷©­®ù  «£¥¡à¨ (­ ¯à¨ª« ¤, [10]):

|AB| = |A| · |B|, (6.6)¤¥ A, B ∈ Mn×n.

�¯à ¢  6.11. �¥å © H1, H2 { ¯÷¤£à㯨 £à㯨 〈G, ∗〉. �®¢¥áâ¨, é® ¯¥-à¥â¨­ H1∩H2 â ª®¦ õ ¯÷¤£àã¯®î £à㯨 〈G, ∗〉. �§ £ «ì­¨â¨ æ¥ â¢¥à¤¦¥­-­ï ­  ¤®¢÷«ì­ã (¬®¦«¨¢ã ­¥áª÷­ç¥­­ã) ª÷«ìª÷áâì ¯÷¤£à㯠£à㯨 〈G, ∗〉.

�  ¯à ªâ¨æ÷ ¤«ï ¯¥à¥¢÷ન, ç¨ õ ­¥¯®à®¦­ï ¯÷¤¬­®¦¨­  £à㯨 ¯÷¤-£à㯮î, §àãç­® ª®à¨áâ㢠â¨áï â ª®î ⥮६®î.

�¥®à¥¬  6.7 (ªà¨â¥à÷© ¯÷¤£à㯨). �¥å © ∅ 6= H ⊂ G, ⮡⮠H {­¥¯®à®¦­ï ¯÷¤¬­®¦¨­  £à㯨 〈G, ∗〉.

�«ï ⮣®, 鮡 ¯÷¤¬­®¦¨­  H ¡ã«  ¯÷¤£àã¯®î £à㯨 〈G, ∗〉, ­¥®¡å÷¤­®÷ ¤®áâ â­ì® ¢¨ª®­ ­­ï ¤¢®å 㬮¢:(a, b ∈H) ⇒(a ∗ b ∈H) (§ ¬ª­¥­÷áâì H ¢÷¤­®á­® ®¯¥à æ÷ù «∗»); (6.7)(a∈H) ⇒(a−1∈H) (§ ¬ª­¥­÷áâì H ¢÷¤­®á­® ¢§ïââï ®¡¥à­¥­®£®). (6.8)

139

Page 142: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�®¢¥¤¥­­ï. �¥®¡å÷¤­÷áâì ®ç¥¢¨¤­ , ®áª÷«ìª¨ 㬮¢¨ § ¬ª­¥­®áâ÷ ¬­®-¦¨­¨ H ¢÷¤­®á­® ¡÷­ à­®ù £à㯮¢®ù ®¯¥à æ÷ù,   â ª®¦ ÷á­ã¢ ­­ï ®¡¥à-­¥­¨å a−1 ∈ H ¤«ï ª®¦­®£® a ∈ H, ­¥£ ©­® ¢¨¯«¨¢ îâì § ¢¨§­ ç¥­­ï£à㯨.

�«ï ¤®¢¥¤¥­­ï ¤®áâ â­®áâ÷ § ã¢ ¦¨¬®:• § ¬ª­¥­÷áâì áâàãªâãਠ〈H, ∗〉 ¢÷¤­®á­® ®¯¥à æ÷ù «∗» õ 㬮¢®î (6.7);•  á®æ÷ â¨¢­÷áâì áâàãªâãਠ〈H, ∗〉 ¢¨¯«¨¢ õ §  á®æ÷ â¨¢­®áâ÷ ®¯¥à -

æ÷ù «∗» ­  ¢á÷© ¬­®¦¨­÷ G (  ®â¦¥, ÷ ­  ¯÷¤¬­®¦¨­÷ H ⊂ G);• § ¬ª­¥­÷áâì áâàãªâãਠH ¢÷¤­®á­® ®¯¥à æ÷ù ¢§ïââï ®¡¥à­¥­®£® õ

㬮¢®î (6.8).�⦥, âॡ  «¨è¥ ¤®¢¥áâ¨, é® áâàãªâãà  〈H, ∗〉 ¬÷áâ¨âì ­¥©âà «ì­¨©

¥«¥¬¥­â e ∈ G ¢¨å÷¤­®ù £à㯨 〈G, ∗〉.� ä÷ªáãõ¬® ¤®¢÷«ì­¨© ¥«¥¬¥­â a ∈ H (æ¥ ¬®¦­  §à®¡¨â¨, ®áª÷«ìª¨

H 6= ∅). �®¤÷, ïª ­ á«÷¤®ª 㬮¢ (6.7), (6.8), ®âਬãõ¬®

(a ∈ H) ⇒ (a−1 ∈ H) ⇒ (e = a ∗ a−1 ∈ H).

�¢¥à¤¦¥­­ï ⥮६¨ ¯®¢­÷áâî ¤®¢¥¤¥­®.

� á«÷¤®ª. �¬®¢¨ (6.7) â  (6.8) ¢ ⥮६÷ 6.7 ¬®¦­  § ¬÷­¨â¨ ®¤-­÷õî 㬮¢®î:

(a, b ∈ H) ⇒ (a ∗ b−1 ∈ H). (6.9)

�®¢¥¤¥­­ï. �÷©á­®, § ä÷ªá㢠¢è¨ a ∈ H, ®âਬãõ¬®

e = a ∗ a−1 ∈ H.

� «÷ ¤«ï ¤®¢÷«ì­®£® b ∈ H ®¤¥à¦¨¬®

b−1 = e ∗ b−1 ∈ H.

� à¥èâ÷, ¤«ï ¤®¢÷«ì­¨å a, b ∈ H ¤÷áâ ­¥¬®

a ∗ b = a ∗ (b−1)−1 ∈ H.

�⦥, ¤®¢¥¤¥­® ¢¨ª®­ ­­ï 㬮¢ (6.7) â  (6.8) ®á­®¢­®ù ⥮६¨.

140

Page 143: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.6. �®¬®¬®àä÷§¬¨ £àã¯: ®á­®¢­÷ ¢¨§­ ç¥­­ï â  â¥®à¥¬¨

�ਪ« ¤ 6.33. �¥å © An { ¬­®¦¨­  ¯ à­¨å ¯÷¤áâ ­®¢®ª ­  ¬­®-¦¨­÷ A = {1, 2, . . . , n}. �­®¦¨­  An õ ¯÷¤£à㯮î ᨬ¥âà¨ç­®ù £à㯨 Sn,®áª÷«ìª¨ ¤«ï ¤®¢÷«ì­¨å ¯ à­¨å c1,c2 ∈ Sn ®âਬ ­® ¯ à­÷áâì ¯÷¤áâ ­®¢-ª¨ c−1

2 ,   ¯®â÷¬ ÷ ¯ à­÷áâì c1 ∗ c−12 (¤¨¢. १ã«ìâ â ¢¯à ¢¨ 6.9). �àã¯ã

〈An, ◦〉 ­ §¨¢ îâì §­ ª®§¬÷­­®î £à㯮î á⥯¥­ï n.

�祢¨¤­®, é® ¡ã¤ì-猪 £à㯠 〈G, ∗〉 § ¢¦¤¨ ¬÷áâ¨âì ¯à¨­ ©¬­÷ ¤¢÷¯÷¤£à㯨: ¬­®¦¨­ã {e} (e { ­¥©âà «ì­¨© ¥«¥¬¥­â ã £àã¯÷ 〈G, ∗〉) â  á -¬ã ¬­®¦¨­ã G. �÷ ¯÷¤£à㯨 ­ §¨¢ îâì âਢ÷ «ì­¨¬¨; ¯÷¤£àã¯ã, é® ­¥õ âਢ÷ «ì­®î, ­ §¨¢ îâì ¢« á­®î. �÷¤£àã¯ã {e} ç áâ® ­ §¨¢ îâì ®¤¨-­¨ç­®î, ¯÷¤£àã¯ã H = G ¡ã¤¥¬® ­ §¨¢ â¨ ¯®¢­®î. � ã¢ ¦¨¬®, é® ã¢¨¯ ¤ªã ®¤­®¥«¥¬¥­â­®ù £à㯨 G = {e} âਢ÷ «ì­÷ ¯÷¤£à㯨 §¡÷£ îâìáï.

6.6. �®¬®¬®àä÷§¬¨ £àã¯: ®á­®¢­÷ ¢¨§­ ç¥­­ïâ  â¥®à¥¬¨

� æ쮬㠯÷¤à®§¤÷«÷ ¯à æ⨬¥¬® § ¤¢®¬  £à㯠¬¨: 〈G1, ∗〉 â  〈G2,~〉§ ­¥©âà «ì­¨¬¨ ¥«¥¬¥­â ¬¨ e1 ∈ G1 â  e2 ∈ G2.

�§­ ç¥­­ï 6.16. �÷¤®¡à ¦¥­­ï f : G1 → G2 ­ §¨¢ îâì £®¬®¬®à-ä÷§¬®¬,  ¡® £®¬®¬®àä­¨¬ ¢÷¤®¡à ¦¥­­ï¬, £à㯨 〈G1, ∗〉 ¢ £àã¯ã 〈G2,~〉,ïªé®

f(a ∗ b) = f(a) ~ f(b) ¤«ï ¤®¢÷«ì­¨å a, b ∈ G1.

ö­'õªâ¨¢­¨© £®¬®¬®àä÷§¬ ­ §¨¢ îâì ¬®­®¬®àä÷§¬®¬, áîà'õªâ¨¢­¨©£®¬®¬®àä÷§¬ { ¥¯÷¬®àä÷§¬®¬, ¡÷õªâ¨¢­¨© £®¬®¬®àä÷§¬ { ÷§®¬®àä÷§¬®¬.�ªé® f : G1 → G2 { ÷§®¬®àä÷§¬, â® £à㯨 〈G1, ∗〉 ÷ 〈G2,~〉 ­ §¨¢ îâì÷§®¬®àä­¨¬¨. �«ï ä ªâã ÷§®¬®àä­®áâ÷ £à㯠〈G1, ∗〉 â  〈G2,~〉 ¢¦¨¢ îâ쯮§­ ç¥­­ï

〈G1, ∗〉 ∼ 〈G2,~〉 .

� ã¢ ¦¥­­ï 6.15. ö§ ®§­ ç¥­­ï ¡÷õªâ¨¢­®áâ÷ ¢¨¯«¨¢ õ, é® f õ ÷§®¬®à-ä÷§¬®¬ ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ f õ ®¤­®ç á­® ¬®­®- â  ¥¯÷¬®àä÷§¬®¬.

�ਪ« ¤ 6.34. 1. �÷¤®¡à ¦¥­­ï

f : R→ R∗, f(a) = 2a

141

Page 144: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

õ ¬®­®¬®àä÷§¬®¬ § £à㯨 〈R, +〉 ¢ £àã¯ã 〈R∗, ·〉. �à®â¥ f ­¥ õ ¥¯÷¬®àä÷§-¬®¬,   ®â¦¥, ­¥ õ ÷§®¬®àä÷§¬®¬.

2. �÷¤®¡à ¦¥­­ï

f : R→ (0, +∞), f(a) = 2a

õ ÷§®¬®àä÷§¬®¬ § £à㯨 〈R, +〉 ¢ £àã¯ã 〈(0, +∞), ·〉.3. �÷¤®¡à ¦¥­­ï

f : R→ {z ∈ C : z 6= 0}, f(a) = ei·a

õ £®¬®¬®àä÷§¬®¬ § £à㯨 〈R, +〉 ¢ £àã¯ã 〈C∗, ·〉, ¤¥ C∗ = C \ {0}. �à®â¥f ­¥ õ ¬®­®-  ¡® ¥¯÷¬®àä÷§¬®¬. � æ쮬㠯ਪ« ¤÷ ª®­áâ ­â  e ¯®§­ ç õ®á­®¢ã ­ âãà «ì­®£® «®£ à¨ä¬ ,   ç¨á«® i { ª®¬¯«¥ªá­ã ®¤¨­¨æî.

� £®¬®¬®àä÷§¬®¬ £à㯠¯®¢'易­® ¡ £ â® æ÷ª ¢¨å ÷ ¢ ¦«¨¢¨å ¢« áâ¨-¢®á⥩. � æ쮬㠯÷¤à®§¤÷«÷ ¡ã¤¥ ஧£«ï­ãâ® ¤¢÷ ¢« á⨢®áâ÷ £®¬®¬®àä-­®£® ¢÷¤®¡à ¦¥­­ï £àã¯; ¤¥ïª÷ ÷­è÷ ¢« á⨢®áâ÷ ¡ã¤ãâì ஧£«ï­ãâ÷ ã¯÷¤à®§¤. 6.13.

�¥®à¥¬  6.8. �¥å © f : G1 → G2 { £®¬®¬®àä÷§¬ £à㯨 〈G1, ∗〉 ¢ £àã¯ã〈G2,~〉. �®¤÷:

1) f(e1) = e2 (£®¬®¬®àä÷§¬ £à㯠§¡¥à÷£ õ ­¥©âà «ì­¨© ¥«¥¬¥­â£à㯨);

2) ∀ a ∈ G1 : f(a−1) = (f(a))−1 (£®¬®¬®àä÷§¬ £à㯠§¡¥à÷£ õ ®¯¥à æ÷ïââï ®¡¥à­¥­®£® ¥«¥¬¥­â ).

�®¢¥¤¥­­ï. 1. �  ®§­ ç¥­­ï¬ ­¥©âà «ì­®£® ¥«¥¬¥­â 

f(e1) = f(e1 ∗ e1) = f(e1) ~ f(e1).

�¥¯¥à §  ¯à ¢¨«®¬ «÷¢®£® ᪮à®ç¥­­ï (6.2) ®âਬãõ¬®

(f(e1) ~ f(e1) = f(e1)) ⇒⇒ (f(e1) ~ f(e1) = f(e1) ~ e2) ⇒ (f(e1) = e2) .

2. �¥å © a ∈ G1. �  ®§­ ç¥­­ï¬ £®¬®¬®àä­®áâ÷ ¢÷¤®¡à ¦¥­­ï ®âà¨-¬ãõ¬®

f(a−1) ~ f(a) = f(a−1 ∗ a) = f(e1) = e2,

§¢÷¤ª¨ f(a−1) = (f(a))−1.

142

Page 145: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.7. �¨ª«÷ç­÷ £à㯨

�®¬®¬®àä÷§¬ ÷§ £à㯨 〈G, ∗〉 ¢ 〈G, ∗〉 (⮡⮠§ £à㯨 ¢ ᥡ¥) ­ §¨¢ îâ쥭¤®¬®àä÷§¬®¬ £à㯨 〈G, ∗〉. �­®¦¨­ã ¢á÷å ¥­¤®¬®àä÷§¬÷¢ £à㯨 〈G, ∗〉¯®§­ ç îâì ç¥à¥§ End〈G,∗〉  ¡® ¯à®áâ® ç¥à¥§ EndG.

�¯à ¢  6.12. �®¢¥áâ¨, é® 〈EndG, ◦〉 õ ¬®­®ù¤®¬.

6.7. �¨ª«÷ç­÷ £à㯨�¥å © 〈G, ∗〉 { ¤®¢÷«ì­  £à㯠 § ­¥©âà «ì­¨¬ ¥«¥¬¥­â®¬ e ∈ G.� ä÷ªáãõ¬® ¤¥ïª¨© ¥«¥¬¥­â a ∈ G ÷ ஧£«ï­¥¬® ¬­®¦¨­ã ¢á÷å æ÷«¨å

á⥯¥­÷¢ ¥«¥¬¥­â  a:

[a] = {an : n ∈ Z} = {. . . , a−n, . . . , a−2, a−1, e, a, a2, . . . , an, . . . }.

�¯à ¢  6.13. �®¢¥áâ¨, é® ¬­®¦¨­  [a] õ ¯÷¤£àã¯®î £à㯨 〈G, ∗〉.�ª §÷¢ª . �ª®à¨áâ â¨áï ªà¨â¥à÷õ¬ ¯÷¤£à㯨 (⥮६  6.7) â  ¢« áâ¨-

¢®áâﬨ á⥯¥­ï ¥«¥¬¥­â  £à㯨 (¯÷¤à®§¤. 6.2, § ãà å㢠­­ï¬ § ã¢. 6.7).

�÷¤£àã¯ã [a] ⊂ G ­ §¨¢ îâì 横«÷ç­®î ¯÷¤£à㯮î, ¯®à®¤¦¥­®î ¥«¥-¬¥­â®¬ a ∈ G. �«¥¬¥­â a ∈ G ­ §¨¢ îâì â¢÷à­®î ¯÷¤£à㯨 [a] ⊂ G.

�â®á®¢­® ¬­®¦¨­¨ æ÷«¨å á⥯¥­÷¢ ¥«¥¬¥­â  a ∈ G ஧£«ï­¥¬® ¤¢ ¢ ¦«¨¢÷ ¢¨¯ ¤ª¨: ÷á­ãõ ç¨ ­¥ ÷á­ãõ ¯®ª §­¨ª n > 0, â ª¨©, é® an = e.

1. öá­ãõ ¯®ª §­¨ª n > 0, â ª¨©, é® an = e.�¨¡¥à¥¬® ­ ©¬¥­è¨© ¤®¤ â­¨© ­®¬¥à n, ¤«ï 类£® an = e:

n = min{k ∈ N : ak = e}. (6.10)

�¨á«® n ∈ N, ¢¨§­ ç¥­¥ ä®à¬ã«®î (6.10), ­ §¨¢ îâì ¯®à浪®¬ ¥«¥-¬¥­â  a ∈ G â  ¯®§­ ç îâì ç¥à¥§ |a|: n = |a|.

�¯à ¢  6.14. �®¢¥áâ¨, é® õ¤¨­¨¬ ¥«¥¬¥­â®¬ ¯®à浪ã 1 õ ­¥©âà «ì-­¨© ¥«¥¬¥­â: (|a| = 1) ⇔ (a = e).

�¯à ¢  6.15. �®¢¥á⨠à÷¢­÷áâì: ak mod n = ak.�ª §÷¢ª . �ª®à¨áâ â¨áì 㬮¢ ¬¨ (6.3) ÷ (6.4), é® ¢¨§­ ç îâì k mod n.

�¥¬  6.6. ak1 6= ak2, ïªé® 0 ≤ k1 < k2 ≤ n− 1.

143

Page 146: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�®¢¥¤¥­­ï. �¥å © 0 ≤ k1 < k2 ≤ n−1. �ਯãáâ÷¬®, é® ak1 = ak2 . �®¤÷®âਬãõ¬®

ak2−k1 = ak2 ∗ (ak1

)−1= e,

é® á㯥à¥ç¨âì 㬮¢÷ (6.10), ®áª÷«ìª¨ 0 < k2 − k1 < n.

�à å®¢ãîç¨ à¥§ã«ìâ â «¥¬¨ 6.6 â  à÷¢­÷áâì ak mod n = ak, ®âਬãõ¬®ï¢­¨© ¢¨£«ï¤ 横«÷ç­®ù ¯÷¤£à㯨, ¯®à®¤¦¥­®ù ¥«¥¬¥­â®¬ a ∈ G:

[a] = {ak : 0 ≤ k ≤ n− 1} = {e, a, a2, . . . , an−1}.�⦥, ¯÷¤£à㯠 [a] ¬÷áâ¨âì à÷¢­® n à÷§­¨å ¥«¥¬¥­â÷¢; á⥯¥­÷ § ¯®-

ª §­¨ª ¬¨ k ≥ n  ¡® k < 0 §¡÷£ â¨¬ãâìáï § ®¤­¨¬ §÷ á⥯¥­÷¢ ak

(0 ≤ k ≤ n− 1):

an = a0 = e, an+1 = a1 = a, a−1 = an−1, . . .

(ã § £ «ì­®¬ã ¢¨¯ ¤ªã, ïª ¢¦¥ § §­ ç «®áì, ak = ak mod n).�¥®à¥¬  6.9. �¥å © a ∈ G { ¥«¥¬¥­â ¯®à浪ã |a| = n. �®¤÷ £à㯠

〈[a], ∗〉 ÷§®¬®àä­   ¤¨â¨¢­÷© £àã¯÷ Zn:

〈[a], ∗〉 ∼ 〈Zn, +〉 .�®¢¥¤¥­­ï. �㪠­¨© ÷§®¬®àä÷§¬ f : [a] → Zn ¢áâ ­®¢«îõâìáï á¯÷¢-

¢÷¤­®è¥­­ï¬f(ak) = k ∈ Zn, 0 ≤ k ≤ n− 1.

�¯à ¢  6.16. �®¢¥áâ¨, é® ¢¢¥¤¥­¥ ¢÷¤®¡à ¦¥­­ï f : [a] → Zn { ÷§®-¬®àä÷§¬ £à㯠〈[a], ∗〉 â  Zn.

�ª §÷¢ª . �®¬®¬®àä­ã ¢« á⨢÷áâì ÷ áîà'õªâ¨¢­÷áâì f «¥£ª® ¢¨¢¥á⨧ ¢¨§­ ç¥­­ï ¢÷¤®¡à ¦¥­­ï f ; ÷­'õªâ¨¢­÷áâì f ¢¨¯«¨¢ õ § «¥¬¨ 6.6.

2. �¥ ÷á­ãõ ¯®ª §­¨ª  n > 0, â ª®£®, é® an = e. � æ쮬㠢¨¯ ¤ªã£®¢®àïâì, é® ¥«¥¬¥­â a ∈ G ¬ õ ­¥áª÷­ç¥­­¨© ¯®à冷ª : |a| = ∞.

�¥¬  6.7. ak1 6= ak2, ïªé® k1 6= k2.�®¢¥¤¥­­ï. �ਯãáâ÷¬®, é® ak1 = ak2 ¯à¨ k1 6= k2. �¥§ ¢âà â¨ § £ «ì-

­®áâ÷ ¢¢ ¦ â¨¬¥¬®, é® k1 < k2. �®¤÷ ®âਬãõ¬®

ak2−k1 = ak2 ∗ (ak1

)−1= e,

é® á㯥à¥ç¨âì 㬮¢÷ |a| = ∞, ®áª÷«ìª¨ k2 − k1 > 0.

144

Page 147: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.7. �¨ª«÷ç­÷ £à㯨

�à å®¢ãîç¨ à¥§ã«ìâ â «¥¬¨ 6.7, ®âਬãõ¬® ¨© ¢¨£«ï¤ 横«÷ç­®ù¯÷¤£à㯨, ¯®à®¤¦¥­®ù ¥«¥¬¥­â®¬ a ∈ G:

[a] = {ak : k ∈ Z} = {. . . , a−n, . . . , a−2, a−1, e, a, a2, . . . , an, . . . }.

�⦥, ¯÷¤£à㯠 [a] ¬÷áâ¨âì ­¥áª÷­ç¥­­ã (§«÷祭­ã) ª÷«ìª÷áâì à÷§­¨å¥«¥¬¥­â÷¢.

�¥®à¥¬  6.10. �¥å © a ∈ G { ¥«¥¬¥­â ­¥áª÷­ç¥­­®£® ¯®à浪ã(|a| = ∞). �®¤÷ £à㯠 〈[a], ∗〉 ÷§®¬®àä­   ¤¨â¨¢­÷© £àã¯÷ Z:

〈[a], ∗〉 ∼ 〈Z, +〉 .

�®¢¥¤¥­­ï. �㪠­¨© ÷§®¬®àä÷§¬ f : [a] → Z ¢áâ ­®¢«îõâìáï á¯÷¢¢÷¤-­®è¥­­ï¬

f(ak) = k, k ∈ Z.

�¯à ¢  6.17. �®¢¥áâ¨, é® ¢¢¥¤¥­¥ ¢÷¤®¡à ¦¥­­ï f : [a] → Z õ ÷§®-¬®àä÷§¬®¬ £à㯠〈[a], ∗〉 â  〈Z, +〉.

�ª §÷¢ª . �®¬®¬®àä­ã ¢« á⨢÷áâì ÷ áîà'õªâ¨¢­÷áâì f «¥£ª® ¢¨¢¥á⨧ ¢¨§­ ç¥­­ï ¢÷¤®¡à ¦¥­­ï f ; ÷­'õªâ¨¢­÷áâì f ¢¨¯«¨¢ õ § «¥¬¨ 6.7.

�⦥, ãá÷ 横«÷ç­÷ ¯÷¤£à㯨 ¯÷¤¤ îâìáï ¯®¢­®¬ã ®¯¨áã (§ â®ç­÷áâ ÷§®¬®àä÷§¬ã), é® ¢áâ ­®¢«¥­® ⥮६ ¬¨ 6.9 â  6.10. �âਬ ­¨© à¥-§ã«ìâ â áä®à¬ã«îõ¬® ã ¢¨£«ï¤÷ ⥮६¨.

�¥®à¥¬  6.11. �¥å © 〈G, ∗〉 { ¤®¢÷«ì­  £à㯠. �®¤÷ 横«÷ç­  ¯÷¤£àã-¯  [a], ¯®à®¤¦¥­  ¥«¥¬¥­â®¬ a ∈ G, ÷§®¬®àä­   ¤¨â¨¢­÷© £àã¯÷ Z ¯à¨|a| = ∞  ¡®  ¤¨â¨¢­÷© £àã¯÷ ª« á÷¢ «¨èª÷¢ Zn ¯à¨ |a| = n:

1) [a] ∼ 〈Zn, +〉, ïªé® |a| = n < ∞;2) [a] ∼ 〈Z, +〉, ïªé® |a| = ∞.

�àã¯ã, 猪 §¡÷£ õâìáï § ®¤­÷õî §÷ ᢮ùå 横«÷ç­¨å ¯÷¤£àã¯, ⮡â®G = [a] ¤«ï ¤¥ïª®£® a ∈ G, ­ §¨¢ îâì 横«÷ç­®î. �«¥¬¥­â a ∈ G, 鮯®à®¤¦ãõ £àã¯ã 〈G, ∗〉, õ â¢÷à­®î £à㯨 [a] = G.

� ã¢ ¦¥­­ï 6.16. �¥®à¥¬  6.11 ¢áâ ­®¢«îõ (§ â®ç­÷áâî ¤® ÷§®¬®àä÷§-¬ã) ¯®¢­¨© ®¯¨á 横«÷ç­¨å £àã¯, ®áª÷«ìª¨ 横«÷ç­ã £àã¯ã ¬®¦­  ¢¢ -¦ â¨ ®ªà¥¬¨¬ ¢¨¯ ¤ª®¬ 横«÷ç­®ù ¯÷¤£à㯨.

145

Page 148: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�ਪ« ¤ 6.35. 1. �¤¨â¨¢­  £à㯠 Zn (n ∈ N) { ®¤¨­ § ­ ©¢ ¦«¨-¢÷è¨å ¯à¨ª« ¤÷¢ áª÷­ç¥­­®ù 横«÷ç­®ù ¯÷¤£à㯨. �¥£ª® ¯¥à¥¢÷à¨â¨, é®â¢÷à­¨¬¨ 横«÷ç­®ù £à㯨 Zn ¤«ï ¡ã¤ì-类£® n ≥ 2 ¬®¦ãâì ¡ãâ¨, §®ªà¥-¬ , ¥«¥¬¥­â¨ 1 â  − 1 = n− 1:

[1] = [n− 1] = Zn, n ≥ 2

(ã ¢¨¯ ¤ªã n = 2 ª« á¨ 1 â  − 1 §¡÷£ îâìáï; ¢¨¯ ¤®ª n = 1 õ ª®à¥ªâ­¨¬, «¥ ­¥æ÷ª ¢¨¬). � §­ ç¨¬®, é® ¤«ï ¤¥ïª¨å n ∈ N (§®ªà¥¬ , ïªé® n = 5)÷á­ãîâì ÷­è÷ â¢÷à­÷ 横«÷ç­®ù £à㯨 Zn. �®§£«ï­¥¬® 横«÷ç­÷ ¯÷¤£à㯨£à㯨 Zn ¤«ï n = 3, 4, 5, 6:

1) n = 3. Z3 = [1] = [2];2) n = 4. Z4 = [1] = [3]; [2] = {2, 0};3) n = 5. Z5 = [1] = [2] = [3] = [4];4) n = 6. Z6 = [1] = [5]; [2] = {2, 4, 0}; [3] = {3, 0}.�«¥¬¥­â 0 ®ªà¥¬® ­¥ ஧£«ï¤ ¢áï, ®áª÷«ìª¨ §  ¢á÷å n ∈ N ¢÷­ õ

â¢÷à­®î âਢ÷ «ì­®ù (®¤¨­¨ç­®ù) 横«÷ç­®ù ¯÷¤£à㯨, ⮡⮠[0] = {0}(¤¨¢. ¢¯à ¢ã 6.14).

2. �¤¨â¨¢­  £à㯠 Z õ ®á­®¢­¨¬ ¯à¨ª« ¤®¬ ­¥áª÷­ç¥­­®ù 横«÷ç­®ù£à㯨. �¨ª«÷ç­  £à㯠 〈Z, +〉 ¤®¯ã᪠õ ¤¢÷ â¢÷à­÷:

Z = [1] = [−1].

�®§£«ï­¥¬® ÷­è÷ 横«÷ç­÷ ¯÷¤£à㯨 £à㯨 〈Z, +〉. �«ï ¤®¢÷«ì­®£®k ≥ 2 ®âਬãõ¬®

[k] = [−k] = {k ·m : m ∈ Z} = {0, k,−k, 2k,−2k, . . . } = kZ.

� ã¢ ¦¨¬®, é® ¯®§­ ç¥­­ï kZ (k ∈ Z) õ § £ «ì­®¯à¨©­ï⨬ ¤«ï ¬­®-¦¨­¨ {k · m : m ∈ Z} (§®ªà¥¬ , 2Z õ ¬­®¦¨­®î ¯ à­¨å æ÷«¨å ç¨á¥«).� à¥èâ÷, § §­ ç¨¬®, é® ¢¨¯ ¤®ª [0] = {0} õ âਢ÷ «ì­¨¬ ¢¨¯ ¤ª®¬ ®¤¨-­¨ç­®ù ¯÷¤£à㯨.

3. �®§£«ï­¥¬® 横«÷ç­÷ ¯÷¤£à㯨 ᨬ¥âà¨ç­®ù £à㯨 S3 (¤«ï ¯÷¤áâ -­®¢®ª £à㯨 S3 ¢¨ª®à¨áâ õ¬® ¯®§­ ç¥­­ï § ¯à¨ª«. 6.14):

[c1] = {c1, e}, [c2] = {c2, e}, [c3] = {c3, e},[f1] = [f2] = {f1,f2, e}, [e] = {e}.

146

Page 149: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.8. �ã¬÷¦­÷ ª« á¨

�⦥, £à㯠 S3 { ­¥ 横«÷ç­ , ®áª÷«ìª¨ ­¥ ¤®à÷¢­îõ ¦®¤­÷© §÷ ᢮ùå横«÷ç­¨å ¯÷¤£à㯠(¢â÷¬ £à㯠 S3 ­¥ ¬®£«  ¡ã⨠横«÷ç­®î, ®áª÷«ìª¨¢®­  ­¥ õ ª®¬ãâ â¨¢­®î,   ®â¦¥, ­¥ ÷§®¬®àä­  ¦®¤­÷© § ª®¬ãâ â¨¢­¨å£à㯠Zn  ¡® Z).

6.8. �ã¬÷¦­÷ ª« á¨�¥å © H ⊂ G { ¯÷¤£à㯠 £à㯨 〈G, ∗〉. �«ï ä÷ªá®¢ ­®£® ¥«¥¬¥­â 

g ∈ G ¢¢¥¤¥¬® ¯®§­ ç¥­­ï:

g ∗H = {g ∗ h : h ∈ H};H ∗ g = {h ∗ g : h ∈ H}.

�­®¦¨­ã g ∗ H ­ §¨¢ îâì «÷¢¨¬ áã¬÷¦­¨¬ ª« á®¬ £à㯨 〈G, ∗〉 § ¯÷¤£à㯮î H, é® ¯®à®¤¦¥­¨© ¥«¥¬¥­â®¬ g. �­®¦¨­ã H ∗ g ­ §¨¢ îâì¯à ¢¨¬ áã¬÷¦­¨¬ ª« á®¬ £à㯨 〈G, ∗〉 §  ¯÷¤£à㯮î H, é® ¯®à®¤¦¥­¨©¥«¥¬¥­â®¬ g.

�ਪ« ¤ 6.36. � ¬  ¯÷¤£à㯠 H õ áã¬÷¦­¨¬ ª« á®¬ (ïª ¯à ¢¨¬,â ª ÷ «÷¢¨¬), ¯®à®¤¦¥­¨¬ ­¥©âà «ì­¨¬ ¥«¥¬¥­â®¬ e ∈ G:

e ∗H = {e ∗ h : h ∈ H} = {h : h ∈ H} = H;

H ∗ e = {h ∗ e : h ∈ H} = {h : h ∈ H} = H.

�ਪ« ¤ 6.37. �®§£«ï­¥¬® áã¬÷¦­÷ ª« á¨ §  âਢ÷ «ì­¨¬¨ ¯÷¤£àã-¯ ¬¨.

�«ï ®¤¨­¨ç­®ù ¯÷¤£à㯨 H = {e} ®âਬãõ¬®

a ∗ {e} = {e} ∗ a = {a} ¤«ï ¤®¢÷«ì­®£® a ∈ G,

⮡⮠÷ ¯à ¢÷, ÷ «÷¢÷ áã¬÷¦­÷ ª« á¨ ¢÷¤­®á­® ®¤¨­¨ç­®ù ¯÷¤£à㯨 §¡÷£ îâìáï÷ ¤®à÷¢­îîâì ®¤­®¥«¥¬¥­â­÷© ¬­®¦¨­÷ {a}, é® ¬÷áâ¨âì ¯®à®¤¦ã¢ «ì­¨©¥«¥¬¥­â a ∈ G.

� ¢¨¯ ¤ªã ¯®¢­®ù ¯÷¤£à㯨 H = G ®âਬãõ¬®

a ∗G = G ∗ a = G ¤«ï ¤®¢÷«ì­®£® a ∈ G,

147

Page 150: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

®áª÷«ìª¨ ¡ã¤ì-直© x ∈ G ¬®¦­  §®¡à §¨â¨ ïª ¥«¥¬¥­â áã¬÷¦­®£® ª« áã(ïª ¯à ¢®£®, â ª ÷ «÷¢®£®):

x = a ∗ (a−1 ∗ x

) ∈ a ∗G, x =(x ∗ a−1

) ∗ a ∈ G ∗ a.

�⦥, ÷á­ãõ «¨è¥ ®¤¨­ ¯à ¢¨© (¢÷­ ¦¥ «÷¢¨©) áã¬÷¦­¨© ª« á ¢÷¤­®á­®¯®¢­®ù ¯÷¤£à㯨 H = G { æ¥ á ¬  £à㯠 G.

� ã¢ ¦¥­­ï 6.17. �÷¢­÷áâì a ∗G = G ∗ a = G ®¤à §ã ¢¨¯«¨¢ õ â ª®¦÷ § ­ áâ㯭®ù ⥮६¨ 6.12.

� ª®¬ãâ â¨¢­¨å £à㯠å, ®ç¥¢¨¤­®, ¯à ¢¨© ÷ «÷¢¨© áã¬÷¦­÷ ª« á¨ §¡÷-£ îâìáï: a∗H = H ∗a ¤«ï ¢á÷å a ∈ G. � ­¥ª®¬ãâ â¨¢­¨å £àã¯ å ¬®¦«¨¢®a ∗H 6= H ∗ a (¤¨¢. ¯à¨ª«. 6.38).

�¥®à¥¬  6.12. �÷¢÷ áã¬÷¦­÷ ª« á¨ £à㯨 〈G, ∗〉 ¢÷¤­®á­® ¯÷¤£à㯨 H ¡® ­¥ ¯¥à¥à÷§ îâìáï,  ¡® §¡÷£ îâìáï. �à ¢÷ áã¬÷¦­÷ ª« á¨ £à㯨 〈G, ∗〉¢÷¤­®á­® ¯÷¤£à㯨 H  ¡® ­¥ ¯¥à¥à÷§ îâìáï,  ¡® §¡÷£ îâìáï.

�®¢¥¤¥­­ï. �¢¥à¤¦¥­­ï ⥮६¨ ¡ã¤¥¬® ¤®¢®¤¨â¨ ¤«ï «÷¢¨å áã¬÷¦-­¨å ª« á÷¢ (¢¨¯ ¤®ª ¯à ¢¨å áã¬÷¦­¨å ª« á÷¢ õ ᨬ¥âà¨ç­¨¬). � ªâ¨ç­®­ ¬ ¤®áâ â­ì® ¤«ï a, b ∈ G ¤®¢¥á⨠⠪¥ ⢥द¥­­ï:

((a ∗H) ∩ (b ∗H) 6= ∅) ⇒ ((a ∗H) = (b ∗H)) .

�⦥, ­¥å © a, b ∈ G â  (a ∗ H) ∩ (b ∗ H) 6= ∅, ⮡⮠¯¥à¥â¨­(a ∗ H) ∩ (b ∗ H) ¬÷áâ¨âì ¯à¨­ ©¬­÷ ®¤¨­ ¥«¥¬¥­â c ∈ (a ∗ H) ∩ (b ∗ H).�®¤÷ ®âਬãõ¬® §¢'燐ª ¬÷¦ ¥«¥¬¥­â ¬¨ a â  b:

(c ∈ a ∗H) ⇔ (c = a ∗ h1 ¤«ï ¤¥ïª®£® h1 ∈ H);

(c ∈ b ∗H) ⇔ (c = b ∗ h2 ¤«ï ¤¥ïª®£® h2 ∈ H);

a = c ∗ h−11 = b ∗ h2 ∗ h−1

1 = b ∗ h, ¤¥ h = h2 ∗ h−11 ∈ H.

� à¥èâ÷, ¤«ï ¤®¢÷«ì­®£® x ∈ G ®âਬãõ¬®(x ∈ a ∗H) ⇒ (x = a ∗ ha ¤«ï ¤¥ïª®£® ha ∈ H) ⇒

⇒ (x = b ∗ (h ∗ ha)) ⇒ (x ∈ b ∗H).

�⦥, a∗H ⊂ b∗H. �ª« ¤¥­­ï b∗H ⊂ a∗H ¬®¦­  ¤®¢¥á⨠ ­ «®£÷ç­®:(x ∈ b ∗H) ⇒ (x = b ∗ hb ¤«ï ¤¥ïª®£® hb ∈ H) ⇒

⇒ (x = a ∗ (h−1 ∗ hb)) ⇒ (x ∈ a ∗H).

� ª¨¬ 稭®¬, a ∗H = b ∗H, é® ¤®¢®¤¨âì ⢥द¥­­ï ⥮६¨.

148

Page 151: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.8. �ã¬÷¦­÷ ª« á¨

�¥£ª® §à®§ã¬÷â¨, é® ®¡'õ¤­ ­­ï ¢á÷å «÷¢¨å ( ­ «®£÷ç­®, ãá÷å ¯à ¢¨å)áã¬÷¦­¨å ª« á÷¢ §¡÷£ õâìáï § ¬­®¦¨­®î G, ®áª÷«ìª¨ ª®¦¥­ ¥«¥¬¥­â a ∈ G®¡®¢'離®¢® ¢å®¤¨âì ã «÷¢¨© áã¬÷¦­¨© ª« á a∗H ( ­ «®£÷ç­®, a ∈ H ∗a).�⦥, ®âਬ ­® ¤¢  ஧¡¨ââï ¬­®¦¨­¨ G ¢ ®¡'õ¤­ ­­ï «÷¢¨å áã¬÷¦­¨åª« á÷¢ â  ¯à ¢¨å áã¬÷¦­¨å ª« á÷¢ §  ¯÷¤£à㯮î H:

G =⋃g∈G

g ∗H =⋃g∈G

H ∗ g.

� §­ ç¨¬®, é® ¤¥ïª÷ «÷¢÷ áã¬÷¦­÷ ª« á¨ a ∗ H â  b ∗ H ( ­ «®£÷ç­®,¯à ¢÷ áã¬÷¦­÷ ª« á¨ H ∗ a â  H ∗ b) ¬®¦ãâì §¡÷£ â¨áï ¤«ï a 6= b. �¤­ ª¤«ï H ∗a 6= H ∗ b, §  ⥮६®î 6.12 ª« á¨ H ∗a â  H ∗ b ­¥ ¯¥à¥à÷§ îâìáï( ­ «®£÷ç­®, a ∗H ∩ b ∗H = ∅, ïªé® a ∗H 6= b ∗H). � ã¢ ¦¨¬® â ª®¦,é® â¥®à¥¬  6.12 áä®à¬ã«ì®¢ ­  ®ªà¥¬® ¤«ï ¯à ¢¨å ÷ ®ªà¥¬® ¤«ï «÷¢¨åáã¬÷¦­¨å ª« á÷¢, ⮡⮠«÷¢¨© a∗H â  ¯à ¢¨© H ∗b áã¬÷¦­÷ ª« á¨ ¬®¦ãâì­¥ §¡÷£ â¨áï â  ¬ â¨ ­¥¯®à®¦­÷© ¯¥à¥â¨­.

�ਪ« ¤ 6.38. 1. �®§£«ï­¥¬® «÷¢÷ â  ¯à ¢÷ áã¬÷¦­÷ ª« á¨ ᨬ¥âà¨ç-­®ù £à㯨 S3 §  ¯÷¤£à㯮î [c1] = {c1, e} (¢¨ª®à¨á⮢ãîç¨ ¯®§­ ç¥­­ï §¯à¨ª«. 6.14):

e ◦ {c1, e} = {c1, e}, {c1, e} ◦ e = {c1, e};c1 ◦ {c1, e} = {e,c1}, {c1, e} ◦ c1 = {e,c1};c2 ◦ {c1, e} = {f2,c2}, {c1, e} ◦ c2 = {f1,c2};c3 ◦ {c1, e} = {f1,c3}, {c1, e} ◦ c3 = {f2,c3};f1 ◦ {c1, e} = {c3,f1}, {c1, e} ◦ f1 = {c2,f1};f2 ◦ {c1, e} = {c2,f2}, {c1, e} ◦ f2 = {c3,f2}.

� §­ ç¨¬®, é® á¥à¥¤ «÷¢¨å (ïª ÷ á¥à¥¤ ¯à ¢¨å) áã¬÷¦­¨å ª« á÷¢ õ â ª÷,é® §¡÷£ îâìáï:

e ◦ [c1] = c1 ◦ [c1], c2 ◦ [c1] = f2 ◦ [c1], c3 ◦ [c1] = f1 ◦ [c1];

[c1] ◦ e = [c1] ◦ c1, [c1] ◦ c2 = [c1] ◦ f1, [c1] ◦ c3 = [c1] ◦ f2 .

�⦥, ¬ õ¬® âਠà÷§­÷ «÷¢÷ (÷ âਠà÷§­÷ ¯à ¢÷) áã¬÷¦­÷ ª« á¨, é® ¯®-¯ à­® ­¥ ¯¥à¥à÷§ îâìáï. � ª¨¬ 稭®¬, «÷¢÷ â  ¯à ¢÷ áã¬÷¦­÷ ª« á¨ §  [c1]¤ îâì ­ ¬ ¤¢  à÷§­÷ ஧¡¨ââï S3 ­  âਠ¬­®¦¨­¨:

S3 = {c1, e} ∪ {f1,c3} ∪ {f2,c2} = {e,c1} ∪ {f1,c2} ∪ {f2,c3}.

149

Page 152: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

� à¥èâ÷, § ã¢ ¦¨¬®, é® ®âਬ ­® «÷¢÷ â  ¯à ¢÷ áã¬÷¦­÷ ª« á¨, ïª÷ ­¥§¡÷£ îâìáï,  «¥ ¬ îâì ­¥¯®à®¦­÷© ¯¥à¥â¨­; â ª¨¬¨, ­ ¯à¨ª« ¤, õ «÷¢¨©â  ¯à ¢¨© áã¬÷¦­÷ ª« á¨, ¯®à®¤¦¥­÷ ¥«¥¬¥­â®¬ c2:

c2 ◦ [c1] = {f2,c2} 6= [c1] ◦ c2 = {f1,c2}; (c2 ◦ [c1]) ∩ ([c1] ◦ c2) = {c2}.2. �®§£«ï­¥¬® «÷¢÷ â  ¯à ¢÷ áã¬÷¦­÷ ª« á¨ ᨬ¥âà¨ç­®ù £à㯨 S3 § 

¯÷¤£à㯮î [f1] = {f1,f2, e}:e ◦ [f1] = [f1] ◦ e = {f1,f2, e};c1 ◦ [f1] = [f1] ◦ c1 = {c1,c2,c3};c2 ◦ [f1] = [f1] ◦ c2 = {c1,c2,c3};c3 ◦ [f1] = [f1] ◦ c3 = {c1,c2,c3};f1 ◦ [f1] = [f1] ◦ f1 = {f1,f2, e};f2 ◦ [f1] = [f1] ◦ f2 = {f1,f2, e}.

� æ쮬㠢¨¯ ¤ªã «÷¢÷ â  ¯à ¢÷ áã¬÷¦­÷ ª« á¨, ¯®à®¤¦¥­÷ á¯÷«ì­¨¬¥«¥¬¥­â®¬, §¡÷£«¨áï. � ª¨¬ 稭®¬, ®âਬ ­® ¤¢  à÷§­÷ «÷¢÷ (ïª÷ § à §§¡÷£«¨áï § ¢÷¤¯®¢÷¤­¨¬¨ ¯à ¢¨¬¨) áã¬÷¦­÷ ª« á¨, é® ¯®¯ à­® ­¥ ¯¥à¥à÷-§ îâìáï. �⦥, «÷¢÷ â  ¯à ¢÷ áã¬÷¦­÷ ª« á¨ ¯® [f1] ¤ îâì ­ ¬ ®¤­¥ © â¥á ¬¥ ஧¡¨ââï S3 ­  ¤¢÷ ¬­®¦¨­¨:

S3 = {f1,f2, e} ∪ {c1,c2,c3}.

6.9. �ª÷­ç¥­­÷ £à㯨. �¥®à¥¬  � £à ­¦ � æ쮬㠯÷¤à®§¤÷«÷ ®á­®¢­¨¬ ®¡'õªâ®¬ ஧£«ï¤ã ¡ã¤¥ áª÷­ç¥­­  £àã-

¯  〈G, ∗〉, ⮡⮠£à㯠, é® ¬÷áâ¨âì «¨è¥ áª÷­ç¥­­ã ª÷«ìª÷áâì ¥«¥¬¥­â÷¢.�÷«ìª÷áâì ¥«¥¬¥­â÷¢ ã áª÷­ç¥­­÷© £àã¯÷ 〈G, ∗〉 ­ §¨¢ îâì ¯®à浪®¬ £àã-¯¨ 〈G, ∗〉 ÷ ¯®§­ ç îâì ç¥à¥§ |G|:

|G| = card(G).

�¥å © H ⊂ G { ¯÷¤£à㯠 £à㯨 〈G, ∗〉.�¥¬  6.8. �ã¤ì-直© áã¬÷¦­¨© ª« á (ïª ¯à ¢¨©, â ª ÷ «÷¢¨©) áª÷­-

祭­®ù £à㯨 〈G, ∗〉 §  ¯÷¤£à㯮î H ¬÷áâ¨âì |H| ¥«¥¬¥­â÷¢.

150

Page 153: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.9. �ª÷­ç¥­­÷ £à㯨. �¥®à¥¬  � £à ­¦ 

�®¢¥¤¥­­ï. �¢¥à¤¦¥­­ï «¥¬¨ ¡ã¤¥¬® ¤®¢®¤¨â¨ ¤«ï «÷¢¨å áã¬÷¦­¨åª« á÷¢ (¢¨¯ ¤®ª ¯à ¢¨å áã¬÷¦­¨å ª« á÷¢ õ ᨬ¥âà¨ç­¨¬).

�¥å © H = {h1, h2, . . . , hm}, ¤¥ hi 6= hj ¯à¨ i 6= j, ⮡⮠¢á÷ ¥«¥¬¥­-⨠hi (i = 1, 2, . . . ,m) ¯®¯ à­® à÷§­÷, â  |H| = m. �®¤÷ ¤«ï ¤®¢÷«ì­®£®ä÷ªá®¢ ­®£® a ∈ G ¬ õ¬®

a ∗H = {a ∗ h1, a ∗ h2, . . . , a ∗ hm}.

� «÷ § ¯à ¢¨«  «÷¢®£® ᪮à®ç¥­­ï (6.2) ®âਬãõ¬®

(a ∗ hi = a ∗ hj) ⇒ (hi = hj).

�⦥, a∗hi 6= a∗hj ¤«ï i 6= j, ⮡⮠¢á÷ ¥«¥¬¥­â¨ a∗hi (i = 1, 2, . . . ,m)¯®¯ à­® à÷§­÷, â  card(a ∗H) = m.

�ਪ« ¤ 6.39. � ¯à¨ª«. 6.38 ¡ã«® ¢¨¯¨á ­® ¢á÷ áã¬÷¦­÷ ª« á¨ (¯à ¢÷â  «÷¢÷) £à㯨 S3 §  横«÷ç­¨¬¨ ¯÷¤£à㯠¬¨ [c1] â  [f1]. �ª ¡ ç¨¬®, ª®¦¥­áã¬÷¦­¨© ª« á §  ¯÷¤£à㯮î [c1] = {c1, e} ¬÷áâ¨âì ¤¢  ¥«¥¬¥­â¨,   ª®¦¥­áã¬÷¦­¨© ª« á §  [f1] = {f1,f2, e} { âਠ¥«¥¬¥­â¨.

�¥¯¥à ¬®¦­  áä®à¬ã«î¢ â¨ ÷ ¤®¢¥á⨠®á­®¢­ã ⥮६㠯÷¤à®§¤÷«ã.

�¥®à¥¬  6.13 (⥮६  � £à ­¦ 1 ¤«ï áª÷­ç¥­­¨å £àã¯). �®-à冷ª ¡ã¤ì-类ù ¯÷¤£à㯨 H áª÷­ç¥­­®ù £à㯨 〈G, ∗〉 õ ¤÷«ì­¨ª®¬ ¯®à浪ã£à㯨 〈G, ∗〉.

�®¢¥¤¥­­ï. �¥å © H { ¯÷¤£à㯠 áª÷­ç¥­­®ù £à㯨 〈G, ∗〉. �®§£«ï­¥-¬® ஧¡¨ââï £à㯨 〈G, ∗〉 ¢ ®¡'õ¤­ ­­ï «÷¢¨å áã¬÷¦­¨å ª« á÷¢ §  ¯÷¤£àã-¯®î H:

G =⋃g∈G

g ∗H.

�¥å © ¬­®¦¨­  {g ∗H : g ∈ G} ¬÷áâ¨âì à÷¢­® k à÷§­¨å «÷¢¨å áã¬÷¦­¨åª« á÷¢, ¯®à®¤¦¥­¨å ¤¥ïª¨¬¨ ¥«¥¬¥­â ¬¨ gj (1 ≤ j ≤ k):

G = (g1 ∗H) ∪ · · · ∪ (gk ∗H) , gi ∗H 6= gj ∗H ¯à¨ i 6= j.

1� £à ­¦ �®§¥ä �ãù (1736{1813) { äà ­æã§ìª¨© ¬ â¥¬ â¨ª ÷ ¬¥å ­÷ª;  ¢â®à äã­-¤ ¬¥­â «ì­¨å १ã«ìâ â÷¢ ã ¢ à÷ æ÷©­®¬ã ç¨á«¥­­÷, ¬ â¥¬ â¨ç­®¬ã  ­ «÷§÷,  «£¥¡-à÷ â®é®; ஡®â¨ �. �. � £à ­¦  § ¬ â¥¬ â¨ª¨, ¬¥å ­÷ª¨ â   áâà®­®¬÷ù ᪫ ¤ îâì14 ⮬÷¢.

151

Page 154: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�  ⥮६®î 6.12 «÷¢÷ áã¬÷¦­÷ ª« á¨, é® ­¥ §¡÷£ îâìáï, ¬ îâì ¯®à®¦-­÷© ¯¥à¥â¨­:

(gi ∗H) ∩ (gj ∗H) = ∅ ¯à¨ i 6= j, 1 ≤ i ≤ k, 1 ≤ j ≤ k.

�®¤÷ §  ⥮६®î ¯à® ¯®â㦭÷áâì ®¡'õ¤­ ­­ï áª÷­ç¥­­¨å ¬­®¦¨­, 鮯®¯ à­® ­¥ ¯¥à¥à÷§ îâìáï, ®âਬãõ¬®

card(G) = |G| =k∑

j=1

card(gj ∗H).

� à¥èâ÷, §  «¥¬®î 6.8 ª®¦­¨© áã¬÷¦­¨© ª« á gj ∗ H (1 ≤ j ≤ k)¬÷áâ¨âì |H| ¥«¥¬¥­â÷¢, §¢÷¤ª¨ ®âਬãõ¬® ⢥द¥­­ï ⥮६¨:

card(G) =k∑

j=1

card(gj ∗H) =k∑

j=1

|H| = k · |H|. (6.11)

�¢¥à¤¦¥­­ï ⥮६¨ ¤®¢¥¤¥­®.

�÷«ìª÷áâì «÷¢¨å áã¬÷¦­¨å ª« á÷¢ §  ¯÷¤£à㯮î H (§  «¥¬®î 6.8 §¡÷-£ õâìáï § ª÷«ìª÷áâî ¯à ¢¨å áã¬÷¦­¨å ª« á÷¢ §  H) ­ §¨¢ îâì ÷­¤¥ªá®¬¯÷¤£à㯨 H ÷ ¯®§­ ç îâì ç¥à¥§ i(H). �¥à¥¯¨á ¢è¨ à÷¢­÷áâì (6.11) § ãà -å㢠­­ï¬ ¢¨§­ ç¥­­ï ÷­¤¥ªáã ¯÷¤£à㯨, ®âਬãõ¬® á¯÷¢¢÷¤­®è¥­­ï

|G| = i(H) · |H|.

�⦥, ã ¯à®æ¥á÷ ¤®¢¥¤¥­­ï ⥮६¨ � £à ­¦  ¡ã«® ¢áâ ­®¢«¥­®, é®÷­¤¥ªá ¯÷¤£à㯨 H ⊂ G â ª®¦ õ ¤÷«ì­¨ª®¬ ¯®à浪㠣à㯨 〈G, ∗〉.

�ਪ« ¤ 6.40. �«ï ᨬ¥âà¨ç­®ù £à㯨 S3 (¤¨¢. ¯à¨ª«. 6.38) ®âà¨-¬ãõ¬®:

i({c1, e}) = 3, |{c1, e}| = 2;

i({f1,f2, e}) = 2, |{f1,f2, e}| = 3.

152

Page 155: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.10. � á«÷¤ª¨ § ⥮६¨ � £à ­¦ 

6.10. � á«÷¤ª¨ § ⥮६¨ � £à ­¦ 

1. �à㯠, ¯®à冷ª 类ù õ ¯à®á⨬ ç¨á«®¬ (â ª÷ £à㯨 ç áâ® ­ §¨¢ îâì¯à®á⨬¨), ¬÷áâ¨âì «¨è¥ âਢ÷ «ì­÷ ¯÷¤£à㯨.

�®¢¥¤¥­­ï. �¢¥à¤¦¥­­ï ®¤à §ã ¢¨¯«¨¢ õ § ⥮६¨ � £à ­¦ .

2. �®à冷ª ¡ã¤ì-类£® ¥«¥¬¥­â  g ∈ G õ ¤÷«ì­¨ª®¬ ¯®à浪㠣àã-¯¨ 〈G, ∗〉.

�®¢¥¤¥­­ï. �®à冷ª ¥«¥¬¥­â  a ∈ G (é® ¤«ï áª÷­ç¥­­®ù £à㯨 〈G, ∗〉õ áª÷­ç¥­­¨¬) §  ¢¨§­ ç¥­­ï¬ ¤®à÷¢­îõ ¯®à浪ã 横«÷ç­®ù ¯÷¤£à㯨 [a] ÷§  ⥮६®î � £à ­¦  õ ¤÷«ì­¨ª®¬ ¯®à浪㠣à㯨 〈G, ∗〉.

3. �¥å © a ∈ G. �®¤÷

a|G| = e, ¤¥ e { ­¥©âà «ì­¨© ¥«¥¬¥­â £à㯨 〈G, ∗〉.

�®¢¥¤¥­­ï. �  ­ á«÷¤ª®¬ 2 ÷á­ãõ k ∈ N, â ª¥, é® |G| = k · |a|. �®-¤÷, ¢¨ª®à¨á⮢ãîç¨ ¢« á⨢®áâ÷ á⥯¥­ï ¥«¥¬¥­â  ÷ ¢¨§­ ç¥­­ï ¯®à浪㥫¥¬¥­â , ®âਬãõ¬®

a|G| = ak·|a| = (a|a|)k = ek = e.

4. � «  ⥮६  �¥à¬ .�¥å © n ∈ Z. �®¤÷ ¡ã¤ì-瘟 ¯à®á⥠ç¨á«® p õ ¤÷«ì­¨ª®¬ ç¨á«  np − n.

�®¢¥¤¥­­ï. � ä÷ªáãõ¬® ¯à®á⥠ç¨á«® p ÷ ஧£«ï­¥¬® ¬ã«ì⨯«÷ª â¨-¢­ã £àã¯ã Zp

∗. � £ ¤ õ¬®, é®

Zp∗ = Zp \ {0} = {1, 2, . . . , p− 1},

§¢÷¤ª¨ |Zp∗| = p− 1.

�®¢¥¤¥­­ï ¯à®¢¥¤¥¬® ã ¤¢  ¥â ¯¨.1. �®§£«ï­¥¬® ¢¨¯ ¤®ª, ª®«¨ ç¨á«® n ∈ Z ­¥ ªà â­¥ p. �®¤÷ n ∈ Zp

∗ ÷§  ¢¨§­ ç¥­­ï¬ ®¯¥à æ÷ù ¢ Zp

∗ â  ­ á«÷¤ª®¬ 3 ¤÷áâ ­¥¬®

(np−1) = (n)p−1 = 1

153

Page 156: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

(­ £ ¤ õ¬®, é® 1 { ­¥©âà «ì­¨© ã ¬ã«ì⨯«÷ª â¨¢­÷© £àã¯÷ Zp∗). �⦥,

ç¨á«  np−1 â  1 «¥¦ âì ¢ ®¤­®¬ã ª« á÷ «¨èª÷¢ §  ¬®¤ã«¥¬ p, ⮡⮠ç¨á«®np−1 − 1 ªà â­¥ ç¨á«ã p.

2. � § £ «ì­®¬ã ¢¨¯ ¤ªã n ∈ Z §®¡à §¨¬® np − n ïª ¤®¡ã⮪:np − n = n · (np−1 − 1).

�ªé® n ­¥ ªà â­¥ p, â®, §  ¯®¯¥à¥¤­÷¬ ¯ã­ªâ®¬ ¤®¢¥¤¥­­ï, ç¨á«® põ ¤÷«ì­¨ª®¬ ç¨á«  np−1 − 1. �⦥, ¯à¨­ ©¬­÷ ®¤¨­ § ¤¢®å ¬­®¦­¨ª÷¢ (n ¡® np−1 − 1) ¤÷«¨âìáï ­  p, ÷ ç¨á«® np − n ªà â­¥ p.

�ਪ« ¤ 6.41. 1. �à®á⥠ç¨á«® 3 õ ¤÷«ì­¨ª®¬ ç¨á«  43 − 4 = 60.2. �à®á⥠ç¨á«® 5 õ ¤÷«ì­¨ª®¬ ç¨á«  (−6)5 − (−6) = −7770.3. �¨á«® 6 ­¥ õ ¯à®á⨬, ¯à®â¥ õ ¤÷«ì­¨ª®¬ ç¨á«  36 − 3 = 726.4. �¨á«® 4 ­¥ õ ¯à®á⨬ ÷ ­¥ õ ¤÷«ì­¨ª®¬ ç¨á«  64 − 6 = 1290. �⦥,

¢¨¬®£  «¯à®áâ®â¨» ç¨á«  p õ ­¥®¡å÷¤­®î ã ä®à¬ã«î¢ ­­÷ ¬ «®ù ⥮६¨�¥à¬ .

6.11. �®à¬ «ì­÷ ¤÷«ì­¨ª¨� æ쮬㠯÷¤à®§¤÷«÷ ÷ ¤ «÷ ஧£«ï¤ â¨¬¥¬® ¤®¢÷«ì­÷ (­¥ ®¡®¢'離®¢®

áª÷­ç¥­­÷) £à㯨.�¦¥ ¢÷¤®¬® § ¯÷¤à®§¤. 6.8, é® ¯÷¤£à㯠 ¯®à®¤¦ãõ ¤¢  ஧¡¨ââï £à㯨 {

­  «÷¢÷ â  ­  ¯à ¢÷ áã¬÷¦­÷ ª« á¨, ¯à¨ç®¬ã æ÷ ¤¢  ஧¡¨ââï ¬®¦ãâì ­¥§¡÷£ â¨áï (¯à¨ª«. 6.38). � æ쮬㠯÷¤à®§¤÷«÷ ஧£«ï­¥¬® ¯÷¤£à㯨, ¤«ï直å ஧¡¨ââï ­  ¯à ¢÷ â  ­  «÷¢÷ áã¬÷¦­÷ ª« á¨ §¡÷£ îâìáï.

�§­ ç¥­­ï 6.17. �÷¤£àã¯ã H £à㯨 〈G, ∗〉 ­ §¨¢ îâì ­®à¬ «ì­¨¬¤÷«ì­¨ª®¬ (­®à¬ «ì­®î ¯÷¤£à㯮î), ïªé®

a ∗H = H ∗ a ¤«ï ¢á÷å a ∈ G.

�«ï ä ªâã, é® H õ ­®à¬ «ì­¨¬ ¤÷«ì­¨ª®¬ £à㯨 〈G, ∗〉, ç áâ® ¢¦¨-¢ îâì ¯®§­ ç¥­­ï

H C G.

�祢¨¤­®, é® ã ª®¬ãâ â¨¢­¨å £àã¯ å ¡ã¤ì-猪 ¯÷¤£à㯠 õ ­®à¬ «ì-­¨¬ ¤÷«ì­¨ª®¬. � ­¥ª®¬ãâ â¨¢­¨å £àã¯ å ¬®¦ãâì ¬÷áâ¨â¨áï ¯÷¤£à㯨,ïª÷ ­¥ õ ­®à¬ «ì­¨¬¨ ¤÷«ì­¨ª ¬¨, ®¤­ ª ­¥ª®¬ãâ â¨¢­÷ £à㯨 â ª®¦ ¬®-¦ãâì ¬÷áâ¨â¨ ­®à¬ «ì­÷ ¯÷¤£à㯨.

154

Page 157: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.11. �®à¬ «ì­÷ ¤÷«ì­¨ª¨

�ਪ« ¤ 6.42. 1. �ਢ÷ «ì­÷ ¯÷¤£à㯨 ¡ã¤ì-类ù £à㯨 § ¢¦¤¨ õ ­®à-¬ «ì­¨¬¨ ¤÷«ì­¨ª ¬¨ (¤¨¢. ¯à¨ª«. 6.37).

2. �  ¤¨â¨¢­÷© £àã¯÷ Z, 猪 õ ª®¬ãâ â¨¢­®î, ¢á÷ ¯÷¤£à㯨 nZ (n ∈ N)­®à¬ «ì­÷.

3. � ­¥ª®¬ãâ â¨¢­÷© ᨬ¥âà¨ç­÷© £àã¯÷ S3 ¯÷¤£à㯠 {c1, e} ­¥ õ ­®à-¬ «ì­®î, ®¤­ ª {f1,f2, e} õ ­®à¬ «ì­¨¬ ¤÷«ì­¨ª®¬ (¤¨¢. ¯à¨ª«. 6.38).

�¨¦ç¥¯®¤ ­  ⥮६  { §àãç­¨© ªà¨â¥à÷© ¯¥à¥¢÷ન, ç¨ õ ¯÷¤£à㯠­®à¬ «ì­®î.

�¥®à¥¬  6.14 (ªà¨â¥à÷© ­®à¬ «ì­®£® ¤÷«ì­¨ª ). �«ï ⮣®, 鮡¯÷¤£à㯠 H £à㯨 〈G, ∗〉 ¡ã«  ­®à¬ «ì­®î, ­¥®¡å÷¤­® ÷ ¤®áâ â­ì® ¢¨ª®-­ ­­ï 㬮¢¨

∀h ∈ H ∀ g ∈ G : g−1 ∗ h ∗ g ∈ H. (6.12)

�®¢¥¤¥­­ï. �¥®¡å÷¤­÷áâì. �¥å © ¯÷¤£à㯠 H { ­®à¬ «ì­ . �®¤÷ § ¢¨§­ ç¥­­ï¬ ­®à¬ «ì­®ù ¯÷¤£à㯨

∀ g ∈ G : g ∗H = H ∗ g.

�⦥, ¤«ï ¤®¢÷«ì­¨å g ∈ G, h ∈ H ¬ õ¬®

(h ∗ g ∈ H ∗ g) ⇒ (h ∗ g ∈ g ∗H) ⇒⇒ (∃ h ∈ H : h ∗ g = g ∗ h) ⇒ (g−1 ∗ h ∗ g = h ∈ H).

�®áâ â­÷áâì. �¥å © H { ¯÷¤£à㯠 £à㯨 〈G, ∗〉, â ª , é®

∀h ∈ H ∀ g ∈ G : g−1 ∗ h ∗ g ∈ H.

� ä÷ªáãõ¬® g ∈ G ÷ ¤®¢¥¤¥¬® à÷¢­÷áâì g ∗ H = H ∗ g ¬®¤¥«ì­¨¬á¯®á®¡®¬:

(x∈H ∗ g) ⇔ (∃h1∈H : x = h1 ∗ g) ⇔ (∃h1∈H : x = (g ∗ g−1) ∗ h1 ∗ g) ⇔

⇔∃h1 ∈ H : x = g ∗ (g−1 ∗ h1 ∗ g)︸ ︷︷ ︸

h2∈H

⇔ (∃h2 ∈ H : x = g ∗ h2 ∈ g ∗H).

�⦥, ⥮६㠤®¢¥¤¥­®.

155

Page 158: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�ਪ« ¤ 6.43. 1. � £àã¯÷ GL2 ­¥¢¨à®¤¦¥­¨å ¬ âà¨æì ஧¬÷஬ 2×2஧£«ï­¥¬® ¯÷¤£àã¯ã ­¥¢¨à®¤¦¥­¨å ­¨¦­÷å âਪãâ­¨å ¬ âà¨æì:

H =

{(a1,1 0a2,1 a2,2

): a1,1, a2,1, a2,2 ∈ R, a1,1a2,2 6= 0

}.

�ï ¯÷¤£à㯠 ­¥ õ ­®à¬ «ì­®î, ®áª÷«ìª¨ ¬®¦­  ¢¨¡à â¨ ­¨¦­î âà¨-ªãâ­ã ¬ âà¨æî A0 ∈ H â  ­¥¢¨à®¤¦¥­ã A ∈ GL2, â ª÷, é®

A−1 · A0 · A /∈ H.

� ª, ­ ¯à¨ª« ¤,(

1 21 1

)−1

·(

1 01 1

)·(

1 21 1

)=

(3 4

−1 −1

)/∈ H.

2. � £àã¯÷ GLn ஧£«ï­¥¬® ¯÷¤£àã¯ã SLn ¬ âà¨æì § ®¤¨­¨ç­¨¬ ¢¨§-­ ç­¨ª®¬:

H = SLn = {A ∈ GLn : |A| = 1}.�ï ¯÷¤£à㯠 ­®à¬ «ì­ , ®áª÷«ìª¨ ¤«ï ¤®¢÷«ì­¨å A0 ∈ SLn = H â 

A ∈ GLn, ¢¨ª®à¨á⮢ãîç¨ ä®à¬ã«ã (6.6) (®¡ç¨á«¥­­ï ¢¨§­ ç­¨ª  ¤®-¡ãâªã ¬ âà¨æì), ®âਬãõ¬®

|A−1 · A0 · A| = |A−1| · |A0| · |A| = |A|−1 · |A0| · |A| = 1,

⮡⮠A−1 · A0 · A ∈ SLn = H ÷, §  ⥮६®î 6.14, SLn C GLn.� ã¢ ¦¥­­ï 6.18. �¯÷¢¢÷¤­®è¥­­ï |A−1| = |A|−1 ¢¨¯«¨¢ õ § ä®à-

¬ã«¨ (6.6):1 = |A · A−1| = |A| · |A−1|.

3. � ᨬ¥âà¨ç­÷© £àã¯÷ Sn ஧£«ï­¥¬® ¯÷¤£àã¯ã ¯ à­¨å ¯÷¤áâ ­®¢®ª {§­ ª®§¬÷­­ã £àã¯ã An (¤¨¢. ¯à¨ª«. 6.33). � ä÷ªá㢠¢è¨ c ∈ Sn, t ∈ An ÷¢¨ª®à¨á⮢ãîç¨ à¥§ã«ìâ â ¢¯à ¢¨ 6.9, ®âਬãõ¬®

k(c−1 ◦ t ◦ c) = k(c−1)⊕ k(t)⊕ k(c) = k(c)⊕ k(t)⊕ k(c) = k(t) = 0

(­ £ ¤ õ¬®, é® k(f) ¯®§­ ç õ ¯ à­÷áâì ¯÷¤áâ ­®¢ª¨ f). � ª¨¬ 稭®¬,c−1◦t◦c ∈ An,   ®â¦¥, ¯÷¤£à㯯  An õ ­®à¬ «ì­¨¬ ¤÷«ì­¨ª®¬ ã £àã¯÷ Sn:An C Sn.

156

Page 159: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.12. �®­ïââï ä ªâ®à-£à㯨

� ã¢ ¦¥­­ï 6.19. � áâ®á®¢ãîç¨ â¥®à¥¬ã 6.14, á«÷¤ ®¡®¢'離®¢® ¯¥à¥-¢÷àïâ¨, ç¨ õ ¬­®¦¨­  H ¯÷¤£àã¯®î £à㯨 〈G, ∗〉 (ïª æe ÷ ¯¥à¥¤¡ ç¥­®â¥®à¥¬®î), ®áª÷«ìª¨ 㬮¢  (6.12) ¬®¦¥ ¢¨ª®­ã¢ â¨áì ÷ ¤«ï ¯÷¤¬­®¦¨­¨H ⊂ G, é® ­¥ õ ¯÷¤£à㯮î. � ª, ã ª®¬ãâ â¨¢­÷© £àã¯÷ 〈G, ∗〉 㬮¢  (6.12)¢¨ª®­ãõâìáï ¤«ï ¡ã¤ì-类ù ¯÷¤¬­®¦¨­¨ H ⊂ G.

6.12. �®­ïââï ä ªâ®à-£à㯨6.12.1. �ã¬÷¦­÷ ª« á¨ §  ­®à¬ «ì­®î ¯÷¤£à㯮î

�¥å © H { ­®à¬ «ì­  ¯÷¤£à㯠 £à㯨 〈G, ∗〉. �«ï ¥«¥¬¥­â  a ∈ G¢¢¥¤¥¬® ¯®§­ ç¥­­ï

a = a ∗H = H ∗ a.

�­®¦¨­ã a ­ §¨¢ îâì áã¬÷¦­¨¬ ª« á®¬ £à㯨 〈G, ∗〉 §  ­®à¬ «ì­®î¯÷¤£à㯮î H, 直© ¯®à®¤¦¥­¨© ¥«¥¬¥­â®¬ a (ã æ쮬㠯÷¤à®§¤÷«÷ ஧£«ï-¤ õ¬® ¢¨¯ ¤®ª ­®à¬ «ì­®ù ¯÷¤£à㯨 H,   ®â¦¥, ¯à ¢÷ â  «÷¢÷ áã¬÷¦­÷ª« á¨ §¡÷£ îâìáï).

�¥à¥§ G/H

¯®§­ ç¨¬® ¬­®¦¨­ã áã¬÷¦­¨å ª« á÷¢ £à㯨 〈G, ∗〉 §  H:

G/H

= {a : a ∈ G}.

�ª 㦥 ¡ã«® § §­ ç¥­® (¤¨¢. ¯à¨ª«. 6.38), ¤¥ïª÷ áã¬÷¦­÷ ª« á¨ ¬®-¦ãâì §¡÷£ â¨áï. � §¢¨ç ©, ã ¬­®¦¨­÷ G

/H

®¤­ ª®¢÷ áã¬÷¦­÷ ª« á¨ ­¥à®§à÷§­ïîâì, ⮡⮠¢¢ ¦ îâì ®¤­¨¬ ¥«¥¬¥­â®¬.

�¯à ¢  6.18. �®¢¥áâ¨, é® ¤«ï ¤®¢÷«ì­¨å a, b ∈ G ¬ õ ¬÷áæ¥ ¥ª¢÷¢ -«¥­â­÷áâì:

(a ∈ b) ⇔ (b ∈ a) ⇔ (a = b).

�«ï ¢¨¢ç¥­­ï ¢« á⨢®á⥩ ÷ ¯à ªâ¨ç­®£® ®¡ç¨á«¥­­ï ¬­®¦¨­¨ G/H

§­ ¤®¡¨âìáï â ª¨© ¯à®á⨩ १ã«ìâ â.

�¥¬  6.9. �¥å © a, b ∈ G. �®¤÷ ¬ õ ¬÷áæ¥ ¥ª¢÷¢ «¥­â­÷áâì

(a = b) ⇔ (a ∗ b−1 ∈ H).

157

Page 160: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�®¢¥¤¥­­ï. 1. �¥å © a = b. �®¤÷ a ∈ b (®áª÷«ìª¨ a ∈ a),   ®â¦¥, a = h∗b¤«ï ¤¥ïª®£® h ∈ H. �⦥, ®âਬãõ¬® a ∗ b−1 = h ∈ H.

2. �¥å © a ∗ b−1 ∈ H. �®¤÷ a ∗ b−1 = h ∈ H,   ®â¦¥, a = h ∗ b ∈ b.�⦥, áã¬÷¦­÷ ª« á¨ a â  b ¬÷áâïâì ¯à¨­ ©¬­÷ ®¤¨­ á¯÷«ì­¨© ¥«¥¬¥­â a÷ §  ⥮६®î 6.12 ¬ îâì §¡÷£ â¨áï, ⮡⮠a = b.

�¯à ¢  6.19. �«ï ¤®¢÷«ì­¨å a, b ∈ G ¤®¢¥á⨠¥ª¢÷¢ «¥­â­÷áâì

(a = b) ⇔ (b−1 ∗ a ∈ H).

�áª÷«ìª¨ ¬­®¦¨­  G/H

§ ¤ õ ஧¡¨ââï ¬­®¦¨­¨ G ¢ ®¡'õ¤­ ­­ï ¬­®-¦¨­ (áã¬÷¦­¨å ª« á÷¢), é® ¯®¯ à­® ­¥ ¯¥à¥à÷§ îâìáï, ­  G ¬®¦­  ¢¢¥á⨢÷¤­®è¥­­ï ¥ª¢÷¢ «¥­â­®áâ÷

(a ∼ b) ⇔ (a = b),

¯à¨ç®¬ã (¤¨¢. १ã«ìâ â ¢¯à ¢¨ 3.14) ¬­®¦¨­  G/H

§¡÷£ õâìáï § ä ªâ®à-¬­®¦¨­®î G §  ¢÷¤­®è¥­­ï¬ ¥ª¢÷¢ «¥­â­®áâ÷ «∼»:

G/H

= G/∼.

� ¢¤ïª¨ «¥¬÷ 6.9 (à §®¬ § १ã«ìâ â®¬ ¢¯à ¢¨ 6.19) ¬ õ¬® §àãç­ãä®à¬ã ¤«ï ¢¢¥¤¥­®£® ¢÷¤­®è¥­­ï ¥ª¢÷¢ «¥­â­®áâ÷:

(a ∼ b) ⇔ (a = b) ⇔ (a ∗ b−1 ∈ H) ⇔ (b−1 ∗ a ∈ H).

�⦥, ¬­®¦¨­ã G/H

¬®¦­  ®¡ç¨á«î¢ â¨ ïª ä ªâ®à-¬­®¦¨­ã G/∼,

§ áâ®á®¢ãîç¨ ¢÷¤¯®¢÷¤­÷ ¬¥â®¤¨ (¤¨¢. ¯÷¤à®§¤. 3.6).

�ਪ« ¤ 6.44. �¡ç¨á«¨¬® ¬­®¦¨­ã GLn

/SLn

. �«ï ¤®¢÷«ì­¨å ¬ â-à¨æì A,B ∈ GLn ¬ õ¬®

(A = B) ⇔ (A ∼ B) ⇔ ((A ·B−1) ∈ SLn) ⇔ (|A ·B−1| = 1) ⇔ (|A| = |B|).

�⦥, áã¬÷¦­¨© ª« á, ¯®à®¤¦¥­¨© ¬ âà¨æ¥î A ∈ GLn § ¢¨§­ ç­¨ª®¬|A| = a, ¬÷áâ¨âì â÷ ÷ â÷«ìª¨ â÷ ¬ âà¨æ÷, ¢¨§­ ç­¨ª ïª¨å ¤®à÷¢­îõ a:

A = {X ∈ GLn : |X| = |A|} = {X ∈ GLn : |X| = a}.

158

Page 161: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.12. �®­ïââï ä ªâ®à-£à㯨

�⦥, ª®¦¥­ ª« á ¥ª¢÷¢ «¥­â­®áâ÷ (¢÷­ ¦¥ áã¬÷¦­¨© ª« á) ¬÷áâ¨â쬠âà¨æ÷ § ä÷ªá®¢ ­¨¬ §­ ç¥­­ï¬ ¢¨§­ ç­¨ª . �à å®¢ãîç¨, é® ¤«ï ¡ã¤ì-类£® a 6= 0 ÷á­ãõ ¯à¨­ ©¬­÷ ®¤­  ¬ âà¨æï A ∈ GLn § ¢¨§­ ç­¨ª®¬|A| = a, ¬®¦¥¬® ¢¨¯¨á â¨ § £ «ì­¨© ¢¨£«ï¤ áã¬÷¦­¨å ª« á÷¢ GLn §  SLn:

Aa = {X ∈ GLn : |X| = a}, a 6= 0.

�¥¯¥à ¬®¦­  ¢¨¯¨á â¨ ¬­®¦¨­ã GLn

/SLn

:

GLn

/SLn

= {Aa : a 6= 0}.�¥ à § ­ £®«®á¨¬®, é® ª®¦­  ¬­®¦¨­  Aa (a > 0) õ áã¬÷¦­¨¬ ª« -

ᮬ, © ÷­è¨å áã¬÷¦­¨å ª« á÷¢ ­¥¬ õ.�ਪ« ¤ 6.45. �¡ç¨á«¨¬® ¬­®¦¨­ã Sn

/An

(®¡¬¥¦¨¬®áì ­¥âਢ÷ «ì-­¨¬ ¢¨¯ ¤ª®¬ n ≥ 2). �«ï ¤®¢÷«ì­¨å ¯÷¤áâ ­®¢®ª c1,c2 ∈ Sn ¬ õ¬®

(c1 = c2) ⇔ (c1 ∼ c2) ⇔ ((c1 ◦ c−12 ) ∈ An) ⇔

⇔ (k(c1 ◦ c−12 ) = 0) ⇔ (k(c1) = k(c2)).

�⦥, áã¬÷¦­¨© ª« á, ¯®à®¤¦¥­¨© ¯÷¤áâ ­®¢ª®î c ∈ Sn, ¬÷áâ¨âì â÷ ÷â÷«ìª¨ â÷ ¯÷¤áâ ­®¢ª¨, ¯ à­÷áâì ïª¨å §¡÷£ õâìáï § ¯ à­÷áâî c:

c = {t ∈ Sn : k(t) = k(c)} =

{An, ïªé® c ¯ à­ ,

Sn \ An, ïªé® c ­¥¯ à­ .

�à å®¢ãîç¨, é® ¯à¨ n ≥ 2 £à㯠 Sn ¬÷áâ¨âì ¯à¨­ ©¬­÷ ®¤­ã ¯ à-­ã ÷ ¯à¨­ ©¬­÷ ®¤­ã ­¥¯ à­ã ¯÷¤áâ ­®¢ªã, ®âਬãõ¬® ¤¢  áã¬÷¦­÷ ª« -ᨠ{ ¬­®¦¨­ã ¯ à­¨å ¯÷¤áâ ­®¢®ª An â  ¬­®¦¨­ã ­¥¯ à­¨å ¯÷¤áâ ­®-¢®ª Sn \ An:

Sn

/An

= {An, Sn \ An}.�ª ­ á«÷¤®ª, ¤®¢¥¤¥­® ä ªâ, 直© ÷­âãù⨢­® ®ç¥¢¨¤­¨©: ¯à¨ n ≥ 2

ª÷«ìª÷áâì ¯ à­¨å ¯÷¤áâ ­®¢®ª ã Sn ¤®à÷¢­îõ ª÷«ìª®áâ÷ ­¥¯ à­¨å, ®áª÷«ìª¨§  «¥¬®î 6.8 card(An) = card(Sn \ An).

�ਪ« ¤ 6.46. �¡ç¨á«¨¬® ¬­®¦¨­ã Z/nZ (n ∈ N). �«ï ¤®¢÷«ì­¨å

k1, k2 ∈ Z ¬ õ¬®

(k1 = k2) ⇔ (k1 ∼ k2) ⇔ ((k1 + (k2)−1,+) ∈ nZ) ⇔

⇔ ((k1 − k2) ∈ nZ) ⇔ ((k1 mod n) = (k2 mod n)).

159

Page 162: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�⦥, ¢ ®¤­®¬ã áã¬÷¦­®¬ã ª« á÷ ¬÷áâïâìáï ç¨á« , é® ¤ îâì ®¤­ ª®¢ã®áâ çã ¢÷¤ ¤÷«¥­­ï ­  n. �¥£ª® §à®§ã¬÷â¨, é® ¬ õ¬® n à÷§­¨å áã¬÷¦­¨åª« á÷¢:

Z/nZ = {0, 1, . . . , k, . . . , n− 1}, ¤¥ k = {km : m ∈ Z}.

�⦥, ¬­®¦¨­  áã¬÷¦­¨å ª« á÷¢ Z/nZ §¡÷£« áï § ¢÷¤®¬®î ­ ¬ ä ªâ®à-

¬­®¦¨­®î Zn = Z/( mod n)

.

6.12.2. �¨§­ ç¥­­ï ä ªâ®à-£à㯨�¥å © H { ­®à¬ «ì­  ¯÷¤£à㯠 £à㯨 〈G, ∗〉.�  ¬­®¦¨­ã áã¬÷¦­¨å ª« á÷¢ G

/H

¯¥à¥­¥á¥¬® ¡÷­ à­ã ®¯¥à æ÷î «∗»,¢¨§­ ç¥­ã ­  ¬­®¦¨­÷ G:

a ∗ b = a ∗ b, ¤«ï a, b ∈ G. (6.13)

�⦥, á¯÷¢¢÷¤­®è¥­­ï (6.13) ¢¨§­ ç õ a∗ b ¤«ï ¡ã¤ì-类ù ¯ à¨ áã¬÷¦-­¨å ª« á÷¢ a, b ∈ G

/H

, ®áª÷«ìª¨ ¤«ï ®¡ç¨á«¥­­ï a ∗ b ¤®áâ â­ì®:• ¢¨¡à â¨ ¤®¢÷«ì­¨å ¯à¥¤áâ ¢­¨ª÷¢ a ∈ a â  b ∈ b;• ®¡ç¨á«¨â¨ a ∗ b;• ¢¨ª®à¨á⮢ãîç¨ á¯÷¢¢÷¤­®è¥­­ï (6.13), ®âਬ â¨: a ∗ b = a ∗ b.�¤­ ª ¯®âà÷¡­® ¤®¢¥á⨠ª®à¥ªâ­÷áâì ¢¨§­ ç¥­®ù ®¯¥à æ÷ù, ⮡⮠­¥§ -

«¥¦­÷áâì १ã«ìâ âã a ∗ b ¢÷¤ ¢¨¡®à㠯।áâ ¢­¨ª÷¢ a ∈ a, b ∈ b.

�¥¬  6.10 (ª®à¥ªâ­÷áâì ®¯¥à æ÷ù «∗» ­  G/H

). �¥å © a1 = a,b1 = b, ¤¥ a, a1, b, b1 ∈ G. �®¤÷

a1 ∗ b1 = a ∗ b.

�®¢¥¤¥­­ï. �  «¥¬®î 6.9 ¤«ï ¤®¢¥¤¥­­ï ¤®áâ â­ì® ¯¥à¥¢÷à¨â¨ ¢¨ª®-­ ­­ï 㬮¢¨ (a1 ∗ b1) ∗ (a ∗ b)−1 ∈ H:

(a1 ∗ b1) ∗ (a ∗ b)−1 = a1 ∗ b1 ∗ b−1 ∗ a−1 = a1 ∗ h1 ∗ a−1, ¤¥ h1 = b1 ∗ b−1∈ H;

a1 ∗ h1 ∈ a1 ∗H = a1 = H ∗ a1 3 h2 ∗ a1 ¤«ï ¤¥ïª®£® h2 ∈ H;

(a1 ∗ b1) ∗ (a ∗ b)−1 = h2 ∗ a1 ∗ a−1 = h2 ∗ h3 ∈ H, ¤¥ h3 = a1 ∗ a−1 ∈ H.

�¥¬ã ¯®¢­÷áâî ¤®¢¥¤¥­®.

160

Page 163: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.12. �®­ïââï ä ªâ®à-£à㯨

�⦥, ®¯¥à æ÷ï «∗» ­  ¬­®¦¨­÷ G/H

¢¨§­ ç¥­  ª®à¥ªâ­®, ÷ ¬ õ¬®§ ¬ª­¥­ã  «£¥¡à¨ç­ã áâàãªâãàã

⟨G

/H

, ∗⟩.

�¥®à¥¬  6.15. �«£¥¡à¨ç­  áâàãªâãà ⟨G

/H

, ∗⟩ õ £à㯮î.

�®¢¥¤¥­­ï. �«ï ¯¥à¥¢÷ન ⢥द¥­­ï ⥮६¨ ­¥®¡å÷¤­® ¤®¢¥á⨠á®æ÷ â¨¢­÷áâì áâàãªâãà¨

⟨G

/H

, ∗⟩, ­ ï¢­÷áâì ­¥©âà «ì­®£® ¥«¥¬¥­â  â ­ ï¢­÷áâì ®¡¥à­¥­®£® (a)−1 ¤«ï ª®¦­®£® (a) ∈ G

/H

.�á®æ÷ â¨¢­÷áâì ®¯¥à æ÷ù «∗» ­  ¬­®¦¨­÷ G

/H

¢¨¯«¨¢ õ §  á®æ÷ â¨¢­®á-â÷ «∗» ­  ¬­®¦¨­÷ G â  ¢¨§­ ç¥­­ï «∗» ­  G

/H

(á¯÷¢¢÷¤­®è¥­­ï (6.13)):

a ∗ (b ∗ c) = a ∗ (b ∗ c) = a ∗ (b ∗ c) =

= (a ∗ b) ∗ c = (a ∗ b) ∗ c = (a ∗ b) ∗ c.

�¥å © e ∈ G { ­¥©âà «ì­¨© ¥«¥¬¥­â £à㯨 〈G, ∗〉. �®¤÷ ¥«¥¬¥­â e = Hõ ­¥©âà «ì­¨¬ ã áâàãªâãà÷

⟨G

/H

, ∗⟩:

x ∗ e = x ∗ e = x ¤«ï ¤®¢÷«ì­®£® x ∈ G.

�«ï ª®¦­®£® (a) ∈ G/H

(a ∈ G) ã áâàãªâãà÷⟨G

/H

, ∗⟩ ÷á­ãõ ®¡¥à­¥­¨©(a)−1 = a−1:

a−1 ∗ a = a−1 ∗ a = e = H; a ∗ a−1 = a ∗ a−1 = e = H.

�àã¯ã⟨G

/H

, ∗⟩ ­ §¨¢ îâì ä ªâ®à-£àã¯®î £à㯨 G §  ­®à¬ «ì­®î¯÷¤£à㯮î H. � ¯à®æ¥á÷ ¤®¢¥¤¥­­ï ⥮६¨ 6.15 ¡ã«® ¯®ª § ­®, é® ­¥©-âà «ì­¨¬ ¥«¥¬¥­â®¬ ä ªâ®à-£à㯨 õ ­®à¬ «ì­¨© ¤÷«ì­¨ª H, §  直¬¯à®¢®¤ïâì ä ªâ®à¨§ æ÷î.

�«ï ¯à ªâ¨ç­®£® §­ å®¤¦¥­­ï ä ªâ®à-£à㯨⟨G

/H

, ∗⟩ ­¥®¡å÷¤­®:

• §­ ©â¨ ¨© ¢¨£«ï¤ ¬­®¦¨­¨ G/H

(ã ¡ £ âì®å ¢¨¯ ¤ª å ¤«ï æ쮣®§àãç­® § áâ®á®¢ã¢ â¨ ¬¥â®¤¨, ¢¨ª®à¨áâ ­÷ 㠯ਪ«. 6.44 { 6.46);

• § ä÷ªá㢠¢è¨ ¡ã¤ì-ïª¨å ¯à¥¤áâ ¢­¨ª÷¢ ã áã¬÷¦­¨å ª« á å a â  b,¢¨§­ ç¨â¨ ¢¨£«ï¤ áã¬÷¦­®£® ª« áã a ∗ b = a ∗ b (ãà å®¢ãîç¨ ¤®-¢÷«ì­÷áâì ¢¨¡®à㠯।áâ ¢­¨ª÷¢ a ∈ a, b ∈ b, ùå ¢¨¡¨à îâì â ª, 鮡¬ ªá¨¬ «ì­® á¯à®áâ¨â¨ ®¡ç¨á«¥­­ï a ∗ b â  a ∗ b);

161

Page 164: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

• § ä÷ªá㢠¢è¨ ¡ã¤ì-类£® ¯à¥¤áâ ¢­¨ª  ¢ áã¬÷¦­®¬ã ª« á÷ a, ¢¨-§­ ç¨â¨ ¢¨£«ï¤ ®¡¥à­¥­®£® áã¬÷¦­®£® ª« áã (a)−1 = a−1 (­ £ ¤ õ-¬®, é® ­¥©âà «ì­¨¬ ¥«¥¬¥­â®¬ ä ªâ®à-£à㯨 õ ­®à¬ «ì­¨© ¤÷«ì-­¨ª H, §  直¬ ¯à®¢®¤ïâì ä ªâ®à¨§ æ÷î).

�ਪ« ¤ 6.47. �¡ç¨á«¨¬® ä ªâ®à-£àã¯ã GLn

/SLn

. � ªâ®à-¬­®¦¨-­ã GLn

/SLn

¡ã«® §­ ©¤¥­® ¢ ¯à¨ª«. 6.44:

GLn

/SLn

= {Aa : a 6= 0},¤¥ Aa = {X ∈ GLn : |X| = a}, a 6= 0.

� áã¬÷¦­¨å ª« á å Aa1 â  Aa2 (a1, a2 6= 0) ¢¨¡¥à¥¬® â ª¨å ¯à¥¤áâ ¢-­¨ª÷¢:

a1 0 0 . . . 0 00 1 0 . . . 0 00 0 1 . . . 0 0. . . . . . . . . . . . . . . . . . .0 0 0 . . . 1 00 0 0 . . . 0 1

∈ Aa1 ,

a2 0 0 . . . 0 00 1 0 . . . 0 00 0 1 . . . 0 0. . . . . . . . . . . . . . . . . . .0 0 0 . . . 1 00 0 0 . . . 0 1

∈ Aa2 .

�«ï ¢¨¡à ­¨å ¯à¥¤áâ ¢­¨ª÷¢ ­¥¢ ¦ª® ®¡ç¨á«¨â¨ Aa1 ∗ Aa2 :

a1 0 0 . . . 00 1 0 . . . 00 0 1 . . . 0. . . . . . . . . . . . . . . .0 0 0 . . . 1

·

a2 0 0 . . . 00 1 0 . . . 00 0 1 . . . 0. . . . . . . . . . . . . . . .0 0 0 . . . 1

=

a1 · a2 0 0 . . . 00 1 0 . . . 00 0 1 . . . 0

. . . . . . . . . . . . . . . . . . .0 0 0 . . . 1

Aa1 ∗ Aa2 = {X ∈ GLn : |X| = a1 · a2} = Aa1·a2 .

�¥©âà «ì­¨¬ ¥«¥¬¥­â®¬ ã ä ªâ®à-£àã¯÷ GLn

/SLn

, ïª ÷ ¢ § £ «ì­®¬ã¢¨¯ ¤ªã, õ ­®à¬ «ì­¨© ¤÷«ì­¨ª SLn. � §­ ç¨¬®, é® ¢ æ쮬㠪®­â¥ªáâ÷SLn §àãç­® ஧£«ï¤ â¨ ïª áã¬÷¦­¨© ª« á, ¯®à®¤¦¥­¨© ®¤¨­¨ç­®î ¬ â-à¨æ¥î I { ­¥©âà «ì­¨¬ ¥«¥¬¥­â®¬ £à㯨 GLn.

� à¥èâ÷, ¤«ï áã¬÷¦­®£® ª« áã Aa ®¡ç¨á«¨¬® ®¡¥à­¥­¨©. �¨¡à ¢è¨¯à¥¤áâ ¢­¨ª 

a 0 0 . . . 00 1 0 . . . 00 0 1 . . . 0. . . . . . . . . . . . . . .0 0 0 . . . 1

∈ Aa,

162

Page 165: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.12. �®­ïââï ä ªâ®à-£à㯨

®âਬãõ¬®

(Aa)−1 =

a 0 0 . . . 00 1 0 . . . 00 0 1 . . . 0. . . . . . . . . . . . . . .0 0 0 . . . 1

−1

=

a−1 0 0 . . . 00 1 0 . . . 00 0 1 . . . 0

. . . . . . . . . . . . . . . . .0 0 0 . . . 1

= Aa−1 .

�⦥, ¤«ï ä ªâ®à-£à㯨 GLn

/SLn

¡÷­ à­  ®¯¥à æ÷ï «·» â  ®¡¥à­¥­¨©¥«¥¬¥­â ¢¨§­ ç îâì â ª÷ á¯÷¢¢÷¤­®è¥­­ï:

Aa1 · Aa2 = Aa1·a2 ; (6.14)(Aa)

−1 = Aa−1 . (6.15)

� £ ¤ õ¬®, é® ­¥©âà «ì­¨¬ ¥«¥¬¥­â®¬ ã ä ªâ®à-£àã¯÷ GLn

/SLn

, ïª ÷¢ § £ «ì­®¬ã ¢¨¯ ¤ªã, õ ­®à¬ «ì­¨© ¤÷«ì­¨ª SLn.

�¯÷¢¢÷¤­®è¥­­ï (6.14) ¢¨§­ ç õ ÷§®¬®àä­÷áâì ä ªâ®à-£à㯨 GLn

/SLnâ  ¬ã«ì⨯«÷ª â¨¢­®ù £à㯨 ¤÷©á­¨å ç¨á¥« R∗ § ÷§®¬®àä÷§¬®¬

f : GLn

/SLn

→ R∗, f(Aa) = a.

� ã¢ ¦¥­­ï 6.20. ö§®¬®àä­÷áâì GLn

/SLn

∼ R∗ â ª®¦ ¢¨¯«¨¢ õ §®á­®¢­®ù ⥮६¨ ¯à® £®¬®¬®àä÷§¬¨ £à㯠(¯÷¤à®§¤. 6.14).

� ã¢ ¦¥­­ï 6.21. �«ï ®âਬ ­­ï á¯÷¢¢÷¤­®è¥­ì (6.14), (6.15) ã áã-¬÷¦­¨å ª« á å ¡ã«® ®¡à ­® ¯à¥¤áâ ¢­¨ª÷¢ ᯥæ÷ «ì­®£® ¢¨£«ï¤ã (¤÷ £®-­ «ì­÷ ¬ âà¨æ÷). �à®â¥ æ÷ á¯÷¢¢÷¤­®è¥­­ï ¬®¦­  ¡ã«® ¡ ®âਬ â¨, ®¡¨à -îç¨ ¤®¢÷«ì­¨å ¯à¥¤áâ ¢­¨ª÷¢ ÷ ¤ «÷ ¢¨ª®à¨á⮢ãîç¨ ä®à¬ã«ã (6.6) ¤«ï¢¨§­ ç­¨ª  ¤®¡ãâªã ¬ âà¨æì.

�ਪ« ¤ 6.48. �¡ç¨á«¨¬® ä ªâ®à-£àã¯ã Sn

/An

. �­®¦¨­ã Sn

/An

¡ã-«® §­ ©¤¥­® ¢ ¯à¨ª«. 6.45:

Sn

/An

= {A0, A1},¤¥ A0 = An, A1 = Sn \ An.

�¨¡à ¢è¨ ¤®¢÷«ì­¨å ¯à¥¤áâ ¢­¨ª÷¢ c0 ∈ A0, c1 ∈ A1, ⮡⮠¢¨¡à ¢è¨¢ Sn ¤¥ïªã ¯ à­ã ¯÷¤áâ ­®¢ªã c0 â  ­¥¯ à­ã c1 (æ¥ ¬®¦­  §à®¡¨â¨ ¤«ï¡ã¤ì-类£® n ≥ 2), ®âਬãõ¬®:

c1 ◦ c1 ∈ A0, c0 ◦ c0 ∈ A0, c0 ◦ c1 ∈ A1, c1 ◦ c0 ∈ A1.

163

Page 166: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�⦥, ¬®¦¥¬® ¯®¡ã¤ã¢ â¨ â ¡«¨æî �¥«÷ ¤«ï ®¯¥à æ÷ù ã ä ªâ®à-£àã¯÷Sn

/An

(â ¡«. 6.6).�ï â ¡«¨æï ¢¨§­ ç õ ÷§®¬®àä­÷áâì ä ªâ®à-£à㯨 Sn

/An

â   ¤¨â¨¢­®ù£à㯨 Z2 § ÷§®¬®àä÷§¬®¬

f : Sn

/An→ Z2, f(A0) = 0, f(A1) = 1

(¤«ï ¤®¢¥¤¥­­ï ¤®áâ â­ì® ¯®à÷¢­ï⨠⠡«. 6.6 â  6.3).� ã¢ ¦¥­­ï 6.22. ö§®¬®àä­÷áâì Sn

/An∼ Z2 â ª®¦ ¬®¦­  ¤®¢¥áâ¨, ª®-

à¨áâãîç¨áì ®á­®¢­®î ⥮६®î ¯à® £®¬®¬®àä÷§¬¨ £à㯠(¯÷¤à®§¤. 6.14).

� ¡«¨æï 6.6. � ¡«¨æï �¥«÷ ¤«ï ä ªâ®à-£à㯨 Sn/An

◦ A0 A1

A0 A0 A1

A1 A1 A0

�ਪ« ¤ 6.49. �¡ç¨á«¨¬® ä ªâ®à-£àã¯ã Z/nZ (n ∈ N). �­®¦¨­ã

Z/nZ ¡ã«® §­ ©¤¥­® ¢ ¯à¨ª«. 6.46:

Z/nZ = Zn = {0, 1, . . . , k, . . . , n− 1}, ¤¥ k = {km : m ∈ Z}.

�¯¥à æ÷ï ã ä ªâ®à-£àã¯÷ Z/nZ ¢¨§­ ç õâìáï á¯÷¢¢÷¤­®è¥­­ï¬ (6.13),

瘟 ¤«ï ¤ ­®£® ¢¨¯ ¤ªã ¬ õ ¢¨£«ï¤

a + b = a + b.

�⦥, ä ªâ®à-£à㯠 Z/nZ §¡÷£ õâìáï §  ¤¨â¨¢­®î £àã¯®î ª« á÷¢ «¨è-

ª÷¢ Zn (¯÷¤à®§¤. 6.4.2):Z

/nZ = Zn.

6.13. �®¬®¬®àä÷§¬¨ £àã¯: ⥮६¨ ¯à® ï¤à®â  ®¡à § £®¬®¬®àä÷§¬ã

�த®¢¦¨¬® ¢¨¢ç¥­­ï £®¬®¬®àä­¨å ¢÷¤®¡à ¦¥­ì £àã¯, ஧¯®ç â¥ ¢¯÷¤à®§¤. 6.6.

164

Page 167: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.13. �®¬®¬®àä÷§¬¨ £àã¯: ⥮६¨ ¯à® ï¤à® â  ®¡à § £®¬®¬®àä÷§¬ã

�⦥, ã æ쮬㠯÷¤à®§¤÷«÷ ¯à æ⨬¥¬® § £à㯠¬¨ 〈G1, ∗〉 (­¥©â-à «ì­¨© ¥«¥¬¥­â e1) â  〈G2, ~〉 (­¥©âà «ì­¨© ¥«¥¬¥­â e2), ¬÷¦ 直¬¨¢áâ ­®¢«¥­® £®¬®¬®àä÷§¬ f : G1 → G2.

�§­ ç¥­­ï 6.18. �¤à®¬ £®¬®¬®àä÷§¬ã f : G1 → G2 ­ §¨¢ îâì ¬­®-¦¨­ã Kerf ⊂ G1, é® ¬÷áâ¨âì â÷ ÷ â÷«ìª¨ â÷ x ∈ G1, ¤«ï 直å f(x) = e2:

Kerf = {x ∈ G1 : f(x) = e2}.� £ ¤ã¢ ­­ï. �¡à §®¬ £®¬®¬®àä÷§¬ã (ïª ÷ ¡ã¤ì-类£® ÷­è®£® ¢÷-

¤®¡à ¦¥­­ï) f : G1 → G2 ­ §¨¢ îâì ¬­®¦¨­ã Imf ⊂ G2, é® áª« ¤ õâìáï§ ¥«¥¬¥­â÷¢ f(x) (x ∈ G1):

Imf = {f(x) : x ∈ G1}.� §­ ç¨¬®, é® ï¤à® £®¬®¬®àä÷§¬ã § ¢¦¤¨ ¬÷áâ¨âì ¯à¨­ ©¬­÷ ®¤¨­

¥«¥¬¥­â { e1 (­¥©âà «ì­¨© ¥«¥¬¥­â £à㯨 G1), ®áª÷«ìª¨, §  ⥮६®î 6.8,f(e1) = e2. �¤à® Kerf , é® ¬÷áâ¨âì «¨è¥ ®¤¨­ ¥«¥¬¥­â (Kerf = {e1}),­ §¨¢ îâì âਢ÷ «ì­¨¬.

�ਪ« ¤ 6.50. 1. �®§£«ï­¥¬® ¢÷¤®¡à ¦¥­­ïf : R→ R∗, f(a) = 2a.

�¥ ¢÷¤®¡à ¦¥­­ï õ £®¬®¬®àä÷§¬®¬ § £à㯨 〈R, +〉 (­¥©âà «ì­¨©e1 = 0) ¢ £àã¯ã 〈R∗, ·〉 (­¥©âà «ì­¨© e2 = 1). �¡ç¨á«¨¬® ©®£® ï¤à® â ®¡à §:

Kerf = {x ∈ R : 2x = 1} = {0};Imf = {2x : x ∈ R} = (0, +∞).

�⦥, ï¤à® Kerf âਢ÷ «ì­¥.2. �®§£«ï­¥¬® ¢÷¤®¡à ¦¥­­ï

f : R→ {z ∈ C : |z| = 1}, f(x) = eix

(âãâ e ≈ 2,718 ¯®§­ ç õ ®á­®¢ã ­ âãà «ì­®£® «®£ à¨ä¬ ). �¥ ¢÷¤®¡à -¦¥­­ï õ £®¬®¬®àä÷§¬®¬ § £à㯨 〈R, +〉 (­¥©âà «ì­¨© e1 = 0) ã £àã¯ã〈{z ∈ C : |z| = 1}, ·〉 (­¥©âà «ì­¨© e2 = 1). �¡ç¨á«¨¬® ©®£® ï¤à® â  ®¡-à §:

Kerf = {x ∈ R : eix = 1} = {x = 2pk : k ∈ Z};Imf = {eix : x ∈ R} = {z ∈ C : |z| = 1}.

�⦥, ï¤à® Kerf ­¥ õ âਢ÷ «ì­¨¬.

165

Page 168: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

� ï¤à®¬ â  ®¡à §®¬ ¯®¢'易­® ¡ £ â® æ÷ª ¢¨å ¢« á⨢®á⥩ £®¬®¬®à-ä÷§¬÷¢ £àã¯. �®§£«ï­¥¬® ¤¥ïª÷ § ­¨å.

�¥®à¥¬  6.16. �®¬®¬®àä÷§¬ f : G1 → G2 õ ¬®­®¬®àä÷§¬®¬ ⮤÷ ÷â÷«ìª¨ ⮤÷, ª®«¨ ï¤à® Kerf âਢ÷ «ì­¥.

�®¢¥¤¥­­ï. 1. �¥å © f { ¬®­®¬®àä÷§¬. �®¤÷ âਢ÷ «ì­÷áâì ï¤à  ¢÷¤-ࠧ㠢¨¯«¨¢ õ § ¢¨§­ ç¥­­ï ÷­'õªâ¨¢­®áâ÷:

(x ∈ Kerf ) ⇒ (f(x) = e2) ⇒ (x = e1),

®áª÷«ìª¨ f(e1) = e2.2. �¥å © Kerf { âਢ÷ «ì­¥. � ä÷ªá㢠¢è¨ ¤®¢÷«ì­÷ x1, x2 ∈ G1 ÷ ¯à¨-

¯ãá⨢è¨, é® f(x1) = f(x2), ®âਬãõ¬®

(f(x1) = f(x2)) ⇒ (f(x1) ~ (f(x2))−1 = e2) ⇒

⇒ (f(x1 ∗ x−12 ) = e2) ⇒ (x1 ∗ x−1

2 ∈ Kerf ).

�⦥, x1 ∗x−12 ∈ Kerf . �«¥ ï¤à® Kerf { âਢ÷ «ì­¥, ⮡⮠Kerf = {e1},

§¢÷¤ª¨ ®âਬãõ¬®(x1 ∗ x−1

2 = e1) ⇒ (x1 = x2).

�⦥, ¤«ï x1, x2 ∈ G1 ¬ õ ¬÷áæ¥ «®£÷ç­¨© ­ á«÷¤®ª

(f(x1) = f(x2)) ⇒ (x1 = x2),

é® ¢¨§­ ç õ ÷­'õªâ¨¢­÷áâì ¢÷¤®¡à ¦¥­­ï f .

�ਪ« ¤ 6.51. �®§£«ï­¥¬® £®¬®¬®àä÷§¬¨ § ¯à¨ª«. 6.50.1. �÷¤®¡à ¦¥­­ï

f : R→ R∗, f(a) = 2a

õ £®¬®¬®àä÷§¬®¬ § £à㯨 〈R, +〉 ã £àã¯ã 〈R∗, ·〉. �¤à® æ쮣® £®¬®¬®àä÷§¬ãKerf = {0} âਢ÷ «ì­¥, ÷ £®¬®¬®àä÷§¬ f õ ¬®­®¬®àä÷§¬®¬.

2. �÷¤®¡à ¦¥­­ï

f : R→ {z ∈ C : |z| = 1}, f(x) = eix

õ £®¬®¬®àä÷§¬®¬ § £à㯨 〈R, +〉 ã £àã¯ã 〈{z ∈ C : |z| = 1}, ·〉. �®£® ï¤-à® Kerf = {x = 2pk : k ∈ Z} ­¥ õ âਢ÷ «ì­¨¬, ÷ £®¬®¬®àä÷§¬ f ­¥ õ¬®­®¬®àä÷§¬®¬.

166

Page 169: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.13. �®¬®¬®àä÷§¬¨ £àã¯: ⥮६¨ ¯à® ï¤à® â  ®¡à § £®¬®¬®àä÷§¬ã

�¥®à¥¬  6.17. �¥å © f : G1 → G2 { £®¬®¬®àä÷§¬ ¬÷¦ £à㯠¬¨〈G1, ∗〉 â  〈G2, ~〉. �®¤÷:

1) ï¤à® Kerf õ ­®à¬ «ì­¨¬ ¤÷«ì­¨ª®¬ ã G1;2) ®¡à § Imf õ ¯÷¤£à㯮î ã G2.

�®¢¥¤¥­­ï. 1. �®§£«ï­¥¬® ï¤à® Kerf ⊂ G1. �¯®ç âªã ¤®¢¥¤¥¬®, é®Kerf õ ¯÷¤£àã¯®î £à㯨 〈G1, ∗〉:

1) ¬­®¦¨­  Kerf ­¥¯®à®¦­ï, ®áª÷«ìª¨ Kerf 3 e1;2) ¤«ï ¤®¢÷«ì­¨å x, y ∈ Kerf ®âਬãõ¬®

f(x ∗ y−1) = f(x) ~ f(y)−1 = e2 ~ e−12 = e2,

⮡⮠x ∗ y−1 ∈ Kerf .�⦥, ¢¨ª®­ãîâìáï 㬮¢¨ ⥮६¨ 6.7 § ãà å㢠­­ï¬ ­ á«÷¤ªã, ⮡â®

Kerf õ ¯÷¤£àã¯®î £à㯨 〈G1, ∗〉.�®¢¥¤¥¬®, é® Kerf õ ­®à¬ «ì­®î ¯÷¤£àã¯®î £à㯨 〈G1, ∗〉. � ä÷ªáã-

¢ ¢è¨ ¤®¢÷«ì­÷ x ∈ G1, a ∈ Kerf , ®âਬãõ¬®

f(x−1 ∗ a ∗ x) = (f(x))−1 ~ f(a) ~ f(x) = (f(x))−1 ~ e2 ~ f(x) = e2,

⮡⮠x−1∗a∗x ∈ Kerf . �⦥, ¤«ï ¯÷¤£à㯨 Kerf ⊂ G1 ¢¨ª®­ãõâìáï 㬮¢ (6.12) ⥮६¨ 6.14, ⮡⮠Kerf õ ­®à¬ «ì­¨¬ ¤÷«ì­¨ª®¬ £à㯨 〈G1, ∗〉.

2. �®§£«ï­¥¬® ®¡à § Imf ⊂ G2 ¢÷¤®¡à ¦¥­­ï f : G1 → G2. �¥à¥¢÷ਬ®¢¨ª®­ ­­ï 㬮¢ ⥮६¨ 6.7 (ãà å®¢ãîç¨ ùù ­ á«÷¤®ª):

1) ¬­®¦¨­  Imf ­¥¯®à®¦­ï, ®áª÷«ìª¨ Imf 3 e2 = f(e1);2) § ä÷ªáãõ¬® ¤®¢÷«ì­÷ y1, y2 ∈ Imf . �à å®¢ãîç¨ ¢¨§­ ç¥­­ï ®¡à §ã

¢÷¤®¡à ¦¥­­ï ¢¢ ¦ â¨¬¥¬®, é® y1 = f(x1), y2 = f(x2), ¤¥ x1, x2 ∈ G1.�¥à¥¢÷ਬ® ¢¨ª®­ ­­ï 㬮¢¨ (6.9):

y1 ~ y−12 = f(x1) ~ (f(x2))

−1 = f(x1 ∗ x−12 ) ∈ Imf .

�⦥, ¢¨ª®­ãîâìáï 㬮¢¨ ⥮६¨ 6.7 § ãà å㢠­­ï¬ ­ á«÷¤ªã, ⮡â®Imf õ ¯÷¤£àã¯®î £à㯨 〈G2, ~〉.

�ਪ« ¤ 6.52. �®§£«ï­¥¬® £à㯨 〈R, +〉 â  〈C∗, ·〉, ¤¥ C∗ = C \ {0}.�÷¤®¡à ¦¥­­ï

f : R→ C∗, f(x) = eix

167

Page 170: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

¢áâ ­®¢«îõ £®¬®¬®àä÷§¬ ¬÷¦ ¤ ­¨¬¨ £à㯠¬¨. �¨¯¨è¥¬® ï¤à® â  ®¡à §¢÷¤®¡à ¦¥­­ï f :

Kerf = {x ∈ R : eix = 1} = {x = 2pk : k ∈ Z};Imf = {eix : x ∈ R} = {z ∈ C : |z| = 1}.

�¥£ª® ¯¥à¥¢÷à¨â¨, é® ï¤à® Kerf = {x = 2pk : k ∈ Z} ¤÷©á­® õ ­®à-¬ «ì­®î ¯÷¤£àã¯®î ¢ 〈R, +〉, ®¡à § Imf = {z ∈ C : |z| = 1} õ ¯÷¤£à㯮î£à㯨 〈C∗, ·〉.

�ਪ« ¤ 6.53. �®§£«ï­¥¬® £®¬®¬®àä÷§¬ ¬÷¦ ¬ã«ì⨯«÷ª â¨¢­¨¬¨£à㯠¬¨ GLn â  R∗:

f : GLn → R∗, f(A) = |A|.

�¡ç¨á«¨¬® ï¤à® â  ®¡à § ¢÷¤®¡à ¦¥­­ï f :

Kerf = {A ∈ GLn : |A| = 1} = SLn;

Imf = {|A| : A ∈ GLn} = R∗.

�⦥, ï¤à® Kerf = SLn ¤÷©á­® õ ­®à¬ «ì­®î ¯÷¤£àã¯®î £à㯨 GLn,®¡à § Imf õ âਢ÷ «ì­®î ¯÷¤£àã¯®î £à㯨 R∗.

� ¯à¨ª«. 6.52 â  6.53 ®¡à § £®¬®¬®àä÷§¬ã f : G1 → G2 ¢¨ï¢¨¢áï ­®à-¬ «ì­®î ¯÷¤£àã¯®î ¢ 〈G2, ~〉. �à®â¥ ¢ § £ «ì­®¬ã ¢¨¯ ¤ªã ®¡à § Imf

{ ¯÷¤£à㯠 〈G2,~〉 ÷, ïª ¯®ª §ãõ ­ áâ㯭¨© ¯à¨ª« ¤, ¬®¦¥ ­¥ ¡ã⨠­®à-¬ «ì­¨¬ ¤÷«ì­¨ª®¬.

�ਪ« ¤ 6.54. �®§£«ï­¥¬® ¬ã«ì⨯«÷ª â¨¢­ã £àã¯ã G ­¥¢¨à®¤¦¥-­¨å ­¨¦­÷å âਪãâ­¨å ¬ âà¨æì ஧¬÷஬ 2× 2:

G =

{(a1 0b a2

): a1a2 6= 0

}.

�®§£«ï­¥¬® ¢÷¤®¡à ¦¥­­ï

f : G → G, f :

(a1 0b a2

)7→

(a1 00 a2

).

168

Page 171: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.13. �®¬®¬®àä÷§¬¨ £àã¯: ⥮६¨ ¯à® ï¤à® â  ®¡à § £®¬®¬®àä÷§¬ã

�÷¤®¡à ¦¥­­ï f õ £®¬®¬®àä÷§¬®¬ ÷§ £à㯨 〈G, ·〉 ã âã ᠬ㠣àã-¯ã 〈G, ·〉:

(a1 0b a2

)·(

c1 0d c2

)=

(a1c1 0

bc1 + da2 a2c2

);

f :

(a1c1 0

bc1 + da2 a2c2

)7→

(a1c1 00 a2c2

)=

(a1 00 a2

)·(

c1 00 c2

).

�¡à §®¬ ãáâ ­®¢«¥­®£® £®¬®¬®àä÷§¬ã, ®ç¥¢¨¤­®, õ ¬­®¦¨­  ­¥¢¨à®¤-¦¥­¨å ¤÷ £®­ «ì­¨å ¬ âà¨æì ஧¬÷஬ 2× 2:

Imf =

{(a1 00 a2

): a1a2 6= 0

}.

�¥£ª® ¯¥à¥¢÷à¨â¨, ª®à¨áâãîç¨áì ⥮६®î 6.14, é® Imf ­¥ õ ­®à¬ «ì-­¨¬ ¤÷«ì­¨ª®¬ (å®ç ÷ õ ¯÷¤£à㯮î) ¢ 〈G, ·〉:

(1 01 1

)∈ G,

(1 00 2

)∈ Imf ,

(1 01 1

)−1

·(

1 00 2

)·(

1 01 1

)=

(1 01 2

)/∈ Imf .

�¯à ¢  6.20. �®à¨áâãîç¨áì ⥮६®î 6.14, ¯¥à¥¢÷à¨â¨, é® ï¤à®

Kerf =

{(1 0b 1

): b ∈ R

}

¤÷©á­® õ ­®à¬ «ì­¨¬ ¤÷«ì­¨ª®¬ ¢ 〈G, ·〉,  «¥ ­¥ õ ­®à¬ «ì­¨¬ ¤÷«ì­¨ª®¬(å®ç ÷ õ ¯÷¤£à㯮î) ¢ GL2.

� áâ㯭¨© ¯à¨ª« ¤ ¤ã¦¥ ¢ ¦«¨¢¨©, ®áª÷«ìª¨, ã ¯¥¢­®¬ã ஧ã¬÷­­÷,¤ õ ¯®¢­¨© ®¯¨á ãá÷å ­®à¬ «ì­¨å ¤÷«ì­¨ª÷¢ ¤ ­®ù £à㯨.

�ਪ« ¤ 6.55. �¥å © 〈G, ∗〉 { ¤®¢÷«ì­  £à㯠 § ­¥©âà «ì­¨¬ ¥«¥¬¥­-⮬ e ∈ G, H C G. �®§£«ï­¥¬® ¢÷¤®¡à ¦¥­­ï

r : G → G/H

, r(a) = a.

169

Page 172: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�¥£ª® ¯¥à¥¢÷à¨â¨, é® r õ £®¬®¬®àä÷§¬®¬ § £à㯨 〈G, ∗〉 ã ä ªâ®à-£àã¯ã G

/H

. �÷©á­®, §  ¢¨§­ ç¥­­ï¬ ®¯¥à æ÷ù ­  ä ªâ®à-£àã¯÷ (á¯÷¢¢÷¤­®-襭­ï (6.13)), ®âਬãõ¬®

r(x ∗ y) = x ∗ y = x ∗ y = r(x) ∗ r(y).

�¨§­ ç¥­¨© £®¬®¬®àä÷§¬ r ­ §¨¢ îâì ¯à¨à®¤­¨¬,  ¡® ª ­®­÷ç­¨¬.�¡ç¨á«¨¬® ï¤à® â  ®¡à § ¯à¨à®¤­®£® £®¬®¬®àä÷§¬ã r:

Kerr = {x ∈ G : r(x) = e = H} = {x ∈ G : x = e} = {x ∈ G : x ∈ H} = H;

Imr = {r(x) : x ∈ G} = {x : x ∈ G} = G/H

.

�⦥, ï¤à® Kerr §¡÷£ õâìáï § ­®à¬ «ì­¨¬ ¤÷«ì­¨ª®¬ H. � ª¨¬ 稭®¬,¡ã¤ì-直© ­®à¬ «ì­¨© ¤÷«ì­¨ª H £à㯨 〈G, ∗〉 õ ï¤à®¬ ¤¥ïª®£® £®¬®¬®à-ä÷§¬ã (¯à¨­ ©¬­÷, § ï¤à®¬ ¢÷¤¯®¢÷¤­®£® ¯à¨à®¤­®£® £®¬®¬®àä÷§¬ã r),¢¨§­ ç¥­®£® ­  〈G, ∗〉.

� §­ ç¨¬®, é® ®¡à § Imr ¢÷¤®¡à ¦¥­­ï r : G → G/H

§¡÷£ õâìáï §ä ªâ®à-£à㯮î G

/H

, ⮡⮠¯à¨à®¤­¨© £®¬®¬®àä÷§¬ õ ¥¯÷¬®àä÷§¬®¬.

6.14. �¥®à¥¬  ¯à® £®¬®¬®àä÷§¬¨ £àã¯� æ쮬㠯÷¤à®§¤÷«÷ ஧£«ï­¥¬® ¢ ¦«¨¢ã ⥮६ã, 猪 ¢áâ ­®¢«îõ

§¢'燐ª ¬÷¦ £®¬®¬®àä÷§¬ ¬¨ £àã¯, ­®à¬ «ì­¨¬¨ ¤÷«ì­¨ª ¬¨ ÷ ä ªâ®à-£à㯠¬¨.

�¥å © f : G1 → G2 { £®¬®¬®àä÷§¬ ¬÷¦ £à㯠¬¨ 〈G1, ∗〉 (­¥©âà «ì­¨©¥«¥¬¥­â e1) â  〈G2, ~〉 (­¥©âà «ì­¨© ¥«¥¬¥­â e2). � £ ¤ õ¬®:

• ï¤à® Kerf £®¬®¬®àä÷§¬ã f õ ­®à¬ «ì­¨¬ ¤÷«ì­¨ª®¬ ã £àã¯÷ 〈G1, ∗〉,  ®â¦¥, ¬®¦­  ஧£«ï¤ â¨ ä ªâ®à-£àã¯ã G1

/Kerf

;• ®¡à § Imf £®¬®¬®àä÷§¬ã f õ ¯÷¤£àã¯®î £à㯨 〈G2, ~〉,   ®â¦¥, ¬®¦-

­  ஧£«ï¤ â¨ Imf ïª £àã¯ã 〈Imf ,~〉.

�¥®à¥¬  6.18 (®á­®¢­  ⥮६  ¯à® £®¬®¬®àä÷§¬¨ £àã¯).1. � ªâ®à-£à㯠 G1

/Kerf

§  ï¤à®¬ Kerf ÷§®¬®àä­  ®¡à §ã Imf :

G1

/Kerf

∼ Imf ;

170

Page 173: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.14. �¥®à¥¬  ¯à® £®¬®¬®àä÷§¬¨ £àã¯

2. öá­ãõ â ª¨© ÷§®¬®àä÷§¬ f : G1

/Kerf

→ Imf , é®

f ◦ r = f, (6.16)

¤¥ r : G1 → G1

/Kerf

{ ¯à¨à®¤­¨© £®¬®¬®àä÷§¬ (∀x ∈ G1 : r(x) = x).

�®¢¥¤¥­­ï. � ¤ ¬® ¢÷¤®¡à ¦¥­­ï f : G1

/Kerf

→ Imf â ª¨¬ á¯÷¢¢÷¤­®-襭­ï¬:

f(x) = f(x), x ∈ G1. (6.17)�®¢¥¤¥¬®, é® ¢÷¤®¡à ¦¥­­ï f : G1

/Kerf

→ Imf ¢¨§­ ç¥­® ª®à¥ªâ­® ÷¢áâ ­®¢«îõ è㪠­¨© ÷§®¬®àä÷§¬ ¬÷¦ £à㯠¬¨ G1

/Kerf

â  Imf .1. �¨§­ ç¥­­ï ¢÷¤®¡à ¦¥­­ï f : G1

/Kerf

→ Imf ç¥à¥§ á¯÷¢¢÷¤­®è¥­­ï(6.17) ¯®âॡãõ ®¡óàã­â㢠­­ï ª®à¥ªâ­®áâ÷, ⮡⮠­¥§ «¥¦­®áâ÷ §­ ç¥­­ïf(x) = f(x) ¢÷¤ ¢¨¡®à㠯।áâ ¢­¨ª  x ∈ x.

�¥å © x1 = x2 (x1, x2 ∈ G1), ⮡⮠¥«¥¬¥­â¨ x1 â  x2 ­ «¥¦ âì ®¤-­®¬ã áã¬÷¦­®¬ã ª« áã. �à å®¢ãîç¨, é® ­®à¬ «ì­¨¬ ¤÷«ì­¨ª®¬ õ Kerf ,®âਬãõ¬®

f(x1) ~ (f(x2))−1 = f(x1 ∗ x−1

2 ) = e2,

®áª÷«ìª¨, §  «¥¬®î 6.9, x1 ∗ x−12 ∈ Kerf .

�⦥, f(x1) ~ (f(x2))−1 = e2, §¢÷¤ª¨ ®¤à §ã ¢¨¯«¨¢ õ à÷¢­÷áâì

f(x1) = f(x2).� ª¨¬ 稭®¬,

f(x1) = f(x2) ¯à¨ x1 = x2, x1, x2 ∈ G1,

⮡⮠¢÷¤®¡à ¦¥­­ï f : G1

/Kerf

→ Imf ª®à¥ªâ­® ¢¨§­ ç õâìáï á¯÷¢¢÷¤­®-襭­ï¬ (6.17).

2. �®¢¥¤¥¬®, é® ¢÷¤®¡à ¦¥­­ï f : G1

/Kerf

→ Imf õ £®¬®¬®àä÷§¬®¬¬÷¦ £à㯠¬¨ G1

/Kerf

â  Imf (­ £ ¤ õ¬®, é® Imf ஧£«ï¤ õâìáï ïª ¯÷¤-£à㯠 £à㯨 〈G2,~〉, â®¡â® ïª £à㯠 〈Imf , ~〉).

�«ï ¤®¢÷«ì­¨å x1, x2 ∈ G1

/Kerf

(x1, x2 ∈ G1) ®âਬãõ¬®

f(x1 ∗ x2) = f(x1 ∗ x2) = f(x1 ∗ x2) = f(x1) ~ f(x2) = f(x1) ~ f(x2).

�⦥,f(x1 ∗ x2) = f(x1) ~ f(x2),

171

Page 174: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

⮡⮠¢÷¤®¡à ¦¥­­ï f : G1

/Kerf

→ Imf õ £®¬®¬®àä÷§¬®¬ ¬÷¦ £à㯠¬¨G1

/Kerf

â  Imf .3. �®¢¥¤¥¬®, é® £®¬®¬®àä÷§¬ f : G1

/Kerf

→ Imf õ ¬®­®¬®àä÷§¬®¬.�¥å © x ∈ Kerf, ⮡⮠x ∈ G1, f(x) = f(x) = e2.�à å®¢ãîç¨, é® ä ªâ®à¨§ãõ¬® G1 §  ï¤à®¬ Kerf ÷ ­¥©âà «ì­¨¬ ¥«¥-

¬¥­â®¬ ã ä ªâ®à-£àã¯÷ G1

/Kerf

õ ­®à¬ «ì­¨© ¤÷«ì­¨ª Kerf = e1, ®âਬã-õ¬®

(f(x) = e2) ⇒ (x ∈ Kerf ) ⇒ (x = e1 = Kerf ).

�⦥, õ¤¨­¨¬ ¥«¥¬¥­â®¬ x, é® ­ «¥¦¨âì ï¤àã Kerf, õ áã¬÷¦­¨© ª« áKerf = e1 { ­¥©âà «ì­¨© ¥«¥¬¥­â ä ªâ®à-£à㯨 G1

/Kerf

:

Kerf ={

e1

}= { Kerf︸︷︷︸

e1

}.

�¥ ®§­ ç õ âਢ÷ «ì­÷áâì ï¤à  £®¬®¬®àä÷§¬ã f,   ®â¦¥, §  ⥮à¥-¬®î 6.16, £®¬®¬®àä÷§¬ f õ ¬®­®¬®àä÷§¬®¬.

4. �®¢¥¤¥¬®, é® £®¬®¬®àä÷§¬ f : G1

/Kerf

→ Imf õ ¥¯÷¬®àä÷§¬®¬.� ä÷ªáãõ¬® ¤®¢÷«ì­¨© ¥«¥¬¥­â y ∈ Imf . �à å®¢ãîç¨ ¢¨§­ ç¥­­ï ®¡-

ࠧ㠢÷¤®¡à ¦¥­­ï ¢¢ ¦ â¨¬¥¬®, é® y = f(x), ¤¥ x ∈ G1. �  ¢¨§­ ç¥­­ï¬¢÷¤®¡à ¦¥­­ï f (á¯÷¢¢÷¤­®è¥­­ï (6.17)) ®âਬãõ¬®

y = f(x) = f(x), x ∈ G1

/Kerf

,

⮡⮠y ∈ Imf. �⦥, ¤®¢¥¤¥­® áîà'õªâ¨¢­÷áâì f : G1

/Kerf

→ Imf , ⮡⮣®¬®¬®àä÷§¬ f õ ¥¯÷¬®àä÷§¬®¬.

5. �®¢¥¤¥¬® á¯÷¢¢÷¤­®è¥­­ï (6.16).�«ï ¤®¢÷«ì­®£® x ∈ G1, §  á¯÷¢¢÷¤­®è¥­­ï¬ (6.17), ¬ õ¬®

f(x) = f(x) = f(r(x)) = (f ◦ r)(x),

é® ¤®¢®¤¨âì à÷¢­÷áâì (6.16).�⦥, ¢÷¤®¡à ¦¥­­ï f : G1

/Kerf

→ Imf , ¢¨§­ ç¥­¥ á¯÷¢¢÷¤­®è¥­-­ï¬ (6.17), õ ¬®­®- â  ¥¯÷¬®àä÷§¬®¬ (  ®â¦¥, © ÷§®¬®àä÷§¬®¬), 直© § -¤®¢®«ì­ïõ 㬮¢ã (6.16).

�¢¥à¤¦¥­­ï ⥮६¨ ¯®¢­÷áâî ¤®¢¥¤¥­®.

172

Page 175: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.14. �¥®à¥¬  ¯à® £®¬®¬®àä÷§¬¨ £àã¯

�ਪ« ¤ 6.56. 1. �®§£«ï­¥¬® ä ªâ®à-£àã¯ã GLn

/SLn

. �¥£ª® ¯¥à¥ª®-­ â¨áï, é® ­®à¬ «ì­¨© ¤÷«ì­¨ª

SLn = {A ∈ GLn : |A| = 1}

õ ï¤à®¬ £®¬®¬®àä÷§¬ã f(A) = |A|, 直© ¤÷õ § GLn ¤® ¬ã«ì⨯«÷ª â¨¢­®ù£à㯨 ¤÷©á­¨å ç¨á¥«:

f : GLn → R∗, f(A) = |A|, Kerf = {A ∈ GLn : |A| = 1} = SLn.

�¡ç¨á«¨¬® ®¡à § £®¬®¬®àä÷§¬ã f . �à å®¢ãîç¨, é® ¤«ï ¡ã¤ì-类£®a 6= 0 ÷á­ãõ ¯à¨­ ©¬­÷ ®¤­  ¬ âà¨æï A ∈ GLn § ¢¨§­ ç­¨ª®¬ |A| = a,®âਬãõ¬®

Imf = {|A| : A ∈ GLn} = R∗.

�⦥, §  ⥮६®î 6.18 ¯à® £®¬®¬®àä÷§¬¨ £àã¯, ®âਬãõ¬® ÷§®¬®àä-­÷áâì

GLn

/SLn

∼ R∗.� ª¨¬ 稭®¬, ¯÷¤â¢¥à¤¦¥­® १ã«ìâ â, ®âਬ ­¨© ᪫ ¤­÷訬¨ ®¡-

ç¨á«¥­­ï¬¨ ¢ ¯à¨ª«. 6.44.2. �®§£«ï­¥¬® ä ªâ®à-£àã¯ã Sn

/An

, ®¡¬¥¦¨¢è¨áì ­¥âਢ÷ «ì­¨¬ ¢¨-¯ ¤ª®¬ n ≥ 2. �¥£ª® ¯¥à¥ª®­ â¨áï, é® ­®à¬ «ì­¨© ¤÷«ì­¨ª

An = {c ∈ Sn : k(c) = 0}

õ ï¤à®¬ £®¬®¬®àä÷§¬ã k(c), é® ¤÷õ § Sn ã £àã¯ã 〈{0, 1},⊕〉:

k : Sn → {0, 1}, k(c) =

{0, ïªé® c ¯ à­ ,

1, ïªé® c ­¥¯ à­ ,Kerk = An.

�¡ç¨á«¨¬® ®¡à § £®¬®¬®àä÷§¬ã k:

Imk = {k(c) : c ∈ Sn} = {0, 1}.

(¯à¨ n ≥ 2 ¬­®¦¨­  Sn ¬÷áâ¨âì ¯à¨­ ©¬­÷ ®¤­ã ¯ à­ã â  ¯à¨­ ©¬­÷ ®¤­ã­¥¯ à­ã ¯÷¤áâ ­®¢ªã). �⦥, §  ⥮६®î 6.18 ¯à® £®¬®¬®àä÷§¬¨ £àã¯,®âਬãõ¬® ÷§®¬®àä­÷áâì

Sn

/An∼ 〈{0, 1},⊕〉 .

173

Page 176: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�à å®¢ãîç¨ ®ç¥¢¨¤­ã ÷§®¬®àä­÷áâì

〈{0, 1},⊕〉 ∼ Z2, 0 7→ 0, 1 7→ 1,

¤÷áâ ­¥¬®Sn

/An∼ 〈{0, 1},⊕〉 ∼ Z2.

�⦥, ¯÷¤â¢¥à¤¦¥­® १ã«ìâ â, ®âਬ ­¨© ᪫ ¤­÷訬¨ ®¡ç¨á«¥­­ï-¬¨ ¢ ¯à¨ª«. 6.45.

3. �®§£«ï­¥¬® ä ªâ®à-£àã¯ã ¬ã«ì⨯«÷ª â¨¢­®ù £à㯨 C∗ = C \ {0}§  ­®à¬ «ì­®î ¯÷¤£à㯮î {z ∈ C∗ : |z| = 1}. �¥£ª® ¯¥à¥ª®­ â¨áï, é®­®à¬ «ì­¨© ¤÷«ì­¨ª õ ï¤à®¬ £®¬®¬®àä÷§¬ã f(z) = |z|, 直© ¤÷õ § C∗ ¢¬ã«ì⨯«÷ª â¨¢­ã £àã¯ã ¤÷©á­¨å ç¨á¥«:

f : C∗ → R∗, f(z) = |z|, Kerf = {z ∈ C∗ : |z| = 1}.

�¡ç¨á«¨¬® ®¡à § £®¬®¬®àä÷§¬ã f :

Imf = {|z| : z ∈ C∗} = (0, +∞).

�⦥, §  ⥮६®î 6.18 ¯à® £®¬®¬®àä÷§¬¨ £àã¯, ®¤¥à¦¨¬® ÷§®¬®àä-­÷áâì

C∗/{z∈C∗:|z|=1} ∼ 〈(0, +∞), ·〉 .

4. �®§£«ï­¥¬® ä ªâ®à-£àã¯ã ¬ã«ì⨯«÷ª â¨¢­®ù £à㯨 C∗ §  ­®à¬ «ì-­®î ¯÷¤£à㯮î (0, +∞). �¥£ª® ¯¥à¥ª®­ â¨áï, é® ­®à¬ «ì­¨© ¤÷«ì­¨ª õï¤à®¬ £®¬®¬®àä÷§¬ã f(z) = z

|z| , 直© ¤÷õ § C∗ ¢ ¬ã«ì⨯«÷ª â¨¢­ã £àã¯ã{z ∈ C∗ : |z| = 1}:

f : C∗ → {z ∈ C∗ : |z| = 1}, f(z) =z

|z| , Kerf = (0, +∞).

�¡ç¨á«¨¬® ®¡à § £®¬®¬®àä÷§¬ã f :

Imf =

{z

|z| : z ∈ C∗} = {z ∈ C∗ : |z| = 1

}.

�⦥, §  ⥮६®î 6.18 ¯à® £®¬®¬®àä÷§¬¨ £àã¯, ®âਬãõ¬® ÷§®¬®àä­÷áâì

C∗/(0,+∞)

∼ 〈{z ∈ C∗ : |z| = 1}, ·〉 .

174

Page 177: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

6.14. �¥®à¥¬  ¯à® £®¬®¬®àä÷§¬¨ £àã¯

�¥®à¥¬  6.18 ¯à® £®¬®¬®àä÷§¬¨ £à㯠㠡 £ âì®å ¯à ªâ¨ç­¨å ¢¨¯ ¤-ª å (¤¨¢. ¯à¨ª«. 6.56) ¤®§¢®«ïõ, ­¥ ®¡ç¨á«îîç¨ ä ªâ®à-£àã¯ã 〈G1, ∗〉

/H

®, ¢áâ ­®¢¨â¨ ÷§®¬®àä÷§¬ ¬÷¦ 〈G1, ∗〉/H

â  ¤¥ïª®î ¤®¡à¥ ¢¨¢ç¥­®î£à㯮î 〈G2,~〉.

�à®â¥, ïªé® ¯®âà÷¡­® ®âਬ â¨ ¨© ¢¨£«ï¤ ä ªâ®à-£à㯨 〈G1, ∗〉/H

(⮡⮠¨© ¢¨£«ï¤ áã¬÷¦­¨å ª« á÷¢ â  ®¯¥à æ÷ù «∗» ã £àã¯÷ G1

/H

), ¬®¦-­  â ª®¦ ᪮à¨áâ â¨áï ⥮६®î 6.18.

�ਪ« ¤ 6.57. �¨ª®à¨á⮢ãîç¨ á¯÷¢¢÷¤­®è¥­­ï (6.16), ¢¨¯¨è¥¬®ï¢­¨© ¢¨£«ï¤ ÷§®¬®àä÷§¬ã f : GLn

/SLn

→ R∗:

f(A) = f(r(A)) = |A|, A ∈ GLn.

� «÷, ãà å®¢ãîç¨ ¡÷õªâ¨¢­÷áâì f : GLn

/SLn

→ R∗, ¤÷áâ ­¥¬® ¨©¢¨£«ï¤ ¥«¥¬¥­â÷¢ ä ªâ®à-£à㯨 GLn

/SLn

, ⮡⮠¨© ¢¨£«ï¤ áã¬÷¦­¨åª« á÷¢ A (A ∈ GLn):

A = {X ∈ GLn : X ∈ A} = {X ∈ GLn : X = A} =

= {X ∈ GLn : f(X) = f(A)} = {X ∈ GLn : |X| = |A|}.�à å®¢ãîç¨, é® ¤«ï ¡ã¤ì-类£® a 6= 0 ÷á­ãõ ¯à¨­ ©¬­÷ ®¤­  ¬ âà¨æï

A ∈ GLn § ¢¨§­ ç­¨ª®¬ |A| = a, ¬®¦¥¬® ¢¨¯¨á â¨ § £ «ì­¨© ¢¨£«ï¤áã¬÷¦­¨å ª« á÷¢ GLn §  SLn:

Aa = {X ∈ GLn : |X| = a}, a 6= 0.

�⦥, ¯÷¤â¢¥à¤¦¥­® १ã«ìâ â, ®âਬ ­¨© ¤¥é® ᪫ ¤­÷訬¨ ®¡ç¨á-«¥­­ï¬¨ ¢ ¯à¨ª«. 6.44:

GLn

/SLn

= {Aa : a 6= 0}.�÷­ à­ã ®¯¥à æ÷î â  ¯à ¢¨«® ®¡ç¨á«¥­­ï ®¡¥à­¥­®£® ã ä ªâ®à-£àã¯÷

GLn

/SLn

«¥£ª® ¢áâ ­®¢¨â¨ ç¥à¥§ ÷§®¬®àä÷§¬ f:

f(Aa1 · Aa2) = f(Aa1) · f(Aa2) = a1 · a2 = f(Aa1·a2)

⇓Aa1 · Aa2 = Aa1a2 ;(

f((Aa)

−1)

= (f(Aa))−1 = a−1 = f (Aa−1)

)⇒

((Aa)

−1 = Aa−1

).

175

Page 178: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 6. �«¥¬¥­â¨ ⥮à÷ù £àã¯

�âਬ ­¨© १ã«ìâ â §¡÷£ õâìáï § १ã«ìâ â®¬ ¯à¨ª«. 6.47.�⦥, § ¢¤ïª¨ ¢¨ª®à¨áâ ­­î ⥮६¨ 6.18, ¯®¢­÷áâî ¯÷¤â¢¥à¤¦¥­®

१ã«ìâ â¨ áâ®á®¢­® ä ªâ®à-£à㯨 GLn

/SLn

, ®âਬ ­÷ ¢ ¯à¨ª«. 6.44 â  6.47.

�ª ¯®ª §ãõ ­ ¢¥¤¥­¨© ¯à¨ª« ¤, ã ¤¥ïª¨å ¯à ªâ¨ç­¨å ¢¨¯ ¤ª å ¢¨-ª®à¨áâ ­­ï ⥮६¨ ¯à® £®¬®¬®àä÷§¬¨ £à㯠á¯à®éãõ ¥ ®¡ç¨á«¥­­ïä ªâ®à-£à㯨, ®áª÷«ìª¨ ¤®§¢®«ïõ ã­¨ª­ã⨠¡¥§¯®á¥à¥¤­ì®£® ®¡ç¨á«¥­­ïáã¬÷¦­¨å ª« á÷¢.

�¥ïª÷ ÷­è÷ ¢ ¦«¨¢÷ ⥮६¨ ¯à® £®¬®¬®àä÷§¬¨ £àã¯, ïª÷ á¯à®éãîâ쮡ç¨á«¥­­ï ä ªâ®à-£àã¯, ¬®¦­  §­ ©â¨, ­ ¯à¨ª« ¤, ã ஡®â÷ [10].

176

Page 179: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7

�«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

7.1. �¨§­ ç¥­­ï â  ¯à¨ª« ¤¨ ª÷«¥æì�÷«ìæ¥ { ®á­®¢­¨© ®¡'õªâ ஧£«ï¤ã ¢ æ쮬ã ஧¤÷«÷ { ¯à¨ª« ¤  «£¥¡-

à¨ç­®ù áâàãªâãਠ§ ¤¢®¬  ¡÷­ à­¨¬¨ ®¯¥à æ÷ﬨ.�§­ ç¥­­ï 7.1. �÷«ì楬 ­ §¨¢ îâì  «£¥¡à¨ç­ã áâàãªâãàã 〈R, +, ·〉

÷§ § ¬ª­¥­¨¬¨ ¡÷­ à­¨¬¨ ®¯¥à æ÷ﬨ «+» (¤®¤ ¢ ­­ï) â  «·» (¬­®¦¥­­ï),¢¨§­ ç¥­¨¬¨ ­  ¬­®¦¨­÷ R 6= ∅, ïª÷ § ¤®¢®«ì­ïîâì 㬮¢¨:

1) ∀ a, b, c ∈ R : (a + b) + c = a + (b + c) ( á®æ÷ â¨¢­÷áâì ¤®¤ ¢ ­­ï);2) ∀ a, b ∈ R : a + b = b + a (ª®¬ãâ â¨¢­÷áâì ¤®¤ ¢ ­­ï);3) ∃ 0 ∈ R ∀ a ∈ R : a+0 = a (÷á­ã¢ ­­ï ­¥©âà «ì­®£® §  ¤®¤ ¢ ­­ï¬);4) ∀ a ∈ R ∃−a ∈ R : a + (−a) = 0 (÷á­ã¢ ­­ï ®¡¥à­¥­¨å § 

¤®¤ ¢ ­­ï¬);5) ∀ a, b, c ∈ R : (a · b) · c = a · (b · c) ( á®æ÷ â¨¢­÷áâì ¬­®¦¥­­ï);6) ∀ a, b, c ∈ R : (a + b) · c = (a · c) + (b · c), c · (a + b) = (c · a) + (c · b)

(¤¨áâਡã⨢­÷áâì ¬­®¦¥­­ï ¢÷¤­®á­® ¤®¤ ¢ ­­ï).�«¥¬¥­â 0 ∈ R (­¥©âà «ì­¨© §  ¤®¤ ¢ ­­ï¬) ­ §¨¢ îâì ­ã«¥¬

ª÷«ìæï. � §­ ç¨¬®, é® õ¤¨­÷áâì ­ã«ï ª÷«ìæï ïª ­¥©âà «ì­®£® §  ¤®¤ -¢ ­­ï¬ ¢¨¯«¨¢ õ § ⥮६¨ 6.1.

�«¥¬¥­â −a, ®¡¥à­¥­¨© §  ¤®¤ ¢ ­­ï¬ ¤® a ∈ R, ­ §¨¢ îâì ¯à®â¨-«¥¦­¨¬ a ¢ ª÷«ìæ÷ R. �祢¨¤­®, é® õ¤¨­÷áâì ¯à®â¨«¥¦­®£® ¥«¥¬¥­â ¤«ï ä÷ªá®¢ ­®£® a ∈ R õ ¯à®á⨬ ­ á«÷¤ª®¬ § ⥮६¨ 6.2.

�¬®¢¨ 1{4 ®§­ ç¥­­ï 7.1 ¢¨§­ ç îâì, é® ª÷«ìæ¥ õ  ¡¥«¥¢®î £à㯮 ¤®¤ ¢ ­­ï¬; 㬮¢  5 ¢¨§­ ç õ, é® ª÷«ìæ¥ õ ¯÷¢£à㯮î (¬®¦«¨¢®, ­¥ª®-¬ãâ â¨¢­®î) §  ¬­®¦¥­­ï¬; 㬮¢  6 ¢¨§­ ç õ §¢'燐ª ¬÷¦ ¤®¤ ¢ ­­ï¬

177

Page 180: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

÷ ¬­®¦¥­­ï¬. �⦥, 㬮¢¨ ®§­ ç¥­­ï 7.1 ¤«ï ª÷«ìæï 〈R, +, ·〉 ¬®¦­  ¯®-¤ â¨ ã ¢¨£«ï¤÷:

• 1{4 {  «£¥¡à¨ç­  áâàãªâãà  〈R, +〉 õ  ¡¥«¥¢®î £à㯮î;

• 5 {  «£¥¡à¨ç­  áâàãªâãà  〈R, ·〉 õ ¯÷¢£à㯮î;

• 6 { ®¯¥à æ÷ï «·» ¤¨áâਡã⨢­  c¯à ¢  ÷ §«÷¢  ¢÷¤­®á­® «+».

�ਪ« ¤ 7.1. � ª÷  «£¥¡à¨ç­÷ áâàãªâãਠõ ª÷«ìæﬨ:1. �«£¥¡à¨ç­  áâàãªâãà  〈R, +, ·〉 { ª÷«ìæ¥ ¤÷©á­¨å ç¨á¥« §  ¯à¨à®¤-

­¨¬¨ ®¯¥à æ÷ﬨ ¤®¤ ¢ ­­ï â  ¬­®¦¥­­ï.2. �«£¥¡à¨ç­  áâàãªâãà  〈Z, +, ·〉 { ª÷«ìæ¥ æ÷«¨å ç¨á¥« §  ¯à¨à®¤­¨¬¨

®¯¥à æ÷ﬨ ¤®¤ ¢ ­­ï â  ¬­®¦¥­­ï.3. �«£¥¡à¨ç­  áâàãªâãà  〈Mn×n, +, ·〉 { ª÷«ìæ¥ ¬ âà¨æì n× n §  ¯à¨-

த­¨¬¨ ®¯¥à æ÷ﬨ ¤®¤ ¢ ­­ï â  ¬­®¦¥­­ï.4. �«£¥¡à¨ç­  áâàãªâãà  〈Zn, +, ·〉 { ª÷«ìæ¥ ª« á÷¢ «¨èª÷¢ §  ¬®¤ã-

«¥¬ n ∈ N (®¯¥à æ÷ù «+» â  «·» ­  Zn ¡ã«® ¢¢¥¤¥­® ¢ ¯÷¤à®§¤. 6.4).5. �«£¥¡à¨ç­  áâàãªâãà  〈R[x], +, ·〉, ¤¥ R[x] { ¬­®¦¨­  ¬­®£®ç«¥­÷¢

áª÷­ç¥­­®£® á⥯¥­ï ­ ¤ §¬÷­­®î x § ¤÷©á­¨¬¨ ª®¥ä÷æ÷õ­â ¬¨:

R[x] = {a0 + a1x + a2x2 + · · ·+ anx

n : ak ∈ R (1 ≤ k ≤ n), n ∈ N ∪ {0}}.

�¯¥à æ÷ù «+» â  «·» ­  R[x] ¢¢®¤ïâì ¯®â®çª®¢® (ç¥à¥§ §­ ç¥­­ï ¬­®-£®ç«¥­÷¢ ¤«ï ª®¦­®£® x ∈ R), ⮡⮠¤«ï ¬­®£®ç«¥­÷¢ a(x) =

n∑i=0

aixi,

b(x) =m∑

j=0

bjxj ¤«ï ä÷ªá®¢ ­®£® x ∈ R ¢¨§­ ç õ¬®:

a(x) + b(x) = b(x) + a(x) =

max(n,m)∑

k=0

ckxk, ¤¥ ck = ak + bk;

a(x) · b(x) = b(x) · a(x) =n+m∑

k=0

ckxk, ¤¥ ck =

i,j: i+j=k

aibj,

¢¢ ¦ îç¨ ak = 0 ¯à¨ k > n, bk = 0 ¯à¨ k > m.6. �«£¥¡à¨ç­  áâàãªâãà  〈S, M,∩〉, ¤¥ S { ª÷«ìæ¥ ¬­®¦¨­. � £ ¤ õ¬®

(¤¨¢. ¯÷¤à®§¤. 2.5), é® ª÷«ì楬 ¬­®¦¨­ ­ §¨¢ îâì ­¥¯®à®¦­î áãªã¯­÷áâ쬭®¦¨­ S, § ¬ª­¥­ã ¢÷¤­®á­® ®¯¥à æ÷© ᨬ¥âà¨ç­®ù à÷§­¨æ÷ â  ¯¥à¥â¨­ã.

178

Page 181: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

7.1. �¨§­ ç¥­­ï â  ¯à¨ª« ¤¨ ª÷«¥æì

�  ¤®¤ ¢ ­­ï â  ¬­®¦¥­­ï ¢ ª÷«ìæ÷ ¬­®¦¨­ S ¢¨¡¨à õ¬® ¢÷¤¯®¢÷¤­®á¨¬¥âà¨ç­ã à÷§­¨æî â  ¯¥à¥â¨­:

A + B = A M B, A ·B = A ∩B, (A,B ∈ S).

�¥£ª® ¯¥à¥¢÷à¨â¨, é® ­ã«¥¬ ã ª÷«ìæ÷ 〈S, M,∩〉 õ ¯®à®¦­ï ¬­®¦¨­ :

A M∅ = ∅ M A = A (A ∈ S).

�«÷¤ § §­ ç¨â¨, é® ¥«¥¬¥­â, ¯à®â¨«¥¦­¨© A, §¡÷£ õâìáï ÷§ á ¬®î ¬­®-¦¨­®î A:

A M A = ∅ (A ∈ S).

�¥à¥¯¨è¥¬® ¤«ï áâàãªâãਠ〈S, M,∩〉 㬮¢¨ ®§­ ç¥­­ï 7.1:1) (A M B) M C = A M (B M C);2) A M B = B M A;3) A M∅ = ∅ M A = A (­ã«ì®¢¨¬ ¥«¥¬¥­â®¬ õ ¯®à®¦­ï ¬­®¦¨­ );4) A M A = ∅ (¥«¥¬¥­â, ¯à®â¨«¥¦­¨© A, §¡÷£ õâìáï § A);5) (A ∩B) ∩ C = A ∩ (B ∩ C);6) (A M B)∩C = (A∩C) M (B ∩C), C ∩ (A M B) = (C ∩A) M (C ∩B).�ª § ­÷ â®â®¦­®áâ÷ ­¥¢ ¦ª® ¤®¢¥á⨠§ á®¡ ¬¨  «£¥¡à¨ ¬­®¦¨­.�¥© ¯à¨ª« ¤ ®¡óàã­â®¢ãõ ­ §¢ã «ª÷«ì楻 ¤«ï ª÷«ìæï ¬­®¦¨­ S ïª

¤«ï ®ªà¥¬®£® ¢¨¯ ¤ªã  ¡áâࠪ⭮£® ª÷«ìæï 〈S, M,∩〉.7. �¥å © 〈G, +〉 { ¤¥ïª   ¤¨â¨¢­   ¡¥«¥¢  £à㯠. �«ï ¥­¤®¬®àä÷§¬÷¢

f1, f2 ∈ EndG ¢¢¥¤¥¬® ¯®â®çª®¢¥ ¤®¤ ¢ ­­ï:

(f1 + f2)(x) = f1(x) + f2(x) (x ∈ G).

�¯à ¢  7.1. �®¢¥áâ¨, é® áâàãªâãà  〈EndG, +, ◦〉 { ª÷«ìæ¥.

�÷«ìæ¥ 〈EndG , + , ◦ 〉 ­ §¨¢ îâì ª÷«ì楬 ¥­¤®¬®àä÷§¬÷¢  ¡¥«¥¢®ù£à㯨 〈G, +〉.

� ã¢ ¦¥­­ï 7.1. �«ï ª÷«¥æì 〈R, +, ·〉, ïª÷ ç áâ® âà ¯«ïîâìáï ¢ à÷§-­¨å ஧¤÷« å ¬ â¥¬ â¨ª¨ (§®ªà¥¬ , æ¥ áâ®áãõâìáï ª÷«¥æì § ¯à¨ª«. 7.1),ç áâ® ¢ª §ãîâì «¨è¥ ¬­®¦¨­ã R, ­¥ ¢ª §ãîç¨ ï¢­® ®¯¥à æ÷ù ¤®¤ ¢ ­-­ï â  ¬­®¦¥­­ï. � ª, ïªé® £®¢®àïâì ¯à® ª÷«ìæ¥ ¤÷©á­¨å ç¨á¥«, ª÷«ì楬 âà¨æì, ª÷«ìæ¥ ª« á÷¢ «¨èª÷¢, ª÷«ìæ¥ ¬­®£®ç«¥­÷¢ â®é®, ¬ îâì ­  㢠§÷ª« á¨ç­÷ (¯à¨à®¤­÷) ®¯¥à æ÷ù ¤®¤ ¢ ­­ï â  ¬­®¦¥­­ï. � àâ® § §­ ç¨â¨,

179

Page 182: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

é® ¤«ï ª÷«ìæï ¬­®¦¨­ S ¯à¨à®¤­¨¬¨ ¤®¤ ¢ ­­ï¬ ÷ ¬­®¦¥­­ï¬ ¢¢ ¦ -îâì ¢÷¤¯®¢÷¤­® ᨬ¥âà¨ç­ã à÷§­¨æî â  ¯¥à¥â¨­: ã ¬®¤¥«ì­®¬ã ¤®¢¥¤¥­­÷â®â®¦­®á⥩ ¢  «£¥¡à÷ ¬­®¦¨­ ᨬ¥âà¨ç­÷© à÷§­¨æ÷ â  ¯¥à¥â¨­ã ¢÷¤¯®¢÷-¤ îâì «®£÷ç­÷ ®¯¥à æ÷ù «⊕» â  «∧», ïª÷ (ïªé® ®â®â®¦­¨â¨ «®£÷ç­÷ 0 â  1§ ª« á ¬¨ «¨èª÷¢ 0 â  1 §  ¬®¤ã«¥¬ 2) §¡÷£ îâìáï § ¤®¤ ¢ ­­ï¬ ÷ ¬­®-¦¥­­ï¬ ­  Z2 = {0, 1}.

�÷«ìæ¥ 〈R, +, ·〉 § ª®¬ãâ â¨¢­®î ®¯¥à æ÷õî ¬­®¦¥­­ï ­ §¨¢ îâì ª®-¬ãâ â¨¢­¨¬:

a · b = b · a ∀ a, b ∈ R.

�ªé® ®¯¥à æ÷ï ¬­®¦¥­­ï ­¥ª®¬ãâ â¨¢­ , ª÷«ìæ¥ ­ §¨¢ îâì ­¥ª®¬ã-â â¨¢­¨¬.

�ਪ« ¤ 7.2. � ª÷ ª÷«ìæï õ ª®¬ãâ â¨¢­¨¬¨:1) ª÷«ìæ¥ 〈R, +, ·〉 ¤÷©á­¨å ç¨á¥«;2) ª÷«ìæ¥ 〈Zn, +, ·〉 ª« á÷¢ «¨èª÷¢ §  ¬®¤ã«¥¬ n ∈ N;3) ª÷«ìæ¥ 〈R[x], +, ·〉 ¬­®£®ç«¥­÷¢ § ¤÷©á­¨¬¨ ª®¥ä÷æ÷õ­â ¬¨;4) ª÷«ìæ¥ ¬­®¦¨­ 〈S, M,∩〉.� ©¯à®áâ÷訩 ¯à¨ª« ¤ ­¥ª®¬ãâ â¨¢­®£® ª÷«ìæï { ª÷«ìæ¥ ª¢ ¤à â­¨å

¬ âà¨æì 〈Mn×n, +, ·〉 ã ¢¨¯ ¤ªã n ≥ 2.

�÷«ìæ¥ 〈R, +, ·〉 ­ §¨¢ îâì ª÷«ì楬 § ®¤¨­¨æ¥î, ïªé® ¢ áâàãªâãà÷〈R, ·〉 ÷á­ãõ ­¥©âà «ì­¨© ¥«¥¬¥­â 1 ∈ R (­¥©âà «ì­¨© §  ¬­®¦¥­­ï¬),直© ã æ쮬㠢¨¯ ¤ªã ­ §¨¢ îâì ®¤¨­¨æ¥î ª÷«ìæï. � §­ ç¨¬®, é® õ¤¨-­÷áâì ®¤¨­¨æ÷ ª÷«ìæï ïª ­¥©âà «ì­®£® ¥«¥¬¥­â  §  ¬­®¦¥­­ï¬ ¢¨¯«¨¢ õ§ ⥮६¨ 6.1.

�ਪ« ¤ 7.3. 1. �á÷ ª÷«ìæï, ஧£«ï­ãâ÷ ¢ ¯à¨ª«. 7.1, §  ¢¨­ï⪮¬ª÷«ìæï ¬­®¦¨­ 〈S, M,∩〉, õ ª÷«ìæﬨ § ®¤¨­¨æ¥î.

2. �÷«ìæ¥ 〈nZ, +, ·〉 ã ¢¨¯ ¤ªã n ≥ 2 õ ª÷«ì楬 ¡¥§ ®¤¨­¨æ÷, ®áª÷«ì-ª¨ 1 (­¥©âà «ì­¨© ¥«¥¬¥­â §  ¬­®¦¥­­ï¬ ­  ¬­®¦¨­÷ æ÷«¨å ç¨á¥«) ­¥­ «¥¦¨âì ¬­®¦¨­÷ nZ ¯à¨ n ≥ 2.

�¯à ¢  7.2. �¨§­ ç¨â¨ ®¤¨­¨æ÷ ¤«ï ª÷«¥æì § ¯à¨ª«. 7.1 (®ª-à÷¬ 〈S, M,∩〉).

�¯à ¢  7.3. �®¢¥áâ¨, é® ª÷«ìæ¥ ¬­®¦¨­ 〈S, M,∩〉 õ ª÷«ì楬 § ®¤¨­¨-æ¥î ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ S õ  «£¥¡à®î ¬­®¦¨­, ¯à¨ç®¬ã ®¤¨­¨æ¥î ¢ª÷«ìæ÷ 〈S, M,∩〉 (ïªé® S {  «£¥¡à ) õ ã­÷¢¥àá «ì­  ¬­®¦¨­ .

180

Page 183: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

7.2. �á­®¢­÷ ¢« á⨢®áâ÷ ª÷«¥æì

�÷«ìæï § ®¤¨­¨æ¥î ¡ã¤¥ ஧£«ï­ãâ® ¡÷«ìè ¤¥â «ì­® ¢ ¯÷¤à®§¤. 7.4.� ã¢ ¦¥­­ï 7.2. �ã«ì â  ®¤¨­¨æï ¢  ¡áâࠪ⭮¬ã ª÷«ìæ÷ 〈R, +, ·〉 ¯®-

§­ ç îâì, ïª ¡ã«® § §­ ç¥­®, ¢÷¤¯®¢÷¤­® ç¥à¥§ 0 â  1. �à®â¥ ¢ ª®­ªà¥â­®-¬ã ª÷«ìæ÷ ¤«ï ­ã«ï â  ®¤¨­¨æ÷ ¢¨ª®à¨á⮢ãîâì ¯®§­ ç¥­­ï, ïª÷ õ § £ «ì-­®¯à¨©­ï⨬¨ á ¬¥ ¤«ï æ쮣® ª÷«ìæï ÷ ¬®¦ãâì §¡÷£ â¨áï  ¡® ­¥ §¡÷£ â¨áï§  ¡áâࠪ⭨¬¨ ¯®§­ ç¥­­ï¬¨ 0 â  1. � ª, ã ª÷«ìæ÷ ¤÷©á­¨å ç¨á¥« ­ã-«¥¬ â  ®¤¨­¨æ¥î õ ç¨á«  0 â  1, ®¤­ ª ã ª÷«ìæ÷ ¬ âà¨æì Mn×n ­ã«¥¬ â ®¤¨­¨æ¥î õ ¢÷¤¯®¢÷¤­® ­ã«ì®¢  â  ®¤¨­¨ç­  ¬ âà¨æ÷ (ïª÷ ­¥ ¯à¨©­ï⮯®§­ ç â¨ ç¥à¥§ 0 â  1).

� ã¢ ¦¥­­ï 7.3. �«ï á¯à®é¥­­ï ¯®§­ ç¥­ì ¢¢ ¦ â¨¬¥¬®, é® ®¯¥à -æ÷ï ¬­®¦¥­­ï ¢ ª÷«ìæ÷ ¬ õ ¢¨é¨© ¯à÷®à¨â¥â, ­÷¦ ¤®¤ ¢ ­­ï, ⮡⮠¤ã¦ª¨­ ¢ª®«® ¤®¡ãâªã ¡ã¤¥¬® ®¯ã᪠â¨: a + (b · c) = a + b · c.

� ã¢ ¦¥­­ï 7.4. �à÷¬ ⮣®, §   ­ «®£÷õî ¤® ¡ £ âì®å ¬ã«ì⨯«÷ª â¨¢-­¨å áâàãªâãà (ãà å®¢ãîç¨ ¤÷©á­÷ ç¨á«  â  ¬ âà¨æ÷), ¯®§­ ç¥­­ï ®¯¥à æ÷ù«·» ¢ ¤®¡ãâªã ÷­®¤÷ ®¯ã᪠⨬¥¬®: a · b = ab.

7.2. �á­®¢­÷ ¢« á⨢®áâ÷ ª÷«¥æì�®§£«ï­¥¬® ­ ©¯à®áâ÷è÷ ¢« á⨢®áâ÷ ¤®¢÷«ì­®£® ª÷«ìæï 〈R, +, ·〉.1. ∀ a ∈ R : 0 · a = a · 0 = 0.�®¢¥¤¥­­ï. �®¢¥¤¥¬® â®â®¦­÷áâì 0 ·a = 0 (â®â®¦­÷áâì a ·0 = 0 ¬®¦­ 

¤®¢¥á⨠§   ­ «®£÷õî). �  ®§­ ç¥­­ï¬ ­ã«ï â  ¢« á⨢÷áâî ¤¨áâਡã⨢-­®áâ÷ ¬ õ¬®

0 · a = (0 + 0) · a = 0 · a + 0 · a.

�«¥ ª÷«ìæ¥ õ £àã¯®î §  ®¯¥à æ÷õî «+»,   ®â¦¥, §  ¯à ¢¨«®¬ «÷¢®£®áª®à®ç¥­­ï (6.2) ®âਬãõ¬® ¯®âà÷¡­¨© ­ á«÷¤®ª:

0 · a + 0 · a = 0 · a ⇒ 0 · a + 0 · a = 0 · a + 0 ⇒ 0 · a = 0.

2. ∀ a, b ∈ R : a · (−b) = (−a) · b = −(a · b).�®¢¥¤¥­­ï. �®¢¥¤¥¬® â®â®¦­÷áâì a · (−b) = −(a · b) (â®â®¦­÷áâì

(−a) · b = −(a · b) ¬®¦­  ¤®¢¥á⨠§   ­ «®£÷õî). �«ï ¤®¢¥¤¥­­ï ¤®áâ â-­ì® ¯¥à¥¢÷à¨â¨, é® ¥«¥¬¥­â a · (−b) õ ¯à®â¨«¥¦­¨¬ a · b. �®à¨áâãîç¨á좨§­ ç¥­­ï¬ ª÷«ìæï â  ¤®¢¥¤¥­®î ¢« á⨢÷áâî 1, ®âਬãõ¬®

a · b + a · (−b) = a · (−b) + a · b = a · (b + (−b)) = a · 0 = 0.

181

Page 184: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

�¯à ¢  7.4. �®¢¥áâ¨, é® ¢ ª÷«ìæ÷ § ®¤¨­¨æ¥î ¬ õ ¬÷áæ¥ â®â®¦­÷áâì

−a = (−1) · a ∀ a ∈ R.

�«ï ¥«¥¬¥­â÷¢ a, b ∈ R 㢥¤¥¬® ®¯¥à æ÷î à÷§­¨æ÷ :

a− b = a + (−b).

� ª, § ®§­ ç¥­­ï ¯à®â¨«¥¦­®£® ¥«¥¬¥­â  ¢¨¯«¨¢ õ a−a=a+(−a) = 0.

7.3. �÷¤ª÷«ìæ¥. �à¨â¥à÷© ¯÷¤ª÷«ìæï�¥å © 〈R, +, ·〉 { ¤®¢÷«ì­¥ ª÷«ìæ¥.

�§­ ç¥­­ï 7.2. �÷¤ª÷«ì楬 ª÷«ìæï 〈R, +, ·〉 ­ §¨¢ îâì ¯÷¤¬­®¦¨-­ã R1 ⊂ R, 猪 õ ª÷«ì楬 〈R1, +, ·〉 §  ⨬¨ á ¬¨¬¨ ®¯¥à æ÷ﬨ «+» â «·», é® © ª÷«ìæ¥ 〈R, +, ·〉.

�  ¯à ªâ¨æ÷ ¤«ï ¯¥à¥¢÷ન, ç¨ õ ­¥¯®à®¦­ï ¯÷¤¬­®¦¨­  ª÷«ìæï ¯÷¤-ª÷«ì楬, §àãç­® ª®à¨áâ㢠â¨áì ­¨¦ç¥¯®¤ ­¨¬ ªà¨â¥à÷õ¬,  ­ «®£÷ç­¨¬ªà¨â¥à÷î ¯÷¤£à㯨 (⥮६  6.7 § ­ á«÷¤ª®¬).

�¥®à¥¬  7.1 (ªà¨â¥à÷© ¯÷¤ª÷«ìæï). �¥å © ∅ 6= R1 ⊂ R, ⮡â®R1 { ­¥¯®à®¦­ï ¯÷¤¬­®¦¨­  ª÷«ìæï 〈R, +, ·〉.

�«ï ⮣®, 鮡 ¯÷¤¬­®¦¨­  R1 ¡ã«  ¯÷¤ª÷«ì楬 ª÷«ìæï 〈R, +, ·〉, ­¥-®¡å÷¤­® ÷ ¤®áâ â­ì® ¢¨ª®­ ­­ï â ª¨å 㬮¢:

(a, b ∈ R1) ⇒ (a + b ∈ R1); (7.1)(a, b ∈ R1) ⇒ (a · b ∈ R1);

(a ∈ R1) ⇒ (−a ∈ R1). (7.2)

� á«÷¤®ª. �¬®¢¨ (7.1) â  (7.2) ¢ ⥮६÷ 7.1 ¬®¦­  § ¬÷­¨â¨ ®¤-­÷õî 㬮¢®î:

(a, b ∈ R1) ⇒ (a− b ∈ R1).

�¯à ¢  7.5. �®¢¥á⨠⥮६ã 7.1 ÷ ­ á«÷¤®ª á ¬®áâ÷©­®.� ã¢ ¦¥­­ï 7.5. �®¢¥¤¥­­ï æ÷«ª®¬  ­ «®£÷ç­¥ ¤®¢¥¤¥­­î ⥮à¥-

¬ 6.7.

182

Page 185: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

7.4. �÷«ìæï § ®¤¨­¨æ¥î

�ਪ« ¤ 7.4. 1. �­®¦¨­  nZ (n ∈ N) õ ¯÷¤ª÷«ì楬 ª÷«ìæï æ÷«¨åç¨á¥« Z.

2. �­®¦¨­  R1 = {A ∈ Mn×n : Aij = 0 ¯à¨ j > i} ­¨¦­÷å âਪã⭨嬠âà¨æì ஧¬÷஬ n× n õ ¯÷¤ª÷«ì楬 ª÷«ìæï ¬ âà¨æì Mn×n.

3. �­®¦¨­  ¬­®£®ç«¥­÷¢ § ­ã«ì®¢¨¬ ¢÷«ì­¨¬ ç«¥­®¬

R1 =

{n∑

k=1

akxk : ak ∈ R (1 ≤ k ≤ n), n ∈ N

}=

= {f(x) ∈ R[x] : f(0) = 0}õ ¯÷¤ª÷«ì楬 ª÷«ìæï ¬­®£®ç«¥­÷¢ R[x].

�祢¨¤­®, é® ¡ã¤ì-瘟 ª÷«ìæ¥ 〈R, +, ·〉 ¬÷áâ¨âì âਢ÷ «ì­÷ ¯÷¤ª÷«ìæï {¬­®¦¨­ã {0} ÷ ¬­®¦¨­ã R. �÷¤ª÷«ìæ¥, é® ­¥ õ âਢ÷ «ì­¨¬, ­ §¨¢ îâ좫 á­¨¬.

�÷«ìæ¥, é® ¬÷áâ¨âì «¨è¥ ®¤¨­ ¥«¥¬¥­â (æ¥ ¬ õ ¡ã⨠0) ­ §¨¢ îâì­ã«ì®¢¨¬. �⦥, ¡ã¤ì-瘟 ª÷«ìæ¥ 〈R, +, ·〉 ¬÷áâ¨âì ¤¢  âਢ÷ «ì­÷ ª÷«ìæï {­ã«ì®¢¥ ª÷«ìæ¥ {0} ÷ á ¬¥ ª÷«ìæ¥ R. �祢¨¤­®, é® ¤«ï ­ã«ì®¢®£® ª÷«ìæﮡ¨¤¢  âਢ÷ «ì­÷ ¯÷¤ª÷«ìæï §¡÷£ îâìáï.

7.4. �÷«ìæï § ®¤¨­¨æ¥î� æ쮬㠯÷¤à®§¤÷«÷ ®¡'õªâ®¬ ஧£«ï¤ã ¡ã¤¥ ª÷«ìæ¥ 〈R, +, ·〉, é® ¬÷áâ¨âì

®¤¨­¨ç­¨© ¥«¥¬¥­â 1 ∈ R. �®¢¥¤¥¬® ¯à®á⨩ ä ªâ 鮤® ¬®¦«¨¢®áâ÷§¡÷£ã ­ã«ï â  ®¤¨­¨æ÷ ª÷«ìæï.

�¥¬  7.1. � ­¥­ã«ì®¢®¬ã ª÷«ìæ÷ 0 6= 1.�®¢¥¤¥­­ï. �¥å © ª÷«ìæ¥ § ®¤¨­¨æ¥î 〈R, +, ·〉 õ ­¥­ã«ì®¢¨¬, ⮡⮠¬÷á-

â¨âì ¯à¨­ ©¬­÷ ®¤¨­ ¥«¥¬¥­â a 6= 0. �®¤÷ ®âਬãõ¬®

a · 0 = 0 6= a = a · 1,é® ã­¥¬®¦«¨¢«îõ à÷¢­÷áâì 0 = 1.

� ã¢ ¦¥­­ï 7.6. �祢¨¤­®, é® ¢ ­ã«ì®¢®¬ã ª÷«ìæ÷ ¥«¥¬¥­â¨ 0 â  1§¡÷£ îâìáï: ­ã«ì®¢¥ ª÷«ìæ¥ ¬÷áâ¨âì «¨è¥ ®¤¨­ ¥«¥¬¥­â 0, 直© ¤«ï ®¤-­®¥«¥¬¥­â­®ù ¬­®¦¨­¨ õ ­¥©âà «ì­¨¬ §  ¡ã¤ì-ïª®î ¡÷­ à­®î ®¯¥à æ÷õî(0 · 0 = 0).

183

Page 186: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

�§­ ç¥­­ï 7.3. �«¥¬¥­â a ∈ R ­ §¨¢ îâì ®¡®à®â­¨¬ ã ª÷«ìæ÷ R, ¡® ¤÷«ì­¨ª®¬ ®¤¨­¨æ÷, ïªé® ÷á­ãõ ¥«¥¬¥­â a−1 { ®¡¥à­¥­¨© ¤® a §  ¬­®-¦¥­­ï¬:

∃ a−1 ∈ R : a−1 · a = a · a−1 = 1.

�«¥¬¥­â a−1 ­ §¨¢ îâì ®¡¥à­¥­¨¬ ¤® a ¢ ª÷«ìæ÷ R.�⦥, ¢ ª÷«ìæ÷ § ®¤¨­¨æ¥î ÷á­ãîâì ­¥©âà «ì­÷ ¥«¥¬¥­â¨ ¤«ï ®¡®å ¡÷-

­ à­¨å ®¯¥à æ÷©: 0 { ­¥©âà «ì­¨© §  ¤®¤ ¢ ­­ï¬, 1 { ­¥©âà «ì­¨© § ¬­®¦¥­­ï¬. �ª 㦥 § §­ ç «¨, ®¡¥à­¥­¨© ¤® a ∈ R §  ¤®¤ ¢ ­­ï¬ ­ §¨-¢ îâì ¯à®â¨«¥¦­¨¬ ÷ ¯®§­ ç îâì ç¥à¥§ −a, é® ã­¥¬®¦«¨¢«îõ ª®­ä«÷ªâ§ â¥à¬÷­®¬ «®¡¥à­¥­¨©» (¡¥§ ®ù ­ §¢¨ ¢÷¤¯®¢÷¤­®ù ¡÷­ à­®ù ®¯¥à æ÷ù)â  ¯®§­ ç¥­­ï¬ a−1 ¤«ï ®¡¥à­¥­®£® §  ¬­®¦¥­­ï¬.

�¡¥à­¥­÷ ¥«¥¬¥­â¨ ¬®¦ãâì ÷á­ã¢ â¨ ­¥ ¤«ï ¢á÷å a ∈ R. �÷«ìè¥ â®-£®, ã ¡ã¤ì-类¬ã ­¥­ã«ì®¢®¬ã ª÷«ìæ÷ § ®¤¨­¨æ¥î ÷á­ãõ ¯à¨­ ©¬­÷ ®¤¨­­¥®¡®à®â­¨© ¥«¥¬¥­â { ­ã«ì ª÷«ìæï:

0 · a = a · 0 = 0 6= 1 ∀ a ∈ R.

�¤­ ª, ã ¡ã¤ì-类¬ã ª÷«ìæ÷ 〈R, +, ·〉 (§ ®¤¨­¨æ¥î) ®¡®à®â­¨¬¨ õ ¥«¥-¬¥­â¨ 1 â  −1:

1−1 = 1, (−1)−1 = −1,

®áª÷«ìª¨ 1 · 1 = (−1) · (−1) = 1.�­®¦¨­ã ¢á÷å ®¡®à®â­¨å ¥«¥¬¥­â÷¢ ª÷«ìæï 〈R, +, ·〉 ¯®§­ ç îâì ç¥-

१ R∗.�ਪ« ¤ 7.5. 1. � ª÷«ìæ÷ ¤÷©á­¨å ç¨á¥« R ¢á÷ ­¥­ã«ì®¢÷ ¥«¥¬¥­â¨

®¡®à®â­÷:a−1 =

1

a∈ R, a 6= 0,

⮡⮠R∗ = R \ {0}.2. � ª÷«ìæ÷ æ÷«¨å ç¨á¥« Z ®¡®à®â­÷ «¨è¥ ¥«¥¬¥­â¨ 1 â  −1:

1−1 = 1, (−1)−1 = −1, a−1 =1

a/∈ Z ¯à¨ |a| 6= 1,

⮡⮠Z∗ = {1,−1}.3. � ª÷«ìæ÷ ¬ âà¨æì Mn×n ®¡®à®â­÷ ¢á÷ ­¥¢¨à®¤¦¥­÷ ¬ âà¨æ÷:

A · A−1 = A−1 · A = I,

⮡⮠(Mn×n)∗ = GLn.

184

Page 187: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

7.4. �÷«ìæï § ®¤¨­¨æ¥î

4. � ª÷«ìæ÷ ª« á÷¢ «¨èª÷¢ Z6 ®¡®à®â­¨¬¨ õ ¥«¥¬¥­â¨ 1 â  5:

(1)−1

= 1, (5)−1

= 5,

⮡⮠Z6∗ = {1, 5}.

5. � ª÷«ìæ÷ ª« á÷¢ «¨èª÷¢ Z2 ®¡®à®â­¨¬ õ «¨è¥ ¥«¥¬¥­â 1:

(1)−1

= 1,

⮡⮠Z2∗ = {1}.

�¥®à¥¬  7.2. �­®¦¨­  R∗ ®¡®à®â­¨å ¥«¥¬¥­â÷¢ ª÷«ìæï 〈R, +, ·〉ã⢮àîõ £àã¯ã §  ®¯¥à æ÷õî ¬­®¦¥­­ï.

�®¢¥¤¥­­ï. �®§£«ï­¥¬®  «£¥¡à¨ç­ã áâàãªâãàã 〈R∗, ·〉.1. �®¢¥¤¥¬® § ¬ª­¥­÷áâì áâàãªâãਠ〈R∗, ·〉. �«ï a, b ∈ R∗ ¡¥§¯®á¥-

।­ì® ¯¥à¥¢÷ਬ®, é® (a · b)−1 = b−1 · a−1 :(a · b) · (b−1 · a−1) = a · (b · b−1) · a−1 = 1;

(b−1 · a−1) · (a · b) = b−1 · (a−1 · a) · b = 1,

⮡⮠a · b ∈ R∗ (¥«¥¬¥­â a · b ®¡®à®â­¨©).2. �âàãªâãà  〈R∗, ·〉  á®æ÷ â¨¢­  (§  ¢¨§­ ç¥­­ï¬ ª÷«ìæï).3. �âàãªâãà  〈R∗, ·〉 ¬÷áâ¨âì ­¥©âà «ì­¨© ¥«¥¬¥­â { ®¤¨­¨æî ª÷«ì-

æï 〈R, +, ·〉 :(1−1 = 1) ⇒ (1 ∈ R∗).

4. �®¢¥¤¥¬®, é® ã áâàãªâãà÷ 〈R∗, ·〉 ¤«ï ¡ã¤ì-类£® a ∈ R∗ ÷á­ãõ ®¡¥à-­¥­¨© a−1 ∈ R∗. �¥§¯®á¥à¥¤­ì® ¯¥à¥¢÷ਬ®, é® (a−1)

−1= a :

a−1 · a = 1, a · a−1 = 1,

⮡⮠a−1 ∈ R∗.�⦥,  «£¥¡à¨ç­  áâàãªâãà  〈R∗, ·〉 õ § ¬ª­¥­®î,  á®æ÷ â¨¢­®î, ¬÷á-

â¨âì ­¥©âà «ì­¨© ¥«¥¬¥­â 1 ∈ R∗, ÷ ¤«ï ª®¦­®£® a ∈ R∗ ÷á­ãõ ®¡¥à­¥­¨©a−1 ∈ R∗. � ª¨¬ 稭®¬, §  ®§­ ç¥­­ï¬ 6.5 áâàãªâãà  〈R∗, ·〉 õ £à㯮î.

�«£¥¡à¨ç­ã áâàãªâãàã 〈R∗, ·〉 ­ §¨¢ îâì ¬ã«ì⨯«÷ª â¨¢­®î £àã-¯®î ª÷«ìæï 〈R, +, ·〉. �«ï ¬ã«ì⨯«÷ª â¨¢­®ù £à㯨 § ¤ ­®£® ª÷«ìæï〈R, +, ·〉 ¢¨ª®à¨á⮢ãîâì ᪮à®ç¥­¥ ¯®§­ ç¥­­ï R∗ (­¥ ¢ª §ãîç¨ ï¢­®£à㯮¢ã ®¯¥à æ÷î, 猪 §¡÷£ õâìáï § ®¯¥à æ÷î ¬­®¦¥­­ï ¢ ª÷«ìæ÷ R).

�®­ïââï ®¡®à®â­®£® ¥«¥¬¥­â  (¤÷«ì­¨ª  ®¤¨­¨æ÷) â÷á­® ¯®¢'易­¥ §¯®­ïââï¬ ¤÷«ì­¨ª  ­ã«ï, 瘟 ¡ã¤¥ ஧£«ï­ãâ® ¢ ­ áâ㯭®¬ã ¯÷¤à®§¤÷«÷.

185

Page 188: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

7.5. �÷«ì­¨ª¨ ­ã«ï. �®­ïââï ®¡« áâ÷æ÷«÷á­®áâ÷

�¥å © 〈R, +, ·〉 { ¤®¢÷«ì­¥ ª÷«ìæ¥.

�§­ ç¥­­ï 7.4. �«¥¬¥­â¨ a, b∈R ­ §¨¢ îâì ¤÷«ì­¨ª ¬¨ ­ã«ï, ïªé®

a 6= 0, b 6= 0, ab = 0.

�«¥¬¥­â a ¢ æ쮬㠢¨¯ ¤ªã ­ §¨¢ îâì «÷¢¨¬ ¤÷«ì­¨ª®¬ ­ã«ï, ¥«¥-¬¥­â b { ¯à ¢¨¬ ¤÷«ì­¨ª®¬ ­ã«ï.

�祢¨¤­®, é® ¢ ª®¬ãâ â¨¢­®¬ã ª÷«ìæ÷ ¯®­ïââï ¯à ¢®£® â  «÷¢®£® ¤÷«ì-­¨ª÷¢ ­ã«ï §¡÷£ îâìáï.

�ਪ« ¤ 7.6. 1. �÷«ìæ¥ ¤÷©á­¨å ç¨á¥« R ­¥ ¬÷áâ¨âì ¤÷«ì­¨ª÷¢ ­ã«ï:

(a 6= 0) ∧ (b 6= 0) ⇒ (ab 6= 0)

¤«ï ¤®¢÷«ì­¨å a, b ∈ R.2. �÷«ìæ¥ Z6 ¬÷áâ¨âì âਠ¤÷«ì­¨ª¨ ­ã«ï { ¥«¥¬¥­â¨ 2, 3 â  4:

2 · 3 = 3 · 4 = 0.

�¥£ª® ¯¥à¥¢÷à¨â¨, é® 1 â  5 = − 1 ­¥ õ ¤÷«ì­¨ª ¬¨ ­ã«ï ¢ Z6.3. �÷«ìæ¥ Z4 ¬÷áâ¨âì ®¤¨­ ¤÷«ì­¨ª ­ã«ï { ¥«¥¬¥­â 2:

2 · 2 = 0.

�¥£ª® ¯¥à¥¢÷à¨â¨, é® 1 â  3 = − 1 ­¥ õ ¤÷«ì­¨ª ¬¨ ­ã«ï ¢ Z4.4. �÷«ìæ¥ Z3 ­¥ ¬÷áâ¨âì ¤÷«ì­¨ª÷¢ ­ã«ï:

1 · 1 = 1 6= 0, 1 · 2 = 2 6= 0, 2 · 2 = 4 = 1 6= 0.

� áâ㯭  ⥮६  ¢áâ ­®¢«îõ §¢'燐ª ¬÷¦ ¯®­ïââﬨ ¤÷«ì­¨ª  ­ã«ïâ  ®¡®à®â­®£® ¥«¥¬¥­â  ¢ ª÷«ìæ÷ § ®¤¨­¨æ¥î.

�¥®à¥¬  7.3. � ª÷«ìæ÷ 〈R, +, ·〉 § ®¤¨­¨æ¥î 1 ∈ R ¦®¤¥­ ®¡®à®â­¨©¥«¥¬¥­â ­¥ õ ¤÷«ì­¨ª®¬ ­ã«ï.

186

Page 189: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

7.5. �÷«ì­¨ª¨ ­ã«ï. �®­ïââï ®¡« áâ÷ æ÷«÷á­®áâ÷

�®¢¥¤¥­­ï. �ਯãáâ÷¬®, é® a ∈ R õ ®¤­®ç á­® ¤÷«ì­¨ª®¬ ­ã«ï © ®¡®-à®â­¨¬ ¥«¥¬¥­â®¬. �¢ ¦ â¨¬¥¬®, é® a 6= 0 { «÷¢¨© ¤÷«ì­¨ª ­ã«ï (¢¨¯ -¤®ª ¯à ¢®£® ¤÷«ì­¨ª  ­ã«ï ஧£«ï¤ õâìáï  ­ «®£÷ç­®), ⮡â®

ab = 0 ¤«ï ¤¥ïª®£® b ∈ R, b 6= 0.

�®¤÷ ®âਬãõ¬®(ab = 0) ⇒ (a−1 · (a ·b) = a−1 ·0) ⇒ ((a−1 ·a) ·b = 0) ⇒ (1 ·b = 0) ⇒ (b = 0),

é® á㯥à¥ç¨âì 㬮¢÷ b 6= 0.�⦥, ®¡®à®â­¨© ¥«¥¬¥­â (¤÷«ì­¨ª ®¤¨­¨æ÷) ­¥ õ ¤÷«ì­¨ª®¬ ­ã«ï, ®¤-

­ ª §¢®à®â­¥ ⢥द¥­­ï ¢ § £ «ì­®¬ã ¢¨¯ ¤ªã ­¥¯à ¢¨«ì­¥: ¥«¥¬¥­â,直© ­¥ õ ¤÷«ì­¨ª®¬ ­ã«ï, ­¥ ®¡®¢'離®¢® õ ®¡®à®â­¨¬.

�ਪ« ¤ 7.7. � ª÷«ìæ÷ æ÷«¨å ç¨á¥« Z ­¥¬ õ ¤÷«ì­¨ª÷¢ ­ã«ï, ®¤­ ª«¨è¥ ¥«¥¬¥­â¨ 1 â  (−1) õ ®¡®à®â­¨¬¨.

� ¤÷«ì­¨ª ¬¨ ­ã«ï (â®ç­÷è¥, § ùå ¢÷¤áãâ­÷áâî) ¯®¢'易­® ¢¨ª®­ ­­ï§ ª®­÷¢ ᪮à®ç¥­­ï ¢ ¤®¢÷«ì­®¬ã ª÷«ìæ÷ 〈R, +, ·〉:

(ax = bx) ⇔ (a = b) (¯à ¢¥ ᪮à®ç¥­­ï); (7.3)(xa = xb) ⇔ (a = b) («÷¢¥ ᪮à®ç¥­­ï), (7.4)

¤¥ a, b, x ∈ R, x 6= 0.�¥®à¥¬  7.4. � ª®­¨ ᪮à®ç¥­­ï (7.3) ÷ (7.4) ã ¤®¢÷«ì­®¬ã ª÷«ìæ÷

〈R, +, ·〉 ¢¨ª®­ãîâìáï ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ ª÷«ìæ¥ 〈R, +, ·〉 ­¥ ¬÷á-â¨âì ¦®¤­®£® ¤÷«ì­¨ª  ­ã«ï.

�®¢¥¤¥­­ï. 1. �¥å © ª÷«ìæ¥ 〈R, +, ·〉 ­¥ ¬÷áâ¨âì ¤÷«ì­¨ª÷¢ ­ã«ï. �®¢¥-¤¥¬®, é® ¢ æ쮬㠪÷«ìæ÷ ¢¨ª®­ãõâìáï § ª®­ (7.3) (§ ª®­ (7.4) ஧£«ï¤ -õâìáï  ­ «®£÷ç­®). �à å®¢ãîç¨, é® ¢ ª÷«ìæ÷ ­¥¬ õ ¤÷«ì­¨ª÷¢ ­ã«ï, ¤«ïa, b, x ∈ R (x 6= 0) ®âਬãõ¬®

(ax = bx) ⇒ ((a− b) · x = 0) ⇒ (a− b = 0) ⇒ (a = b).

2. �¥å © ã ª÷«ìæ÷ 〈R, +, ·〉 ¢¨ª®­ãîâìáï § ª®­¨ (7.3) ÷ (7.4). �®¢¥¤¥¬®,é® ¢ ª÷«ìæ÷ 〈R, +, ·〉 ­¥¬ õ ¤÷«ì­¨ª÷¢ ­ã«ï.

�ਯãáâ÷¬®, é® a, b ∈ R, a 6= 0, b 6= 0, ab = 0. �®¤÷ ¤÷áâ ­¥¬®(a · b = 0) ⇒ (a · b = a · (b · 0)) ⇒ (b = b · 0) ⇒ (b = 0),

é® á㯥à¥ç¨âì 㬮¢÷ b 6= 0.

187

Page 190: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

� ã¢ ¦¥­­ï 7.7. � ¯. 2 ¤®¢¥¤¥­­ï ⥮६¨ 7.4 ¡ã«® ¢¨ª®à¨áâ ­® «¨è¥§ ª®­ «÷¢®£® ᪮à®ç¥­­ï (7.4). �­ «®£÷ç­® ¬®¦­  ¡ã«® ¡ ¢¨ª®à¨áâ â¨ ÷¯à ¢¨© § ª®­ ᪮à®ç¥­­ï (7.3), ­¥ ª®à¨áâãîç¨áì «÷¢¨¬. �⦥, ïªé® ¢ª÷«ìæ÷ á¯à ¢¤¦ãõâìáï å®ç  ¡ ®¤¨­ ÷§ § ª®­÷¢ ᪮à®ç¥­­ï, â® â ª¥ ª÷«ìæ¥ ­¥¬÷áâ¨âì ¦®¤­®£® ¤÷«ì­¨ª  ­ã«ï, ÷ ¢ æ쮬㠪÷«ìæ÷ á¯à ¢¤¦ãîâìáï ®¡¨¤¢ § ª®­¨ (7.3) ÷ (7.4).

�ਪ« ¤ 7.8. 1. �÷«ìæ¥ ¤÷©á­¨å ç¨á¥« 〈R, +, ·〉 ­¥ ¬÷áâ¨âì ¤÷«ì­¨ª÷¢­ã«ï,   ®â¦¥, ¤®¯ã᪠õ § ª®­ ᪮à®ç¥­­ï (7.3)

(ax = bx) ⇒ (a = b)

¤«ï ¡ã¤ì-直å a, b, x ∈ R, x 6= 0.2. �÷«ìæ¥ ¬ âà¨æì M2×2 ¬÷áâ¨âì ¤÷«ì­¨ª¨ ­ã«ï. � ª, §®ªà¥¬ ,

(1 00 0

)·(

0 00 1

)=

(0 00 0

).

�⦥, ã ª÷«ìæ÷ M2×2 ¦®¤¥­ § ¤¢®å § ª®­÷¢ ᪮à®ç¥­­ï ­¥ á¯à ¢¤¦ã-õâìáï:

(1 00 0

)·(

0 00 1

)=

(2 00 0

)·(

0 00 1

),  «¥

(1 00 0

)6=

(2 00 0

);

(1 00 0

)·(

0 00 1

)=

(1 00 0

)·(

0 00 2

),  «¥

(0 00 1

)6=

(0 00 2

).

� ã¢ ¦¥­­ï 7.8. �®¦­  ¤®¢¥áâ¨, é® ¤÷«ì­¨ª®¬ ­ã«ï ¢ ª÷«ìæ÷ Mn×n

(n ∈ N) õ ¡ã¤ì-猪 ¢¨à®¤¦¥­  ¬ âà¨æï.

�ª ¡ ç¨¬®, ¢ ¤®¢÷«ì­®¬ã ª÷«ìæ÷ 〈R, +, ·〉 § ®¤¨­¨æ¥î ÷á­ãõ â÷á­¨© §¢'ï-§®ª ¬÷¦ ¯®­ïââﬨ ¤÷«ì­¨ª  ­ã«ï â  ®¡®à®â­®£® ¥«¥¬¥­â  (¤÷«ì­¨ª ®¤¨­¨æ÷). �¥© §¢'燐ª áâ õ é¥ â÷á­÷訬 ã ¢¨¯ ¤ªã áª÷­ç¥­­®£® ª÷«ìæï〈R, +, ·〉, ⮡⮠ª®«¨ card R < ∞.

�¥®à¥¬  7.5. �¥å © 〈R, +, ·〉 { áª÷­ç¥­­¥ ª÷«ìæ¥ § ®¤¨­¨æ¥î, ¥«¥¬¥­âa ∈ R ­¥ õ ¤÷«ì­¨ª®¬ ­ã«ï â  a 6= 0. �®¤÷ ¥«¥¬¥­â a ®¡®à®â­¨©.

�®¢¥¤¥­­ï. �¥å © card R = n ≥ 2 (ã ­ã«ì®¢®¬ã ª÷«ìæ÷, ⮡⮠㠢¨¯ ¤-ªã card R = 1, ⢥द¥­­ï ⥮६¨ ®ç¥¢¨¤­® ¢¨ª®­ãõâìáï), a ∈ R, a 6= 0.

188

Page 191: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

7.5. �÷«ì­¨ª¨ ­ã«ï. �®­ïââï ®¡« áâ÷ æ÷«÷á­®áâ÷

�«ï ¯®èãªã ¥«¥¬¥­â , ®¡¥à­¥­®£® ¤® a, § áâ®áãõ¬® ¬¥â®¤, ¢¨ª®à¨áâ ­¨©ã ¤®¢¥¤¥­­÷ ⥮६¨ 6.6.

�®§£«ï­¥¬® ¬­®¦¨­ã a · R = {a · b : b ∈ R} ¤«ï ä÷ªá®¢ ­®£® a ∈ R.�¯®ç âªã ¤®¢¥¤¥¬®, é® ¬­®¦¨­  a·R ¬÷áâ¨âì n à÷§­¨å ¥«¥¬¥­â÷¢ ¢¨£«ï¤ãa · b (b ∈ R), ⮡â®

a · b1 6= a · b2 ¯à¨ b1 6= b2 (b1, b2 ∈ R).

�÷©á­®, ®áª÷«ìª¨ a ­¥ õ ¤÷«ì­¨ª®¬ ­ã«ï â  a 6= 0, ®âਬãõ¬®

(a · b1 = a · b2) ⇒ (a · (b1 − b2) = 0) ⇒ (b1 − b2 = 0) ⇒ (b1 = b2).

�⦥, card(a ·R) = card(R) = n; ªà÷¬ ⮣®, ®ç¥¢¨¤­®, a ·R ⊂ R. �¢÷¤á¨¢¨¯«¨¢ õ, é® ¬­®¦¨­¨ a ·R â  R §¡÷£ îâìáï.

�áª÷«ìª¨ a ·R = R 3 1 (ª÷«ìæ¥ 〈R, +, ·〉 ¬÷áâ¨âì ®¤¨­¨æî), ®âਬãõ¬®

(1 ∈ a ·R) ⇒ (∃ br ∈ R : a · br = 1).

�⦥, ¤«ï ¥«¥¬¥­â  a ã áâàãªâãà÷ 〈R, ·〉 ÷á­ãõ ¯à ¢¨© ®¡¥à­¥­¨© br.�­ «®£÷ç­® ¤®¢¥¤¥¬® ÷á­ã¢ ­­ï ¤«ï a ∈ R (a 6= 0) «÷¢®£® ®¡¥à­¥­®£® bl:

(1 ∈ R = R · a = {b · a : b ∈ R}) ⇒ (∃ bl ∈ R : bl · a = 1).

�⦥, ¤«ï a ∈ R (a 6= 0) ã áâàãªâãà÷ 〈R, ·〉 ÷á­ãõ ¯à ¢¨© ®¡¥à­¥­¨© br

â  «÷¢¨© ®¡¥à­¥­¨© bl. � à¥èâ÷, §  ⥮६®î 6.2, ¯à ¢¨© â  «÷¢¨© ®¡¥à­¥­÷¤«ï ä÷ªá®¢ ­®£® a ∈ R ¬ îâì §¡÷£ â¨áï:

br = bl = a−1.

�⦥, ¤®¢¥¤¥­®, é® ¥«¥¬¥­â a ∈ R õ ®¡®à®â­¨¬.

�ਪ« ¤ 7.9. �÷«ìæ¥ ª« á÷¢ «¨èª÷¢ Zp ã ¢¨¯ ¤ªã ¯à®á⮣® p ­¥ ¬÷á-â¨âì ¤÷«ì­¨ª÷¢ ­ã«ï:

(k1 · k2 = 0) ⇒ ((k1 · k2) mod p = 0) ⇒⇒ ((k1 mod p = 0) ∨ (k2 mod p = 0)) ⇒ ((k1 = 0) ∨ (k2 = 0)).

�⦥, ã ¢¨¯ ¤ªã ¯à®á⮣® p ¢á÷ ­¥­ã«ì®¢÷ ¥«¥¬¥­â¨ ª÷«ìæï Zp ®¡®à®â­÷:

Zp∗ = Zp \ {0}.

189

Page 192: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

�ª ­ á«÷¤®ª § ⥮६¨ 7.5 ®âਬ ­® ⢥द¥­­ï ⥮६¨ 6.6. � ª¨©à¥§ã«ìâ â æ÷«ª®¬ ¢¨¯à ¢¤®¢ãõ ¯®§­ ç¥­­ï

Zp∗ = Zp \ {0} = {1, 2, . . . , p− 1},

¢¢¥¤¥­¥ ¤«ï ¢¨¯ ¤ªã ¯à®áâ¨å p ã ¯÷¤à®§¤. 6.4.�§­ ç¥­­ï 7.5. �¡« áâî æ÷«÷á­®áâ÷ ­ §¨¢ îâì ª®¬ãâ â¨¢­¥ ª÷«ìæ¥

§ ®¤¨­¨æ¥î, 瘟 ­¥ ¬÷áâ¨âì ¤÷«ì­¨ª÷¢ ­ã«ï.�ਪ« ¤ 7.10. 1. �÷«ìæ¥ æ÷«¨å ç¨á¥« 〈Z, +, ·〉 õ ª®¬ãâ â¨¢­¨¬ ª÷«ì-

楬 § ®¤¨­¨æ¥î, ­¥ ¬÷áâ¨âì ¤÷«ì­¨ª÷¢ ­ã«ï,   ®â¦¥, õ ®¡« áâî æ÷«÷á­®áâ÷.2. �÷«ìæ¥ Z5 õ ª®¬ãâ â¨¢­¨¬ ª÷«ì楬 § ®¤¨­¨æ¥î, ­¥ ¬÷áâ¨âì ¤÷«ì­¨ª÷¢

­ã«ï,   ®â¦¥, õ ®¡« áâî æ÷«÷á­®áâ÷.3. �÷«ìæ¥ Z4 õ ª®¬ãâ â¨¢­¨¬ ª÷«ì楬 § ®¤¨­¨æ¥î,  «¥ ¬÷áâ¨âì ¤÷«ì­¨ª

­ã«ï (¥«¥¬¥­â 2),   ®â¦¥, ­¥ õ ®¡« áâî æ÷«÷á­®áâ÷.�§­ ç¥­­ï 7.6. �®«¥¬ ­ §¨¢ îâì ­¥­ã«ì®¢¥ ª®¬ãâ â¨¢­¥ ª÷«ìæ¥ §

®¤¨­¨æ¥î, ¢á÷ ­¥­ã«ì®¢÷ ¥«¥¬¥­â¨ 类£® õ ®¡®à®â­¨¬¨.�ਪ« ¤ 7.11. � ª÷ ª÷«ìæï õ ¯®«ï¬¨:1) ª÷«ìæ¥ ¤÷©á­¨å ç¨á¥« R;2) ª÷«ìæ¥ à æ÷®­ «ì­¨å ç¨á¥« Q;3) ª÷«ìæ¥ ª®¬¯«¥ªá­¨å ç¨á¥« C;4) ª÷«ìæ¥

⟨{a + b · √2: a, b ∈ Q}, +, ·⟩;5) ª÷«ìæ¥ 〈{a + b · i : a, b ∈ Q}, +, ·〉, ¤¥ i ∈ C { ª®¬¯«¥ªá­  ®¤¨­¨æï.�¯à ¢  7.6. �¥à¥¢÷à¨â¨, é® ¢á÷ ª÷«ìæï § ¯à¨ª«. 7.11 õ ¯®«ï¬¨.� ⥮६¨ 7.3 ¢¨¯«¨¢ õ, é® ¡ã¤ì-瘟 ¯®«¥ õ ®¡« áâî æ÷«÷á­®áâ÷. �¢®-

à®â­¥ ⢥द¥­­ï ­¥¯à ¢¨«ì­¥ { ª÷«ìæ¥ æ÷«¨å ç¨á¥« õ ®¤­¨¬ § ¯à¨ª« ¤÷¢®¡« áâ÷ æ÷«÷á­®áâ÷, 猪 ­¥ õ ¯®«¥¬. �à®â¥, § ãà å㢠­­ï¬ ⥮६¨ 7.5, ¬®-¦¥¬® áä®à¬ã«î¢ â¨ â ª¨© १ã«ìâ â.

�¥®à¥¬  7.6. �ã¤ì-猪 áª÷­ç¥­­  ®¡« áâì æ÷«÷á­®áâ÷, é® ¬÷áâ¨âì­¥ ¬¥­è¥ ¤¢®å ¥«¥¬¥­â÷¢ (⮡⮠­¥ õ ­ã«ì®¢¨¬ ª÷«ì楬), õ ¯®«¥¬.

� ©¯à®áâ÷訬 (÷ ¤ã¦¥ ¢ ¦«¨¢¨¬) ¯à¨ª« ¤®¬ áª÷­ç¥­­¨å ¯®«÷¢ õ ¯®«ïª« á÷¢ «¨èª÷¢ Zp, ¤¥ p { ¯à®á⥠ç¨á«®. � ã¢ ¦¨¬®, é® Zn ã ¢¨¯ ¤ªã᪫ ¤¥­®£® n ∈ N ­¥ õ ¯®«¥¬, ®áª÷«ìª¨ ¬÷áâ¨âì ¤÷«ì­¨ª¨ ­ã«ï:

(n = k ·m, k 6= n, m 6= n) ⇒ (k 6= 0, m 6= 0, k ·m = 0).

190

Page 193: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

7.6. ö¤¥ « ª÷«ìæï

�ਪ« ¤ 7.12. 1. �÷«ìæï Z2, Z3, Z5, Z97 { ¯®«ï.2. �÷«ìæï Z4, Z6, Z15 ­¥ õ ¯®«ï¬¨, ®áª÷«ìª¨ ¬÷áâïâì ¤÷«ì­¨ª¨ ­ã«ï.�§ £ «÷, ¬ã«ì⨯«÷ª â¨¢­  £à㯠 ª÷«ìæï «¨èª÷¢ Zn ¤«ï ¤®¢÷«ì­®£®

n ∈ N ¬ õ ¤®á¨âì ¯à®áâã ÷ æ÷ª ¢ã áâàãªâãàã.�¯à ¢  7.7. �®¢¥áâ¨, é® ¬ã«ì⨯«÷ª â¨¢­  £à㯠 ª÷«ìæï Zn ᪫ ¤ -

õâìáï ÷§ ª« á÷¢ «¨èª÷¢ k, ¤¥ k { ¢§ õ¬­® ¯à®á⥠§ n:Zn

∗ = {k : ���(n, k) = 1},¤¥ ���(k1, k2) { ­ ©¡÷«ì訩 á¯÷«ì­¨© ¤÷«ì­¨ª ç¨á¥« k1 â  k2.

�ਪ« ¤ 7.13. 1) Z6∗ = {1, 5};

2) Z8∗ = {1, 3, 5, 7};

3) Z9∗ = {1, 2, 4, 5, 7, 8}.

�¥â «ì­÷è¥ ¯à® áâàãªâãàã ¬ã«ì⨯«÷ª â¨¢­®ù £à㯨 ª÷«ìæï «¨èª÷¢,§®ªà¥¬ , ¯à® 㬮¢ã ùù 横«÷ç­®áâ÷, ¬®¦­  ¯à®ç¨â â¨ ¢ [10].

7.6. ö¤¥ « ª÷«ìæï�®§£«ï­¥¬® ᯥæ÷ «ì­¨© ª« á ¯÷¤ª÷«¥æì, 直© ¯®á÷¤ õ ¢ ⥮à÷ù ª÷«¥æì

¬ ©¦¥ ⥠ᠬ¥ ¬÷áæ¥, é® ÷ ­®à¬ «ì­÷ ¤÷«ì­¨ª¨ ¢ ⥮à÷ù £àã¯.�§­ ç¥­­ï 7.7. ö¤¥ «®¬ ª÷«ìæï 〈R, +, ·〉 ­ §¨¢ îâì ­¥¯®à®¦­î ¯÷¤-

¬­®¦¨­ã J ⊂ R, â ªã, é®:• áâàãªâãà  〈J, +〉 { ¯÷¤£à㯠 £à㯨 〈R, +〉;• ¤«ï ¡ã¤ì-直å r ∈ R â  j ∈ J ¤®¡ã⪨ rj â  jr ¬÷áâïâìáï ¢ J .�祢¨¤­®, é® ¢ ¡ã¤ì-类¬ã ª÷«ìæ÷ 〈R, +, ·〉 âਢ÷ «ì­÷ ¯÷¤ª÷«ìæï {0}

â  R § ¢¦¤¨ õ ÷¤¥ « ¬¨. ö¤¥ «¨ {0} â  R ­ §¨¢ îâì âਢ÷ «ì­¨¬¨; ÷¤¥ «,é® ­¥ õ âਢ÷ «ì­¨¬, ­ §¨¢ îâì ¢« á­¨¬.

�ਪ« ¤ 7.14. 1. �÷«ìæ¥ Z ¬÷áâ¨âì ÷¤¥ «¨ nZ (n ∈ N∪ {0}). �祢¨-¤­®, é® ÷¤¥ «¨ 0Z = {0} â  1Z = Z âਢ÷ «ì­÷, ÷¤¥ «¨ nZ ¯à¨ n ≥ 2 {¢« á­÷.

2. �÷«ìæ¥ ¤÷©á­¨å ç¨á¥« R ¬÷áâ¨âì «¨è¥ âਢ÷ «ì­÷ ÷¤¥ «¨, ®áª÷«ìª¨¤«ï a ∈ J (J { ¤¥ïª¨© ÷¤¥ « ª÷«ìæï R) ®âਬãõ¬®

(a 6= 0) ⇒ (∀ r ∈ R : r = a · (r · a−1) ∈ R),

⮡⮠¡ã¤ì-直© ÷¤¥ « J 6= {0} ¬ õ ¬÷áâ¨â¨ ¢á÷ ¤÷©á­÷ ç¨á«  r ∈ R.

191

Page 194: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

�¯à ¢  7.8. �®¢¥á⨠⠪÷ ⢥द¥­­ï ¤«ï ÷¤¥ «ã J ª÷«ìæï 〈R, +, ·〉:• (1 ∈ J) ⇒ (J = R) (㠯ਯã饭­÷, é® R ¬÷áâ¨âì ®¤¨­¨æî);• (a ∈ J ∩R∗) ⇒ (J = R) (㠯ਯã饭­÷, é® R ¬÷áâ¨âì ®¤¨­¨æî);• ¡ã¤ì-瘟 ¯®«¥ ¬÷áâ¨âì «¨è¥ âਢ÷ «ì­÷ ÷¤¥ «¨.� ¦«¨¢¨© ª« á ÷¤¥ «÷¢ áâ ­®¢«ïâì ÷¤¥ «¨, ¯®à®¤¦¥­÷ ä÷ªá®¢ ­¨¬ ¥«¥-

¬¥­â®¬ ª÷«ìæï. � ©¯à®áâ÷èã áâàãªâãàã æ÷ ÷¤¥ «¨ ¬ îâì ã ª®¬ãâ â¨¢­¨åª÷«ìæïå § ®¤¨­¨æ¥î.

�¥¬  7.2. �¥å © 〈R, +, ·〉 { ª®¬ãâ â¨¢­¥ ª÷«ìæ¥ § ®¤¨­¨æ¥î, a ∈ R.�®¤÷ ¬­®¦¨­  aR = {ar : r ∈ R} õ ÷¤¥ «®¬ ã ª÷«ìæ÷ 〈R, +, ·〉.

�®¢¥¤¥­­ï. �¥àãç¨ ¤® 㢠£¨ áâàãªâãàã ¬­®¦¨­¨ aR ÷ ª®à¨áâãîç¨á쪮¬ãâ â¨¢­÷áâî ª÷«ìæï 〈R, +, ·〉, ®âਬãõ¬®:

(x1, x2 ∈ aR) ⇒{

x1 = ar1, r1 ∈ R

x2 = ar2, r2 ∈ R⇒ (x1 − x2 = a(r1 − r2) ∈ aR);

(x ∈ aR, r0 ∈ R) ⇒ (x = ar, r ∈ R) ⇒ (r0x = xr0 = arr0 ∈ aR).

ö¤¥ « aR ­ §¨¢ îâì £®«®¢­¨¬ ÷¤¥ «®¬, ¯®à®¤¦¥­¨¬ ¥«¥¬¥­â®¬ a, ÷¯®§­ ç îâì ç¥à¥§ (a).

�¯à ¢  7.9. �®¢¥áâ¨, é® £®«®¢­¨© ÷¤¥ « (a) ¬÷­÷¬ «ì­¨© (§  ¢÷¤­®-襭­ï¬ «⊂») ÷¤¥ «, 直© ¬÷áâ¨âì ¥«¥¬¥­â a, ⮡â®

(J { ÷¤¥ « ª÷«ìæï 〈R, +, ·〉, a ∈ J) ⇒ ((a) ⊂ J).

�ਪ« ¤ 7.15. 1. � ¡ã¤ì-类¬ã ª®¬ãâ â¨¢­®¬ã ª÷«ìæ÷ 〈R, +, ·〉 § ®¤¨-­¨æ¥î ®¡¨¤¢  âਢ÷ «ì­÷ ÷¤¥ «¨ £®«®¢­÷: {0} = 0R = (0), R = 1R = (1).

2. � ª÷«ìæ÷ æ÷«¨å ç¨á¥« Z ¤«ï n ∈ Z ®âਬãõ¬®

(n) = (−n) = nZ.

3. �÷«ìæ¥ ¬­®£®ç«¥­÷¢ R[x] ¬÷áâ¨âì â ª÷ £®«®¢­÷ ÷¤¥ «¨ (p(x) ∈ R[x]):

(p(x)) = {p(x)q(x) : q(x) ∈ R[x]},⮡⮠£®«®¢­¨© ÷¤¥ « (p(x)) ¬÷áâ¨âì â÷ ÷ â÷«ìª¨ â÷ ¬­®£®ç«¥­¨, ïª÷ ¤÷«ïâìáï¡¥§ ®áâ ç÷ ­  ¬­®£®ç«¥­ p(x). � ª, ÷¤¥ « (x−a) (a ∈ R) ¬÷áâ¨âì â÷ ÷ â÷«ìª¨â÷ ¬­®£®ç«¥­¨, ¤«ï 直å ç¨á«® a õ ª®à¥­¥¬:

(x− a) = {(x− a)q(x) : q(x) ∈ R[x]}.

192

Page 195: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

7.6. ö¤¥ « ª÷«ìæï

�¯à ¢  7.10. �¥å © 〈R, +, ·〉 { ®¡« áâì æ÷«÷á­®áâ÷, r1, r2 ∈ R. �®¢¥áâ¨:• (r1 = r2a, a ∈ R) ⇒ ((r1) ⊂ (r2));• (r1 = r2a, a ∈ R∗) ⇒ ((r1) = (r2)).�§­ ç¥­­ï 7.8. �¡« áâì æ÷«÷á­®áâ÷, 猪 ¬÷áâ¨âì «¨è¥ £®«®¢­÷ ÷¤¥ «¨,

­ §¨¢ îâì ª÷«ì楬 £®«®¢­¨å ÷¤¥ «÷¢.�ਪ« ¤ 7.16. 1. �÷«ìæ¥ æ÷«¨å ç¨á¥« Z õ ª÷«ì楬 £®«®¢­¨å ÷¤¥ -

«÷¢. �÷©á­®, ª÷«ìæ¥ Z { ®¡« áâì æ÷«÷á­®áâ÷. �®¢¥¤¥¬®, é® Z ¬÷áâ¨âì «¨è¥£®«®¢­÷ ÷¤¥ «¨.

�¥å © J { ¤¥ïª¨© ­¥­ã«ì®¢¨© ÷¤¥ « ª÷«ìæï Z (ïª ã¦¥ § §­ ç «¨, ­ã-«ì®¢¨© ÷¤¥ « {0} = 0Z õ £®«®¢­¨¬). � ä÷ªáãõ¬® ¬÷­÷¬ «ì­¥ ¤®¤ â­¥ ç¨á-«®, é® ¬÷áâ¨âìáï ¢ J :

m = min{n ∈ J : n > 0}. (7.5)

�à å®¢ãîç¨ ®§­ ç¥­­ï ÷¤¥ «ã, ®âਬãõ¬®

(∀ k ∈ Z : mk ∈ J) ⇒ ((m) ⊂ J).

� à¥èâ÷ ¤®¢¥¤¥¬®, é® ª®¦¥­ ¥«¥¬¥­â ÷¤¥ «ã J ¬÷áâ¨âìáï ¢ £®«®¢­®¬ã÷¤¥ «÷ (m). �«ï ¤®¢÷«ì­®£® n ∈ J ¤÷áâ ­¥¬®

(n,m ∈ J) ⇒ (∀ k ∈ Z : n + mk ∈ J) ⇒ ((n mod m) ∈ J).

�¢÷¤á¨, ¢à å®¢ãîç¨ (7.5), ®âਬãõ¬®

(0 ≤ n mod m ≤ m− 1) ⇒ (n mod m = 0) ⇒ (n ∈ (m)).

� ª¨¬ 稭®¬, (m) ⊂ J ⊂ (m) ⇒ J = (m). �⦥, ª®¦¥­ ÷¤¥ « J ª÷«ìæïZ ¤÷©á­® £®«®¢­¨©, ÷ ª÷«ìæ¥ æ÷«¨å ç¨á¥« Z õ ª÷«ì楬 £®«®¢­¨å ÷¤¥ «÷¢.

2. �÷«ìæ¥ R[x] ¬­®£®ç«¥­÷¢ § ¤÷©á­¨¬¨ ª®¥ä÷æ÷õ­â ¬¨ õ ª÷«ì楬 £®«®¢-­¨å ÷¤¥ «÷¢. �÷©á­®, ª÷«ìæ¥ R[x] õ ®¡« áâî æ÷«÷á­®áâ÷. �®¢¥¤¥¬®, é® R[x]¬÷áâ¨âì «¨è¥ £®«®¢­÷ ÷¤¥ «¨.

�¥å © J { ¤¥ïª¨© ­¥­ã«ì®¢¨© ÷¤¥ « ª÷«ìæï R[x]. �¥å © m { ­ ©¬¥­è¨©¤®¤ â­¨© á⥯÷­ì á¥à¥¤ á⥯¥­÷¢ ¬­®£®ç«¥­÷¢ ÷¤¥ «ã J , ⮡⮠J ¬÷áâ¨âì¯à¨­ ©¬­÷ ®¤¨­ ¬­®£®ç«¥­ á⥯¥­ï m ÷ ­¥ ¬÷áâ¨âì ¦®¤­®£® ¬­®£®ç«¥-­  ¤®¤ â­®£® á⥯¥­ï k < n. � ä÷ªáãõ¬® ¤¥ïª¨© ¬­®£®ç«¥­ p(x) ∈ Já⥯¥­ï m:

p (x) = amxm + am−1xm−1 + · · ·+ a1x + a0, am 6= 0.

193

Page 196: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

�à å®¢ãîç¨ ®§­ ç¥­­ï ÷¤¥ «ã, ®âਬ õ¬®

(∀ q(x) ∈ R[x] : p(x)q(x) ∈ J) ⇒ ((p(x)) ⊂ J).

�®¢¥¤¥¬®, é® ª®¦¥­ ¬­®£®ç«¥­ ÷¤¥ «ã J ¬÷áâ¨âìáï ¢ £®«®¢­®¬ã ÷¤¥ «÷(p(x)). �®¢÷«ì­¨© ¬­®£®ç«¥­ q(x) ∈ J ¬®¦¥¬® ¯®¤÷«¨â¨ ­  p(x):

q(x) = p(x)s(x) + r(x),

¤¥ s(x), r(x) ∈ R[x], ¯à¨ç®¬ã á⥯÷­ì ¬­®£®ç«¥­  r(x) { ®áâ ç÷ ¢÷¤ ¤÷«¥­-­ï { õ áâண® ¬¥­è®î §  m. �⦥, ¢à å®¢ãîç¨ ¢¨¡÷à ¬­®£®ç«¥­  p(x),¬ õ¬®

(r(x) = q(x)− p(x)s(x) ∈ J) ⇒ (r(x) = 0) ⇒⇒ (q(x) = p(x)s(x) ∈ (p(x))).

� ª¨¬ 稭®¬, (p(x)) ⊂ J ⊂ (p(x)) ⇒ J = (p(x)). �⦥, ª®¦¥­ ÷¤¥ « Jª÷«ìæï R[x] £®«®¢­¨©, ÷ ª÷«ìæ¥ R[x] õ ª÷«ì楬 £®«®¢­¨å ÷¤¥ «÷¢.

3. �®§£«ï­¥¬® ª÷«ìæ¥ R[x, y] ¬­®£®ç«¥­÷¢ ¢÷¤ §¬÷­­¨å x â  y:

R[x, y] =

{n∑

i=0

m∑j=0

ai,jxiyj : ai,j ∈ R (0 ≤ i ≤ n, 0 ≤ j ≤ m), n, m ≥ 0

}.

�¯¥à æ÷ù ¤®¤ ¢ ­­ï â  ¬­®¦¥­­ï ­  R[x, y] ¢¢®¤ïâì ¯®â®çª®¢® ( ­ -«®£÷ç­® ®¯¥à æ÷ï¬ ã ª÷«ìæ÷ R[x]).

�÷«ìæ¥ R[x, y] õ ®¡« áâî æ÷«÷á­®áâ÷ (æ¥ «¥£ª® ¯¥à¥¢÷à¨â¨),  «¥ ­¥ õª÷«ì楬 £®«®¢­¨å ÷¤¥ «÷¢. � ª, ¬­®¦¨­  ¬­®£®ç«¥­÷¢

J = {p(x, y) ∈ R[x, y] : p(0, 0) = 0}õ, ®ç¥¢¨¤­®, ÷¤¥ «®¬ ã ª÷«ìæ÷ R[x, y]. �®¢¥¤¥¬®, é® J { ­¥ £®«®¢­¨© ÷¤¥ «.

�ªé® ¯à¨¯ãáâ¨â¨, é® J = (p(x, y)) ¤«ï ¤¥ïª®£® p(x, y) ∈ R[x, y], â®®âਬãõ¬®:

(x ∈ J) ⇒ (x = p(x, y)q1(x, y)) (7.6)¤«ï ¤¥ïª®£® q1(x, y) ∈ R[x, y];

(y ∈ J) ⇒ (y = p(x, y)q2(x, y)) (7.7)

¤«ï ¤¥ïª®£® q2(x, y) ∈ R[x, y].

194

Page 197: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

7.7. � ªâ®à-ª÷«ìæ¥

�¥£ª® §à®§ã¬÷â¨, é® § ⢥द¥­­ï (7.6) ¢¨¯«¨¢ õ ­¥§ «¥¦­÷áâì ¬­®-£®ç«¥­÷¢ p(x, y) â  q1(x, y) ¢÷¤ §¬÷­­®ù y: ¬­®£®ç«¥­ x = p(x, y)q1(x, y) ¬ õ§  §¬÷­­®î y á⥯÷­ì n + m, ¤¥ n â  m { á⥯¥­÷ §  §¬÷­­®î y ¬­®£®-ç«¥­÷¢ p(x, y) â  q(x, y) ¢÷¤¯®¢÷¤­®. �«¥ n + m = 0, §¢÷¤ª¨, ¢à å®¢ãî稭¥¢÷¤'õ¬­÷áâì n â  m, ®âਬãõ¬® n = m = 0.

�­ «®£÷ç­®, § (7.7) ¢¨¯«¨¢ õ ­¥§ «¥¦­÷áâì p(x, y) ¢÷¤ §¬÷­­®ù x (¬­®-£®ç«¥­ q2(x, y) â ª®¦ ­¥ ¬÷áâ¨âì x,  «¥ æ¥ § à § ­¥¢ ¦«¨¢®). �⦥, p(x, y)­¥ ¬÷áâ¨âì ­÷ §¬÷­­®ù x, ­÷ §¬÷­­®ù y, ⮡⮠õ ª®­áâ ­â®î: p(x, y) = c. �«¥¢ â ª®¬ã à §÷ ÷¤¥ « J = (p(x, y)) = (c) õ  ¡® á ¬¨¬ ª÷«ì楬 R[x, y] (ïªé®c 6= 0),  ¡® ­ã«ì®¢¨¬ ¯÷¤ª÷«ì楬 {0} (ïªé® c = 0). �¥£ª® §à®§ã¬÷â¨, 鮢 ®¡®å ¢¨¯ ¤ª å ®âਬãõ¬® á㯥à¥ç­÷áâì:

(J 3 x 6= 0) ⇒ (J 6= {0}); (x + 1 ∈ R[x, y] \ J) ⇒ (J 6= R[x, y]).

�⦥, J = {p(x, y) ∈ R[x, y] : p(0, 0) = 0} ¤÷©á­® ­¥ õ £®«®¢­¨¬ ÷¤¥ «®¬ã ª÷«ìæ÷ R[x, y].

7.7. � ªâ®à-ª÷«ìæ¥�¥å © J { ÷¤¥ « ª÷«ìæï 〈R, +, ·〉. �  ¢¨§­ ç¥­­ï¬ ÷¤¥ « õ ¯÷¤£à㯮î

£à㯨 〈R, +〉 ÷, ¢à å®¢ãîç¨ ª®¬ãâ â¨¢­÷áâì £à㯨 〈R, +〉, ùù ­®à¬ «ì­¨¬¤÷«ì­¨ª®¬. �⦥, ¬®¦­  ஧£«ï¤ â¨ ä ªâ®à-£àã¯ã

⟨R

/J, +

⟩:

R/J

= {a = a + J : a ∈ R}, a + b = a + b = (a + b) + J.

�®è¨à¨¬® ­  ¬­®¦¨­ã R/J

®¯¥à æ÷î ¬­®¦¥­­ï:

a · b = a · b, (a, b ∈ R).

�¥¬  7.3. �¯¥à æ÷î ¬­®¦¥­­ï ­  R/J

¢¢¥¤¥­® ª®à¥ªâ­®, ⮡⮤®¡ã⮪ ­¥ § «¥¦¨âì ¢÷¤ ¢¨¡®à㠯।áâ ¢­¨ª÷¢ áã¬÷¦­¨å ª« á÷¢:

a1 · b1 = a · b, ïªé® a1 = a, b1 = b.

�®¢¥¤¥­­ï. �¥å © a1 = a, b1 = b. �®¢¥¤¥¬®, é® a1 · b1 = a · b, ¤«ï 箣®áª®à¨áâ õ¬®áì «¥¬®î 6.9:

(a1 = a) ⇔ (a1 − a ∈ J) ; (b1 = b) ⇔ (b1 − b ∈ J).

195

Page 198: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

�  ¢¨§­ ç¥­­ï¬ ÷¤¥ «ã ®âਬãõ¬®

a1 · b1 − a · b = a1 · b1 − a1 · b + a1 · b− a · b = a1 · (b1 − b) + (a1 − a) · b ∈ J.

�⦥, §  «¥¬®î 6.9, ¤÷áâ ­¥¬®

(a1 ·b1−a·b ∈ J) ⇔ (a1 · b1 = a · b).

� ª¨¬ 稭®¬, ¯®¡ã¤®¢ ­®  «£¥¡à¨ç­ã áâàãªâãàã⟨R

/J, +, ·⟩, 猪 ãá-

¯ ¤ª®¢ãõ ¡ £ â® ¢« á⨢®á⥩ ª÷«ìæï 〈R, +, ·〉.�¯à ¢  7.11. �®¢¥áâ¨, é®  «£¥¡à¨ç­  áâàãªâãà 

⟨R

/J, +, ·⟩ { ª÷«ìæ¥.

�®¡ã¤®¢ ­¥ ª÷«ìæ¥⟨R

/J, +, ·⟩ ­ §¨¢ îâì ä ªâ®à-ª÷«ì楬 ª÷«ìæï R § 

÷¤¥ «®¬ J .�«ï ¯à ªâ¨ç­®£® ®¡ç¨á«¥­­ï ä ªâ®à-ª÷«¥æì §¤¥¡÷«ì讣® §àãç­® ¢¨-

ª®à¨á⮢㢠⨠«¥¬ã 6.9, 猪 ¤«ï ¢¨¯ ¤ªã ä ªâ®à-£à㯨⟨R

/J, +

⟩­ ¡ã¢ õ

¢¨£«ï¤ã(a = b) ⇔ (a− b ∈ J),

¤¥ a, b ∈ R.

�ਪ« ¤ 7.17. 1. � ªâ®à-ª÷«ìæ¥ ª÷«ìæï æ÷«¨å ç¨á¥« Z §  ÷¤¥ «®¬nZ (n ∈ N) §¡÷£ õâìáï § ¢÷¤¯®¢÷¤­¨¬ ª÷«ì楬 ª« á÷¢ «¨èª÷¢:

Z/nZ = Zn = {0, . . . , n− 1}.

� £ ¤ õ¬®, é® ®¯¥à æ÷ù «+» â  «·» ­  ¬­®¦¨­÷ Z/nZ = Zn ¡ã«® ¢¢¥¤¥­®

¢ ¯à®æ¥á÷ ¢¨¢ç¥­­ï ª« á÷¢ «¨èª÷¢ (¯÷¤à®§¤. 6.4).2. �¡ç¨á«¨¬® ä ªâ®à-ª÷«ìæ¥ ª÷«ìæï ¬­®£®ç«¥­÷¢ R[x] §  £®«®¢­¨¬ ÷¤¥-

 «®¬ J = (x). �¨§­ ç¨¬® ¢¨£«ï¤ áã¬÷¦­¨å ª« á÷¢, ᪮à¨áâ ¢è¨áì «¥-¬®î 6.9:

( p1(x) = p2(x) ) ⇔ (p1(x)− p2(x) ∈ (x)) ⇔ (p1(0) = p2(0)).

�⦥, ª®¦­¨© áã¬÷¦­¨© ª« á Pa ä ªâ®à-ª÷«ìæï R/(x)

¬÷áâ¨âì ¬­®-£®ç«¥­¨, ïª÷ ­ ¡ã¢ îâì ã â®çæ÷ 0 ä÷ªá®¢ ­®£® (ã ¬¥¦ å ¤ ­®£® ª« áã)§­ ç¥­­ï a:

Pa = {p(x) ∈ R[x] : p(0) = a}, a ∈ R.

196

Page 199: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

7.8. �®¬®¬®àä÷§¬¨ ª÷«¥æì

�⦥, è㪠­¥ ä ªâ®à-ª÷«ìæ¥ ¬ õ ¢¨£«ï¤R

/(x)

= {Pa : a ∈ R}.�¥£ª® ¯¥à¥¢÷à¨â¨, é® ®¯¥à æ÷ù ­  ä ªâ®à-ª÷«ìæ÷ R

/(x)

¢¨§­ ç îâìáïâ ª¨¬¨ á¯÷¢¢÷¤­®è¥­­ï¬¨:

Pa + Pb = Pa+b; Pa · Pb = Pa·b .

7.8. �®¬®¬®àä÷§¬¨ ª÷«¥æì� æ쮬㠯÷¤à®§¤÷«÷ ¢¢¥¤¥¬® ¤® ஧£«ï¤ã ¤¢  ª÷«ìæï: 〈R1, +, ·〉 â 

〈R2, +, ·〉. � §­ ç¨¬®, é® ¤®¤ ¢ ­­ï â  ¬­®¦¥­­ï ­  R1 ¢÷¤à÷§­ïîâìáï¢÷¤ ¢÷¤¯®¢÷¤­¨å ®¯¥à æ÷© ­  R2. �à®â¥ ­¥ ¢¢®¤¨â¨¬¥¬® à÷§­÷ ¯®§­ ç¥­­ï¤«ï ®¯¥à æ÷© ­  R1 â  R2 (­  ªèâ «â «+1» â  «+2»), ®áª÷«ìª¨ æ¥ §­ ç­®ã᪫ ¤­¨âì ஧ã¬÷­­ï ⥪áâã.

�§­ ç¥­­ï 7.9. �÷¤®¡à ¦¥­­ï f : R1 → R2 ­ §¨¢ îâì £®¬®¬®à-ä÷§¬®¬,  ¡® £®¬®¬®àä­¨¬ ¢÷¤®¡à ¦¥­­ï¬, ª÷«ìæï 〈R1, +, ·〉 ¢ ª÷«ìæ¥〈R2, +, ·〉, ïªé®

f(a + b) = f(a) + f(b), f(a · b) = f(a) · f(b)

¤«ï ¤®¢÷«ì­¨å a, b ∈ R1.ö­'õªâ¨¢­¨© £®¬®¬®àä÷§¬ ­ §¨¢ îâì ¬®­®¬®àä÷§¬®¬, áîà'õªâ¨¢­¨© {

¥¯÷¬®àä÷§¬®¬, ¡÷õªâ¨¢­¨© { ÷§®¬®àä÷§¬®¬. �ªé® f : R1 → R2 { ÷§®-¬®àä÷§¬, ª÷«ìæï 〈R1, +, ·〉 â  〈R2, +, ·〉 ­ §¨¢ îâì ÷§®¬®àä­¨¬¨. �«ïä ªâã ÷§®¬®àä­®áâ÷ ª÷«¥æì 〈R1, +, ·〉 â  〈R2, +, ·〉 ¢¦¨¢ îâì ¯®§­ ç¥­­ï〈R1, +, ·〉 ∼ 〈R2, +, ·〉  ¡® (ïªé® ®¯¥à æ÷ù ¢¦¥ ¢¨§­ ç¥­÷) R1 ∼ R2.

�⦥, ¢¨§­ ç¥­­ï £®¬®¬®àä÷§¬ã ª÷«¥æì æ÷«ª®¬  ­ «®£÷ç­¥ ¢¨§­ ç¥­-­î £®¬®¬®àä÷§¬ã £àã¯: £®¬®¬®àä÷§¬ ¬ õ «§¡¥à÷£ â¨» ¢÷¤¯®¢÷¤­÷ ®¯¥à æ÷ù «£¥¡à¨ç­¨å áâàãªâãà. �祢¨¤­®, é® £®¬®¬®àä÷§¬ (¬®­®¬®àä÷§¬, ¥¯÷-¬®àä÷§¬) f ª÷«ìæï 〈R1, +, ·〉 ã ª÷«ìæ¥ 〈R2, +, ·〉 õ ®¤­®ç á­® £®¬®¬®àä÷§-¬®¬ (¢÷¤¯®¢÷¤­® ¬®­®-  ¡® ¥¯÷¬®àä÷§¬®¬) £à㯨 〈R1, +〉 ã £àã¯ã 〈R2, +〉,é® ¤ õ §¬®£ã áä®à¬ã«î¢ â¨ â ª÷ ¢« á⨢®áâ÷ ¤«ï £®¬®¬®àä÷§¬ã ª÷«¥æì:

• f(0) = 0 (§ §­ ç¨¬®, é® ­ã«÷ ¢ ª÷«ìæïå R1 â  R2 ¬®¦ãâì ¡ãâ¨à÷§­¨¬¨);

• f(−a) = −f(a) ¤«ï ¡ã¤ì-类£® a ∈ R1.

197

Page 200: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

�ਪ« ¤ 7.18. 1. �÷¦ ¡ã¤ì-直¬¨ ª÷«ìæﬨ 〈R1, +, ·〉 S 〈R2, +, ·〉¬®¦­  ¢áâ ­®¢¨â¨ £®¬®¬®àä÷§¬, 直© ­ §¨¢ îâì ­ã«ì®¢¨¬:

O : R1 → R2, ∀x ∈ R1 : O(x) = 0.

2. �¥å © J { ÷¤¥ « ª÷«ìæï 〈R, +, ·〉. �®§£«ï­¥¬® â ª¥ ¢÷¤®¡à ¦¥­­ï ÷§ª÷«ìæï R ã ä ªâ®à-ª÷«ìæ¥ R

/J:

r : R → R/J, r(x) = x.

�¥£ª® ¯¥à¥¢÷à¨â¨, é® æ¥ ¢÷¤®¡à ¦¥­­ï õ £®¬®¬®àä÷§¬®¬. �¨§­ ç¥­¨©£®¬®¬®àä÷§¬ r : R → R

/J

­ §¨¢ îâì ¯à¨à®¤­¨¬,  ¡® ª ­®­÷ç­¨¬.

3. � âà¨ç­¥ ª÷«ìæ¥ V1 =

{(a b−b a

): a, b ∈ R

}§ ¯à¨à®¤­¨¬¨ ¤®¤ ¢ ­-

­ï¬ ÷ ¬­®¦¥­­ï¬ ÷§®¬®àä­¥ ª÷«ìæî ª®¬¯«¥ªá­¨å ç¨á¥« C; ¡¥§¯®á¥à¥¤­ì®¯¥à¥¢÷àïõâìáï, é® ÷§®¬®àä÷§¬ ¬®¦­  § ¤ â¨ â ª¨¬ ¢÷¤®¡à ¦¥­­ï¬:

f : V1 → C, f :

(a b−b a

)7→ a + bi.

4. � âà¨ç­¥ ª÷«ìæ¥ V2 =

{(a b−b a

): a, b ∈ Z

}§ ¯à¨à®¤­¨¬¨ ¤®¤ ¢ ­-

­ï¬ ÷ ¬­®¦¥­­ï¬ ÷§®¬®àä­¥ ª÷«ìæî V3 = {a + bi : a, b ∈ Z} ª®¬¯«¥ªá­¨åç¨á¥« § æ÷«¨¬¨ ¤÷©á­®î â  ª®¬¯«¥ªá­®î ç á⨭ ¬¨; ¡¥§¯®á¥à¥¤­ì® ¯¥à¥-¢÷àïõâìáï, é® ÷§®¬®àä÷§¬ ¬®¦­  § ¤ â¨ â ª¨¬ ¢÷¤®¡à ¦¥­­ï¬:

f : V2 → V3, f :

(a b−b a

)7→ a + bi.

5. � âà¨ç­¥ ª÷«ìæ¥ V4 =

{(a b2b a

): a, b ∈ Z

}§ ¯à¨à®¤­¨¬¨ ®¯¥à æ÷-

ﬨ ÷§®¬®àä­¥ ç¨á«®¢®¬ã ª÷«ìæî V5 = {a+b√

2: a, b ∈ Z}; ¡¥§¯®á¥à¥¤­ì®¯¥à¥¢÷àïõâìáï, é® ÷§®¬®àä÷§¬ ¬®¦­  § ¤ â¨ â ª¨¬ ¢÷¤®¡à ¦¥­­ï¬:

f : V4 → V5, f :

(a b2b a

)7→ a + b

√2.

198

Page 201: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

7.8. �®¬®¬®àä÷§¬¨ ª÷«¥æì

�¯à ¢  7.12. �®¢¥áâ¨, é® ª÷«ìæï V3 â  V5 ­¥÷§®¬®àä­÷.

�§­ ç¥­­ï 7.10. �¤à®¬ £®¬®¬®àä÷§¬ã f : R1 → R2 ­ §¨¢ îâì ¬­®-¦¨­ã Kerf ⊂ R1, é® ¬÷áâ¨âì â÷ ÷ â÷«ìª¨ â÷ x ∈ R1, ¤«ï 直å f(x) = 0:

Kerf = {x ∈ R1 : f(x) = 0}.

� §­ ç¨¬®, é® ï¤à® £®¬®¬®àä÷§¬ã ª÷«¥æì § ¢¦¤¨ ¬÷áâ¨âì ¯à¨­ ©¬­÷®¤¨­ ¥«¥¬¥­â: 0 ∈ R1, ®áª÷«ìª¨ f(0) = 0. �¤à® Kerf , é® ¬÷áâ¨âì «¨è¥®¤¨­ ¥«¥¬¥­â (Kerf = {0}), ­ §¨¢ îâì âਢ÷ «ì­¨¬.

�à®á⨬ ­ á«÷¤ª®¬ ÷§ ⥮६¨ 6.16 õ ⥮६  7.7.

�¥®à¥¬  7.7. �®¬®¬®àä÷§¬ ª÷«¥æì f : R1 → R2 õ ¬®­®¬®àä÷§¬®¬â®¤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ ï¤à® Kerf âਢ÷ «ì­¥.

�ਪ« ¤ 7.19. 1. �¥å © O : R1 → R2 { ­ã«ì®¢¨© £®¬®¬®à-ä÷§¬ ÷§ ­¥­ã«ì®¢®£® ª÷«ìæï 〈R1, +, ·〉 ã ª÷«ìæ¥ 〈R2, +, ·〉. �祢¨¤­®, é®KerO = R1, ⮡⮠ï¤à® ­¥ õ âਢ÷ «ì­¨¬, ÷ ­ã«ì®¢¨© £®¬®¬®àä÷§¬ ­¥ õ¬®­®¬®àä÷§¬®¬.

2. �¥å © J { ­¥âਢ÷ «ì­¨© ÷¤¥ « ª÷«ìæï 〈R, +, ·〉, ¢÷¤®¡à ¦¥­­ïr : R → R

/J

{ ¢÷¤¯®¢÷¤­¨© ¯à¨à®¤­¨© £®¬®¬®àä÷§¬. �¥£ª® ¯¥à¥¢÷à¨â¨,é® Kerr = J , ⮡⮠ï¤à® ­¥ õ âਢ÷ «ì­¨¬, ÷ ¯à¨à®¤­¨© £®¬®¬®àä÷§¬ ­¥õ ¬®­®¬®àä÷§¬®¬.

3. �®§£«ï­¥¬® ¢÷¤®¡à ¦¥­­ï ÷§ ª÷«ìæï ¬­®£®ç«¥­÷¢ § ¤÷©á­¨¬¨ ª®¥ä÷-æ÷õ­â ¬¨ ¢ ª÷«ìæ¥ ¤÷©á­¨å ç¨á¥«, é® ¤÷õ §  § ª®­®¬:

f : R[x] → R, f : p(x) 7→ p(0) (p(x) ∈ R[x]).

�¥£ª® ¯¥à¥¢÷à¨â¨, é® f õ £®¬®¬®àä÷§¬®¬, ï¤à® 类£® ¬ õ ¢¨£«ï¤

Kerf = {p(x) ∈ R[x] : p(0) = 0}.

�¤à® Kerf , ®ç¥¢¨¤­®, ­¥ õ âਢ÷ «ì­¨¬, ÷ ஧£«ï­ã⨩ £®¬®¬®àä÷§¬f ­¥ õ ¬®­®¬®àä÷§¬®¬.

�¥®à¥¬  6.17 â ª®¦ ¬ õ  ­ «®£ ã ⥮à÷ù ª÷«¥æì.

�¥®à¥¬  7.8. �¥å © f : R1 → R2 { £®¬®¬®àä÷§¬ ¬÷¦ ª÷«ìæﬨ〈R1, +, ·〉 â  〈R2, +, ·〉. �®¤÷:

199

Page 202: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

1) ï¤à® Kerf õ ÷¤¥ «®¬ ã R1;2) ®¡à § Imf õ ¯÷¤ª÷«ì楬 ã R2.

�®¢¥¤¥­­ï. 1. �®¢¥¤¥¬®, é® ï¤à® Kerf õ ÷¤¥ «®¬ ã R1:• § ⥮६¨ 6.17 ¢¨¯«¨¢ õ, é® Kerf õ ¯÷¤£àã¯®î ¢ 〈R1, +〉;• § ä÷ªá㢠¢è¨ r ∈ R1, j ∈ Kerf , ®âਬãõ¬®:

f(rj) = f(r) · f(j) = f(r) · 0 = 0; f(jr) = f(j) · f(r) = 0 · f(r) = 0.

� ª¨¬ 稭®¬, rj ∈ Kerf â  jr ∈ Kerf .�⦥, Kerf § ¤®¢®«ì­ïõ ®¡¨¤¢÷ ¢¨¬®£¨ ®§­ ç¥­­ï ÷¤¥ «ã ª÷«ìæï.2. �®¢¥¤¥¬®, é® Imf õ ¯÷¤ª÷«ì楬 ã R2. � ⥮६¨ 6.17 ¢¨¯«¨¢ õ, é®

Imf õ ¯÷¤£àã¯®î ¢ 〈R2, +〉. �¥à¥¢÷ਬ® § ¬ª­¥­÷áâì Imf ¢÷¤­®á­® ¬­®-¦¥­­ï. � ä÷ªáãõ¬® ¤®¢÷«ì­÷ y1, y2 ∈ Imf ; ¢à å®¢ãîç¨ ¢¨§­ ç¥­­ï ®¡à §ã¢÷¤®¡à ¦¥­­ï, ¢¢ ¦ â¨¬¥¬®, é® y1 = f(x1), y2 = f(x2), ¤¥ x1, x2 ∈ R1.�«ï ¤®¡ãâªã f(x1) · f(x2) ®âਬãõ¬®

f(x1) · f(x2) = f(x1 · x2) ∈ Imf .

�⦥, §  ⥮६®î 7.1, Imf { ¯÷¤ª÷«ìæ¥ ª÷«ìæï R2.

�¯à ¢  7.13. �¥à¥¢÷à¨â¨ ⢥द¥­­ï ⥮६¨ 7.8 ­  £®¬®¬®àä÷§¬ å§ ¯à¨ª«. 7.19.

7.9. �¥®à¥¬  ¯à® £®¬®¬®àä÷§¬¨ ª÷«¥æì� ⥮à÷ù ª÷«¥æì â ª®¦ ÷á­ãõ ⥮६  ¯à® £®¬®¬®àä÷§¬¨ {  ­ «®£ ¢÷¤-

¯®¢÷¤­®ù ⥮६¨ ¢ ⥮à÷ù £àã¯. �ª ÷ ¢ ⥮à÷ù £àã¯, ⥮६  ¯à® £®¬®-¬®àä÷§¬¨ ª÷«¥æì ¢áâ ­®¢«îõ §¢'燐ª ¬÷¦ £®¬®¬®àä÷§¬ ¬¨, ÷¤¥ « ¬¨ â ä ªâ®à-ª÷«ìæﬨ.

�¥å © f : R1 → R2 { £®¬®¬®àä÷§¬ ¬÷¦ ª÷«ìæﬨ 〈R1, +, ·〉 â  〈R2, +, ·〉.� £ ¤ õ¬®:

• ï¤à® Kerf £®¬®¬®àä÷§¬ã f õ ÷¤¥ «®¬ ã ª÷«ìæ÷ 〈R1, +, ·〉,   ®â¦¥,¬®¦­  ஧£«ï¤ â¨ ä ªâ®à-ª÷«ìæ¥ R1

/Kerf

;• ®¡à § Imf £®¬®¬®àä÷§¬ã f õ ¯÷¤ª÷«ì楬 ª÷«ìæï 〈R2, +, ·〉,   ®â¦¥,

¬®¦­  ஧£«ï¤ â¨ Imf ïª ª÷«ìæ¥ 〈Imf , +, ·〉.

200

Page 203: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

7.9. �¥®à¥¬  ¯à® £®¬®¬®àä÷§¬¨ ª÷«¥æì

�¥®à¥¬  7.9 (®á­®¢­  ⥮६  ¯à® £®¬®¬®àä÷§¬¨ ª÷«¥æì).1. � ªâ®à-ª÷«ìæ¥ R1

/Kerf

§  ï¤à®¬ Kerf ÷§®¬®àä­¥ ®¡à §ã Imf :

R1

/Kerf

∼ Imf .

2. öá­ãõ â ª¨© ÷§®¬®àä÷§¬ f : R1

/Kerf

→ Imf , é®

f ◦ r = f,

¤¥ r : R1 → R1

/Kerf

{ ¯à¨à®¤­¨© £®¬®¬®àä÷§¬ (∀x ∈ R1 : r(x) = x).

�®¢¥¤¥­­ï. � ¤ ¬® ¢÷¤®¡à ¦¥­­ï f : R1

/Kerf

→ Imf á¯÷¢¢÷¤­®è¥­­ï¬

f(x) = f(x), x ∈ R1.

� ¯à®æ¥á÷ ¤®¢¥¤¥­­ï ⥮६¨ ¯à® £®¬®¬®àä÷§¬¨ £à㯠(⥮६  6.18)¡ã«® ¤®¢¥¤¥­®, é® ¢÷¤®¡à ¦¥­­ï f § ¤ ­® ª®à¥ªâ­® ÷ õ ÷§®¬®àä÷§¬®¬¬÷¦ £à㯠¬¨

⟨R1

/J, +

⟩â  〈Imf , +〉. � à¥èâ÷, ¤«ï ¤®¢÷«ì­¨å x1, x2 ∈ R1

/J

®âਬãõ¬®

f(x1 · x2) = f(x1 · x2) = f(x1 · x2) = f(x1) · f(x2) = f(x1) · f(x2).

�¥®à¥¬ã ¯®¢­÷áâî ¤®¢¥¤¥­®.

�ਪ« ¤ 7.20. � ª÷«ìæ÷ ¬­®£®ç«¥­÷¢ R[x] ஧£«ï­¥¬® £®«®¢­¨© ÷¤¥ «(x− a), a ∈ R. �«ï § áâ®á㢠­­ï ⥮६¨ 7.9 ஧£«ï­¥¬® £®¬®¬®àä÷§¬ f÷§ ª÷«ìæï R[x] ã ª÷«ìæ¥ ¤÷©á­¨å ç¨á¥«:

f : R[x] → R, f(p(·)) = p(a)

(¢¨ª®à¨áâ ­­ï ᨬ¢®«ã «·» ¢ § ¯¨áã f(p(·)) ®§­ ç õ, é®  à£ã¬¥­â®¬ ¢÷-¤®¡à ¦¥­­ï f õ ¬­®£®ç«¥­ p ∈ R[x],   ­¥ ©®£® §­ ç¥­­ï ¢ ª®­ªà¥â­÷©â®çæ÷). �¥£ª® ¯¥à¥¢÷à¨â¨, é® ï¤à® â  ®¡à § £®¬®¬®àä÷§¬ã f ¬ îâì â -ª¨© ¢¨£«ï¤:

Kerf = {p(x) ∈ R[x] : p(a) = 0} = (x− a);

Imf = {p(a) : p(x) ∈ R[x]} = R.

201

Page 204: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

�⦥, §  ⥮६®î 7.9 ®âਬãõ¬®

R[x]/(x−a)

∼ R.

�ª ÷ ¢ ⥮à÷ù £àã¯, ¯. 2 ⥮६¨ 7.9 ¤®§¢®«ïõ ® ¢ª § â¨ ¢¨£«ï¤áã¬÷¦­¨å ª« á÷¢ ä ªâ®à-ª÷«ìæï R[x]

/(x−a)

. �¨¯¨è¥¬® ¨© ¢¨£«ï¤ ÷§®-¬®àä÷§¬ã f : R[x]

/(x−a)

→ R:

f(p(·)

)= f(p(·)) = p(a).

�⦥, ª®¦¥­ áã¬÷¦­¨© ª« á Aa ä ªâ®à-ª÷«ìæï R[x]/(x−a)

¬÷áâ¨âì ¬­®-£®ç«¥­¨ § ®¤­ ª®¢¨¬ §­ ç¥­­ï¬ a ã â®çæ÷ a:

R[x]/(x−a)

= {Aa : a ∈ R}, Aa = {p(x) ∈ R[x] : p(a) = a}.

�ਪ« ¤ 7.21. � ª÷«ìæ÷ ¬­®£®ç«¥­÷¢ R[x] ஧£«ï­¥¬® £®«®¢­¨© ÷¤¥ «(x2 + 1). �«ï § áâ®á㢠­­ï ⥮६¨ 7.9 ஧£«ï­¥¬® £®¬®¬®àä÷§¬ f ÷§ª÷«ìæï R[x] ã ª÷«ìæ¥ ª®¬¯«¥ªá­¨å ç¨á¥«:

f : R[x] → C, f(p(·)) = p(i)

(§ ã¢ ¦¨¬®, é® ¤«ï p(x) ∈ R[x] ¬ õ¬® à÷¢­÷áâì: |p(i)| = |p(−i)|). �¥£ª®¯¥à¥¢÷à¨â¨, é® ï¤à® â  ®¡à § £®¬®¬®àä÷§¬ã f ¬ îâì â ª¨© ¢¨£«ï¤:

Kerf = {p(·) ∈ R[x] : p(i) = p(−i) = 0} = (x2 + 1);

Imf = {p(i) : p(·) ∈ R[x]} = C.

�⦥, §  ⥮६®î 7.9 ¤÷áâ ­¥¬®

R[x]/(x2+1)

∼ C.

� ã¢ ¦¥­­ï 7.9. �âਬ ­¨© १ã«ìâ â ¬®¦­  㧠£ «ì­¨â¨ ­  ¢¨¯ -¤®ª £®«®¢­®£® ÷¤¥ «ã (ax2 + bx + c), ¤¥ a 6= 0 â  ¬­®£®ç«¥­ ax2 + bx + c­¥ ¬ õ ¤÷©á­¨å ª®à¥­÷¢:

R[x]/(ax2+bx+c)

∼ C.

202

Page 205: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

7.9. �¥®à¥¬  ¯à® £®¬®¬®àä÷§¬¨ ª÷«¥æì

�ਪ« ¤ 7.22. � ª÷«ìæ÷ ¬­®£®ç«¥­÷¢ R[x] ஧£«ï­¥¬® £®«®¢­¨© ÷¤¥- « ((x − a)(x − b)), ¤¥ a, b ∈ R, a 6= b. �«ï § áâ®á㢠­­ï ⥮६¨ 7.9஧£«ï­¥¬® £®¬®¬®àä÷§¬ f ÷§ ª÷«ìæï R[x] ã ª÷«ìæ¥ ¬ âà¨æì:

f : R[x] → M2×2, f : p(·) 7→ p

((a 00 b

)).

�÷î ¬­®£®ç«¥­  p(x) =n∑

k=0

akxk ­  ¬ âà¨æî X ∈ M2×2 ¢¨§­ ç îâì

áâ ­¤ àâ­®:

p(X) =n∑

k=0

akXk, X0 = I.

�®¡ á¯à®áâ¨â¨ ®¡ç¨á«¥­­ï ï¤à  â  ®¡à §ã ¢÷¤®¡à ¦¥­­ï f , ­ £ ¤ õ¬®¬¥â®¤ ®¡ç¨á«¥­­ï äã­ªæ÷ù ¢÷¤ ¤÷ £®­ «ì­®ù ¬ âà¨æ÷:

p

((x1 00 x2

))=

(p(x1) 0

0 p(x2)

).

�¥¯¥à «¥£ª® ¤®¢¥áâ¨, é® ï¤à® â  ®¡à § £®¬®¬®àä÷§¬ã f ¬ îâì â ª¨©¢¨£«ï¤:

Kerf =

{p(·) ∈ R[x] : p

((a 00 b

))=

(0 00 0

)}=

=

{p(·) ∈ R[x] :

(p(a) 00 p(b)

)=

(0 00 0

)}=

= {p(·) ∈ R[x] : p(a) = p(b) = 0} = ((x− a)(x− b));

Imf =

{p

((a 00 b

)): p (·) ∈ R[x]

}=

=

{(p(a) 00 p(b)

): p (·) ∈ R[x]

}=

{(a1 00 a2

): a1, a2 ∈ R

}.

�⦥, §  ⥮६®î 7.9, ®âਬãõ¬®

R[x]/((x−a)(x−b))

∼{(

a1 00 a2

): a1, a2 ∈ R

}

(¤®¤ ¢ ­­ï â  ¬­®¦¥­­ï ¢ ª÷«ìæ÷ ¤÷ £®­ «ì­¨å ¬ âà¨æì ¢¢ ¦ õ¬® ¯à¨-த­¨¬¨).

203

Page 206: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

�ਪ« ¤ 7.23. � ª÷«ìæ÷ ¬­®£®ç«¥­÷¢ R[x] ஧£«ï­¥¬® £®«®¢­¨© ÷¤¥ «((x − a)2), ¤¥ a ∈ R. �«ï § áâ®á㢠­­ï ⥮६¨ 7.9 ஧£«ï­¥¬® â ª¨©£®¬®¬®àä÷§¬ ÷§ ª÷«ìæï R[x] ã ª÷«ìæ¥ ¬ âà¨æì:

f : R[x] → M2×2, f : p(·) 7→ p

((a 10 a

)).

�®¡ á¯à®áâ¨â¨ ®¡ç¨á«¥­­ï ï¤à  â  ®¡à §ã ¢÷¤®¡à ¦¥­­ï f , ­ £ ¤ õ-¬® ¬¥â®¤ ®¡ç¨á«¥­­ï ¬­®£®ç«¥­÷¢ ¢÷¤ ¬ âà¨æì ⨯ã

(a 10 a

)(â ª §¢ ­¨å

¦®à¤ ­®¢¨å ¬ âà¨æì):

p

((x 10 x

))=

(p(x) p′(x)

0 p(x)

), p(·) ∈ R[x]. (7.8)

� ã¢ ¦¥­­ï 7.10. � ªãàá÷ «÷­÷©­®ù  «£¥¡à¨ (¤¨¢. [16]) ¤®¢¥¤¥­® ä®à¬ã-«ã ⨯ã (7.8) ¤«ï äã­ªæ÷© ¢÷¤ ¦®à¤ ­®¢¨å ¬ âà¨æì ¤®¢÷«ì­®£® ¯®à浪ã.

�¥¯¥à, §  ¤®¯®¬®£®î ä®à¬ã«¨ (7.8), «¥£ª® ®¡ç¨á«¨â¨ ï¤à® â  ®¡à §£®¬®¬®àä÷§¬ã f :

Kerf =

{p(·) ∈ R[x] : p

((a 10 a

))=

(0 00 0

)}=

=

{p(·) ∈ R[x] :

(p(a) p′(a)0 p(a)

)=

(0 00 0

)}=

= {p(·) ∈ R[x] : p(a) = p′(a) = 0} = ((x− a)2);

Imf =

{p

((a 10 a

)): p (·) ∈ R[x]

}=

=

{(p(a) p′(a)0 p(a)

): p (·) ∈ R[x]

}=

{(a1 a2

0 a1

): a1, a2 ∈ R

}.

�⦥, §  ⥮६®î 7.9, ®âਬãõ¬®

R[x]/((x−a)2)

∼{(

a1 a2

0 a1

): a1, a2 ∈ R

}.

204

Page 207: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

7.10. � ªá¨¬ «ì­÷ ÷¤¥ «¨

7.10. � ªá¨¬ «ì­÷ ÷¤¥ «¨�®§£«ï­¥¬® ᯥæ÷ «ì­¨© ª« á ÷¤¥ «÷¢, 直© ¢÷¤÷£à õ ¤ã¦¥ ¢ ¦«¨¢ã

஫ì ã ¢¨¢ç¥­­÷ ®¡« á⥩ æ÷«÷á­®áâ÷.�¥å © 〈R, +, ·〉 { ®¡« áâì æ÷«÷á­®áâ÷.

�§­ ç¥­­ï 7.11. �¥âਢ÷ «ì­¨© ÷¤¥ « J ®¡« áâ÷ æ÷«÷á­®áâ÷ 〈R, +, ·〉­ §¨¢ îâì ¬ ªá¨¬ «ì­¨¬, ïªé® ¢ 〈R, +, ·〉 ­¥ ÷á­ãõ ÷¤¥ «ã J1, â ª®£®, é®

J $ J1 6= R.

�ਪ« ¤ 7.24. 1. �÷«ìæ¥ æ÷«¨å ç¨á¥« Z õ ª÷«ì楬 £®«®¢­¨å ÷¤¥ «÷¢(¤¨¢. ¯à¨ª«. 7.16),   ®â¦¥, ¬÷áâ¨âì «¨è¥ ÷¤¥ «¨ (n), n ∈ Z. �¥£ª® §à®§ã-¬÷â¨, é® ­¥âਢ÷ «ì­¨© ÷¤¥ « nZ (n ≥ 2) õ ¬ ªá¨¬ «ì­¨¬ ⮤÷ ÷ â÷«ìª¨â®¤÷, ª®«¨ ç¨á«® n ¯à®áâ¥. � ª, ÷¤¥ «¨ 2Z, 3Z, 5Z ¬ ªá¨¬ «ì­÷, ®¤­ ª6Z ⊂ 2Z â  6Z ⊂ 3Z.

2. �÷«ìæ¥ R[x] ¬­®£®ç«¥­÷¢ § ¤÷©á­¨¬¨ ª®¥ä÷æ÷õ­â ¬¨ õ ª÷«ì楬 £®-«®¢­¨å ÷¤¥ «÷¢ (¤¨¢. ¯à¨ª«. 7.16),   ®â¦¥, ¬÷áâ¨âì «¨è¥ ÷¤¥ «¨ (p(x)),p(x) ∈ R[x]. �¥£ª® §à®§ã¬÷â¨, é® ÷¤¥ « (p(x)) ¬ ªá¨¬ «ì­¨© ⮤÷ ÷ â÷«ìª¨â®¤÷, ª®«¨ ¬­®£®ç«¥­ p(x) ¬ õ ¢¨£«ï¤:

• p(x) = a1x + a0 (a1 6= 0);• p(x) = a2x

2 + a1x + a0 (D = a21 − 4a2a0 < 0),

⮡⮠ª®«¨ p(x) ­¥ ¬®¦­  ஧ª« á⨠¢ ¤®¡ã⮪ ¬­®£®ç«¥­÷¢ ­¥­ã«ì®¢®£®á⥯¥­ï. � ª, ÷¤¥ «¨ (x − 1), (x2 + 1), (x2 + 2x + 2) ¬ ªá¨¬ «ì­÷, ®¤­ ª(x2 − 1) ⊂ (x− 1) â  (x2 − 1) ⊂ (x + 1).

� ã¢ ¦¥­­ï 7.11. �¥£ª® ¯¥à¥¢÷à¨â¨, é® ¢ ª÷«ìæ÷ R[x] ÷¤¥ «¨ (p(x)) â (a ·p(x)) §¡÷£ îâìáï ¤«ï ¡ã¤ì-类£® a 6= 0 (¤¨¢. ¢¯à ¢ã 7.10), é® ¤®§¢®«ïõ¤«ï § ¯¨áã £®«®¢­®£® ÷¤¥ «ã ®¡¨à â¨ ¬­®£®ç«¥­ § ®¤¨­¨ç­¨¬ ª®¥ä÷æ÷õ­-⮬ ã ç«¥­÷ áâ à讣® á⥯¥­ï. � ª, ­ ¯à¨ª« ¤,

(a1x + a0) =(x + a1

a0

), (a2x

2 + a1x + a0) =(x2 + a1

a2x + a0

a2

).

�¥§ã«ìâ â¨ ¯à¨ª«. 7.24 õ ­ á«÷¤ª®¬ ¯®¤ ­®ù ­¨¦ç¥ ⥮६¨ 7.10.

�¥®à¥¬  7.10. � ª÷«ìæ÷ £®«®¢­¨å ÷¤¥ «÷¢ 〈R, +, ·〉 ­¥âਢ÷ «ì­¨© ÷¤¥- « (r) ¬ ªá¨¬ «ì­¨© ⮤÷ ÷ â÷«ìª¨ ⮤÷, ª®«¨ ¥«¥¬¥­â r ∈ R ­¥ ¬®¦­ §®¡à §¨â¨ ã ¢¨£«ï¤÷ ¤®¡ãâªã ¤¢®å ­¥®¡®à®â­¨å ¥«¥¬¥­â÷¢ (â ª¨© ¥«¥-¬¥­â r ­ §¨¢ îâì ¯à®á⨬).

205

Page 208: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

�®¢¥¤¥­­ï. 1. �¥å © r ∈ R { ¯à®á⨩ ¥«¥¬¥­â. � ä÷ªáãõ¬® r1 ∈ R ÷¯à¨¯ãáâ÷¬®, é® (r) $ (r1) 6= R. �®¤÷ ®âਬãõ¬®

(r ∈ (r) ⊂ (r1)) ⇒ (r ∈ (r1)) ⇒ (∃ q ∈ R : r = r1q).

�áª÷«ìª¨ ¥«¥¬¥­â r §  ¯à¨¯ã饭­ï¬ ¯à®á⨩, ®¤¨­ § ¤¢®å ¬­®¦­¨-ª÷¢ ã ¤®¡ãâªã r = r1q ¬ õ ¡ã⨠®¡®à®â­¨¬; ¢ ®¡®å ¢¨¯ ¤ª å ®âਬãõ¬®á㯥à¥ç­÷áâì (¢¨ª®à¨á⮢ãõ¬® १ã«ìâ â ¢¯à ¢¨ 7.10):

(r1 ∈ R∗) ⇒ ((r1) = R);

(q ∈ R∗) ⇒ ((r1) = (r)).

2. �¥å © ­¥âਢ÷ «ì­¨© ÷¤¥ « (r) ¬ ªá¨¬ «ì­¨©. �ਯãáâ÷¬®, é® r஧ª« ¤ õâìáï ¢ ¤®¡ã⮪ ¤¢®å ­¥®¡®à®â­¨å ¥«¥¬¥­â÷¢: r = r1 · r2. �®¤÷,§  १ã«ìâ â®¬ ¢¯à ¢¨ 7.10, ®âਬãõ¬® (r) ⊂ (r1). �áª÷«ìª¨ ÷¤¥ « (r)¬ ªá¨¬ «ì­¨©, ¤«ï ÷¤¥ «ã (r1) ¬ õ ¬÷áæ¥ ®¤¨­ § ¤¢®å ¢¨¯ ¤ª÷¢: (r1) = (r) ¡® (r1) = R. � ®¡®å ¢¨¯ ¤ª å ®âਬãõ¬® á㯥à¥ç­÷áâì § ­¥®¡®à®â­÷áâî r1

â  r2 (ã ¯¥à讬㠢¨¯ ¤ªã ª®à¨áâãõ¬®áì § ª®­®¬ ᪮à®ç¥­­ï (7.4), 直©¢¨ª®­ãõâìáï ¢ ®¡« áâ÷ æ÷«÷á­®áâ÷):

((r1) = (r)) ⇒ (r1 = rq, q ∈ R) ⇒ (r1 = r1r2q) ⇒ (1 = r2q) ⇒ (q = r−12 );

((r1) = R) ⇒ (1 ∈ R = (r1)) ⇒ (1 = r1q, q ∈ R) ⇒ (q = r−11 ).

� §­ ç¨¬®, é® ¢ ¤®¢÷«ì­÷© ®¡« áâ÷ æ÷«÷á­®áâ÷ ¯¥à訩 ¯ã­ªâ 鮩­® ¤®-¢¥¤¥­®ù ⥮६¨ § «¨è õâìáï á¯à ¢¥¤«¨¢¨¬, ⮡⮠£®«®¢­¨© ¬ ªá¨¬ «ì-­¨© ÷¤¥ « (a) ¬®¦¥ ¯®à®¤¦ã¢ â¨áì «¨è¥ ¯à®á⨬ ¥«¥¬¥­â®¬ a; ®¤­ ª 㤮¢÷«ì­÷© ®¡« áâ÷ æ÷«÷á­®áâ÷ ­¥ ¢á直© ¯à®á⨩ ¥«¥¬¥­â a ¯®à®¤¦ãõ £®-«®¢­¨© ¬ ªá¨¬ «ì­¨© ÷¤¥ « (a).

�ਪ« ¤ 7.25. � ª÷«ìæ÷ R[x, y] ¬­®£®ç«¥­÷¢ ¢÷¤ §¬÷­­¨å x â  y ¬­®£®-ç«¥­ p(x, y) = x õ ¯à®á⨬ ¥«¥¬¥­â®¬, ®¤­ ª ÷¤¥ « (x) ­¥ ¬ ªá¨¬ «ì­¨©,®áª÷«ìª¨ õ ¢« á­®î ¯÷¤¬­®¦¨­®î ÷­è®£® ­¥âਢ÷ «ì­®£® ÷¤¥ «ã:

(x) $ J = {p(x, y) ∈ R[x, y] : p(0, 0) = 0} 6= R.

�¨¦ç¥¯®¤ ­  ⥮६  7.11 ¤¥¬®­áâàãõ ¢ ¦«¨¢ã à®«ì ¬ ªá¨¬ «ì­¨å÷¤¥ «÷¢ ¤«ï ä ªâ®à¨§ æ÷ù ®¡« áâ÷ æ÷«÷á­®áâ÷.

206

Page 209: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

7.10. � ªá¨¬ «ì­÷ ÷¤¥ «¨

�¥®à¥¬  7.11. � ªâ®à-ª÷«ìæ¥ ®¡« áâ÷ æ÷«÷á­®áâ÷ §  ¬ ªá¨¬ «ì­¨¬÷¤¥ «®¬ õ ¯®«¥¬.

�®¢¥¤¥­­ï. �¥å © J { ¤¥ïª¨© ¬ ªá¨¬ «ì­¨© ÷¤¥ « ¢ ®¡« áâ÷ æ÷«÷á-­®áâ÷ 〈R, +, ·〉. �«ï ä ªâ®à-ª÷«ìæï R

/J

¯®âà÷¡­® ¤®¢¥á⨠ª®¬ãâ â¨¢­÷áâì,­ ï¢­÷áâì ®¤¨­¨æ÷,   â ª®¦ ®¡®à®â­÷áâì ãá÷å ­¥­ã«ì®¢¨å ¥«¥¬¥­â÷¢. �®-¬ãâ â¨¢­÷áâì ÷ ­ ï¢­÷áâì ®¤¨­¨æ÷ 1 ®¤à §ã ¢¨¯«¨¢ îâì § ¢÷¤¯®¢÷¤­¨å ¢« -á⨢®á⥩ ª÷«ìæï R â  ¢¨§­ ç¥­­ï ®¯¥à æ÷© ­  ä ªâ®à-ª÷«ìæ÷:

a · b = a · b = b · a = b · a;

1 · a = 1 · a = a.

�⦥, § «¨è¨«®áì ¤®¢¥á⨠®¡®à®â­÷áâì ¤«ï ¤®¢÷«ì­®£® ä÷ªá®¢ ­®£®a ∈ R

/J, a 6= 0.

�¯®ç âªã § §­ ç¨¬®, é® 0 = 0 + J = J (­ã«ì®¢¨¬ ¥«¥¬¥­â®¬ ã ¡ã¤ì-类¬ã ä ªâ®à-ª÷«ìæ÷ õ ÷¤¥ «, §  直¬ æ¥ ª÷«ìæ¥ ä ªâ®à¨§ãîâì). �⦥,¤«ï a 6= 0 ®âਬãõ¬® 㬮¢ã a /∈ J .

�«ï ¯®èãªã ¥«¥¬¥­â , ®¡¥à­¥­®£® ¤® a, ஧£«ï­¥¬® ­®¢¨© ÷¤¥ «:

J1 = (a) + J = {ar + j : r ∈ R, j ∈ J}.

�¥£ª® ¯¥à¥¢÷à¨â¨, é® J1 ¤÷©á­® õ ÷¤¥ «®¬ ã ª÷«ìæ÷ R, ¯à¨ç®¬ã:

(∀ j ∈ J : j = a · 0 + j ∈ J1) ⇒ (J ⊂ J1);

(a = a · 1 + 0 ∈ J1) ⇒ (J 6= J1).

�⦥, J $ J1 ÷, §  ¬ ªá¨¬ «ì­÷áâî J , ®âਬãõ¬®

(J1 = R) ⇒ (1 ∈ J1) ⇒ (1 = ar + j, r ∈ R, j ∈ J) ⇒ (1 = ar + j).

� à¥èâ÷, §  «¥¬®î 6.9, j = 0, ÷ ®¤¥à¦¨¬® ®¡¥à­¥­¨© ¤® a:(1 = ar + 0

) ⇒ (1 = a · r) ⇒

(r =

(a)−1

).

� ª¨¬ 稭®¬, ¤®¢÷«ì­¨© ­¥­ã«ì®¢¨© áã¬÷¦­¨© ª« á a ∈ R/J

¬ õ ®¡¥à-­¥­¨©, é® § ¢¥àèãõ ¤®¢¥¤¥­­ï ⥮६¨.

207

Page 210: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

�ਪ« ¤ 7.26. �¥ à § ¯®¢¥à­÷¬®áï ¤® ä ªâ®à¨§ æ÷ù ª÷«ìæï æ÷«¨åç¨á¥« ÷ ª÷«ìæï ¬­®£®ç«¥­÷¢ § ¤÷©á­¨¬¨ ª®¥ä÷æ÷õ­â ¬¨.

1. � ª÷«ìæ÷ Z ÷¤¥ « (p) = pZ (p ∈ N) ¬ ªá¨¬ «ì­¨© ⮤÷ ÷ â÷«ìª¨ ⮤÷,ª®«¨ ç¨á«® p ¯à®áâ¥, ÷ ¢÷¤¯®¢÷¤­÷ ä ªâ®à-ª÷«ìæï õ ¯®«ï¬¨:

Z/pZ ∼ Zp .

2. � ª÷«ìæ÷ R[x] ¬ ªá¨¬ «ì­¨¬¨ õ ÷¤¥ «¨, ¯®à®¤¦¥­÷ ­¥à®§ª« ¤­¨¬¨¬­®£®ç«¥­ ¬¨, ÷ ¢÷¤¯®¢÷¤­÷ ä ªâ®à-ª÷«ìæï õ ¯®«ï¬¨:

• R[x]/(x−a)

∼ R ¤«ï ¤®¢÷«ì­®£® a ∈ R;• R[x]

/(x2+a1x+a0)

∼ C, ïªé® D = a21 − 4a0 < 0.

�®ª« ¤­÷è÷ ¢÷¤®¬®áâ÷ ¯à® à®«ì ¬ ªá¨¬ «ì­¨å ÷¤¥ «÷¢ ã ª÷«ìæïå £®-«®¢­¨å ÷¤¥ «÷¢ ¬®¦­  §­ ©â¨, ­ ¯à¨ª« ¤, ã [11, 13].

7.11. �®­ïââï ¯à® ÷¤¥¬¯®â¥­â­÷ ª÷«ìæï� æ쮬㠯÷¤à®§¤÷«÷ ஧£«ï­¥¬® ª÷«ìæ¥ 〈R,⊕, ·〉, ¤¥ ®¯¥à æ÷î ¤®¤ ¢ ­-

­ï ¯®§­ ç¥­® ᨬ¢®«®¬ «⊕» (¤®æ÷«ì­÷áâì á ¬¥ â ª®£® ¯®§­ ç¥­­ï áâ ­¥®ç¥¢¨¤­®î ¯÷¤ ç á ¯®¤ «ì讣® ¢¨¢ç¥­­ï ÷¤¥¬¯®â¥­â­¨å ª÷«¥æì).

�§­ ç¥­­ï 7.12. �÷«ìæ¥ 〈R,⊕, ·〉 ­ §¨¢ îâì ÷¤¥¬¯®â¥­â­¨¬, ïªé®

a2 = a ∀ a ∈ R.

�ਪ« ¤ 7.27. �¥ïª÷ ÷¤¥¬¯®â¥­â­÷ ª÷«ìæï ¢¦¥ ¡ã«® ஧£«ï­ãâ®.1. �÷«ìæ¥ ª« á÷¢ «¨èª÷¢ Z2 õ ÷¤¥¬¯®â¥­â­¨¬, ®áª÷«ìª¨

(0)2

= 0,(1)2

= 1. � §­ ç¨¬®, é® ¢ ⥮à÷ù ÷¤¥¬¯®â¥­â­¨å ª÷«¥æì § ¬÷áâì Z2 §àãç-­÷è¥ à®§£«ï¤ â¨ ÷­è¥ ¤¢®¥«¥¬¥­â­¥ ª÷«ìæ¥, ÷§®¬®àä­¥ Z2:

〈{0, 1},⊕, ·〉 ∼ Z2,

¤¥ «⊕» ¯®§­ ç õ áã¬ã §  ¬®¤ã«¥¬ 2.2. �«£¥¡à¨ç­  áâàãªâãà  〈S, M,∩〉, ¤¥ S { ª÷«ìæ¥ ¬­®¦¨­, õ ÷¤¥¬¯®-

⥭⭨¬ ª÷«ì楬, ®áª÷«ìª¨ A ∩ A = A ¤«ï ¡ã¤ì-类£® A ∈ S.

208

Page 211: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

7.12. �®­ïââï ¬®¤ã«ï â   «£¥¡à¨

�®§£«ï­¥¬® ¤¢÷ ­ ©¯à®áâ÷è÷ ¢« á⨢®áâ÷ ÷¤¥¬¯®â¥­â­¨å ª÷«¥æì.�¥å © 〈R,⊕, ·〉 { ÷¤¥¬¯®â¥­â­¥ ª÷«ìæ¥.1. ∀ a ∈ R : −a = a, ⮡⮠¢ ÷¤¥¬¯®â¥­â­®¬ã ª÷«ìæ÷ ª®¦¥­ ¥«¥¬¥­â

§¡÷£ õâìáï §÷ ᢮ù¬ ¯à®â¨«¥¦­¨¬.

�®¢¥¤¥­­ï. �®§£«ï­¥¬® ¥«¥¬¥­â (−a)2. �¨ª®à¨á⮢ãîç¨ ¢« á⨢®áâ÷ª÷«¥æì ÷ ®§­ ç¥­­ï ÷¤¥¬¯®â¥­â­®£® ª÷«ìæï, ®âਬãõ¬®:

(−a)2 = (−a) · (−a) = −(−(a · a)) = a2 = a;

(−a)2 = −a,

§¢÷¤ª¨ ¢¨¯«¨¢ õ à÷¢­÷áâì a = −a.

2. ∀ a, b ∈ R : ab = ba, ⮡⮠÷¤¥¬¯®â¥­â­¥ ª÷«ìæ¥ ª®¬ãâ â¨¢­¥.

�®¢¥¤¥­­ï. �®§£«ï­¥¬® ¥«¥¬¥­â (a⊕b)2. �¨ª®à¨á⮢ãîç¨ ¢« á⨢®áâ÷ª÷«¥æì ÷ ®§­ ç¥­­ï ÷¤¥¬¯®â¥­â­®£® ª÷«ìæï, ¤÷áâ ­¥¬®:

(a⊕ b)2 = (a⊕ b) · (a⊕ b) = a2 ⊕ ab⊕ ba⊕ b2 = a⊕ ab⊕ ba⊕ b;

(a⊕ b)2 = a⊕ b.

�⦥, a ⊕ ab ⊕ ba ⊕ b = a ⊕ b, §¢÷¤ª¨ §  § ª®­ ¬¨ ᪮à®ç¥­­ï (6.1) ÷(6.2) (ª÷«ìæ¥ §  ®¯¥à æ÷õî ¤®¤ ¢ ­­ï «⊕» õ  ¡¥«¥¢®î £à㯮î) ¬ õ¬®

(a⊕ ab⊕ ba⊕ b = a⊕ b) ⇒ (ab⊕ ba = 0) ⇒ (ab = −ba) ⇒ (ab = ba).

�  ®áâ ­­ì®¬ã «®£÷ç­®¬ã ¯¥à¥å®¤÷ ¡ã«® ¢¨ª®à¨áâ ­® ¢« á⨢÷áâìx = −x, ïªã ¤®¢¥¤¥­® ¢¨é¥.

�¯à ¢  7.14. �¥à¥¢÷à¨â¨ ¢¨ª®­ ­­ï ¤®¢¥¤¥­¨å ¢« á⨢®á⥩ ¤«ï÷¤¥¬¯®â¥­â­¨å ª÷«¥æì § ¯à¨ª«. 7.27.

7.12. �®­ïââï ¬®¤ã«ï â   «£¥¡à¨� ¯®­ïââï¬ ª÷«ìæï â÷á­® ¯®¢'易­÷ ¡÷«ìè ᪫ ¤­÷  «£¥¡à¨ç­÷ áâàãªâã-

ਠ{ ¬®¤ã«÷ â   «£¥¡à¨.

209

Page 212: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

7.12.1. �®­ïââï ¬®¤ã«ï�§­ ç¥­­ï 7.13. �¤¨â¨¢­ã  ¡¥«¥¢ã £àã¯ã 〈M, +〉 ­ §¨¢ îâì ¬®¤ã-

«¥¬ («÷¢¨¬ ¬®¤ã«¥¬) ­ ¤ ª÷«ì楬 〈R, +, ·〉, ïªé® ¢¨§­ ç¥­® ®¯¥à æ÷î ¬­®-¦¥­­ï ¥«¥¬¥­â÷¢ ÷§ M §«÷¢  ­  ¥«¥¬¥­â¨ ÷§ R, ⮡⮠¤«ï ¡ã¤ì-类ù ¯ à¨(r,m) ∈ R×M ¢¨§­ ç¥­® ¤®¡ã⮪ r ·m ∈ M , ¯à¨ç®¬ã ¢¨ª®­ãîâìáï â ª÷㬮¢¨:

• r · (m1 + m2) = (r ·m1) + (r ·m2);• (r1 + r2) ·m = (r1 ·m) + (r2 ·m);• (r1 · r2) ·m = r1 · (r2 ·m),

¤¥ r, r1, r2 ∈ R, m,m1,m2 ∈ M .� ã¢ ¦¥­­ï 7.12. � ®§­ ç¥­­÷ ¬®¤ã«ï ¢¨ª®à¨áâ ­® ¤¢÷ à÷§­÷ ®¯¥à æ÷ù

¤®¤ ¢ ­­ï (ã ª÷«ìæ÷ 〈R, +, ·〉 â  ¢ £àã¯÷ 〈M, +〉) ÷ ¤¢  à÷§­÷ ¬­®¦¥­­ï(ã ª÷«ìæ÷ 〈R, +, ·〉 â  ­  ¬­®¦¨­÷ R ×M ÷§ §­ ç¥­­ï¬ ã M). �à®â¥ â ª «â ¢â®«®£÷ï ¯®§­ ç¥­ì» ­¥ ¯à¨§¢®¤¨âì ¤® ­¥¯®à®§ã¬÷­ì, ®áª÷«ìª¨ ®¡« áâì¤÷ù ®¯¥à æ÷ù «¥£ª® ¢¨§­ ç¨â¨ §  ª®­â¥ªá⮬.

� ã¢ ¦¥­­ï 7.13. �ªé® ஧£«ï¤ îâì ¬®¤ã«ì M ­ ¤ ª÷«ì楬 § ®¤¨­¨-æ¥î 1 ∈ R, â®, ïª ¯à ¢¨«®, ¢¢®¤ïâì ¤®¤ âª®¢ã 㬮¢ã ∀m ∈ M : 1 ·m = m.

� ã¢ ¦¥­­ï 7.14. �­ «®£÷ç­® ¤® ¯®­ïââï «÷¢®£® ¬®¤ã«ï ¢¢®¤ïâì ¯®-­ïââï ¯à ¢®£® ¬®¤ã«ï â  ¤¢®áâ®à®­­ì®£® ¬®¤ã«ï.

�ਪ« ¤ 7.28. 1. �®¢÷«ì­¥ ª÷«ìæ¥ 〈R, +, ·〉 õ ¬®¤ã«¥¬ «­ ¤ ᮡ®î»,⮡⮠ ¡¥«¥¢  £à㯠 〈R, +〉 õ ¬®¤ã«¥¬ ­ ¤ ª÷«ì楬 〈R, +, ·〉.

2. �à㯠 〈Rn, +〉 õ ¬®¤ã«¥¬ ­ ¤ ¬ âà¨ç­¨¬ ª÷«ì楬 Mn×n.3. �à㯠 〈Rn, +〉 õ ¬®¤ã«¥¬ ­ ¤ ¯®«¥¬ R ¤÷©á­¨å ç¨á¥«. �⦥, «÷­÷©­¨©

¯à®áâ÷à Rn ¬®¦­  ¢¨§­ ç¨â¨ ïª ¬®¤ã«ì  ¤¨â¨¢­®ù £à㯨 Rn ­ ¤ ¯®«¥¬ R.�§ £ «÷, ¡ã¤ì-直© ¬®¤ã«ì 〈M, +〉 ­ ¤ ¯®«¥¬ 〈P, +, ·〉 ­ §¨¢ îâì «÷­÷©­¨¬¯à®áâ®à®¬.

�¯à ¢  7.15. �¥å © 〈M, +〉 { ¬®¤ã«ì ­ ¤ ª÷«ì楬 〈R, +, ·〉. �«ï ä÷ª-ᮢ ­®£® ¥«¥¬¥­â  r ∈ R ¤®¢¥áâ¨, é® ¢÷¤®¡à ¦¥­­ï M 3 m 7→ r ·m ∈ Mõ ¥­¤®¬®àä÷§¬®¬ £à㯨 〈M, +〉.

�¯à ¢  7.16. �¥å © 〈M, +〉 { ¤®¢÷«ì­   ¡¥«¥¢  £à㯠. � £ ¤ õ¬®(¤¨¢. ¢¯à ¢ã 7.1), é® ¬­®¦¨­  ¥­¤®¬®àä÷§¬÷¢ EndM £à㯨 〈M, +〉 õ ª÷«ì-楬 §  ¯®â®çª®¢¨¬ ¤®¤ ¢ ­­ï¬ â  ®¯¥à æ÷õî ª®¬¯®§¨æ÷ù. �«ï f ∈ EndM

â  m ∈ M ¢¨§­ ç¨â¨ ¤®¡ã⮪ f ·m = f(m). �®¢¥áâ¨, é® 〈M, +〉 õ ¬®¤ã«¥¬­ ¤ ª÷«ì楬 ¥­¤®¬®àä÷§¬÷¢ EndM .

210

Page 213: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

7.12. �®­ïââï ¬®¤ã«ï â   «£¥¡à¨

�  ¬®¤ã«÷ ¯¥à¥­®áïâì ¡ £ â® ®§­ ç¥­ì ÷ ⥮६ § ⥮à÷ù ª÷«¥æì. �®ªà¥-¬ , ¢¢®¤ïâì â ª÷ ¯®­ïââï, ïª £®¬®¬®àä÷§¬ ¬®¤ã«÷¢ ÷ ä ªâ®à-¬®¤ã«ì, ¤®-¢®¤ïâì ⥮६㠯஠£®¬®¬®àä÷§¬¨ ¤«ï ¬®¤ã«÷¢ â®é® (¤¨¢., ­ ¯à¨ª« ¤,[11, 13]).

7.12.2. �®­ïââï  «£¥¡à¨�®­ïââï  «£¥¡à¨ õ 㧠£ «ì­¥­­ï¬ ¯®­ïââï ª÷«ìæï.

�§­ ç¥­­ï 7.14. �«£¥¡à®î ­ ¤ ¯®«¥¬ 〈P, +, ·〉 ­ §¨¢ îâì ª÷«ìæ¥〈A, +, ·〉, â ª¥, é® 〈A, +〉 õ «÷­÷©­¨¬ ¯à®áâ®à®¬ ­ ¤ ¯®«¥¬ P , ¯à¨ç®¬ã¢¨ª®­ãõâìáï 㬮¢ :

(p1 · p2) · a = p1 · (p2 · a) = p2 · (p1 · a), ¤¥ p1, p2 ∈ P, a ∈ A.

� ã¢ ¦¥­­ï 7.15. � ®§­ ç¥­­÷  «£¥¡à¨, ïª ÷ ¢ ®§­ ç¥­­÷ ¬®¤ã«ï, ¯à¨©-­ïâ® §¡¥à÷£ â¨ áâ ­¤ àâ­÷ ¯®§­ ç¥­­ï «+» â  «·» ¤«ï à÷§­¨å ®¯¥à æ÷©¤®¤ ¢ ­­ï â  ¬­®¦¥­­ï. � ª, ¯®§­ ç¥­­ï «·» ¢¨ª®à¨á⮢ãîâì ⥯¥à ¤«ïâàì®å à÷§­¨å ¤®¡ãâª÷¢ { ¤®¡ã⮪ ã ¯®«÷ 〈P, +, ·〉, ¤®¡ã⮪ ã ª÷«ìæ÷ 〈A, +, ·〉â  ¤®¡ã⮪ ¥«¥¬¥­â  ÷§ P ­  ¥«¥¬¥­â ÷§ A. �¤­ ª æ¥ ­¥ ¯à¨§¢®¤¨âì ¤® ­¥-¯®à®§ã¬÷­ì, ®áª÷«ìª¨ ®¡« áâì ¢¨§­ ç¥­­ï ®¯¥à æ÷© § ¢¦¤¨ ¬®¦­  ¢¨§­ -ç¨â¨ ÷§ ª®­â¥ªáâã.

�ਪ« ¤ 7.29. 1. �ã¤ì-瘟 ¯®«¥ P õ  «£¥¡à®î ­ ¤ ᮡ®î, ⮡⮠­ ¤á ¬¨¬ ¯®«¥¬ P .

2. �÷«ìæ¥ ¬ âà¨æì Mn×n õ  «£¥¡à®î ­ ¤ ¯®«¥¬ R ¤÷©á­¨å ç¨á¥«.

�¥®à÷î  «£¥¡à ¤¥â «ì­® ஧£«ï­ãâ®, §®ªà¥¬ , ¢ [13].� ⥮à÷ù ª÷«¥æì ÷  «£¥¡à ç áâ® ¢÷¤¬®¢«ïîâìáï ¢÷¤ 㬮¢¨  á®æ÷ â¨¢­®á-

â÷, ⮡⮠஧£«ï¤ îâì â ª §¢ ­÷ ­¥ á®æ÷ â¨¢­÷ ª÷«ìæï â   «£¥¡à¨. � ª, ¤ã-¦¥ ¢ ¦«¨¢¨¬ ¢¨¯ ¤ª®¬ ­¥ á®æ÷ â¨¢­®ù  «£¥¡à¨ õ  «£¥¡à¨ �÷1, ¤¥ § ¬÷áâì á®æ÷ â¨¢­®áâ÷ ¢¢®¤ïâì â ª÷ ¤¢÷ 㬮¢¨ (¤®¡ã⮪ ¢  «£¥¡à å �÷ ¯®§­ ç îâìç¥à¥§ [a, b], ¤¥ a, b ∈ A):

•  ­â¨á¨¬¥âà¨ç­÷áâì: [a, a] = 0 (a ∈ A),1�÷ � à÷ãá �®äãá (1842{1899) { ­®à¢¥§ìª¨© ¬ â¥¬ â¨ª; ஧஡¨¢ ⥮à÷î ­¥¯¥à¥à-

¢­¨å £àã¯, ã ­ è ç á ¢÷¤®¬¨å ïª £à㯨 �÷.

211

Page 214: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®§¤÷« 7. �«¥¬¥­â¨ ⥮à÷ù ª÷«¥æì

• â®â®¦­÷áâì �ª®¡÷:

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0, (a, b, c ∈ A).

�ਪ« ¤ 7.30. �÷­÷©­¨© ¯à®áâ÷à R3 §  ®¯¥à æ÷î ¢¥ªâ®à­®£® ¤®¡ãâ-ªã, ⮡⮠­¥ á®æ÷ â¨¢­¥ ª÷«ìæ¥ 〈R3, +, «[, ]»〉 ïª «÷­÷©­¨© ¯à®áâ÷à ­ ¤ R,ã⢮àîõ  «£¥¡àã �÷ ( ­â¨á¨¬¥âà¨ç­÷áâì ÷ â®â®¦­÷áâì �ª®¡÷ ¤«ï æ쮣®¢¨¯ ¤ªã ¤®¢¥¤¥­® ¢ ªãàá÷ «÷­÷©­®ù  «£¥¡à¨).

�«£¥¡à¨ �÷ ¤¥â «ì­® ஧£«ï­ãâ®, §®ªà¥¬ , ¢ [17, 18].

212

Page 215: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�¯¨á®ª ¢¨ª®à¨áâ ­®ù«÷â¥à âãà¨

1. �¥­¤¥«ìá®­ �. �¢¥¤¥­¨¥ ¢ ¬ â¥¬ â¨ç¥áªãî «®£¨ªã. { �.: � ãª ,1984. { 320 á.

2. �«¨­¨ �. � â¥¬ â¨ç¥áª ï «®£¨ª . { �.: � ãª , 1973. { 480 á.3. �£«®¬ �. �ã«¥¢  áâàãªâãà  ¨ ¥¥ ¬®¤¥«¨. { �.: �®¢. à ¤¨®, 1980. { 192 á.4. �¨åâ à­¨ª®¢ �., �㪠祢  �. � â¥¬ â¨ç¥áª ï «®£¨ª : �ãàá «¥ªæ¨©.

� ¤ ç­¨ª{¯à ªâ¨ªã¬ ¨ à¥è¥­¨ï. { ��¡.: � ­ì, 1999. { 288 á.5. �®«¬®£®à®¢ �., �®¬¨­ �. �«¥¬¥­âë ⥮ਨ ä㭪権 ¨ ä㭪樮­ «ì-

­®£®  ­ «¨§ . { �.: � ãª , 1989. { 624 á.6. �¥à¥é £¨­ �., �¥­ì �. �¥ªæ¨¨ ¯® ¬ â¥¬ â¨ç¥áª®© «®£¨ª¥ ¨ ⥮ਨ

 «£®à¨â¬®¢. � áâì 1: � ç «  ⥮ਨ ¬­®¦¥áâ¢. { �.: �®áª. 業âà­¥¯à¥àë¢. ¬ â. ®¡à §®¢ ­¨ï, 1999. { 128 á.

7. �㪠�., �¥©§ �. �®¬¯ìîâ¥à­ ï ¬ â¥¬ â¨ª . { �.: � ãª , 1990. { 384 á.8. �¬¥«¨ç¥¢ �., �¥«ì­¨ª®¢ �., � à¢ ­®¢ �., �ë誥¢¨ç �. �¥ªæ¨¨ ¯®

⥮ਨ £à ä®¢. { �.: � ãª , 1990. { 384 á.9. �à¨áâ®ä¨¤¥á �. �¥®à¨ï £à ä®¢. �«£®à¨â¬¨ç¥áª¨© ¯®¤å®¤. { �: �¨à,

1978. { 432 á.10. � ¢ «® �. �ãàá  «£¥¡à¨. { �.: �¨é  èª., 1985. { 503 á.11. �ãà®è �. �¥ªæ¨¨ ¯® ®¡é¥©  «£¥¡à¥. { �.: �¨§¬ â£¨§, 1962. { 396 á.12. �ãà®è �. �¥®à¨ï £à㯯. { �.: � ãª , 1967. { 648 á.13. � ­ ¤¥à � à¤¥­ �. �«£¥¡à . { �.: � ãª , 1979. { 624 á.14. �¨«¥­ª¨­ �. �®¬¡¨­ â®à¨ª . { �.: � ãª , 1969. { 327 á.15. �®¢¨ª®¢ �. �¨áªà¥â­ ï ¬ â¥¬ â¨ª  ¤«ï ¯à®£à ¬¬¨á⮢. { ��¡.: �§-

¤ â. ¤®¬ «�¨â¥à», 2001. { 304 á.

213

Page 216: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�¯¨á®ª ¢¨ª®à¨áâ ­®ù «÷â¥à âãà¨

16. � ­â¬ å¥à �. �¥®à¨ï ¬ âà¨æ. { �.: � ãª , 1988. { 548 á.17. �¥­£ �. �«£¥¡à . { �.: �¨à, 1968. { 564 á.18. �¨à¨««®¢ �. �«¥¬¥­âë ⥮ਨ ¯à¥¤áâ ¢«¥­¨©. { �. : � ãª ,

1978. { 344 á.

214

Page 217: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®ª ¦ç¨ª â¥à¬÷­÷¢

�«£¥¡à  211Ä �÷ 211Ä ¬­®¦¨­ 30Ä Ä ¡®à¥«÷¢á쪠 31�«£¥¡à¨ç­  áâàãªâãà  § ¡÷­ à­®î ®¯¥à -æ÷õî 107Ä Ä Ä Ä Ä ª®¬ãâ â¨¢­  107Ä Ä Ä Ä Ä ­¥ª®¬ãâ â¨¢­  107�«£®à¨â¬ �«¥à÷ 80

�÷õªæ÷ï (¢§ õ¬­® ®¤­®§­ ç­¥¢÷¤®¡à ¦¥­­ï) 56�÷­®¬ �ìîâ®­  (¡÷­®¬÷ «ì­  ä®à¬ã« ) 66�÷­®¬÷ «ì­  ä®à¬ã«  ¤¨¢. �÷­®¬ �ìî-â®­ �÷­®¬÷ «ì­÷ ª®¥ä÷æ÷õ­â¨ 62

�¥à設  ÷§®«ì®¢ ­  72Ä ª®à¥­¥¢  (ª®à÷­ì) 86Ä ­¥¯ à­  72Ä ¯ à­  72�¥à設¨ ÷­æ¨¤¥­â­÷ ॡàã 71Ä áã¬÷¦­÷ 71�§ õ¬­® ®¤­®§­ ç­¥ ¢÷¤®¡à ¦¥­­ï ¤¨¢.�÷õªæ÷ï�¨¡÷ઠ 59Ä ¡¥§ ¯®¢â®à¥­ì 59Ä § ¯®¢â®à¥­­ï¬¨ 59Ä ­¥¢¯®à浪®¢ ­  (ª®¬¡÷­ æ÷ï) 59Ä ã¯®à浪®¢ ­  (஧¬÷饭­ï) 59�¨¤ «¥­­ï ¢¥à設 73

Ä à¥¡¥à 73�¨á«®¢«¥­­ï 7�¨â÷ª 104�÷¤­®è¥­­ï 33Ä  ­â¨à¥ä«¥ªá¨¢­¥ 42Ä  ­â¨á¨¬¥âà¨ç­¥ 42Ä ¤®¯®¢­ï«ì­¥ 38Ä ¥ª¢÷¢ «¥­â­®áâ÷ (¥ª¢÷¢ «¥­â­÷áâì) 45Ä ÷­'õªâ¨¢­¥ 54Ä ÷­¢¥àá­¥ (®¡¥à­¥­¥) 39Ä ®¡¥à­¥­¥ ¤¨¢. �÷¤­®è¥­­ï ÷­¢¥àá­¥Ä ¯®à®¦­õ, ¯®¢­¥ 33Ä ¯®à浪ã (­¥áâண® ç á⪮¢®£®) 47Ä Ä «÷­÷©­®£® 48Ä Ä ­¥áâண®£® 49Ä Ä áâண®£® 49Ä à¥ä«¥ªá¨¢­¥ 41Ä á¨¬¥âà¨ç­¥ 42Ä áîà'õªâ¨¢­¥ 54Ä â®â®¦­¥ 34Ä âà ­§¨â¨¢­¥ 43Ä ã­ à­¥, ¡÷­ à­¥, â¥à­ à­¥ 33Ä äã­ªæ÷®­ «ì­¥ 54�÷¤®¡à ¦¥­­ï 55Ä £®¬®¬®àä­¥ £à㯠¤¨¢. �®¬®¬®àä÷§¬£àã¯Ä Ä ª÷«¥æì ¤¨¢. �®¬®¬®àä÷§¬ ª÷«¥æì

�®¬®¬®àä÷§¬ £à㯠141Ä Ä ª ­®­÷ç­¨© ¤¨¢. �®¬®¬®àä÷§¬ £à㯯à¨à®¤­¨©

215

Page 218: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®ª ¦ç¨ª â¥à¬÷­÷¢

Ä Ä ¯à¨à®¤­¨© 170Ä ª÷«¥æì 197Ä Ä ª ­®­÷ç­¨© ¤¨¢. �®¬®¬®àä÷§¬ ª÷-«¥æì ¯à¨à®¤­¨©Ä Ä ­ã«ì®¢¨© 198Ä Ä ¯à¨à®¤­¨© 198�à ­÷ áã¬÷¦­÷ 103�à ­ì 92Ä ¢­ãâà÷è­ï 93Ä §®¢­÷è­ï 93�à ä 70Ä k-ª®«÷à­¨© 100Ä £ ¬÷«ìâ®­÷¢ 81Ä ¤¢®¤®«ì­¨© 85Ä ¤®¯®¢­ï«ì­¨© 75Ä ¤à㣨© ¤ã «ì­¨© 96Ä ¤ã «ì­¨© (¯¥à訩 ¤ã «ì­¨©) 95Ä ¥©«¥à÷¢ 77Ä § ä à¡®¢ ­¨¬¨ ¢¥à設 ¬¨ 100Ä §¢'吝¨© 75Ä ¬÷祭¨© (¬¥à¥¦ ) 87Ä ­ ¯÷¢£ ¬÷«ìâ®­÷¢ 81Ä ­ ¯÷¢¥©«¥à÷¢ 77Ä ¯¥à訩 ¤ã «ì­¨© ¤¨¢. �à ä ¤ã «ì­¨©Ä ¯« ­ à­¨© 91Ä ¯«®áª¨© 91Ä ¯®¢­¨© 73Ä ¯®à®¦­÷© 73Ä à¥£ã«ïà­¨© 84�à ä¨ £®¬¥®¬®àä­÷ 88Ä ÷§®¬®àä­÷ 87�à㯠 110Ä Zn  ¤¨â¨¢­  ¤¨¢. �à㯠 ª« á÷¢ «¨èª÷¢ ¤¨â¨¢­ Ä Zp

∗ ¬ã«ì⨯«÷ª â¨¢­  ¤¨¢. �à㯠 ª« -á÷¢ «¨èª÷¢ ¬ã«ì⨯«÷ª â¨¢­ Ä  ¡¥«¥¢  110Ä  ¤¨â¨¢­  110Ä §­ ª®§¬÷­­  141Ä ª« á÷¢ «¨èª÷¢  ¤¨â¨¢­  135Ä Ä Ä ¬ã«ì⨯«÷ª â¨¢­  138Ä ¬ã«ì⨯«÷ª â¨¢­  110Ä Ä ª÷«ìæï § ®¤¨­¨æ¥î 185Ä ¯÷¤áâ ­®¢®ª 116

Ä ¯à®áâ  153Ä á¨¬¥âà¨ç­  ¤¨¢. �à㯠 ¯÷¤áâ ­®¢®ªÄ 横«÷ç­  145�à㯨 ÷§®¬®àä­÷ 141

�¥ª àâ÷¢ ¤®¡ã⮪ ¬­®¦¨­ 28, 29�¥à¥¢® 86Ä ª®à¥­¥¢¥ 68, 86�¨§'î­ªæ÷ï ¢¨á«®¢«¥­ì 8�÷«ì­¨ª ­®à¬ «ì­¨© 154Ä ­ã«ï 186Ä Ä «÷¢¨© 186Ä Ä ¯à ¢¨© 186Ä ®¤¨­¨æ÷ ¤¨¢. �¡®à®â­¨© ã ª÷«ìæ÷�®¡ã⮪ ¬ âà¨æì ¢÷¤­®è¥­ì 40Ä ¯÷¤áâ ­®¢®ª 115�®¢¦¨­  横«ã 118�®¯®¢­¥­­ï ¤® £à äã (¤®¯®¢­ï«ì­¨©£à ä) 75Ä Ä ¬­®¦¨­¨ 22

�ª¢÷¢ «¥­â­÷áâì ¤¨¢. �÷¤­®è¥­­ï ¥ª¢÷¢ -«¥­â­®áâ÷Ä §  ¬®¤ã«¥¬ 2 45Ä Ä Ä p 45�ª¢÷¢ «¥­æ÷ï ¢¨á«®¢«¥­ì 9�«¥¬¥­â ¯à®á⨩ 205�­¤®¬®àä÷§¬ £à㯠143�¯÷¬®àä÷§¬ £à㯠141Ä ª÷«¥æì 197

� ª®­ ᪮à®ç¥­­ï ¢ ª÷«ìæ÷ 187� ¯¥à¥ç¥­­ï ¢¨á«®¢«¥­­ï 8�¢'吝  ª®¬¯®­¥­â  (®¡« áâì §¢'吝®áâ÷) 75

ö¤¥ « ª÷«ìæï 191Ä Ä ¢« á­¨© 191Ä Ä £®«®¢­¨© 192Ä ¬ ªá¨¬ «ì­¨© 205Ä âਢ÷ «ì­¨© 191ö§®¬®àä÷§¬ £à ä÷¢ 87Ä £à㯠141Ä ª÷«¥æì 197ö¬¯«÷ª æ÷ï ¢¨á«®¢«¥­ì 8ö­'õªæ÷ï 56

216

Page 219: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®ª ¦ç¨ª â¥à¬÷­÷¢

ö­¢¥àá÷ï 125ö­¤¥ªá ¯÷¤£à㯨 152ö­â¥à¯à¥â æ÷ï ä®à¬ã«¨  «£¥¡à¨ ¢¨á«®¢-«¥­ì 10

�÷«ìæ¥ 177Ä £®«®¢­¨å ÷¤¥ «÷¢ 193Ä ¥­¤®¬®àä÷§¬÷¢  ¡¥«¥¢®ù £à㯨 179Ä § ®¤¨­¨æ¥î 180Ä ÷¤¥¬¯®â¥­â­¥ 208Ä ª®¬ãâ â¨¢­¥ 180Ä ¬­®¦¨­ 32Ä Ä ¡®à¥«÷¢á쪥 32Ä ­¥ª®¬ãâ â¨¢­¥ 180Ä ­ã«ì®¢¥ 183�÷«ìæï ÷§®¬®àä­÷ 197�« á ¥ª¢÷¢ «¥­â­®áâ÷ 50Ä «¨èª÷¢ 132Ä áã¬÷¦­¨© 157Ä Ä «÷¢¨© 147Ä Ä ¯à ¢¨© 147�®¬¡÷­ æ÷ï ¤¨¢. �¨¡÷ઠ ­¥¢¯®à浪®¢ ­ �®¬¯®§¨æ÷ï ¢÷¤­®è¥­ì 39�®­'î­ªæ÷ï ¢¨á«®¢«¥­ì 8�®à÷­ì ¤¨¢. �¥à設  ª®à¥­¥¢ �à¨â¥à÷© ¯÷¤£à㯨 139Ä ¯÷¤ª÷«ìæï 182

�¥ªá¨ª®£à ä÷ç­¥ ¢¯®à浪㢠­­ï 48�¨á⮪ 86�÷á 86�®£÷ç­  ¥ª¢÷¢ «¥­â­÷áâì 11�®£÷ç­¨© ­ á«÷¤®ª 17

� âà¨æï áã¬÷¦­®áâ÷ £à äã 89�¥¦  £à ­÷ 92�¥à¥¦  ¤¨¢. �à ä ¬÷祭¨©�÷áâ 76�­®¦¨­  ¢¯®à浪®¢ ­  «÷­÷©­® 48Ä Ä ç á⪮¢® 47Ä ¯®à®¦­ï 19Ä ã­÷¢¥àá «ì­  22�­®¦¨­¨ ¥ª¢÷¢ «¥­â­÷ (à÷¢­÷) 19�®¤ã«ì («÷¢¨© ¬®¤ã«ì) 210

�®­®ù¤ 108�®­®¬®àä÷§¬ £à㯠141Ä ª÷«¥æì 197�ã«ì⨣à ä 70�ã«ìâ¨à¥¡à® 70

� ¤¬­®¦¨­  20

«� ù¢­¥» ¢¨§­ ç¥­­ï ¬­®¦¨­¨ 19

�¥©âà «ì­¨© (¤¢®áâ®à®­­÷© ­¥©âà «ì-­¨©) 108Ä «÷¢¨© 108Ä ®¤­®áâ®à®­­÷© 108Ä ¯à ¢¨© 108�¥®à÷õ­â®¢ ­¨© £à ä 70�ã«ì ª÷«ìæï 177

�¡'õ¤­ ­­ï ¢÷¤­®è¥­ì 37Ä ¬­®¦¨­ 21�¡¥à­¥­¨© (¤¢®áâ®à®­­÷© ®¡¥à­¥­¨©) 109Ä «÷¢¨© 109Ä ®¤­®áâ®à®­­÷© 109Ä ¯à ¢¨© 109Ä ã ª÷«ìæ÷ 184�¡« áâì ¢¨§­ ç¥­­ï ¡÷­ à­®£®¢÷¤­®è¥­­ï 53Ä §¢'吝®áâ÷ ¤¨¢. �¢'吝  ª®¬¯®­¥­â Ä §­ ç¥­ì (®¡à §) ¡÷­ à­®£® ¢÷¤­®è¥­­ï 53Ä æ÷«÷á­®áâ÷ 190�¡®à®â­¨© ã ª÷«ìæ÷ 184�¡à § ¡÷­ à­®£® ¢÷¤­®è¥­­ï ¤¨¢. �¡-« áâì §­ ç¥­ì ¡÷­ à­®£® ¢÷¤­®è¥­­ïÄ £®¬®¬®àä÷§¬ã £à㯠165�¤¨­¨æï ª÷«ìæï 180�¯¥à â¨¢ 107�¯¥à æ÷ï n- à­  106Ä  á®æ÷ â¨¢­  106Ä ¡÷­ à­  106Ä § ¬ª­¥­  106Ä ª®¬ãâ â¨¢­  106Ä ­¥ á®æ÷ â¨¢­  107Ä ­¥ª®¬ãâ â¨¢­  107Ä ­ã«ì- à­  106Ä ã­ à­  106

217

Page 220: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®ª ¦ç¨ª â¥à¬÷­÷¢

�à£à ä ¤¨¢. �à÷õ­â®¢ ­¨© £à äÄ ¯®¢­¨© 104�à÷õ­â®¢ ­¨© £à ä (®à£à ä) 70

� à­÷áâì ¯¥à¥áâ ­®¢ª¨ 125Ä ¯÷¤áâ ­®¢ª¨ 127�¥à¥à÷§ ¢÷¤­®è¥­ì 37Ä ¬­®¦¨­ 21�¥à¥áâ ­®¢ª  113Ä ­¥¯ à­  125Ä ¯ à­  125�¥â«ï 70�÷¢£à㯠 107�÷¤£à ä 73�÷¤£à㯠 138Ä ¢« á­  141Ä ­®à¬ «ì­  ¤¨¢. �÷«ì­¨ª ­®à¬ «ì­¨©Ä ®¤¨­¨ç­  141Ä ¯®¢­  141Ä âਢ÷ «ì­  141Ä æ¨ª«÷ç­  143�÷¤ª÷«ìæ¥ 182Ä ¢« á­¥ 183Ä âਢ÷ «ì­¥ 183�÷¤¬­®¦¨­  20Ä ¢« á­  20�÷¤à®§¡¨ââï à¥¡à  £à äã 88�÷¤áâ ­®¢ª  114Ä ­¥¯ à­  127, 130Ä ®¡¥à­¥­  116Ä ¯ à­  127, 130Ä â®â®¦­  114�®«¥ 190�®«÷­®¬÷ «ì­  ä®à¬ã«  67�®à÷¢­ï­­÷ ¥«¥¬¥­â¨ 48�®à冷ª £à㯨 150Ä ¥«¥¬¥­â  £à㯨 143Ä Ä Ä ­¥áª÷­ç¥­­¨© 144�®â㦭÷áâì áª÷­ç¥­­®ù ¬­®¦¨­¨ 26�à ¢¨«® ¤¥ �®à£ ­  㧠£ «ì­¥­¥ 16Ä «÷¢®£® ᪮à®ç¥­­ï ¢ £àã¯÷ 112Ä ¯à ¢®£® ᪮à®ç¥­­ï ¢ £àã¯÷ 112�ਭ樯 �÷à÷å«¥ 58Ä ¤®¡ãâªã 57

Ä ¤ã «ì­®áâ÷ 14Ä á㬨 58�஡«¥¬  ª¥­÷£á¡¥à§ìª¨å ¬®áâ÷¢ 77Ä ç®â¨àì®å ª®«ì®à÷¢ 104�à®á⨩ £à ä (¯à®á⮣à ä) 70�à®áâ÷à «÷­÷©­¨© 210�à®á⮣à ä ¤¨¢. �à®á⨩ £à ä�à®â¨«¥¦­¨© ã ª÷«ìæ÷ 177

�¥¡à® ÷­æ¨¤¥­â­¥ ¢¥à設 ¬ 71�÷¢¥­ì ¢¥à設¨ ª®à¥­¥¢®£® ¤¥à¥¢  86�÷§­¨æï ¢ ª÷«ìæ÷ 182Ä ¬­®¦¨­ 21Ä Ä á¨¬¥âà¨ç­  21�®§¡¨ââï ¬­®¦¨­¨ 49Ä ã¯®à浪®¢ ­¥ 64�®§¬÷饭­ï ¤¨¢. �¨¡÷ઠ 㯮à浪®¢ ­ 

�⥯÷­ì ¢¥à設¨ 72Ä Ä §  ¢¨å®¤®¬ 104Ä Ä Ä ¢å®¤®¬ 104Ä £à ­÷ 97Ä ¥«¥¬¥­â  £à㯨 112�â÷ª 104�㬠 ¢¨á«®¢«¥­ì §  ¬®¤ã«¥¬ 2 9�㯥à¥ç­÷áâì 12�îà'õªæ÷ï 56

� ¡«¨æï �¥«÷ 117� ¢â®«®£÷ï ¤¨¢. �®à¬ã«   «£¥¡à¨ ¢¨á-«®¢«¥­ì § £ «ì­®§­ çãé �¢÷à­  横«÷ç­®ù ¯÷¤£à㯨 143�¥®à¥¬  �÷à ª  ¯à® £ ¬÷«ìâ®­®¢÷ £à ä¨ 83Ä ¤¥¤ãªæ÷ù 17Ä �©«¥à  (ªà¨â¥à÷© ¥©«¥à®¢®áâ÷ £à äã) 77Ä �ì®­÷£  (ªà¨â¥à÷© ¤¢®¤®«ì­®áâ÷ £à -äã) 85Ä � £à ­¦  151Ä �ॠ¯à® £ ¬÷«ìâ®­®¢÷ £à ä¨ 83Ä �®­âàï£÷­  { �ãà â®¢á쪮£® 92Ä ¯à® £®¬®¬®àä÷§¬¨ £à㯠170Ä Ä Ä ª÷«¥æì 200Ä Ä á⥯¥­÷ ¢¥à設 74Ä Ä Ä Ä ¤«ï ®à£à ä÷¢ 105

218

Page 221: ¤¨áªà¥â ¬ ⥬ ⨪mmsa.kpi.ua/sites/default/files/publications...÷ ÷áâ¥àá⢮ ®á¢÷⨠â 㪨 ªà ù ¨ æ÷® «ì ¨© â¥å ÷ç ¨© ã ÷¢¥àá¨â¥â

�®ª ¦ç¨ª â¥à¬÷­÷¢

Ä Ä Ä £à ­¥© 98Ä �¥à¬  ¬ «  153

Θ-£à ä (â¥â -£à ä) 82

�¥â -£à ä ¤¨¢. Θ-£à ä�®â®¦­÷áâì �ª®¡÷ 212�®çª  §'õ¤­ ­­ï 76�à ­§¨â¨¢­¥ § ¬¨ª ­­ï ¢÷¤­®è¥­­ï 43, 90�࠭ᯮ§¨æ÷ï 118�ਪãâ­¨ª � áª «ï 67

�¯ ª®¢ ­   ¤à¥á æ÷ï 87

� ªâ®à-£à㯠 161� ªâ®à-ª÷«ìæ¥ 196� ªâ®à-¬­®¦¨­  51� ªâ®à¨§ æ÷ï ¬­®¦¨­¨ 51� à¡ã¢ ­­ï £à ­¥© £à äã 103�®à¬ã«   «£¥¡à¨ ¢¨á«®¢«¥­ì 9Ä Ä Ä ¤ã «ì­  14Ä Ä Ä § £ «ì­®§­ çãé  (⠢⮫®£÷ï) 12

Ä Ä Ä é® ¢¨ª®­ãõâìáï 12Ä �©«¥à  ¤«ï ¯«®áª¨å £à ä÷¢ 93

� à ªâ¥à¨áâ¨ç­  ¢« á⨢÷áâì ¬­®¦¨­¨ 20�஬ â¨ç­¥ ç¨á«® 100

�¨ª« 72, 118Ä £ ¬÷«ìâ®­÷¢ 81Ä ¥©«¥à÷¢ 77Ä ¯à®á⨩ 72

�«ïå 71Ä £ ¬÷«ìâ®­÷¢ 81Ä ¥©«¥à÷¢ 77Ä ¯à®á⨩ 72

�¤à® £®¬®¬®àä÷§¬ã £à㯠165Ä Ä Ä âਢ÷ «ì­¥ 165Ä Ä ª÷«¥æì 199Ä Ä Ä âਢ÷ «ì­¥ 199�àãá ª®à¥­¥¢®£® ¤¥à¥¢  86

219