21
John Jechura – [email protected] Updated: January 4, 2015 Hydrogen from Natural Gas via Steam Methane Reforming (SMR)

07 Hydrogen From SMR

Embed Size (px)

DESCRIPTION

j

Citation preview

  • JohnJechura [email protected]:January4,2015

    HydrogenfromNaturalGasviaSteamMethaneReforming(SMR)

  • Energyefficiencyofhydrogenfromnaturalgas

    Definitionofenergyefficiency Frombasicstoichiometry

    CH4 +2H2OCO2 +4H2 Fueltosatisfytheheatrequirements

    Fromrealprocesses SMR Steammethanereforming Watershiftreactions Heatintegration CO2 removalorPSA?

    2

  • EnergyEfficiency

    outin iEE

    Usable energyout ofaprocesscomparedtoall energyinputs

    Energyvaluescouldbeheat,work,orchemicalpotential(heatingvalue) HHV(Gross): Fuel+O2 CO2 +H2O(liquid) LHV(Net): Fuel+O2 CO2 +H2O(vapor)

    Energyvaluesmayhavetobediscountedwhencombiningdifferenttypes ShouldtheHHVbediscountedwhencombiningwithheatvalues?

    HHV LHVBtu/scf Btu/scf kcal/g.mol Btu/scf kcal/g.mol Btu/scf

    Hydrogen 324.2 273.8 68.7 325.9 57.7 273.9Methane 1010.0 909.4 213.6 1013.1 191.7 909.1Carbon Monoxide 320.5 320.5 67.6 320.6 67.6 320.6Carbon Dioxide 0.0 0.0 0.0 0.0 0.0 0.0

    CompoundGPSA Data Book

    HHV LHVDerived from Aspen Plus 2006.5

    3

  • BasicStoichiometery CH4 +2H2OCO2 +4H2

    2

    4

    H

    CH

    mol4mol

    NN

    Production:

    Apparentefficiency(HHVbasis) Justfromstoichiometry:

    Includeheatofreaction:

    4 68.7 1.291 213.6 4 68.7 1.00

    1 213.6 61.3

    METHANE

    WATERH2-CO2

    Q-RXNQ

    MAKE-H2

    4

  • Howdoweprovidetheheatofreaction?

    2

    4

    H

    CH

    4 mol3.11 0.29 mol

    NN

    Coulduseadditionalmethane 0.29mol fuel/mol reactant(HHVbasis)

    Production:

    Efficiencyincludingfuel(HHVbasis)

    4 68.7 1.01.29 213.6

    METHANE

    WATER

    H2-CO2

    Q-RXN

    FUEL

    AIR

    FLUE-GAS

    MAKE-H2

    BURNER

    5

  • SteamMethaneReforming&WaterGasShift

    Steam

    Natural Gas

    Reforming Reactor

    High Temperature Shift Reactor

    Low Temperature Shift Reactor

    Hydrogen Purification

    Fuel Gas

    Flue Gas

    Hydrogen

    Methanation Reactor

    CO2

    Reforming.Endothermiccatalyticreaction,typically2030atm&800880C(14701615F)outlet.

    CH4 +H2O CO+3H2 Shiftconversion.Exothermicfixedbedcatalytic

    reaction,possiblyintwosteps.

    CO+H2O CO2 +H2HTS:345370C(650 700F)LTS:230C(450F)

    GasPurification.AbsorbCO2 (amine)orseparateintopureH2 stream(PSAormembrane).

    Methanation.ConvertresidualCO&CO2backtomethane.Exothermicfixedbedcatalyticreactionsat370425C(700 800F).

    CO+3H2 CH4 +H2OCO2 +4H2 CH4 +2H2O

    6

  • SMRAlternateDesigns Traditionalwith2stagesshift

    reactors 95%to98%purity

    NewerdesignswithPSA(PressureSwingAdsorption)lowercapitalcosts,lowerconversion,butveryhighpurity(99%+)

    7

  • ProcessConsiderationsKaes [2000] Molburg & Doctor [2003] Nexant Report [2006] Other

    Model as conversion reactor Model as equilibrium reactor.Sulfur compounds converted to H2S & adsorbed in ZnO bed.

    Small temperature increase 500 - 800F depending on technology. 700F most typical.Typically up to 725 psi (50 bar)

    Reformer 1450 - 1650F exit 1500F 20 - 30 atm (295 - 440 psia)Equilibirium Gibbs reactor with 20F approach (for design).

    Model as equilibrium reactor. 850-1000F (455-540C) inlet1470-1615F (800-880C) outlet

    650 - 700F entrance for HTS + LTS 660F entrance 940F (504C) inlet500 - 535F entrance when no LTSEquilibirium Gibbs reactor Fixed 90% CO conversionAll components inert except CO, H2O, CO2, & H2.400 - 450F entrance 400F entranceEquilibirium Gibbs reactor 480-525F (249-274C) outletAll components inert except CO, H2O, CO2, & H2.

    Fixed 90% CO conversion

    Methanation 500 - 550F entranceEquilibirium Gibbs reactorAll components inert except CH4, CO, H2O, CO2, & H2.

    Amine Purification Model as component splitter Model as component splitter MDEA circulation, duty, & work estimates from GPSA Data Book

    Treated gas 10 - 15F increase, 5 - 10 psi decrease, water saturated

    Treated gas 100F & 230 psi (16 bar) exit

    Rejected CO2 atmospheric pressure & water saturated

    95% CO2 recoveryPSA Model as component splitter Model as component splitter

    100F entrance 90% H2 recovered 75 - 85% recovery for "reasonable" capital costs (higher requires more beds)

    H2 purity as high as 99.999% H2 contains 0.001% product stream as contaminant

    200 - 400 psig feed pressure for refinery applications4:1 minimum feed:purge gas ratio. Purge gas typically 2 - 5 psig.

    Desulfurization Reactors

    High Temperature Shift Reactor

    Low Temperature Shift Reactor

    8

  • HIERARCHY

    AMINE

    HIERARCHY

    HVAL-1

    HIERARCHY

    HVAL-2

    381

    CO2

    3315

    151

    FEED

    PRODUCT

    3814

    27328

    Q

    81519

    151

    WATER

    1628

    W Q

    23128

    37728

    34918

    Q

    42718

    20417

    21316

    Q

    3815

    Q

    W

    26014

    Q-HEAT1Q

    33514HOTPROD

    Q

    REFORMER

    WATPUMP

    STEAMGEN

    HTS

    LTS

    COND1

    GASCOMP

    METHANTR

    BasicSMRProcess

    Temperature (C)

    Pressure (atm)

    Remember,directionofarrowindicateswhetherAspenPlus hascalculated,NOTwhetheritisheatin/out

    9

  • SMRBasicProcessEnergyRequirements

    HIERARCHY

    HVAL-1

    HIERARCHY

    HVAL-2

    FEED

    PRODUCT

    Q

    WATER

    W Q

    Q

    Q

    Q

    CO2

    W

    REFORMER

    WATPUMP

    STEAMGEN

    HTS

    LTS

    COND1

    GASCOMP

    HIERARCHY

    AMINE

    METHANTR

    TREATED TREATED2

    HOTPROD

    Q

    Q

    Energy Inputs Energy Removalkcal/hr kW kcal/hr

    Steam Boiler 3,742,371 Post Reformer Cooler 2,238,933Reformer 6,332,965 Post HTS Cooler 1,026,525Amine Duty 5,680,514 Post LTS Cooler 2,305,814Methanator Reheat 553,190 Amine Coolers 3,550,321

    Sub-total 16,309,040 Product Cooler 800,533Total 9,922,126

    BFW Pump 10,959 12.7Gas Compressor 385,571 448.4Amine Power 125,716 146.2

    Sub-total 522,246

    Total 16,831,286

    Heating Values (HHV)kcal/hr kmol/hr kcal/mol

    Natural Gas In 21,363,070 100 213.6Product Out 25,938,163 328.6 78.9 H2 Out 292.7

    H2 Purity: 89%H2 Production: 2.9

    Total Product 25,938,163Total Inputs 38,194,356Efficiency 68%

    10

  • HIERARCHY

    HVAL-1

    HIERARCHY

    HVAL-2

    FEED

    PRODUCT

    Q

    WATER

    W Q

    Q

    Q

    Q

    CO2

    W

    REFORMER

    WATPUMP

    STEAMGEN

    HTS

    LTS

    COND1

    GASCOMP

    HIERARCHY

    AMINE

    METHANTR

    TREATED TREATED2

    HOTPROD

    Q

    Q

    SMR HeatRecoveryforSteamGeneration

    Energy Inputs Energy Removalkcal/hr kW kcal/hr

    Steam Boiler 3,742,371 Post Reformer Cooler 2,238,933Methanator Reheat 553,190 Post HTS Cooler 1,026,525

    Heat Sub-total 4,295,561 Post LTS Cooler 2,305,814Sub-total 5,571,272

    Reformer 6,332,965Amine Duty 5,680,514 Amine Coolers 3,550,321

    Sub-total 16,309,040 Product Cooler 800,533Total 9,922,126

    BFW Pump 10,959 12.7Gas Compressor 385,571 448.4Amine Power 125,716 146.2

    Sub-total 522,246

    Total 16,831,286

    Heating Values (HHV)kcal/hr kmol/hr kcal/mol

    Natural Gas In 21,363,070 100 213.6Product Out 25,938,163 328.6 78.9 H2 Out 292.7

    H2 Purity: 89%H2 Production: 2.9

    Total Product 25,938,163Net Inputs 33,898,795Efficiency 77%

    11

  • ReformerFurnaceDesign

    HydrogenProductionbySteamReformingRayElshout,ChemicalEngineering,May2010

    12

  • HIERARCHY

    DirectFiredHeatersforReformer&AmineUnit

    Energy Inputs Energy Removalkcal/hr kW kcal/hr

    Steam Boiler 3,742,371 Post Reformer Cooler 2,238,933Methanator Reheat 553,190 Post HTS Cooler 1,026,525

    Heat Sub-total 4,295,561 Post LTS Cooler 2,305,814Reformer Flue Gas 648,651

    Reformer 6,332,965 Sub-total 6,219,923Amine Duty 5,680,514

    Sub-total 16,309,040 Amine Coolers 3,550,321Product Cooler 800,533

    BFW Pump 10,959 12.7 Total 10,570,777Gas Compressor 385,571 448.4Amine Power 125,716 146.2

    Sub-total 522,246

    Total 16,831,286

    Heating Values (HHV)kcal/hr kmol/hr kcal/mol Efficiency

    Natural Gas In 21,363,070 100 213.6Reformer Fuel Gas 8,184,406 38.3 213.6 77%Amine Unit Fuel Gas 6,659,083 31.2 213.6 85%

    Total 36,206,559 169.5

    Product Out 25,938,163 328.6 78.9 H2 Out 292.7

    H2 Purity: 89%H2 Production: 1.7

    Total Product 25,938,163Net Inputs 36,728,805Efficiency 71%

    13

  • HIERARCHY

    PreHeattheReformerFeed?

    Energy Inputs Energy Removalkcal/hr kW kcal/hr

    Steam Boiler 3,742,371 Post Reformer Cooler 2,238,933Methanator Reheat 553,190 For Feed Preheat -1,200,000

    Heat Sub-total 4,295,561 Post HTS Cooler 1,026,525Post LTS Cooler 2,305,814

    Reformer 5,132,965 Reformer Flue Gas 1,673,228Feed Preheat 1,200,000 Sub-total 6,044,500Amine Duty 5,680,514

    Sub-total 16,309,040 Amine Coolers 3,550,321Product Cooler 800,533

    BFW Pump 10,959 12.7 Total 10,395,354Gas Compressor 385,571 448.4Amine Power 125,716 146.2

    Sub-total 522,246

    Total 16,831,286

    Heating Values (HHV)kcal/hr kmol/hr kcal/mol Efficiency

    Natural Gas In 21,363,070 100 213.6Reformer Fuel Gas 7,978,680 37.3 213.6 64%Amine Unit Fuel Gas 6,659,083 31.2 213.6 85%

    Total 36,000,833 168.5

    Product Out 25,938,163 328.6 78.9 H2 Out 292.7

    H2 Purity: 89%H2 Production: 1.7

    Total Product 25,938,163Net Inputs 36,523,078Efficiency 71%

    14

  • SMRAlternateDesigns

    Traditionalwith2stagesshiftreactors 95%to98%purity

    NewerdesignswithPSA(PressureSwingAdsorption)lowercapitalcosts,lowerconversion,butveryhighpurity(99%+)

    15

  • AlternateHydrogenPurificationProcesses

    HydrogenProductionbySteamReformingRayElshout,ChemicalEngineering,May2010

    16

  • W Q

    Q

    Q

    Q

    W

    Q

    Q

    SEP

    UseofPSAforProductPurification

    Energy Inputs Energy Removalkcal/hr kW kcal/hr

    Steam Boiler 3,742,371 Post Reformer Cooler 2,238,933Feed Preheat 1,200,000 For Feed Pre-Heat -1,200,000Reformer 5,132,965 Post HTS Cooler 1,026,525

    Sub-total 10,075,336 Post LTS Cooler 1,776,046Reformer Flue Gas 1,674,739

    BFW Pump 10,959 12.7 Total 5,516,243Gas Compressor 385,571 448.4

    Sub-total 396,529

    Total 10,471,865

    Heating Values (HHV)kcal/hr kmol/hr kcal/mol Efficiency

    Natural Gas In 21,363,070 100.0 213.6Reformer Fuel Gas 7,984,234 37.4 213.6 64%

    Total 29,347,304 137.4

    Tail Gas Out 8,075,157 165.9 48.7Product Out 18,074,861 263.0 68.7 H2 Out 263.0

    H2 Purity: 100%H2 Production: 1.9

    Total Product 18,074,861Total Inputs 29,743,834Efficiency 61%

    17

  • HIERARCHY

    W Q

    Q

    Q

    Q

    W

    Q

    Q

    SEP

    UseofPSAforProductPurification

    Energy Inputs Energy Removalkcal/hr kW kcal/hr

    Steam Boiler 3,742,371 Post Reformer Cooler 2,238,933Feed Preheat 1,200,000 For Feed Pre-Heat -1,200,000Reformer 5,132,965 Post HTS Cooler 1,026,525

    Sub-total 10,075,336 Post LTS Cooler 1,776,046Reformer Flue Gas 2,250,289

    BFW Pump 10,959 12.7 Total 6,091,793Gas Compressor 385,571 448.4

    Sub-total 396,529

    Total 10,471,865

    Heating Values (HHV)kcal/hr kmol/hr kcal/mol Efficiency

    Natural Gas In 21,363,070 100.0 213.6Reformer Fuel Gas 951,511 4.5 213.6

    Sub-total 22,314,582 104.5

    Tail Gas Out 8,075,157 165.9 48.7 57%Total 30,389,739

    Product Out 18,074,861 263.0 68.7 H2 Out 263.0

    H2 Purity: 100%H2 Production: 2.5

    Total Product 18,074,861Total Inputs 22,711,111Efficiency 80%

    18

  • IntegratedProcess

    HydrogenProductionbySteamReformingRayElshout,ChemicalEngineering,May2010

    19

  • Whatshouldbethepriceofhydrogen? Hydrogensalesshouldcoverallcostsplus

    profit

    Rawmaterialcosts(primarilynaturalgas)

    Electricity Otheroperatingexpenses(staff,) Recoveryofcapitalinvested

    Minimumistocovercostofnaturalgas&power

    Example Naturalgas$4.36permillionBTU(asofMarch30,2011)=$3.68perkmolCH4

    Electricity6.79/kWhr(for2010perEIAforIndustrialcustomers)

    PSAproductionscenario 104.5kmol/hrCH4 $385perhr 461.1kW $31perhr 263kmol/hrH2 $0.79perkg

    Electrolysiscomparison 80%electrolysisefficiency&90%compressionefficiency

    $3.80perkg

    o $6.80perkgwithcapitalcostsincluded

    ARealisticLookatHydrogenPriceProjections,F.DavidDotyMar.11,2004(updatedSept21,2004)

    20

  • OtherReferences

    RefineryProcessModeling,1st ed.GeraldL.KaesKaesEnterprises,Inc.,2000

    HydrogenfromSteamMethaneReformingwithCO2CaptureJohnC.Molburg&RichardD.DoctorPaperfor20th AnnualInternationalPittsburghCoalConference,September1519,2003http://www.netl.doe.gov/technologies/hydrogen_clean_fuels/refshelf/papers/pgh/hydrogen%20from%20steam%20methane%20reforming%20for%20carbon%20dioxide%20cap.pdf

    EquipmentDesignandCostEstimationforSmallModularBiomassSystems,SynthesisGasCleanup,andOxygenSeparationEquipment;Task1:CostEstimatesofSmallModularSystemsNRELSubcontractReport,workperformedbyNexantInc.,SanFrancisco,CAMay2006http://www.nrel.gov/docs/fy06osti/39943.pdf

    21