of 1/1
0121 Lecture Notes - An Introductory Tension Force Problem.docx page 1 of 1 Flipping Physics Lecture Notes: An Introductory Tension Force Problem m hanging = 155.0g × 1 kg 1000g = 0.155 kg; θ = 28° ; F T 1 = ?; F T 2 = ? sin θ = O H = F T 1y F T 1 F T 1y = F T 1 sin θ & cosθ = A H = F T 1x F T 1 F T 1x = F T 1 cosθ F y = F T 1y F g = ma y = m 0 () = 0 F T 1y F g = 0 F T 1y = F g F T 1 sin θ = mg F T 1 = mg sin θ = 0.155 ( ) 9.81 ( ) sin 28 ( ) = 3.238854 3.2N F x = F T 2 F T 1x = ma x = m 0 () = 0 F T 2 F T 1x = 0 F T 2 = F T 1x = F T 1 cosθ F T 2 = 3.238854 ( ) cos 28 ( ) = 2.85974 2.9N Note: The mass hanging is an object in translational equilibrium because the net force acting on it equals zero.

# 0121 Lecture Notes - An Introductory Tension Force Problem...0121 Lecture Notes - An Introductory Tension Force Problem.docx page 1 of 1 Flipping Physics Lecture Notes: An Introductory

• View
2

0

Embed Size (px)

### Text of 0121 Lecture Notes - An Introductory Tension Force Problem...0121 Lecture Notes - An Introductory...

• 0121 Lecture Notes - An Introductory Tension Force Problem.docx page 1 of 1

Flipping Physics Lecture Notes: An Introductory Tension Force Problem

m

hanging=155.0g × 1kg

1000g= 0.155kg;θ = 28°; F

T1= ?; F

T2= ?

sinθ = OH

=F

T1y

FT1

⇒ FT1y

= FT1

sinθ &

cosθ = AH

=F

T1x

FT1

⇒ FT1x

= FT1

cosθ

F

y∑ = FT1y − Fg = may = m 0( ) = 0⇒ FT1y − Fg = 0⇒ FT1y = Fg ⇒ FT1 sinθ = mg

⇒ FT1= mg

sinθ=

0.155( ) 9.81( )sin 28( ) = 3.238854 ≈ 3.2N

F

x∑ = FT2 − FT1x = max = m 0( ) = 0⇒ FT2 − FT1x = 0⇒ FT2 = FT1x = FT1 cosθ

⇒ F

T2= 3.238854( )cos 28( ) = 2.85974 ≈ 2.9N

Note: The mass hanging is an object in translational equilibrium because the net force acting on it equals zero.

Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Education
Documents
Documents
Documents
Documents
Education
Documents
Technology
Documents
Science
Documents
Documents
Education
Documents
Documents
Documents
Documents
Documents
Documents