30
1 Relativistic calculation of emission spectra of highly charged W ions and electron impact ionization cross sections of W 2006. 11. 14. Yongjoo Rhee ( 李 李 李 ) Laboratory for Quantum Optics Korea Atomic Energy Research Institute 李李 李李李 李李李 李李李李李李李李李 presentation at ADAS [email protected] http://amods.kaeri.re.kr

1 Relativistic calculation of emission spectra of highly charged W ions and electron impact ionization cross sections of W 2006. 11. 14. Yongjoo Rhee (

Embed Size (px)

Citation preview

  • Slide 1
  • 1 Relativistic calculation of emission spectra of highly charged W ions and electron impact ionization cross sections of W 2006. 11. 14. Yongjoo Rhee ( ) Laboratory for Quantum Optics Korea Atomic Energy Research Institute presentation at ADAS [email protected] http://amods.kaeri.re.kr
  • Slide 2
  • 2 1.Electron impact ionization cross sections - W/W + - Ionization of W and W+ by electron impact. Duck-Hee Kwon, Yong-Joo Rhee, Yong-Ki Kim, International Journal of Mass Spectrometry, 252 pp213-221 (2006.4) 2.Emission spectra of highly charged W ions - W 33+, W 34+, W 35+, W 36+ 3. AMODS database - http://amods.kaeri.re.kr
  • Slide 3
  • 3 Atomic Processes in a Fusion Plasma impurity photon plasma particle 2 nd electron, ion, excited atom electron Mo, W, V Plasma p, e, Be, Li, C, Ni, etc Plasma (keV) generation of elctron energy loss of plasma plasma-wall interaction secondary electron electron collision with plasma photon emission decrease of plasma temperature secondary electron Diagnostic high Z (Ar, Xe, etc)
  • Slide 4
  • 4 (direct ionization) BEB (Binary Encounter Bethe) model N : Orbital Occupation NumberB : Orbital Binding Energy U : Orbital Kinetic Energy R : Rydberg Energy T : Incident Electron Energy t = T/B u = U/B a 0 : Bohr Radius Bethe Mott Bound state Continuum Electron Ionization energy interference (excitation-autoionization) Electron Bound state 1 Excited state : autoionization or photoemission First ionization limit Continuum Bound state 2 E: excitation energy B: bound energy PWB: plane wave Born Approximation for neutral atom CB: Coulomb Born approximation for singly charged ion Electron Impact Ionization Cross Sections N,B,U relativistic MCDF calculation
  • Slide 5
  • 5 MCDF Calculation Dirac-Fock Equation http://amods.kaeri.re.kr/mcdf/MCDF.html PC version (2005) Workstation version (2000) Exchange term Screened Coulomb charge term Lagrange multipliers Multi Configuration Dirac-Fock (MCDF) code : Jean-Paul Desclaux (Grenoble, France) Paul Indelicato (University of Paris, France) Yong-Ki Kim (NIST, USA) - ralativistic wave functions - electric and magnetic multipole transition - plane wave Born cross section - angular coefficients, etc Radial function X r
  • Slide 6
  • 6 Atom Configuratio n LS termLevel(eV) Ionization energy (eV) W 5d 4 6s 25 D 0 (g)0 7.864 5d 5 6s 7 S 3 (m)0.3659 5d 4 6s 23 P 1 (m)1.6499 W+W+ 5d 4 6s 6 D 1/2 (g)016.35 5d 5 6 S 5/2 (m)0.9200 5d 3 6s 24 F 5/2 (m)1.0801 Energy levels of W (Z=74, m=meta stable state, g=ground state)
  • Slide 7
  • 7 e-impact ionization of W + ion
  • Slide 8
  • 8 e-impact ionization of neutral W
  • Slide 9
  • 9 Online calcuation of Direct Ionization Cross Section
  • Slide 10
  • 10 C. Biedermann, Physica Scripta, 2001 4p 6 4d n [4p 5 4d n+1 + 4p 6 4d n-1 4f] Series of EUV spectra of W ions (25+ to 36+) measured at Berlin EBIT Calculation by HULLAC code Emission spectra of Highly Charged W Ions
  • Slide 11
  • 11 Energy levels of highly charged W ions W 36+ Mo V W 35+ Mo IV W 34+ Mo III W 33+ Mo II
  • Slide 12
  • 12 Transition Probabilities of W 33+ Electric Dipole transition only 4p 6 4d n [ 4p 5 4d n+1 + 4p 6 4d n-1 4f ] n=2 for W 36+ J= 2, 3, 4 n=3 for W 35+ J= 1/2, 3/2, 5/2 n=4 for W 34+ J= 0, 1, 2 n=5 for W 33+ J= 1/2, 3/2, 5/2
  • Slide 13
  • 13 Spectrum of highly charged W 33+ ions Electric Dipole transition only 4p 6 4d n [ 4p 5 4d 6 + 4p 6 4d 4 4f ]
  • Slide 14
  • 14 Transition Probabilities of W 34+ Electric Dipole transition only 4p 6 4d n [ 4p 5 4d n+1 + 4p 6 4d n-1 4f ] n=2 for W 36+ J= 2, 3, 4 n=3 for W 35+ J= 1/2, 3/2, 5/2 n=4 for W 34+ J= 0, 1, 2 n=5 for W 33+ J= 1/2, 3/2, 5/2
  • Slide 15
  • 15 Spectrum of highly charged W 34+ ions Electric Dipole transition only 4p 6 4d n [ 4p 5 4d 5 + 4p 6 4d 3 4f ]
  • Slide 16
  • 16 Transition Probabilities of W 35+ Electric Dipole transition only 4p 6 4d n [ 4p 5 4d n+1 + 4p 6 4d n-1 4f ] n=2 for W 36+ J= 2, 3, 4 n=3 for W 35+ J= 1/2, 3/2, 5/2 n=4 for W 34+ J= 0, 1, 2 n=5 for W 33+ J= 1/2, 3/2, 5/2
  • Slide 17
  • 17 Spectrum of highly charged W 35+ ions Electric Dipole transition only 4p 6 4d n [ 4p 5 4d 4 + 4p 6 4d 2 4f ]
  • Slide 18
  • 18 W 33+ W 34+ W 35+ W 36+ Spectra of highly charged W ions Electric Dipole transition only 4p 6 4d n [ 4p 5 4d n+1 + 4p 6 4d n-1 4f ] n=2 for W 36+ J= 2, 3, 4 n=3 for W 35+ J= 1/2, 3/2, 5/2 n=4 for W 34+ J= 0, 1, 2 n=5 for W 33+ J= 1/2, 3/2, 5/2 HCI Spectra are calculated using MCDF code for gA of each transition line and convolution with =0.138 is performed.
  • Slide 19
  • 19 Spectra of highly charged W ions ASDEX upgrade, R. Neu, J.Phys.B, At. Mol. Opt. Phys. 1997
  • Slide 20
  • 20 Spectra of highly charged W ions RELAC code, R. Neu, J.Phys.B, At. Mol. Opt. Phys. 1997
  • Slide 21
  • 21 AMODS database http://amods.kaeri.re.kr
  • Slide 22
  • 22 Structure & Raw Data Sources of AMODS AMODS Atomic Structure & TransitionsCollisions and Reactions ASL TP AEL ATL MCDF ON-LINE POP DYNAMICS Mirror NIST ASD ALLADIN e IMPACT ISOTOPE DATA MPI PATH NIFS AI IAEA,ORNL Michigan NIST, CUP NIFS CDS NIST KAERI NIST ADAS KAERI Strathclyde Most data retrievals are controlled by SCRIPTS (PERL, k-shell) Fundamental Const NIST IFE Simulation KAERI
  • Slide 23
  • 23 Atomic Spectral Lines - I
  • Slide 24
  • 24 Atomic Spectral Lines - II
  • Slide 25
  • 25 Electron Impact Excitation/Ionization
  • Slide 26
  • 26 Electron Impact Differential Cross Section Implemented in NIFS under CUP
  • Slide 27
  • 27 KAERI NIFS collaboration
  • Slide 28
  • 28 Dielectronic Satellite Lines - NIFS
  • Slide 29
  • 29 Mirror Site of NIST ASD
  • Slide 30
  • 30 SUMMARY Usage of W is expanding - ITER, ASDEX, TRIAM, etc - DATA of W are necessary electron impact ionization cross section spectra of highly charged ions MCDF code is a good tool to solve the problem - Relativistic calculation - ab initio calculation Verification of Data by experiments and theory is necessary - by MCDF - in LHD,TRIAM,ASDEX-U - in laser facilities International collaboration Japan (NIFS, ILE) China (LFRC, SIOM) Europe (ASDEX-U, JET)