164
NCREE-09-015 鋼筋混凝土建築物耐震能力詳細評估分析方法 (推垮分析) Seismic Evaluation of Reinforced Concrete Structure with Pushover Analysis *葉勇凱 *蕭輔沛 *沈文成 **楊耀昇 *黃世建 Yeong-Kae Yeh, Fu-Pei Hsiao, Wen-Cheng Shen, Yao-Sheng Yang, Shyh-Jiann Hwang, * 國家地震工程研究中心 **國立台灣大學土木工程學系 中華民國九十八年六月 June 2009

鋼筋混凝土建築物耐震能力詳細評估分析方法 推垮分析w3.ncree.org.tw/rcbpa/09015.pdf · II ABSTRACT This study uses the capacity spectrum method which was suggested

Embed Size (px)

Citation preview

  • NCREE-09-015

    ()

    Seismic Evaluation of Reinforced Concrete Structure with Pushover Analysis

    * * * ** *

    Yeong-Kae Yeh, Fu-Pei Hsiao, Wen-Cheng Shen,

    Yao-Sheng Yang, Shyh-Jiann Hwang,

    * **

    June 2009

  • I

    ATC-40

    (Capacity Spectrum Method)

    (Pushover analysis)

    FEMA-273 ASCE 41-06

    RC

    MATLAB

    ATC-40

  • II

    ABSTRACT

    This study uses the capacity spectrum method which was suggested by ATC-40 to evaluate the seismic resistance of reinforced concrete buildings, and introduced a nonlinear analysis program as a tool to perform a precise seismic evaluation. The capacity spectrum curve is transferred from the relative curve of the base shear versus the roof displacement provided by a pushover analysis. From the pushover analysis, the seismic resistance of the structure is not only controlled by the strength but also by the deformation.

    According to ATC-40 and the structure components behavior, we develop a reasonable method to define nonlinear hinge properties for RC members. Because the nonlinear analysis program cannot to set nonlinear hinges on the shell element, this paper provides the equivalent truss mode to simplify the simulation of brick walls.

    The National Center for Research on Earthquake Engineering had proceeded a series of static pushover experiments for school buildings, this paper compared the experimental and analytical curves in order to verify the suggested seismic evaluation method. The results of analysis indicate that the proposed analytical method can simulate the strength and the actual seismic behavior of reinforced concrete buildings accurately. Then, the seismic evaluation method which suggested by this paper can provide the engineers a way to perform precise seismic evaluation.

    Keywords: Seismic evaluation, pushover analysis, nonlinear hinge, ATC-40

  • III

    ........................................................................................................................I

    ABSTRACT ......................................................................................................... II ..................................................................................................................... III

    ....................................................................................................... 1

    1.1 ........................................................................................ 1 1.2 ............................................................................ 1 1.3 ............................................................................................. 2

    ........................................................................... 4

    2.1 RC ................................................................... 4 2.1.1 RC ........................................................................................ 4 2.1.2 RC ....................................................................... 7

    2.2 RC ................................................................... 9 2.2.1 RC ................................................................................ 9 2.2.2 RC ....................................................................... 9

    2.3 RC ................................................................... 9 2.3.1 RC ........................................................................................ 9 2.3.2 RC ......................................................... 16

    2.4 .................................................................. 17 2.4.1 ....................................................................................... 17 2.4.2 ....................................................... 19 2.4.3 ............................................................................... 20 2.4.4 ............................................................................... 21 2.4.5 ............................................................................... 21 2.4.6 ........................................................... 22

    ......................................................................... 23

    3.1 ...................................................................... 23 3.2 .......................................................................... 23 3.3 .................................................................. 24 3.4 .................................. 25

    ......................................................................... 27

    4.1 ............................................................................... 27 4.2 .................................................................................. 27 4.3 ...................................................................................... 28

  • IV

    ............................................................................................. 30

    5.1 ...................................................................................... 30 5.1.1 BMR1-R ................................................................................ 30 5.1.2 PF-2 ................................................................................... 31 5.1.3 ....................................................... 32 5.1.4 ....................................................... 34

    5.2 .......................................................................................... 35 5.2.1 ................................................................... 35 5.2.2 ................................................................... 36 5.2.3 ................................................................. 38 5.2.4 ..................................... 39

    5.3 .............................................................. 39 5.3.1 A ........................................................................... 39 5.3.2 B ............................................................... 40

    ..................................................................................................... 42

    ............................................................................................................. 43

    A ............................................. 110

    B 97 12 12 ........................... 117

    C 98 2 18 ............................. 131

    D 98 5 6 ............................... 148

    E 98 6 3 ....................................... 159

  • 1

    1.1

    kgf cm

    6

    1.2

    1

    V

    roof (capacity

    curve)

  • 2

    [1]

    1.3

    ETABSPISA3D

    SAP2000NASTRAN

    ETABS

    ETABS CSI (Computer and Sciences, Inc.)

    [2]ETABS

    SAP2000

    ETABS

    ETABS 8.0

    Nonlinear ATC-40[3] FEMA 273[4]

    (Pushover Analysis)

    ()

    ETABS (default

    hinge)(user-defined hinge)

    FEMA 273 ATC-40

  • 3

    (1)(axial hinge)P

    (2)(P-M-M hinge)PMM

    (3)(moment hinge)M3(X )M2(Y )

    (4)(shear hinge)V2(X )V3(Y )

    M3 ETABS

    2

    A~E A~E 3

    SF(Scale Factor)SF

    Mn

    ETABS FEMA 273

    RC (shell element)

    RC

  • 4

    RC

    2.1 RC

    2.1.1 RC

    4

    Elwood Moehle [5][6] 5

    P V y

    s

    (ductile shear failure)

    (flexure-shear failure) a

    (axial

    failure)

    Elwood Moehle[5] 50

    (drift ratio)

    (drift ratio)

    3 1 1 14100 133 40 100

    s m

    g cc

    PH A ff

    = +

    (1)

    H stAb s

    =

    stA

    ( s )b s m bV bd =

  • 5

    bV d h

    0.8 cf gA P

    (1)

    Elwood Moehle[6]

    (drift ratio) 24 1 (tan )

    100 tantan

    a

    st yt c

    sH PA f d

    +=

    + (2)

    ytf cd

    65 1tan ( / )H h

    (2)

    Sezen Moehle[7]

    1.

    6 nV bV

    k bV

    s

    a

    Elwood Moehle [5][6] s (1)

    a (2) s

    a

  • 6

    k 312( )ck EI H= (3)

    cEI )( ACI 318-05 [8]0.35 c gE I 0.35 c gE I cE

    gI T

    0.7 c gE I gI

    T

    ACI 318-05 cV sV

    0.53 1140c cg

    PV f bdA

    = +

    (4)

    cotst yt csA f d

    Vs

    = (5)

    ytf ACI

    45 cd d

    450 7

    2

    12tan

    45

    1

    0

    +=

    tt ff

    (6)

    gAP= 2kgf1.06 cmt cf f=

    (4)(5) nV

    cot 0.53 1140

    st stn c

    g

    A f d PV f bds A

    = + +

    (7)

    bV

  • 7

    2b nV M H= (8)

    nM (nominal moment strength)

    2.

    8 nV bV

    k nV

    [6] a

    a (2)

    0.04H

    3.

    9 bV k

    bV

    2.1.2 RC

    RC

    1.

  • 8

    (clear length)H

    10

    1 SF(scale factor) Moment SF

    nM Rotation SF 1 1

    ysaH H

    = (9)

    max ,a sbH H =

    (10)

    ( )3

    12b b

    yc

    V V Hk EI

    = = (11)

    ETABS M3 ( Y

    M2) ETABS A~E

    D E

    ETABS

    E D 10 20

    2.

    (clear length)H

    11 2 Force SF nV Disp. SF H 2

    min ,0.04acH =

    (12)

    ETABSV2(Y

    V3)

    CD E

  • 9

    ETABS E

    D 10 20

    2.2 RC

    2.2.1 RC

    T T

    T

    [8]

    1. T 1/4

    () 8 1/2

    2. 1/12

    () 6 1/2

    2.2.2 RC

    RCASCE 41-06[9]RC

    12 RC

    3 RC 4

    ETABS

    T

    T

    2.3 RC

    2.3.1 RC

    ETABS (shell element) RC

  • 10

    RC

    RC

    1. RC

    RC RC

    13

    RC

    RC RC

    RC

    RC

    2. RC

    RC [10]

    RC (

    )

    ()

    14

    12 2

    1p u e VV

    = = (13)

    15 u e p

    RC

    (1) ( yV , y )

  • 11

    yM

    (14)

    2 yy

    MV

    H= (14)

    ys , (15)

    ,s y vhH = (15)

    ( )2 1 1.2vh y

    c w w

    VE t

    +

    = (16)

    0.17 = w = wt = yf ,

    (17)

    IEHV

    c

    yyf 12

    3

    , = (17)

    gII 7.0= gI yslip,

    (18) 2

    , 8 ( )b y

    slip ys w

    d fH

    uE d a =

    (18)

    bd u 1.6 cu f =

    Sozen[11] sE wa

    (19)

    yslipyfysy ,,, ++= (19)

    (2) ( fuV , fu )

    uM

    (20)

    HMV ufu

    2= (20)

  • 12

    fus , (21)

    ,s fu vhH = (21)

    fuf , (22) gII 7.0= gI

    3

    , 12fu

    f fuc

    V HE I

    = (22)

    (23)

    , 2( ) ( )2 2p

    plastic fu u y p

    H = + (23)

    u y

    p 2 2w

    pH=

    fuslip , (24)

    , ,fu

    slip fu slip yy

    VV

    = (24)

    yV yslip, (18)

    (25)

    fuslipfuplasticfuffusfu ,,,, +++= (25)

    16

    ( 0.4fp fuV V= )

    0.02rad 0.02fp H = fp fu

    fp fu = 17

    (3) ( scrV , scr )

    ACI 318

  • 13

    0.874

    uscr c w

    w

    N dV f t d= + (26)

    0.33 50.16

    2

    uw c

    w wscr c w

    n w

    u

    Nf tV f t dM

    V

    + = +

    (27)

    cf =d =

    0.8 (0.8 w ) uV = nM =

    uN = uV

    02n w

    u

    MV

  • 14

    str w wA t a= (32)

    wa yf

    Paulay and Priestley[12]

    0.25 0.85 uw ww c

    NaA f

    = +

    (33)

    wA w w wA t=

    (b)

    10.7 0.52cf

    =

    (34)

    (c)

    1tann

    H

    =

    (35)

    23

    wn w

    a=

    (d)

    2 tan 13h = (36)

    2cot 13v = (37)

    ( )21

    1 0.2h

    h h

    K

    = +

    (38)

    ( )21

    1 0.2v

    v v

    K

    = +

    (39)

    ( ) cosh h h c strF K f A = (40)

    ( ) sinv v v c strF K f A = (41)

  • 15

    ( )1 1 yhh h hh

    FK K K

    F= + (42)

    ( ) 0.751 1 yvv v vv

    F NK K K

    F+

    = + (43)

    yhF yvF

    (e)

    ( )1 cossu h v c strV K K f A = + + (44)

    (45)~(55)

    (f) ()

    ( )11h v

    h h su suh v

    F R V V

    = =

    (45)

    ( )1tan tan1v h

    v v su suh v

    F R V V

    = =

    (46)

    (g) ()

    hh

    th s

    FA E

    = (47)

    0.75 0vvtv s

    F NA E

    = (48)

    thA tvA

    (h) ()

    02040.002 0.001

    815.5cf = +

    (49)

    0d = (50)

    d r

    (i) ()

  • 16

    ( ) ( )2 sin cos 2 2 sin cosvh r d r v d = = + (51)

    r v

    19

    (j)

    ,s u vhH = (52)

    (53)

    IEHV

    c

    susuf 12

    3

    , = (53)

    gII 35.0= gI

    18(54)

    , ,su

    slip su slip yy

    VV

    = (54)

    yV yslip, (18)

    (55)

    , , ,su s u f su slip su = + + (55)

    20 scrV scr

    suV su

    ( 0.4sp suV V= )

    0.02rad 0.02sp H = sp su sp su =

    17

    2.3.2 RC

    21

    17 5

  • 17

    ( , )y yV

    ( , )fu fuV (13) u fu = e y = Moment SF 2HVfu

    Rotation SF 1yfu fuy

    VV H

    H RC d

    1

    Rotation SF

    yfp fp

    y

    VV H

    17 6 (13)

    Force SF suV Disp. SF scrsu suscr

    VV c

    Disp.SF

    scrsp sp

    scr

    VV

    2.4

    2.4.1

    [13]

    1.

    22 V dP

    cosdVP

    = (56)

    1tan bb

    HW

    =

    bH

    bW

  • 18

    d dd

    d d

    P LE A

    = (57)

    dA dL dE

    --

    V 3

    3

    5 3 7 32 24 2 4 2

    b b b

    b b b d b

    W H H VH W W E T

    = + + + + +

    (58)

    3

    3

    5 3 7 32 24 2 4 2

    b b b

    b b b

    W H HH W W

    = + + + + +

    (59)

    0.15 bT 0.5 2.0b bH W

    (59) ( )b bH W 0.50.5 ( )b bH W 2.02.0(

    0.5 ( ) 2.0b bH W )

    bdTEV= (60)

    bd

    d

    bdd TE

    PTE

    V 2coscoscos === (61)

    (58)(62) dA

    2cosd b

    dL TA

    = (62)

    2cosd

    b

    dd

    LTAW == (63)

    2.

    23(a)

    (1)

  • 19

    2 3

    3 3u u u u

    VV

    = +

    (64)

    (2)

    2

    2u u u

    VV

    =

    (65)

    ETABS

    23(b)

    2.4.2

    24

    c

    bl bw bh hg vg

    (1) ()

    tan b hcb v

    h gw g

    +=+

    (66)

    (2) () 2( )tan

    2b h

    cb b v

    h gw l g

    +=+ +

    (67)

    (3) 3( )tan2( )

    b hc

    b v

    h gw g

    +=+

    (68)

    (4)

  • 20

    2( )tan b hcb v

    h gl g

    +=+

    (69)

    24 0.5B

    1B 1B

    0.5~2

    2.4.3

    RC

    (1)

    ( )tan b bH W

    ( 0.45 )n b b f b mbtV T W H f= + (70)

    ( )bb WH

  • 21

    ( )min ,b b bH H W = 1 tanbH W = 2 0.5 tanb bH W H= f mbtf

    btf

    0.8850.0337( ) (0.654 0.0005047 )f mc mc Nf f = + + (75)

    ( )0.3381.079mbt mcf f= (76)

    0.22bt bcf f= (77)

    N mcf bcf CNS

    2.4.4

    (57)

    nu

    u b

    VE T

    =

    (78)

    bT uE

    uE [13~16]

    0.7 0.31 261.29u bc mcE f f= (79)

    1 1.67 0.64( )b bH W = 0.5 ( ) 2.0b bH W 2

    0.3670.556 uE (78)

    2.4.5

    (1)

    0.6r f b b nV T W V= (80)

    (2)

  • 22

    0.7 0.6r f b b nV T W V= (81)

    f bT bW

    2.0%

    2.4.6

    25 7 Force SF cosnV Disp. SF cosu

    1tan ( )b bH W= ETABS A~E

    D E

  • 23

    pA

    ATC-40[3]

    3.1

    V roof 26

    aS (/ g ) dS

    21 i i i ii i

    PF w w = (82)

    1 1i ii

    w W PF = (83)

    1( )aS V W= (84)

    1d roofS PF= (85)

    iw i i i

    1ATC-40 iiroof

    HH

    =

    iH i roofH 1PF

    (modal participation factor) 1 (modal mass coefficient) i

    iW w= roof

    3.2

    27

  • 24

    initialK

    ( ,d pS , ,a pS )

    s initialK ( ,d yS , ,a yS )

    3.3

    ( ,d pS , ,a pS )( ,d pS , ,a pS )

    ,,

    2 d peqa p

    ST

    S g=

    (86)

    0 0.05eq = + (87)

    0 [17]

    00

    14

    D

    S

    EE

    = (88)

    DE 28

    , ,8 4D e a p d pE A S S= (89)

    eA

    0SE

    ( ,d pS , ,a pS )

    0 , , 2S a p d pE S S= (90)

    (89)(90)

  • 25

    , ,, ,

    4 20.05 e a p d peq

    a p d p

    A S SS S

    = + (91)

    , ,, ,

    4 20.05 e a p d peq

    a p d p

    A S SS S

    = + (92)

    0.33

    3.4

    [1]( ,d pS , ,a pS ) eqT eq

    pA

    , 00

    , 0 0

    , 00

    2.51 1 0.20.2

    0.22.5

    2.5

    eqa p eq

    s

    sp a p eq

    s eqa p eq

    TS for T T

    B T

    BA S for T T T

    B TS for T T

    T

    +

    = <

  • 26

    P Ap

  • 27

    4.1

    (colph.exe

    bwph.exe pga.exe)(mcrinstaller.exe)

    (

    http://school.ncree.org.tw/phpbb3/index.php)

    4.2

    (X )(X )

    (Y )

    1.

    2.

    3.

    4.

  • 28

    2800 2kgf/cm

    5.

    (X )

    4.3

    ETABS

    (X Y )

    10 29

    45

    9

    ETABS

    (1) RC RC

    (2)

    (3) (bwph.exe)

    (

  • 29

    )

    (4) (bwph.exe)

    (colph.exe) (5) ETABS (4).e2k

    (6) ETABS

    (7) ETABS

    (8) ETABS

    (9) (pga.exe)

  • 30

    RC RC

    5.1

    RC RC

    RC (NCREE) BMR1-R [18]

    RC (NCREE) PF-2 [20]

    BW01BW02BW03 BW04 [14]

    RC [21]

    5.1.1 BMR1-R

    BMR1-R

    5.1.1.1

    1/2.5

    75 cm60 cm325 cm

    32#64,204

    kgf/cm2#32,803 kgf/cm210 cm210 kgf/cm20.15 'c gf A 142,046 kgf (142 tons)

    30

  • 31

    5.1.1.2 BMR1-R

    ETABS

    ETABS M3

    52

    NCREE ETABS

    48

    48 ETABS

    42,896

    kgfETABS M3 43,217 kgf 47,298 kgf

    M3

    5.1.2 PF-2

    RC PF-2

    5.1.2.1

    300

    cm 450 cm 276 kgf/cm2 3,092

    kgf/cm2 3,537 kgf/cm2 25,108 kgf (25.1 tons)

    31

    5.1.2.2 PF-2

    ETABS

  • 32

    ETABS M3

    53

    NCREE ETABS

    49

    53

    16,881 kgfM3 16,660 kgf 16,927 kgf

    M3

    M3

    5.1.3

    (BW01~BW04)

    5.1.3.1

    BW01

    BW02BW03BW04RC

    BW0110mm

    :

    BW01

    RC 80 cm 150 cm 223 kgf/cm2

    4,126 kgf/cm2 3,968 kgf/cm2

    100 cm 80 cm 0.5B(9.6cm)

    185 kgf/cm2 193 kgf/cm2

    32

    BW02

    RC 80 cm 150 cm 280 kgf/cm2

  • 33

    4,126 kgf/cm2 3,968 kgf/cm2

    100 cm 80 cm 0.5B(9.6 cm)

    185 kgf/cm2 193 kgf/cm2

    32

    BW03

    RC 80 cm 150 cm 246 kgf/cm2

    4,126 kgf/cm2 3,968 kgf/cm2

    100 cm 80 cm 0.5B(9.6 cm)

    185 kgf/cm2 166 kgf/cm2

    32

    BW04

    RC 80 cm 150 cm 278 kgf/cm2

    4,126 kgf/cm2 3,968 kgf/cm2

    100 cm 80 cm 0.5B(9.6 cm)

    185 kgf/cm2 249 kgf/cm2

    32

    5.1.3.2

    RC ETABS

    54~ 57

    NCREE ETABS

    50 BW01

    BW01

    BW01

    54~ 57

  • 34

    12 BW02 BW04

    BW01 54

    5.1.4

    5.1.4.1

    RC

    :

    RC80 cm150 cm209 kgf/cm2

    2,803 kgf/cm22,803 kgf/cm2360 cm

    280 cm1B(20.4 cm)333 kgf/cm2

    131 kgf/cm2

    33

    5.1.4.2

    RC

    ETABS

    58 NCREE

    ETABS 51

    58

    32,886 kgf 38,909 kgf

  • 35

    5.2

    5.2.1

    [22]

    5.2.1.1

    72 9.3

    3.18 3.5

    262 tons

    297 tons559 tons40 cm

    ()120 tons

    9

    10

    1134~37

    59~60

    5.2.1.2

    ETABS

  • 36

    63

    Present ETABS

    61 62

    63

    216,032 kgf 191,272 kgf

    59 60

    A-frame 57 ETABS

    A-frame C5C7 B-frame 16 ETABS

    B-frame C8C13 C5C7

    C8

    C13

    C8

    5.2.2

    5.2.2.1

    60 10.4

  • 37

    3.95

    3.75

    309 tons201.8 tons

    510.8 tons11

    38~4243

    64~66

    5.2.2.2

    ETABS

    69 NCREE ETABS

    67 68

    69

    297,220 kgf 245,392 kgf

    5.2

    64 68

    A-frame 347 ETABS

    A-frame C3C4C7 B-frame 689 ETABS

    B-frame C6C8C9

  • 38

    5.2.3

    5.2.3.1

    18.210.8

    3.83.6

    (Specimen I)(Specimen II)

    198tons155tons

    353tons11

    44~4770~72

    5.2.3.2

    ETABS

    75 NCREE

    ETABS

    73 74

    75

    () 120,022 kgf() 121,390 kgf

    114,238 kgf

  • 39

    71 74

    A-frame 234567

    ETABS A-frame C2~C7 C2~C7

    C4~C7 C2 C3

    C2 C3

    5.2.4

    3.5

    3.8181 tons136 tons

    317 tons11

    76~77

    78

    79

    147,260 kgf

    124,810 kgf

    5.3

    5.3.1 A

    [23]

  • 40

    5.3.1.1

    50 10

    3.6 3.6

    498 tons371 tons869tons210

    kgf/cm22,800 kgf/cm22,800 kgf/cm2

    132.5 kgf/cm2210 kgf/cm2

    80~83

    5.3.1.2

    ETABS

    84 Present

    SERCB

    84 [23] 313,000 kgf

    355,155 kgf

    5.3.2 B

    [24]

    5.3.2.1

    3.6

    53.510.2

  • 41

    901B

    160 kgf/cm2

    2,800 kgf/cm2

    5.3.2.2

    3.1

    ETABS

    433,420 kgf

    8.42 cm

    85 Present SERCB

    5.3.3

    SERCB

  • 42

    ETABS

    RC

    RC RC

    1.

    2.

    ETABS

    3.

    4.

    5.

  • 43

    [1] 2006

    [2] CSI, ETABSExtended 3D analysis of building systems, Nonlinear

    Version 8.5.4, Users Manual, Computer and Structures, Inc.,

    Berkeley,California, 1999.

    [3] ACT-40, Seismic evaluation and retrofit of concrete buildings. Report No.

    SSC 96-01, Applied Technology Council, 1996.

    [4] FEMA 273, NEHRP Guidelines for the Seismic Rehabilitation of

    Buildings, Federal Emergency Management Agency, Washington, D.C.,

    1997.

    [5] Elwood, K. J., and Moehle, J. P., Axial capacity model for shear

    damaged columns, ACI Structural Journal, Vol. 102, No. 4, 578-587,

    2005.

    [6] Elwood, K. J., and Moehle, J. P., Drift capacity of reinforced concrete

    columns with light transverse reinforcement, Earthquake Spectra, Vol.

    21, No. 1, 71-89, 2005.

    [7] Sezen, H. and Moehle, J. P., Shear strength model for lightly reinforced

    concrete columns, Journal of Structural Engineering, ASCE, Vol. 130,

    No. 11, 1692-1703, 2004.

    [8] ACI Committee 318, Building code requirements for structural concrete

    (ACI 318-05) and commentary (ACI 318R-05). American Concrete

    Institute, Farmington Hills, MI, 2005.

    [9] ASCE, Seismic Rehabilitation of Existing Buildings (ASCE 41-06).

    American Society of Civil Engineers, Reston, Virginia, 2006.

    [10] RC

    2005

    [11] Sozen, M. A., Monteiro, P., Moehle, J. P., and Tang, H. T., Effects of

    cracking and age on stiffness reinforced concrete walls resisting in-plane

  • 44

    shear, Proc., The Fourth Symposium on Nuclear Power Plant Structures,

    Equipment, and Piping, North Carolina State Univ., Raleigh, NC, Dec.,

    3.1-3.13, 1992.

    [12] Paulay, T., and Priestley, M. J. N., Seismic Design of Reinforced

    Concrete and Masonry Buildings, John Wiley & Sons, Inc., New York,

    744 pp., 1992.

    [13] 2008

    [14] RC

    2003

    [15]

    1994

    [16] RC

    1996

    [17] Chopra, A. K., Dynamics of Structures Theory and Applications to

    Earthquake Engineering, Prentice-Hall, Inc., Englewood Cliffs, New

    Jersey, USA, 1999.

    [18] FRP

    NCREE-99-0301999

    [19] RC

    NCREE-03-0102003

    [20]

    NCREE-06-0102006

    [21]

    ()74-31

    1985

    [22]

    EM05-003622005

  • 45

    [23]

    095301070000G3317

    2006

    [24]

    NCREE-08-0232008

  • - 46 -

    1 RC (M3 Type)

    Points Moment/SF Rotation/SF

    A 0 0

    B 1 0

    C 1 a

    D 0 b

    E 0 10b

    2 RC (V2 Type)

    Points Force/SF Disp./SF

    A 0 0

    B 1 0

    C 0 c

    D 0 10c

    E 0 10c

  • - 47 -

    3 RC

    bal

    w c

    Vb d f a b c

    0.0 3 0.025 0.05 0.2

    0.0 6 0.02 0.04 0.2

    0.5 3 0.02 0.03 0.2

    0.5 6 0.015 0.02 0.2

    0.0 3 0.02 0.03 0.2

    0.0 6 0.01 0.015 0.2

    0.5 3 0.01 0.015 0.2

    0.5 6 0.005 0.01 0.2

    4 RC

    a b c

    (d/2) 0.003 0.02 0.2

    >(d/2) 0.003 0.01 0.2

  • - 48 -

    5 RC

    Points Moment/SF Rotation/SF

    A 0 0

    B y

    u

    VV

    0

    C 1 1

    D 0.4 d

    E 0.4 d

    6 RC

    Points Force/SF Disp/SF

    A 0 0

    B scr

    su

    VV

    0

    C 1 1

    D 0.4 c

    E 0.4 c

    7

    Points Force/SF Disp/SF

    A 0 0

    B 1 0

    C r nV V 2 cosr

    u u un

    VV

    D r nV V 0.02

    cosb

    u

    H

    E r nV V 0.02

    cosb

    u

    H

  • - 49 -

    8

    eq sB 1B

    0.50 1.93 1.75

  • - 50 -

    9

    15 GC1C2N 201 23 GA3A4S 197 24 GA2A3S 232 25

    1

    CC3N 150

    195

    13 GC6C7N 334 14 GC4C5N 199 20 GA6A7S 163 21 GA5A6S 231 22

    2

    GA4A5S 167

    219

    11 GC12C13N 188 12 GC11C12N 213 18 GA12A13S 251 19

    4

    GA11A12S 226

    220

    9 GC15C16N 425 10 GC13C14N 436 16 GA14A15S 152 17

    5

    GA13A14S 252

    316

    4 GA21A22S 273 5 GA20A21S 171 6 GA19A20S 268 7 GA19B19E 166 8

    7

    GB19D19E 155

    207

    1 GA23A24S 240 2 GA22A23S 271 3

    8 GA25B25W 306

    272

    kgf/cm2

  • - 51 -

    10

    4 31 CA10 D19 3752.56 32 CA10 D19 4129.85 35 CA10 D19 4364.39

    4078.86

    33 CA10 D16 3834.13 41 CD10 D16 3599.60 46 CC10 D16 3630.19

    3691.37

    48 CC10 D19 3946.30 50 CC10 D19 4099.26 52 CC10 D19 4313.40

    4119.65

    kgf /cm2

    5 27 CA13 R6.4 4751.88 28 CA13 R6.4 5200.55 29 CA13 R6.4 4915.03

    4955.82

    19 CA15 D19 3599.60 22 CD13 D19 4160.44 24 CC13 D19 3966.70

    4262.41

    20 CA15 D19 3885.12 23 CD13 D16 4782.47 25 CC13 D16 3956.50

    4201.23

    43 GA14A15 D19 3599.60 44 GA14A15 D19 3538.42 45 GA14A15 D19 3721.96

    3619.99

    kgf /cm2

  • - 52 -

    11

    'cf 219.95 210.06 153.98 210.06

    yf 4262.41 4198.78 2928.62 4262.41

    ytf 2799.12 4198.78 4866.09 2799.12

    mcf 301.84 301.84 301.84 301.84

    bcf 150.10 150.10 150.10 150.10

    kgf /cm2

    12

    BW01 27862.73 19773.32 BW02 29730.85 19642.79 BW03 34929.36 19435.79 BW04 33356.96 21102.01

    kgf

  • - 53 -

    roof

    (Base Shear)

    roof

    V

    1

    2 ETABS (M3)

  • - 54 -

    3 FEMA 273

    L

    V

    P

    M

    M

    4

    5

  • - 55 -

    V

    k

    Vn

    Vb

    Vb=2Mn/H

    as

    6

    P V

    p

    2p

    (-,)

    (0,-)

    2 1.06t cf f =

    7

  • - 56 -

    V

    k

    Vn

    Vb

    Vb=2Mn/H

    a

    8

    V

    Vn

    Vb

    Vb=2Mn/H

    9

  • - 57 -

    SF

    MM

    Rotation SF

    10

    SF

    PP

    Disp. SF

    11

    12 ASCE 41-06 RC

  • - 58 -

    13

    p e

    u

    ( )1 1,V ( )2 2,V

    14

  • - 59 -

    ( )1 1,V ( )2 2,V

    ( )1,0V1

    2 2 21

    ,V VV

    ( )1 1,V 1

    2 21

    ,V VV

    15 ()()

  • - 60 -

    Load

    Deflecion

    ),( crcrV ( , )fu fuV ( , )y yV

    ( )yV ( )y

    ( )uV

    ( )fu

    16

    Lateral Deformation

    B

    A

    C

    D, E

    Late

    ral

    17 RC

  • - 61 -

    18

    2

    2vh

    v

    d h

    r

    h

    v

    19

  • - 62 -

    ( , )scr scrV ( , )su suV

    ( )scrV ( )scr ( )su( )suV

    20

    21

  • - 63 -

    22

    ( [13])

    (a)

    (b)

    rVrV

    nV nVV V

    u u2 u 2 u

    23

  • - 64 -

    b

    bb

    b

    b

    b

    b

    b

    b

    b

    b

    c c

    cc

    24

    ( [13])

    SF

    PP

    / SF

    C

    B

    A

    D,E

    u

    25

  • - 65 -

    26

    Sa

    Sddy

    sKinitial

    Kinitial

    dp

    ay

    ap

    27

  • - 66 -

    28

  • - 67 -

    DL+0.5LL

    ETABS()

    ETABS(e2k)

    Bwph.exe

    Colph.exe

    ETABS

    ()

    PGA.exe

    PGA

    ETABS(e2k)

    ETABS(e2k)

    29

  • - 68 -

    75*60

    55 c

    m29

    0 cm

    (#3@

    10)

    75 c

    m

    245*180

    A A

    60 c

    m75 cm

    Section A

    30 BMR1-R ( [18])

  • - 69 -

    31 PF-2 ( [20])

    32 BW01-BW04 ( [14])

  • - 70 -

    33 ( [21])

    34 (2F RF)

  • - 71 -

    A frame

    30 30270 30270 30270 30270 30270 30270

    1234567

    G.L

    332

    340

    5029

    050

    282

    70

    35

  • - 72 -

    36

    37

  • - 73 -

    38

  • - 74 -

    39

  • - 75 -

    40

    41 (1)

  • - 76 -

    42 (2)

  • - 77 -

    43

  • - 78 -

    (a) Plan view of Roof floor

    (b) Plan view of 2F floor

    44

  • - 79 -

    45

    46

  • - 80 -

    47

  • - 81 -

    48 BMR1-R

    49 PF-2

  • - 82 -

    50 BW01

    51

  • - 83 -

    0 10 20 30Roof Displacement (cm)

    0

    20000

    40000

    60000

    Bas

    e Sh

    ear (

    kgf)

    ExperimentalNCREE

    52 BMR1-R

    0 10 20 30Roof Displacement (cm)

    0

    4000

    8000

    12000

    16000

    20000

    Bas

    e Sh

    ear (

    kgf)

    ExperimentalNCREE

    53 PF-2

  • - 84 -

    0 0.4 0.8 1.2 1.6 2Roof Displacement (cm)

    0

    5000

    10000

    15000

    20000

    25000B

    ase

    Shea

    r (kg

    f)ExperimentalNCREE

    54 BW01

    0 1 2 3 4 5Roof Displacement (cm)

    0

    10000

    20000

    30000

    Bas

    e Sh

    ear (

    kgf)

    ExperimentalNCREE

    55 BW02

  • - 85 -

    0 1 2 3 4 5Roof Displacement (cm)

    0

    10000

    20000

    30000

    40000B

    ase

    Shea

    r (kg

    f)ExperimentalNCREE

    56 BW03

    0 1 2 3 4 5Roof Displacement (cm)

    0

    10000

    20000

    30000

    40000

    Bas

    e Sh

    ear (

    kgf)

    ExperimentalNCREE

    57 BW04

  • - 86 -

    0 4 8 12 16Roof Displacement (cm)

    0

    10000

    20000

    30000

    40000

    50000

    Bas

    e Sh

    ear (

    kgf)

    ExperimentalNCREE

    58

  • - 87 -

    59

  • - 88 -

    60

  • - 89 -

    61 ETABS

    3-D

  • - 90 -

    A-frame

    B-frame

    C-frame

    D-frame

    62 ETABS

  • - 91 -

    0 10 20 30 40 50Roof Displacement (cm)

    0

    100000

    200000

    300000B

    ase

    Shea

    r (kg

    f)ExperimentalExperimental_CorrectionNCREE

    63

  • - 92 -

    64 ()

  • - 93 -

    65 ()

  • - 94 -

    66

  • - 95 -

    67 ETABS

    3-D

  • - 96 -

    A-frame

    B-frame

    C-frame

    D-frame

    68 ETABS

  • - 97 -

    0 10 20 30 40Roof Displacement (cm)

    0

    100000

    200000

    300000

    400000B

    ase

    Shea

    r (kg

    f)ExperimentalExperimental_CorrectionNCREE

    69

  • - 98 -

    70 ()

  • - 99 -

    71 ()

  • - 100 -

    72

  • - 101 -

    73 ETABS

    3-D

  • - 102 -

    A-frame

    B-frame

    C-frame

    74 ETABS

  • - 103 -

    0 10 20 30 40 50Roof Displacement (cm)

    0

    40000

    80000

    120000

    160000B

    ase

    Shea

    r (kg

    f)ExperimentalExperimental_CorrectionNCREE

    75

  • - 104 -

    76

  • - 105 -

    C1 C2 C3 C4 C5

    4-#66-#7

    4-#66-#7

    6-#6 6-#6 6-#5

    #3@20 #3@20 #3@20 #3@20 #3@20

    33 x 40 33 x 40 33 x 40 30 x 30 24 x 24

    77

    78

  • - 106 -

    0 10 20 30 40 50Roof Displacement (cm)

    0

    40000

    80000

    120000

    160000

    200000B

    ase

    Shea

    r (kg

    f)ExperimentalExperimental_CorrectionNCREE

    79

    80

  • - 107 -

    81

    82

    83

  • - 108 -

    0 2 4 6 8 10 12Displacement (cm)

    0

    100000

    200000

    300000

    400000La

    tera

    l For

    ce (k

    gf)

    SERCBPresent

    84

    0 4 8 12Roof Displacement (cm)

    0

    100000

    200000

    300000

    400000

    500000

    Bas

    e Sh

    ear (

    kgf)

    NCREESERCB

    85

  • - 109 -

  • 110

    A

    MATLAB

    MCRInstaller.exe

    RC

    Bwph.exe ETABS

    .e2k

    ETABS

    filename.txt()

    filename.e2k(ETABS )

    filename.e2k( ETABS )

    Colph.exe RC

    .e2k RC

    ETABS

    filename.txt()

    filename.e2k(ETABS )

    filename.e2k( ETABS )

    PGA.exe P-

  • 111

    ETABS

    filename.txt()

    filename.txt(P- ETABS )

    filename.txt(PGA )

  • 112

    ETABS kgf cm

    P- kgf cm

    ( kgf cm) Tab

    Bwph.exe

    $ BRICK WALL PROPERTIES

    $Name width height thick f_mc f_bc P Bond Confinement

    Name()

    width(cm)

    height(cm)

    thick(cm)

    f_mc(kgf/cm2)

    f_bc(kgf/cm2)

    P(kgf)

    Bond1 ()2 (

    )3 4

    Confinement4 3 2

    Colph.exe RC

  • 113

    1.

    $ BEAM SECTIONS

    $Name1 Name2 L f_cp f_yl f_yt cover hoop spacing num_hoop

    Name1T

    Name2 T L

    L(cm)

    f_cp(kgf/cm2)

    f_yl(kgf/cm2)

    f_yt(kgf/cm2)

    cover(cm)

    hoop

    spacing(cm)

    num_hoop

    2.

    $ BEAM DATA

    $Name story section

    Name( ETABS )

    story

    section( Name1)

    3.

    $ CONCRETE SECTIONS

    $Name f_cp f_yl f_yt cover hoop spacing num_hoop

    b

    num_hoop=2

  • 114

    Name( ETABS )

    f_cp(kgf/cm2)

    f_yl(kgf/cm2)

    f_yt(kgf/cm2)

    cover(cm)

    hoop

    spacing(cm)

    num_hoop

    4.

    $ COLUMN DATA

    $Name story section shape Height L fromBtm

    Name( ETABS )

    story

    section( Name)

    shape

    Height(cm)

    L(cm)

    fromBtm(cm)

    5.

    $ AXIAL LOAD

    $Story Column Loc P

    Story()

    Column()

    Loc()

    h

    b

    num_hoop=3

  • 115

    P(kgf)

    ETABS MS.EXCEL

    kgf-cm

    6.

    $ SECTION PROPERTIES

    (Name)

    (h) (b)

    (d) (f_yl) (s)... (s)

    ...

    (d) (f_yl) (s)... (s)

    Name( shape )

    h(cm)

    b(cm)

    d(cm)

    f_yl(kgf/cm2)

    s

    COLUMN01

    24 36

    5 4504 7 7

    12 3029 6 6

    19 4504 7 7

    b=36

    h=24

    2-#64-#7

    5 4 12

    = + +

  • 116

    PGA.exe

    1.

    $ BUILDING PROPERTIES

    $Weight Height

    ...

    Weight(kgf)

    Height(cm)

    2.

    $ SITE SPECTRUM PARAMETER

    $S_DS S_D1

    S_DSSDS

    S_D1SD1 1

  • 117

    B 97 12 12

    1. fixed y

    ASCE41

    2.

    V-D

    ASCE41

    3. ETABS

    4. capacity curve capacity spectrum ETABS1PF1

    ATC-40 capacity curve capacity spectrum

    5.

    6.

  • 118

    1.

    (NCREE-08-023) 4.15 u 49 fu

    2. () 5.2

    3. () 5.4

    4.

    5.

  • 119

    1. Mu

    Pushover

    P-M-M hinge

    P-M-M hinge Pushover

    2. model ETABS

    ETABS

    3. MyMn

    yM nM

    yM nM

    4.

    V- ETABS

    ETABS

    5. 202 Pushover

    ETABS

    6. ApeqPushover eq

    Chopra[2.3]eq

    =0.33

    7.

    FRP

    8. (

    )

  • 120

    9. ()

    10.

    11.

    12. Pushover

  • 121

    1.

    2. ()

    (1) (2)

    3. (1) (2) (3)

  • 122

    1. ATC40 Pushover

    1

    10

    2.

  • 123

    1.

    2. aV a

    Priestley 4

    a 0.04H 4

    3. Ap ( 2.12)

    4.

    5.

    a a

    6. RC

    7. Ra

    Ra

  • 124

    1. RC

    2. RC

    3. RC

    4.

    5.

    8RC

    6.

    7.

    ()

    8.

    9. ()

    10.

    GAP

  • 125

    11. ()

    12.

    13. ETABS v8.0

    ETABS v8.0

    14. beam data data(XX )(XY )

    XY

    15. T

    T

    16. RC

    RC

    17. RC COLUMN SECTION PROPERTIES

    RC RC

    18. RC X Y XY

    X X RC()

    RC X X RC

    19. P.147(4)

  • 126

    0.8Vmax(1)~(3) 0.8Vmax

    0.8Vmax

    20. 8.4 0.8VmaxP.24 2.4 0.8Vmax+(I=1.0)P.148 Vmaxinterstroy drift 2% 2.4 I=1.25 I

    8.4 I=1.25 Vmax interstroy drift 2% I=1.0

    21. P.133

    22. PUSH1 LOAD PATTEM DEAD (DL+0.5LL)*1 DEAD*1+LIVE*0.5

    23. Static Nonlinear Case DataP-Delta

    P-Delta

    P-

    P-

    24. Y M2V3 Y

    Y M2V3

  • 127

    25.

    26.

    27.

    28. ()

    29.

    RC ()

    RC

    30.

    31. Ap

    32.

    0.33(P.20) ATC-40 TYPE ABC 0.33

    0.33 ATC-40

    33. 1/2B 1/2B

    34.

  • 128

    35.

  • 129

    1. T

    T

    T T

    2.

    High-rise RCW()(Low-rise)(H/L

  • 130

    1. y uM M=

    y uM M= uM

    2. 475 2500 PGA curve

    475

    2500 3. yQu FEMA 273

    FEMA273

    4.

    5. ETABS

    6.

    10

    ASCE-41

  • 131

    C 98 2 18

    7. (1)

    ytf

    ytf

    1. ytf 2800~4200 kgf/cm2

    2. (1)

    NCREE-07-015(2007)

    8. (10)(12) b c a y

    b c

    a (y/H)

    (y/H) 9.

    ASCE

    (pp. 2)

    3D

    (pp. 6)

  • 132

    ETABS

    4-16 (C)()

    ( fuV4.0 )0.02rad

    RC

    10. 0

    ASCE 41

  • 133

    bal

    w c

    Vb d f a b c

    0.0 3 0.025 0.05 0.2

    0.0 6 0.02 0.04 0.2

    0.5 3 0.02 0.03 0.2

    0.5 6 0.015 0.02 0.2

    0.0 3 0.02 0.03 0.2

    0.0 6 0.01 0.015 0.2

    0.5 3 0.01 0.015 0.2

    0.5 6 0.005 0.01 0.2

    11.

    ASCE/SEI41-061.5RC

    (ASCE/SEI41-06 pp. 180)(2002)

    12cm () 15cm()12cm 15cm

    4

    GAVH

    EI12VH 3

    +=

  • 134

    EI A

    4

  • 135

    1.

    2. P

    3.

    0

    4.

    Vmax Vmax

  • 136

    1.

    2.

  • 137

    1.

    SERCB

    2. 10()

    3. RC

    RC

    4. ()

    5.

  • 138

    1. cf

    2100kgf cmcf

    cf cA

    cA

    cf cA

    2. 135

    3.

    4.

    5. Pushover analysis

    cA

  • 139

    Ac Vmax

    6. Coupled walls building

    y max

    RCW RCW Equal displacement rule RCW (Unequal lengths)

    RCW

    RCW RCW

    7.

    8. M3 V2 Y M2 V3

    Y M2V3

    9.

    10.

    ()

    11. (Vmax or 0.8Vmax)(2.0% or 1.0%)

  • 140

    ()

    ABCDE

    12. ( AC 100~150 gal)()

    ABCDE ETABS

    13. ETABS

    hinge()()

    hinge

    14. M3 (overturning moment) Mn()

    DL M3

    ETABS P-M-M

    M3

    M3 DL - ETABS

    ETABS P-M-M P-M-MM3

  • 141

    BMR1-R P-M-M

    0 5 10 15 20 25 30Roof Displacement (cm)

    0

    10000

    20000

    30000

    40000

    50000

    Bas

    e Sh

    ear (

    kgf)

    ExperimentalPresentETABS-M3ETABS-PMM

    15. P.45 s ya H H= [ ]max a sb H H= b

    max a y s yb H H H H =

    ETABS a

    b

    a (y/H)

    (y/H)

  • 142

    1. RC

    1

    Shell RC RC

    2.

    21p.133

    3.

    (2002)

    12cm () 15cm ()

  • 143

    ()

    ()

    ()()5

    4

    4.

    ()2

    ASCE 41

    5.

    6. (RC)

    7. RC

    RC

    ()

    (

    RC

  • 144

    )

    8.

    (

    )

    0.3 3kg m

    9.

    10. 8 etabs

    Define Static Load

    ATC-40

  • 145

    Case Names Auto Lateral Load User Coefficient()

    11.

    12.

    475

    2500

    475

    13. RC

    RC

    RC

    (ETABS MODEL)

    ()

    RC

  • 146

    2V

    N =

    2V

    N =

    0=N

    kNN 812.=

    5/)( 32 NNN +=

    1N2N

    3N

    V

    V

    V

    V

    V

    V

    V

    N

    NP

    P

    P

    P

    V

    14. 10

    P

    ETABS P P

    15. Chopra & Goel 2002 EESD(Earthquake Engineering and Structural Dynamics)

    PUSHOVER

    FEMA 440

  • 147

    ()

    ( 1.6)

    ()

    SRSS

  • 148

    D 98 5 6

    1.

    2. ASCE 41

    3.

    ()

    4. Vmax

    475 50 10%(IRa)

    97 12 18

    475

    I RaVmax

  • 149

    1.

    2.

    ASCE 41-06

    ()

  • 150

    1.

    2.

    3. 14000

    50% 7000 7000 7000

  • 151

    1. P23 3.2 P24 3.3

    2.

    ?

    3.

    4

    ?

    4.

    ()

    5.

    ( Response 2000)

    6. P-

    ?

    4

    ()

    P-

  • 152

    1.

    2. 6F RC

    () RC

    ()

    2.14

    3.

    (a)limitation (b) (c)

    4. Pushover

    ()( LT)30%~40%()

    ? [ 2F Pushover ]

  • 153

    5. Pushover Pushover

    R()I()() Ra()

    97 12 18

    475

    I Ra Vmax

  • 154

    1.

  • 155

    1. 1

    ()

    2. 4

    My Mu 1 (page 45)

    Mu(C )=My(B ) Mu=1.25 My

    Mn (nominal moment strength) My MuMn

    3. 56 6 8

    ETABS

    6 6

    ASCE 41

    4. 7~9

    2.4

    R 2.4~4.8

    R 3.0 R 5.0

    FEMA 273

    97 12 18

    475

    Elwood Moehle

  • 156

    y(B =0.005)u(C =0.015 0.02 R3.0 R5.0) c(E =0.03 0.04) FEMA 273

    2.0

    ASCE 41-06

    5. 27

    DL+1/2LL+0.1C EQ My Mu

    My Mu DL+1/2LL

    ASCE 41-06 ()

    6. 1.2 475

    Ra 2500

    R

    ( 2500 ) 2/3 1/2(475 )

    97 12 18

    475

    I Ra Vmax

  • 157

    7.

    8.

    89 7 12

    97 12 18

  • 158

    1.

    2.

    3.

    ()

    4.

    5.

  • 159

    E 98 6 3

    1.

    ()

    2.

    3.5 9

    3.5 9 3.4