22
1 Wave Polarization, Polarimetric SAR, and Polarimetric Scattering Models Yisok Oh Dept. of Radio Engineering, Hong-Ik University 다다다 PACRIM Training Course (Workshop) 다 다다 Note 다다다 1.1 Wave Properties 다다 다다다 다다다 , 다다다 다다다 다다다다다 다다다 다 다다다다 . Seoul National University, February 16-19, 2000

1 Wave Polarization, Polarimetric SAR, and Polarimetric Scattering Models Yisok Oh Dept. of Radio Engineering, Hong-Ik University 다음은 PACRIM Training Course

Embed Size (px)

Citation preview

1

Wave Polarization,Polarimetric SAR, and

Polarimetric Scattering Models

Yisok Oh

Dept. of Radio Engineering, Hong-Ik University

다음은 PACRIM Training Course (Workshop)의 강의 Note 중에서

1.1 Wave Properties 만을 발췌한 것으로 ,전파의 성질을 이해하는데 도움이 될 것입니다 .

Seoul National University, February 16-19, 2000

2

Contents

1. Wave Polarization1.1 Wave Properties1.2 Polarization Synthesis

2. Polarimetric Radar System2.1 A Scatterometer System2.2 NASA/JPL POLSAR System

3. Polarimetric Scattering Models3.1 Surface Scattering3.2 Volume Scattering

3

1.1 Wave Properties

-. What is the “Field”?-. Waves : Electromagnetic Waves by Maxwell-. Planewave Propagation in free space-. Polarization : Basic concepts-. Microwave Generation : DC to AC-. Microwave Guidance by Waveguides/ Trans. lines-. Microwave Radiation by Antennas-. EM Wave Reflection from infinite planes-. Microwave Scattering from

-. Point Targets-. Distributed Targets

4

Electromagnetic Fields

Fields: Spatial distribution of a physical quantity.

Static Fields

No time-variation

Separation of Electric Field andMagnetic Field

Electromagnetic Fields

Time-varying Fields

Dynamic Fields

Co-existence ofElectric and Magnetic fields

: DC : AC

5

Electrostatic FieldsE : Electric Field(showing flux lines)

Assuming infinite plates, mVd

VE /

V

Conducting Plates

E d

+

-

Direction of E : From + charges to - charges

6

Magnetostatic Fields

IEEE Emblem

I : Current

H : Magnetic Field(showing flux line)

voltage

current

Electric Fields

Magnetic Fields

Assuming an infinite current line, mAI

H /2

I

H

Direction of H : Right-hand rule, RIH ˆˆˆ

7

Dynamic (Time-Varying) Fields

c SS

c S

sdt

DsdJldH

t

DJH

sdt

BldE

t

BE

ElectromotiveForce(Voltage Source)

ConductionCurrent

DisplacementCurrent

Maxwell’s Equations

Time-varyingElectric Field

E(r,t)

Time-varyingMagnetic Field

H(r,t)

8

WavesConsider Water wave in a pond.

Cut water surface at once(t=t0) with Kwan-Woo’s Sword ( 청룡언월도 ) and look

X(Spatial Displacement)

Wave Height

Log the height ofFishing Buoy (x=x0)as a time function

t(Time)

Wave Height

Even though the wave comes toward me, the water doesn’t !

9

Electromagnetic (EM) Waves

xkztEtrE ˆcos),( 00 An Example of an EM wave:

Magnitude(source,distance,etc.)

SinusoidalWave

TimeVariation

Z-directedpropagation

Vector(Polarization)

T

2

2

k

Time

TxE

z, distancexE

10

Phase Velocity

0 kzt = constantSame Phase

Assume these circles are surfing boards.

Phase velocity = velocity of the equi-phase point

kt

k

constt

t

zvp

0

Poynting Vector: trHtrEtrS ,,,

: Real Power Flow (Magnitude and Direction)

11

Time-Harmonic Fields

Time-harmonic Assumption: tje Time variation

xeErE jkz ˆ)( 0

yeE

rH jkz ˆ)( 0

HjE (Maxwell Equation)

vacuumin

377

zyx ˆˆˆ z : wave prop. direction

(Phasor form)

12

Planewave Propagation

x

y

z

Hy

Ex

zHE ˆ

xeErE jkz ˆ)( 0

Planewave: wavefront is plane

Spherical wave near an antenna

Approximate Planewave

in the Far-zone

22D

R

Z-directed propagatingLinear polarized (x-direction)Wave

13

Polarization: shape of the locus of the E vector tip at a given point in space as a function of time.

jkzjyx eeyaxazE ˆˆ

,0

Polarization

Linear

Circular

Elliptical

2,

yx aa

Other Cases

Conditions Examples

xeEzE jkz ˆ)( 0

jkzeyjxzE ˆˆ

jkzeyjxzE ˆ2ˆ

14

Exercise (determination of polarization)

jkzeyxzE ˆˆ2Find polarization of the wave,

Find instantaneous electric field:

Plot electric field:

Determinepolarization

kztyx

tjzEtzE

cosˆˆ2

expRe,

tyxtE cosˆˆ2,0

2

1

Ex

Ey

0t

t

Linear pol. with 21tan 1

15

Polarization Ellipse

sin2sin2tan

cos2tan2tan

Lin. Pol.

0

0

Circular Pol.090

045

= Rotation Angle

= Ellipticity Angle

16

Various Polarization States

Left Circular pol.

Wave direction Thumb

Electric Field Other fingers of left hand

17

Microwave Generation

Oscillators

Tubes Solid State

KlystronTWTMagnetron

Gunn Diode MESFETHEMT, etc.

High Power

Light, Cheap

D.C. Power

Microwave(A.C.)

Instability

Resonator

Amplifying

A MESFETOscillator:

18

Microwave Guidance

Two Conductors

Single Conductor

No Conductor

(Transverse ElectroMagnetic)

Waveguides

Coaxial CableTwo-wireMicrostrip

Rectangular,CircularWaveguides

DielectricWaveguide

TEM wave TE, TM waves(Optical fibers)

EH

directionA Coaxial Cable :

19

Microwave RadiationDipole Antenna :

Transmission Line

(Wave guider)

Radiator(Discontinuity)

* Current : temporal Variation of charges

20

Antennas

WireAntenna

ApertureAntenna

ReflectorAntenna

PrintedAntenna

Microstrip AntennaCoaxial Cable

ElectricField Lines

21

EM Wave ReflectioniE

iH x

z

Perpendicular PolarizationElectric field is perpendicular

to the incidence plane

iE

iH

x

z

Parallel PolarizationElectric field is parallel to the incidence plane

Horizontal PolarizationElectric field is horizontal to Earth surface

Vertical PolarizationMagnetic field is horizontal to Earth surface

Infiniteplane

22

Microwave Scattering

Radar System

Radar System

PointTarget

DistributedTarget

43

2

4 R

GGPP rttr

0

3

200

4

ill

rttr A

GGPP

dsR

ggA

areaillum

rtill

.4 ,

,where

: Radar Cross Section 2m0: Scattering Coefficient