Author
dinhnga
View
229
Download
5
Embed Size (px)
1
Positive-Feedback Oscillators: Illustrations
Eugene PAPERNO, 2006
I. PHASE-SHIFT OSCILLATOR
)(1)(
1
11
1)( 3
sAA
sA
RC
sRC
s
OL
OLf
=
=
+
=
AOLSinSoS
(s)
Im[ (s)]=0
Fig. 1. Abs[(s)].
Fig. 3. Abs[Af(s)] for AOL=8. [AOL(1) =1.]
2 1.5 1 0.5 0 0.5
0.75
0.5
0.25
0
0.25
0.5
0.75
1
j
Im[(s)]=0
0.02
0.125
0.04
0.06
0.10.08
0.2
0.3123
AOL=8AOL=12.5
AOL=25
AOL=3.3AOL=2
Fig. 2. Abs[(s)].
1.5 1 0.5 0 0.5
0.75
0.5
0.25
0
0.25
0.5
0.75
1
Im[(s)]=0
AOL=8
j
Fig. 4. Abs[Af(s)] for AOL=8. [AOL(1) =1.]
2
Note that AOL(1) >1 shifts the poles to the right of the j axis.
1.5 1 0.5 0 0.5
0.75
0.5
0.25
0
0.25
0.5
0.75
1
Im[(s)]=0
AOL=8
j
Fig. 5. Abs[Af(s)] for AOL=8. [AOL(1) =1.]
1.5 1 0.5 0 0.5
0.75
0.5
0.25
0
0.25
0.5
0.75
1
Im[(s)]=0
AOL=25
j
Fig. 7. Abs[Af(s)] for AOL=25. [AOL(1) =3.125.]
1.5 1 0.5 0 0.5
0.75
0.5
0.25
0
0.25
0.5
0.75
1
Im[(s)]=0
AOL=12.5
j
Fig. 6. Abs[Af(s)] for AOL=12.5. [AOL(1) =1.56.]
1.5 1 0.5 0 0.5
0.75
0.5
0.25
0
0.25
0.5
0.75
1
AOL=3.3
j
Im[(s)]=0
Fig. 8. Abs[Af(s)] for AOL=3.3. [AOL(1) =0.41.]
3
II. WIEN-BRIDGE (HEWLETT) OSCILLATOR
)(1)(
11
1.031
11
1
1
1
)(
sAAsA
CR
sCR
sCR
sCR
sCR
sCR
s
OL
OLf
=
==
+++
+=
AOLSinSoS
(s)
Fig. 1. Abs[(s)].
Fig. 3. Abs[Af(s)] for AOL=8. [AOL(1) =1.]
1.5 1 0.5 0 0.5 1
1
0.5
0
0.5
1
1.5
Fig. 2. Abs[(s)].
1.5 1 0.5 0 0.5 1
1
0.5
0
0.5
1
1.5
Fig. 4. Abs[Af(s)] for AOL=10. [AOL(1) =1.]
4
Note that AOL(1) >1 shifts the poles to the right of the j axis.
1.5 1 0.5 0 0.5 1
1
0.5
0
0.5
1
1.5
Fig. 5. Abs[Af(s)] for AOL=10. [AOL(1) =1.]
1.5 1 0.5 0 0.5 1
1
0.5
0
0.5
1
1.5
Fig. 7. Abs[Af(s)] for AOL=106. [AOL(1) =105.]
1.5 1 0.5 0 0.5 1
1
0.5
0
0.5
1
1.5
Fig. 6. Abs[Af(s)] for AOL=20. [AOL(1) =2.]
1.5 1 0.5 0 0.5 1
1
0.5
0
0.5
1
1.5
Fig. 8. Abs[Af(s)] for AOL=5. [AOL(1) =0.5.]
5
III. HARTLEY-COLPITTS OSCILLATORS
)(1)(
111
1
1
1
1
)(
sAAsA
CLR
sL
sCR
sCR
sL
sCR
sCR
s
OL
OLf
=
===
++
+=
AOLSinSoS
(s)
Fig. 1. Abs[(s)].
Fig. 3. Abs[Af(s)] for AOL=8. [AOL(1) =1.]
1.5 1 0.5 0 0.5 1
1
0.5
0
0.5
1
1.5
Fig. 2. Abs[(s)].
1.5 1 0.5 0 0.5 1
1
0.5
0
0.5
1
1.5
Fig. 4. Abs[Af(s)] for AOL=1. [AOL(1) =1.]
6
Note that AOL(1) >1 shifts the poles to the right of the j axis.
1.5 1 0.5 0 0.5 1
1
0.5
0
0.5
1
1.5
Fig. 5. Abs[Af(s)] for AOL=1. [AOL(1) =1.]
1.5 1 0.5 0 0.5 1
1
0.5
0
0.5
1
1.5
Fig. 7. Abs[Af(s)] for AOL=2. [AOL(1) =2.]
1.5 1 0.5 0 0.5 1
1
0.5
0
0.5
1
1.5
Fig. 6. Abs[Af(s)] for AOL=1.4. [AOL(1) =1.4.]
1.5 1 0.5 0 0.5 1
1
0.5
0
0.5
1
1.5
Fig. 8. Abs[Af(s)] for AOL=0.8. [AOL(1) =0.8.]
7
IV. OSCILLATOR WITH AN UNSTABLE FEEDBACK NETWORK
)(1)(
1
11
1)25(1
25)(
3
sAAsA
RC
sRC
s
OL
OLf
=
=
+
=
AOLSinSoS
b(s)
25
Phase-shift oscillator
Fig. 1. Abs[(s)].
Fig. 3. Abs[Af(s)] for AOL=0.85. [AOL(1) =1.]
0.1 0 0.1 0.2
0.75
0.5
0.25
0
0.25
0.5
0.75
1
Fig. 2. Abs[(s)].
0.1 0 0.1 0.2
0.75
0.5
0.25
0
0.25
0.5
0.75
1
Fig. 4. Abs[Af(s)] for AOL=0.085. [AOL(1) =1.]
8
Note that AOL(1) >1 shifts the poles to the left of the j axis.
Fig. 5. Abs[Af(s)] for AOL=0.085. [AOL(1) =1.]
Fig. 7. Abs[Af(s)] for AOL=0.01. [AOL(1) =0.012.]
Fig. 6. Abs[Af(s)] for AOL=0.05. [AOL(1) =0.59.]
Fig. 8. Abs[Af(s)] for AOL=0.2. [AOL(1) =2.35.]
9
SUMMARY
Hartley-Colpitts Oscillators
AOL2 ( j1) =1
AOL3 (s) =1
AOL1 (s) =1
Im[ (s)]=0
AOL1 < AOL2 < AOL3
(s)
AOL
Oscillator with an unstable feedback network
AOL2 ( j1) =1
AOL1 (s) =1AOL3 (s) =1
Im[ (s)]=0
AOL1 > AOL2 > AOL3
(s)
AOL
Filename: 1._Positive_Feedback_Oscillators_Illustrations Directory: D:\1. Positive-feedback oscillators Template: C:\Documents and Settings\Paperno_E\Application
Data\Microsoft\Templates\Normal.dot Title: Positive-Feedback Oscillators Subject: Author: Paperno_E Keywords: Comments: Creation Date: 12/28/2006 1:06:00 PM Change Number: 147 Last Saved On: 12/30/2006 5:55:00 PM Last Saved By: Paperno_E Total Editing Time: 1,097 Minutes Last Printed On: 12/30/2006 6:56:00 PM As of Last Complete Printing Number of Pages: 9 Number of Words: 399 (approx.) Number of Characters: 2,316 (approx.)
I. Phase-Shift OscillatorII. Wien-Bridge (Hewlett) OscillatorIII. Hartley-Colpitts OscillatorsIV. Oscillator with an Unstable Feedback Network Summary