34
1 Supramolecular Allosteric C ofacial Porphyrin Complexes Christopher G. Oliveri, Nathan C. Gianneschi, SonBinh T. Ng uyen,*, Chad A. Mirkin,*, Charlotte L. Stern, Zdzislaw Wawrzak,and Maren Pink J. Am. Chem. Soc. 2007, 128, 16286 - 16296 Speaker 鍾鍾鍾

1 Supramolecular Allosteric Cofacial Porphyrin Complexes Christopher G. Oliveri, Nathan C. Gianneschi, SonBinh T. Nguyen,*, Chad A. Mirkin,*, Charlotte

  • View
    214

  • Download
    1

Embed Size (px)

Citation preview

  • Slide 1
  • 1 Supramolecular Allosteric Cofacial Porphyrin Complexes Christopher G. Oliveri, Nathan C. Gianneschi, SonBinh T. Nguyen,*, Chad A. Mirkin,*, Charlotte L. Stern, Zdzislaw Wawrzak,and Maren Pink J. Am. Chem. Soc. 2007, 128, 16286 - 16296 Speaker
  • Slide 2
  • 2 Allosteric Recognition Chad A. Mirkin et. al. Angew. Chem. Int. Ed. 2006, 45, 941 944 The allosteric-effector-mediated shape change of a macrocycle.
  • Slide 3
  • 3 Introduction-Porphyrin 93
  • Slide 4
  • 4 Chlorophy11 Vitamin B 12
  • Slide 5
  • 5 Holliday, B. J. et. al. Angew. Chem. Int. Ed. 2001, 40, 2022-2043. Supramolecular Coordination Chemistry Hydrogen bonding - interaction Metal to ligand binding van der Waals forces
  • Slide 6
  • 6 The Directional-Bonding Approach Holliday, B. J. et. al. Angew. Chem. Int. Ed. 2001, 40, 2022-2043.
  • Slide 7
  • 7 The Symmetry-Interaction Approach Dinuclear structures Tetranuclear structures The symmetry-interaction synthetic strategy has granted researchers access to a variety of elegant shapes andarchitectures (for example, helicates, tetrahedra, and adamantoidstructures) through the predictable coordination chemistry of multibranched chelating ligands with transition and main group metal centers. Holliday, B. J. et. al. Angew. Chem. Int. Ed. 2001, 40, 2022-2043.
  • Slide 8
  • 8 The Weak-Link Approach A critical feature of this approach is that themetals used in the assembly process are available forfurther reactions without destroying the supramolecularstructure. This approach targets condensed structures that contain strategically placed strong(metal-phosphine) and weak (metal-X) bonds. Mirkin, C. A. Acc. Chem. Res. 2005,38,825-837.
  • Slide 9
  • 9 Catalytic Acyl Transfer by a Cyclic Porphyrin Trimer Sanders, J. K. M. et. al. J. Am. Chem. Soc. 1994,116, 3141-3142. Tetrahedral intermediate doubly-bound inside cavity of trimer. Schematic view of a proximity-catalyzed transfer reaction.
  • Slide 10
  • 10 Design of Allosteric Porphyrin-Based Supramolecules Closed macrocycleOpen macrocycle PPh 2 = diphenylphosphine MES = 1,3,5-trimethylbenzene
  • Slide 11
  • 11 ( i ) 1-bromo-2-chloroethane, K 2 CO 3, Acetone, Reflux ( ii) 1,3-propanedithiol, Y(OTf) 3 (5 mol %), CH 3 CN (iii) KPPh 2, THF (iv) S 8, THF ( v) NaNO 2,AcCl/H 2 O, CH 2 Cl 2, 0 C rt 75%86%97% Synthesis of Ether-Based Ligand 7 and Macrocycles 8a and 8b Y(OTf) 3
  • Slide 12
  • 12 ( vi ) 5-mesityldipyrromethane, BF 3 OEt 2, DDQ, NEt 3, CHCl 3, 4 Molecular Sieves (vii ) Zn(OAc) 2 2H 2 O, 4:1 CHCl 3 /MeOH, Reflux (viii) Cp 2 ZrHCl, THF, 60 C 88% 41% 96% ( DDQ ) 5-mesityldipyrromethane
  • Slide 13
  • 13 (ix) [Rh(CO) 2 (Cl)] 2, CH 2 Cl 2 /THF ( x) [Cu(CH 3 CN) 4 ]PF 6, CH 2 Cl 2 /THF 89% 8a 94% 8b 92%
  • Slide 14
  • 14 X-ray crystal structure of 8a DABCO as viewed (A) from the side and (B) from the top Gray C Pink Rh, Red O, Yellow Cl, Green P, Blue N, Light Blue Zn Zn-Zn distance of 7.09 Rh-Rh distance of 24.85 P-Rh-P distance of 4.64 DABCO
  • Slide 15
  • 15 X-ray crystal structure of 8c DABCO as viewed (A) from the side and (B) from the top Zn-Zn distance 6.99 Cu-Cu distance 22.6 Gray C Brown Cu, Red O, Yellow Cl, Green P, Blue N, Light Blue Zn
  • Slide 16
  • 16 ( i ) ClCH 2 CH 2 PPh 2, Cs 2 CO 3, CH 3 CN, Reflux ( ii) S 8, THF (iii) n-BuLi, DMF, THF, -78 C (iv) 5-mesityldipyrromethane, BF 3 OEt 2, DDQ, NEt 3,CHCl 3, 4 Molecular Sieves 92%88% 44% Synthesis of Thioether-Based Ligand 13 and Macrocycles 14a-b, 15a-b
  • Slide 17
  • 17 ( v ) Zn(OAc) 2 2H 2 O, 4:1 CHCl 3 /MeOH, Reflux ( vi ) Cp 2 ZrHCl, THF, 60 C ( vii) for 14a: [Rh(NBD)Cl] 2, AgBF 4, CH 2 Cl 2 /THF (viii) for 14b: [Cu(CH 3 CN) 4 ]PF 6, CH 2 Cl 2 /THF 98%88%
  • Slide 18
  • 18 (ix) for 15a: PPNCl/CO (1 atm) ( x) for 15b: C 5 D 5 N. 14a 90% 14b 90% Bis(triphenylphosphoranylidene) ammonium chloride (PPNCl)
  • Slide 19
  • 19 NMR Data of 14a and 14b Chad A. Mirkin et. al. Inorg. Chem. 2000, 39, 3432-3433 Comp. 2 31P{1H} NMR (CD2Cl2) 64 ppm (d,J Rh-P =161 Hz) Comp. 14a 31 P{ 1 H} NMR (CD 2 Cl 2 ) 64.5 ppm (d,J Rh-P =162 Hz)
  • Slide 20
  • 20 X-ray crystal structure of 15a DABCO as viewed (A) from the side and (B) from the top Gray C Pink Rh, Red O, Orange S, Yellow Cl, Green P, Blue N, Light Blue Zn Zn-Zn distance 7.02 Rh-Rh distance 22.59 P-Rh-P distance 4.60 Dihedral angles 17.8
  • Slide 21
  • 21 X-ray crystal structure of 15c DABCO as viewed (A) from the side and (B) from the top Gray C Brown Cu, Red O, Yellow Cl, Green P, Blue N, Light Blue Zn Zn-Zn distance 7.05 Cu-Cu distance 22.38
  • Slide 22
  • 22 Closed macrocycleOpen macrocycle Acyl transfer reactions catalyzed by a closed macrocycle vs. the corresponding open macrocycle.
  • Slide 23
  • 23 Formation of 4-(acetoxymethyl)pyridine (4-AMP) plotted as concentration vs. time for 14a and 15a.
  • Slide 24
  • 24 Formation of 4-(acetoxymethyl)pyridine (4-AMP) plotted as concentration vs. time for [Zn(TPP) + 16a] and [Zn(TPP) + 16b]
  • Slide 25
  • 25 Catalytic efficiency of 4-PC 15a 14a = 2 1 15a monomer = 14 1 14a is probably dynamic when in solution and the observed catalytic activity may originate from the conformational flexibility around the S atoms.
  • Slide 26
  • 26 Formation of 3-(acetoxymethyl)pyridine (3-AMP) plotted as concentration vs. time for 14a and 15a.
  • Slide 27
  • 27 Formation of 3-(acetoxymethyl)pyridine (3-AMP) plotted as concentration vs. time for [Zn(TPP) + 16a] and [Zn(TPP) + 16b]
  • Slide 28
  • 28 Catalytic efficiency of 3-PC Drop slightly with respect to 4-PC => the cavities of 14a and 15a are still flexible enough to accommodate the change in transition state distance for acyl transfer from acetylimidazole upon binding.
  • Slide 29
  • 29 Formation of 2-(acetoxymethyl)pyridine (2-AMP) plotted as concentration vs. time for 14a and 15a.
  • Slide 30
  • 30 Formation of 2-(acetoxymethyl)pyridine (2-AMP) plotted as concentration vs. time for [Zn(TPP) + 16a] and [Zn(TPP) + 16b]
  • Slide 31
  • 31 Catalytic efficiency of 2-PC Drop significantly with respect to 3-PC and 4-PC Similar to those observed for the monomer => Unfavorable transition state (in comparison to those for 3-PC and 4-PC) for productive acyl transfer.
  • Slide 32
  • 32 Conclusion They have developed a coordination chemistrybased synthetic approach for the quantitative preparation of flexible cofacial porphyrin assemblies in which the porphyrins act as functional sites within an allosteric framework that istunable via modulation of peripheral structure control domains. This capability enables the cofacial porphyrin structuresto act as allosteric catalysts capable of discriminatingdifferent substrate combinations and selectively transformingthem into the desired products.
  • Slide 33
  • 33 Table 1. X-ray Crystallographic Data for 8a DABCO and 15a DABCO
  • Slide 34
  • 34 Table 1. X-ray Crystallographic Data for 8c DABCO and 15c DABCO.
  • Slide 35
  • 35 Homework 1. paper 15a 14b Ans
  • Slide 36
  • 36 2. Weak-link approach (WLA) transition metal Ans Transition metal Rh() Pd() 1 macrocycle transition metal d 8 Rh() d 10 Cu() d 6