53
Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology [email protected] 1 分子レベルから見た有機材料 のナノスケール世界

1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology [email protected]

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Martin Vacha

Department of Materials Science and Engineering

Tokyo Institute of Technology

[email protected]

1 分子レベルから見た有機材料

のナノスケール世界

Page 2: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

有機材料とは 有機物質は炭素や水素を中心とする比較的小数の種類の元素から構成されているが、その物性は無限と言ってよいほど多様。

構造材料 機能材料・デバイス

Page 3: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

有機材料とは 有機物質は炭素や水素を中心とする比較的小数の種類の元素から構成されているが、その物性は無限と言ってよいほど多様。

構造材料 機能材料・デバイス

ディスプレー技術

Page 4: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

5” AMOLED

5” LCD

1980’s: 5” crt display

Page 5: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

有機半導体

OLED

OFET SOLAR CELLS

Page 6: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

有機材料研究の位置づけ

学術雑誌Advanced

Materialsに

1ヶ月に

出る材料研究報告

(論文)

有機材料

64%

無機材料 28%

金属材料 8%

Page 7: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

1 分子レベルから見た有機

材料のナノスケール世界

Page 8: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

ナノスケールとは? 1 nanometer (nm) = 10-9 m

C-C 結合~0.15 nm

Page 9: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

ナノスケールを調べる

顕微鏡

電子顕微鏡 TEM, SEM

走査型プローブ 顕微鏡 (STM, AFM)

光学顕微鏡

1分子分光

1分子を見て、ナノスケール特性を調べる

Page 10: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

1分子が見えるか

Page 11: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Light as an electromagnetic wave

Maxwell’s equations

t

BE

t

EB 00

0

E

0 B

2

2

2

2 1

tc

EE

Wave equation

001 c

Electric

field E

Magnetic field B

Wavelength l: 400 – 760 nm

Direction of light

propagation z

)cos(0 tkzEE

/22

l

2k

angular frequency

propagation number

Light is

TRANSVERSE

electromagnetic

wave

E0 amplitude

Page 12: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

What does it mean SEEING things?

YES

(there is something)

NO

(there is nothing)

LARGE CUBE

SMALL SPHERE

Confirming the existence or

non-existence of objects

Recognizing the shape, pattern,

size of objects

Can we see molecules?

Page 13: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Why we see things – confirming the existence of objects

Light must

interact

with

matter

EMISSION

REFLECTION

SCATTERING

ABSORPTION

Page 14: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Why we see things – confirming the existence of objects

EMISSION

REFLECTION

SCATTERING

ABSORPTION

Page 15: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Why we see things – recognizing shape, size of objects

As a result, we see differences in color (wavelength), intensity

(amplitude) or phase of light waves.

Interaction of light with different parts of an object must be different

Objects must be larger than the wavelength of light

Page 16: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Typical organic molecule is

too small compared to

the wavelength of light

Molecules interact with

light

We could use the interaction

of a molecule with light to

detect its presence or

absence.

~ 1 nm

Can we see the existence of a molecule?

MAYBE

Can we see shape of a molecule?

NO

Can we see molecules?

Page 17: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Interaction of light with molecules – absorption and emission

Ground state

(lower energy)

Excited state

(higher energy)

ENERGY STATES OF VALENCE MOLECULAR ELECTRONS

LIGHT LIGHT

ABSORPTION EMISSION

(FLUORESCENCE)

g

e

g

e

吸収および発光

吸収 発光 (蛍光)

Page 18: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Repeated absorption and emission of

light by molecules with:

• high absorption cross-section

• high luminescence quantum yield

• high photostability

Fluorescence

of individual

molecules

fluorescence

microscope

Observing light emitted by single molecules

Page 19: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

MOLECULES UNDER MICROSCOPE

Repeated absorption and emission of

light by molecules with:

• high absorption cross-section

• high luminescence quantum yield

• high photostability

Observing light emitted by single molecules

not size of molecule ‘size’ of light

回折限界

Page 20: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

BASICS OF LIGHT

光について

Page 21: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Light is an electromagnetic wave

Maxwell’s equations

t

BE

t

EB 00

0

E

0 B

2

2

2

2 1

tc

EE

Wave equation

001 c

Electric

field E

Magnetic field B

Direction of light

propagation z

)cos(0 tkzEE

/22

l

2k

angular frequency

propagation number

Light is

TRANSVERSE

electromagnetic

wave

E0 amplitude

電磁波としての光

Page 22: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Diffraction of light

diffraction from a slit

Screen

planar freely propagating wave

non-planar wave behind an object

Laser

Slit

光の回折

Page 23: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Diffraction of light

222sin

)0(sin

2

1)(

I

R

DI L

y

D/2

dy

z -D/2

r

R

P

x

Fraunhofer diffraction

光の回折

Page 24: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Diffraction of light

Laser

Rectangular opening Circular aperture (pinhole)

光の回折

Page 25: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Diffraction of light

2

1

sin

)sin(2)0()(

ka

kaJII

a

Rq

222.11

l

q1

Airy disk

光の回折

Page 26: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Optical resolution in microscopes

NAD

l61.0

Imaging involves diffraction on optical elements in the system, e.g. microscope

Microscopic

image of

point source

is Airy disk

Criteria for distinguishing two point sources

Airy disks

Point 1 Point 2

Distance D at which maximum of Point 2 disk falls into

first minimum of Point 1 disk - Rayleigh criterion

D

D – resolution of microscope

顕微鏡の光学分解能

Page 27: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

NAD

l61.0

Other criteria for distinguishing two point sources

D – resolution of microscope

For l = 500 nm

NA = 1.4 218 nm 179 nm 168 nm

NAD

l5.0

NAD

l47.0

Rayleigh limit Abbe limit Sparrow limit

Optical resolution in microscopes 顕微鏡の光学分解能

Page 28: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Repeated absorption and emission of

light by molecules with:

• high absorption cross-section

• high luminescence quantum yield

• high photostability

Fluorescence

of individual

molecules

fluorescence

microscope

Observing light emitted by single molecules

Page 29: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Y. Yabiku et al., AIP ADVANCES 3, 102128 (2013

Super-resolution fluorescence microscopy

Page 30: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Optical resolution

200 ~ 300 nm

molecular size ~ 1 nm

polymer chain size 10 ~ 50 nm

Super-resolution localization:

Determination of the position of

single molecule or nanoparticle with

nanometer accuracy by 2D Gaussian

fitting of the emission profile

single molecule

fluorescence

CCD image

2D Gaussian

fitting

molecular position

(~ 1-2 nm)

determined from

the center of the fit

Super-resolution fluorescence microscopy

Page 31: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Y. Yabiku et al., AIP ADVANCES 3, 102128 (2013

Super-resolution fluorescence microscopy

3D super-resolution image

Page 32: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Super-resolution fluorescence microscopy

Page 33: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

NANOSCALE PROPERTIES OF

ORGANIC MATERIALS OBSERVED

BY SINGLE MOLECULE SPECTROSCOPY

Page 34: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Principle of single-molecule spectroscopy

Fluorescence

Laser

Microscope

Time

Inte

nsity

Inte

nsity

Time

Emission

lifetime

Emission

blinking

Molecular position and orientation

z

y

x

f

Emission

spectra and

dynamics

単一分子分光の原理

Page 35: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

現在の主な研究テーマ:

Photophysics of

conjugated polymers

Nanoscale polymerization

and polymer relaxation

Natural and artificial

photosynthetic

complexes

Quantum dots:

I–III–VI semiconductor

halide perovskites

Plasmon-enhanced molecular

photophysics, upconversion

Single-molecule

electroluminescence

Single-molecule studies

Page 36: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

NANOSCALE PROPERTIES OF CONJUGATED POLYMERS

Page 37: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Conjugated polymers – why are they important?

optoelectronic properties semiconductors

mechanical properties, processing plastics

Applications in: - organic light-emitting diodes

- photovoltaic cells

- organic transistors

photophysical properties important in these applications

OLED

OFET

photovoltaics

共役系高分子

Page 38: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Conjugated polymers – basic photophysics

Polymer chain: ~100 – 1000 monomer units

-electrons NOT delocalized over the whole chain

Topological or chemical defects – localization of excitation of a few monomers

defect

CONJUGATED

SEGMENTS defect

Page 39: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Conjugated segments

Conjugated segments are determined by chain conformation

chains without chemical defects

rod

toroid random

coil

chains containing chemical defects

defect

coil

defect cylinder

Page 40: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Conjugated segments – optical properties and interactions

CONJUGATED SEGMENTS form CHROMOPHORES – basic entities

interacting with light

Optical properties of conjugated polymers:

number of conjugated segments (10 – 100)

length (5 – 15 monomers) and length distribution of conjugated segments

inter-segment interactions

INTERACTIONS

intra-chain and inter-chain

excited energy transfer

photoinduced charge transfer

formation of excimers and aggregates

radiative polaron-pair recombination

T-T annihilation

depend on

segment distance

and orientation

chain CONFORMATION

Page 41: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

INTERACTIONS

intra-chain and inter-chain

excited energy transfer EET absorption and

exciton localization

EET and

fluorescence

Conjugated segments – optical properties and interactions

EET depends on

segment distance

and orientation

Efficient interchain, inefficient intrachain EET Chem. Mater. 2011, 23, 610–620

Page 42: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

SINGLE-MOLECULE

ELECTROLUMINESCENCE

Page 43: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

OLED device

ITO anode

microscope cover glass

Al cathode

PEDOT:PSS

0.0

1.0

-1.0

nm 100 nm

PL inte

nsity

600 550 500 450 400

Wavelength (nm)

PEO

BC

Single-molecule electroluminescence II. Conjugated polymers

BDOH-PF

O

O

O

O

n

photoluminescence

electroluminescence P

L in

ten

sity

600 550 500 450 400

Wavelength (nm)

EL in

ten

sity

600 550 500 450 400

Wavelength (nm)

Proposed origins of

the green band:

- fluorenone defects - excimer fluorescence

E. List et al., Adv.

Funct. Mater. 13

(2003) 597

Page 44: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Single molecule electroluminescence

5 m

600 550 500 450 Wavelength (nm)

EL in

ten

sity

600 550 500 450 Wavelength (nm)

Wavelength (nm)

Tim

e

600 550 500 450

600 550 500 450 Wavelength (nm)

5.0 s

9.5 s

EL inte

nsity

1.0 s

1.5 s

7.5 s

600 550 500 450

Wavelength (nm)

EL in

ten

sity

600 550 500 450 Wavelength (nm)

2.5 s

3.5 s

EL inte

nsity

Wavelength (nm)

600 550 500 450

Tim

e

Tim

e

Large distribution of EL spectral position and shapes,

large distribution of spectral jumps energies

600 550 500 450 Wavelength (nm)

Page 45: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Single molecule photoluminescence

5 m

Wavelength (nm)

PL in

ten

sity

600 550 500 450 400

600 550 500 450 400 Wavelength (nm)

Tim

e

600 550 500 450 400 Wavelength (nm)

PL inte

nsity

12.5 s

15.0 s

600 550 500 450 400 Wavelength (nm)

10

2 0

4 0

3 0

Tim

e (

s)

600 550 500 450 400 Wavelength (nm)

10

2 0

4 0

3 0

0

Tim

e (

s)

600 550 500 450 400 Wavelength (nm)

10

2 0

4 0

3 0

0

Tim

e (

s)

600 550 500 450 400 Wavelength (nm)

10

2 0

0

3 0

0

Tim

e (

s)

4

Two types of PL spectra, mainly

two-state spectral jumps

600 550 500 450 400 Wavelength (nm)

Page 46: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Origin of the photoluminescence spectra

Nature Commun. 5 (2014) 4666

excimer

emission

type II

l

energ

y

intermolecular distance

-49.6 kJ/mol

neutral dimer

l

monomer

emission

BDOH-PF conformation changes

600 550 500 450 400

Wavelength (nm)

Page 47: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Origin of the electroluminescence spectra

l l

excimer

emission

ground-state

dimer emission

type II

type I

h+

e-

Nature Commun. 5 (2014) 4666

-101.5 kJ/mol

mixed dimer

+

energ

y

intermolecular distance Wavelength (nm) 600 550 500 450

BDOH-PF conformation changes

Page 48: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

NANOSCALE PHYSICS OF POLYMER SOLIDS

Page 49: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Physics of polymer solids: Glass transition, chain relaxation

Physical properties near Tg originate from

relaxation processes of polymer chains.

Glass transition polymers form a glassy state around a

temperature Tg (glass transition temperature)

physical properties, such as specific volume,

expansion coefficient, heat capacity, viscosity,

etc., change drastically at Tg

Tg is measured mainly by heat capacity (DSC)

or specific volume as function of temperature

change of the properties occurs within a

temperature range and depends on the cooling

rate

a-process (slowest) - relaxation due to

cooperative motions of polymer chains

(segments); non-exponential behavior

, g-processes – local processes (e.g.,

relaxation of sidechanis or sidegroups);

Arhenius-like behavior

Page 50: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Physics of polymer solids: Glass transition, chain relaxation

Non-exponential response in bulk physical properties of polymers

to external perturbations, e.g. heating

Non-exponential bulk response

locally

spatial heterogeneity

spatial homogeneity

OR

temporally

time

dynamic heterogeneity

dynamic homogeneity

time

OR

Single-molecule spectroscopy

Page 51: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

z

x

y

θ

φ

Method

Styrene oligomer

Mw = 1,000

bulk Tg ~ 10 C

Low Mw PS

Mw = 10,000

bulk Tg ~ 90 C

surface Tg < R.T

all molecules

rotating

80 nm film

– 14% rotating

32 nm film

– 22% rotating

Page 52: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Heterogeneity of polymer dynamics near the Tg

rotational diffusion behavior of PDI

analyzed from defocused images

296 K 315 K

single mol.

poly(n-butyl methacrylate) PnBMA; Tg = 296 K

Autocorrelation

function

Correlation time

Bulk and single-molecule relaxation times

devia

tion

of co

rre

lation

tim

es fro

m a

ve

rag

e

Spatial heterogeneity at different temperatures

296 K 315 K

Macromolecules 2011, 44, 9703

Page 53: 1 分子レベルから見た有機材料 のナノスケール世界...Martin Vacha Department of Materials Science and Engineering Tokyo Institute of Technology vacha.m.aa@m.titech.ac.jp

Substrate

surface

layer

bulk-like

layer

interface

layer (?)

Air

< 5 nm

< 5 nm

Mapping of polymer dynamics across thin films

Occu

rre

nce

τ c (s) 0 2 4

60

40

20

0

40

20

0

40

20

0

20 nm

70 nm

110 nm

1 10 100

Au

toco

rrel

atio

n

Time (s)

Inte

nsi

ty (a

.u.)

0 100 200 300 Time (s)

Thin poly(methacrylate) (PMA) films:

- no dependence of relaxation time on film

thickness

- no dependence on position inside the film

- presence of thin surface mobile layer

ACS Macro Lett. 1 (2012) 784

τ c (s)

20 40 60 80 100 120 Film thickness z (nm)

glass air

0

PEMA T-Tg= - 40 K

PVAc T-Tg= - 10 K

PMA T-Tg= 13 K

polymer

100

102

104

103

101

10-1

Thin poly(ethyl methacrylate) (PEMA) and

poly(vinyl acetate) (PVAc) films:

- relaxation time increases towards the substrate

- onset of the increase shifts with Tg

- effect of the interface is dominant over the

effect of surface