186
1 第一章 1.1 危險性設備延檢或替代檢查實施緣由 1.1.1 因應國際趨勢發展 目前世界各國在工業安全方面的立法上有一個重要的轉變,亦 即政府立法部門趨向於較少對企業做法進行強制性規定,而轉變為 要求企業業主必須負起工業安全的責任。這使得企業運作的環境更 為自主,但同時也使在決定如何做方面的責任由立法者轉移到企 業業主與製程設備的管理者身上。目前多數國家對於法規列管的危 險性設備要求實施固定的定期檢測期限的作法是不符合前述國際上 的趨勢,但我們也看到目前國內工業安全衛生的主管部門也漸漸朝 此方向擬定相關法規。相對來說,要求企業在作相關安全方面的決 策時,亦即擬定最適風險管控決策時,也必須考慮該決策的可行性 以及經濟效益。 國內石化工業若實施第一種壓力容器、高壓氣體特定設備、高 壓氣體容器等單體設備延長內部檢查期限或以其他替代方式檢查時 之評估管理機制,亦即由石化業者依據製程工廠內前述危險性設備 之損壞機制與殘餘壽命來自主規劃設備的不開槽檢查週期,一方面 可提高工廠的運轉效率,並提高國內石化業者於國際上生產競爭的 能力,以對抗其他國家之產品削價競爭的壓力,另一方面亦可彌補 國內高壓氣體特定設備定期檢查人力不足之窘境,經由石化業者自 負工廠運轉之風險的理念不但可獲得提升,業者更會投入較多的人 力與預算於公司內建立完整的設備檢測部門與檢測管理組織,或者 進一步提昇代行檢查機構的技術能力。但是於實施第一種壓力容 器、高壓氣體特定設備、高壓氣體容器等單體設備延長內部檢查期 限或以其他替代方式檢查前必須具備正確評估設備潛在損壞機制、

1.1 危險性設備延檢或替代檢查實施緣由ebooks.lib.ntu.edu.tw/1_file/moeaidb/013343/013343.pdf · 版;目前API 510(壓力容器檢測規範)、API 570(管線檢測規範)和

  • Upload
    hadien

  • View
    310

  • Download
    10

Embed Size (px)

Citation preview

  • 1

    1.1

    1.1.1

  • 2

    RBI

    109 133 156

  • 3

    1.1.2

    (1)

    (2)

    (3) 1 8

    49.3

    490 ()

    (4)

  • 4

    (5)

    20

    7

    (6)

    2~3

    (7)

    (8) (Mechanical integrityMI)

  • 5

    1.2

    1.2.1

    (ASME)(API)

    (OSHA)

    API ASME RBI

    ASME 1994 RBI

    (ASME RBI for power plant Vol.3 1994) API 1996

    API581 ASME 1999 RBI

    (RBI guidelines for pressure systems)API BRD 581 2000

    API 510()API 570()

    API 653() RBI

    API 581

    RBI

    RBI

    RBI

    (1)

    (2)

    (3)

    (4)

  • 6

    (5)

    (6)

    (7)

    (8)

    (9)

    RBI 1.1

    RBI

    RBI

  • 7

    1.2.2

    (1)

    1994RBI

    RBI

    RBI

    1998

    (As low as reasonable practice ALARP)

    RBI

    (2)

    1840

    RBI 6

    12

    (3)

    RBI

  • 8

    RBI

    RBI ()

    RBI ()

    6 24 2 8

    (4)

    RBI RBI

    5 RBI

    8

    1.2.3

    ()

    (API) API

    510

    (A) (long-term)

    (short-term)

    10 (B) 10

    RBI RBI (pressure vessel

    engineer) (authorized pressure vessel

    inspector)(review)(approve)

    API 510 RBI (A) API

    580

  • 9

    ()

    (B)RBI API 580

    (C) RBI

    (1)

    (2)(3)

    (4)

    1.2.4

  • 10

    (Recommendationa For Risk Improvement)

    AOM

    MARSH

    (A)(B)

    :

    (C)(D) ISO

    ISO9001

    (E)

    (F)

    (G)

    :

    API 2510A(H)(RBI)

    (PMI)

  • 11

    1.2.5

    (1) RBI

    RBI

    RBI

    (2)

    (Damage mechanism

    DM)

  • 12

    1.3

    1.4

    (

    )

    1.5

  • 13

    Risk based inspection (RBI)

    American petroleum institute (API)

    American society of mechanical engineer

    (ASME)

    Occupational safety and health associate

    (OSHA)

    Europe pressure equipment research

    council (EPERC)

    Risk Based Inspection and Maintenance

    Procedures (RBIMAP)

    As low as reasonably practicable

    (ALARP)

    Engineering Equipment and Materials

    Users Association (EEMUA)

    Hazard analysis and operability

    (HAZOP)

    Damage mechanism DM

    Functional safety

    Damage type

    Thinning

    General metal loss

    Local Thin Area

    Pitting

    Surface connected cracking

    Subsurface cracking

    Microfissuring or microvoid

    Metallurgical changes

    Dimensional changes

    Blistering

  • 14

    Material properties changes

    Corrosion

    Stress corrosion cracking

    Embrittlement

    Fatique

    Step-wise cracking

    Erosion

    Cavitation

    Creep

    Stress rupture

    Spheroidization

    Graphitization

    Nitriding

    Criticality Analysis (CA)

    Failure mode and effect analysis (FMEA)

    Risk management program (RMP)

    Good engineering practice

    American National Standards Institute

    (ANSI)

    National Fire Protection Association

    (NFPA)

    American Society for Testing and

    Materials (ASTM)

    Instrument Society of America (ISA)

    Safety integrity level (SIL)

    Process safety management (PSM)

    Probability of failure on demand (PFD)

    Safe failure fraction (SFF)

    User-approved safety (UAS)

  • 15

    Mean time between failure (MTTF)

    Diagnostic coverage (DC)

    Mean time to repair (MTTR)

    Proof test interval

    Logic solver

    Fault tolerance

    Fault tree analysis

    Reliability block diagram

    Markov models

    Non destructive testing (NDT)

    National associate of corrosion engineer

    (NACE)

    Fit for service (FFS)

    Chemical process quantitative risk

    analysis (CPQRA)

    Indices

    Individual risk

    Societal Risk

    Fatal accident rate (FAR)

    Boiling liquid expanding and vapor

    explosion (BLEVE)

    Fire ball

    Confined explosion

    Flash fire

    Pool fire

    Jet fire

    Unconfined vapor cloud explosion

    (UVCE)

    Deflagration

  • 16

    Detonation

    Maximum allowable working pressure

    (MAWP)

    Visual inspection (VT)

    Dye penetrant inspection (PT)

    Magnetic particle inspection (MT or

    MPI)

    Eddy current (ET)

    Radiography (RT)

    Conventional ultrasonic testing (UT)

    Alternating current field measurement

    technique (ACFM)

    Alternating current potential drop

    technique (ACPD)

    Ultrasonic time of flight diffraction

    /Automated ultrasonic pulse-echo

    technique

    Ultrasonic continuous monitoring

    technique

    Spark testing technique

  • 17

    2.1

    (1)

    (2)

    (3)

    (3)

    (4)

    (5)

  • 18

    (1)

    (2)

    (

    )

    (3)

    (4)

    HAZOP

  • 19

    (5)

    2.2

    (Damage mechanismDM)

  • 20

    (Functional

    safety)

    PDCA

    (1)

    (2)

    (3)

    (4)

    (5)

    (6)

  • 21

    ( 2.2.12.2.2)

    ( 2.2.3)

    ( 2.2.4)

    ( 2.3)

    ( 2.3)

    ( 2.2.12.3.7)

    ( 2.3.32.2.5)

    :

    :

    /

    ( 2.3.4)

    ( 2.3.6)

    ( 2.3.7.2

    )

    ( 2.3)

  • 22

    1.

    2.

    3.

    4.

    5.

    1. ( )

    2.

    3.

    4.

    5.

    ( )

    1.

    2.

    3.

    1.

    2.

    3.

    4.

  • 23

    5.

    6.

    7.

    8.

    9.

    1.

    2. ( )

    3.

    4.

    5. ( )

    1. ( )

    (

    )

    2. (

    )

    3.

    ( )

  • 24

    1. ( HAZ)

    ( )

    1.1

    2. (

    ) (

    )

    3.

    4.

    2.2.1

  • 25

    (1)

    (2)

  • 26

    (3)

    (4)

    (5)

    (Coating)(Lining)

    pH

    (6)

  • 27

    (7):

    2.2.2

    (1)

    PFD

    (2)

  • 28

    ()

    ()

    (Lining)

    (3)

    (Head)

    2.2.3

    2.2.3.1

    (1)

    8 (

    )

  • 29

    (Damage type) (Characteristics)

    1 (Thinning)

    (General)(Local)

    (Pitting)

    2 (Surface

    connected cracking)

    3 (Subsurface cracking)

    4

    (Microfissuring / microvoid)

    5 (Metallurgical

    changes)

    (Metal

    microstructure)

    6 (Dimensional

    changes)

    7 (Blistering)

    8 (Material properties

    changes)

  • 30

    (2)(Damage mechanisms)

    (Thinning)(General)(Local)

    (Pitting)

    (HCL corrosion)

    (Organic chlorides corrosion)

    (Inorganic chlorides corrosion)

    (Organic sulfur corrosion)

    (CO2)

    /(Naphthenic acid corrosion)

    (Sour water corrosion)

    (Sulfuric acid corrosion)

    (Hydrofluoric acid corrosion)

    ()(Corrosion under insulation/fireproofing)

    (Cooling water corrosion)

    (Atmospheric corrosion)

    (Soil corrosion)

    (High temperature oxidation)

    (Hot corrosion)

    (Flue gas corrosion)

    (Dealloying)

    (Galvanic corrosion)

    (Crevice/underdeposit corrosion)

    (Phenol)/NMP

  • 31

    (Phosphoric acid corrosion)

    (Caustic corrosion)

    (Ammonia corrosion)

    /(Chlorine/sodium hypochlorite corrosion)

    (Biological corrosion)

    (Injection point corrosion)

    /(Boiler water/condensate corrosion)

    (Flue gas dewpoint corrosion)

    (3)

    (Stress corrosion cracking)

    (Amine)

    (Ammonia)

    (Caustic)

    ()(Carbonate)

    (Chloride)

    (H2SxO6Polythionic acid)

    (Liquid metal embrittlement)

    (Hydrofluoric acid)

    (Corrosion fatique)

    (4)

    (Blistering)

    (Sulfide stress cracking)()

  • 32

    (Hydrogen induced damage mechanisms)

    (Blistering) (Subsurface cracking) (Surface connected cracking) (Dimensional changes)

    (Step-wise cracking)

    (Surface connected cracking) (Subsurface cracking)

    (Stress oriented hydrogen induced crackingSOHIC)

    (Microfissuring / microvoid) (Subsurface cracking) (Surface connected cracking)

    (Sulfidestress cracking)

    (Surface connected cracking)

    (HCN)(Cyanide stress cracking)

    (Surface connected cracking)

    (Hydriding) (Subsurface cracking) (Surface connected cracking) (Metallurgical changes)

    (Hydrogen attack) (Microfissuring / microvoid) (Metallurgical changes)(Cracking)

    (Hydrogen embrittlement)

    (Surface connected cracking) (Material properties changes)

  • 33

    (5)

    (Erosion)(Cavitation)

    (Fatigue)(Creep and stress rupture)

    -

    -

    (Sliding wear)

    ( Thermal fatigue)

    (Corrosion fatigue)

    (Creep and stress rupture)

    (Microfissuring / microvoid)

    (Metallurgical changes)

    (Dimensional changes)

    (Creep cracking)

  • 34

    (Thermal ratcheting)

    (Overload plastic collapse)

    (Brittle fracture)

    (Material properties changes)

    (6)

    (Incipient melting)(Spheroidization)

    (Graphitization)(Nitriding)

  • 35

    (Hardening)

    Sigma Chi (Embrittlement)

    885( ) (Embrittlement)

    (Temper Embrittlement)

    (Reheat cracking)

    (Carbide precipitate embrittlement)

    (Carburization)

    (Decarburization)

    (Metal dusting)

    (Nitriding)

    (Strain aging)

  • 36

    (Softening due to overaging)

    (Brittleness due to high temperature aging)

    (7)

    1.

    2. RBI

    3. API RP581 API RP571

    4.()

  • 37

    CUI ()

    Chlorides SCC ()

    Creep rupture ()

    Sulfidation ()

    Caustic SCC ()

    Creep cracks ()

    HCL Acid ()

    HIC/SOHIC ()

    Vibration fatigue ()

    Caustic ()

    HTHA ()

    Thermal fatigue ()

    H2/H2S (/)

    Wet H2S ()

    Oxidation ()

    H2 embrittlement ()

    1

    2

    3 PH

    4

    5 ( 130)

    6 CUI

    :-4C~120 :60~204

    7

    8

    9 H2S

    10

    11

    12 (>HB200) PWHT

    13

  • 38

    14

    15 PWHT

    16

    17 Nerson Curve C-0.5Mo

    18 ()

    304S.S 425~815

    19 0.4TM

    20 TAN>0.5200~400

    21 550~850

    22 (2.25Cr-0.5Mo) 370~580

    23

    24 HKHP

    25 /5651.25Cr1Mo6355Cr-0.5Mo6509Cr-Mo70018Cr-8Ni870

    26 200

    27

    28 /(>200 )

    29 (>200 ) /

    30

  • 39

    2.2.3.2

    (CR)

    (LR)

    (1)(CR)

    CR = t/Y---------------------------------------------------(1)

    t Y (mm)

    Y ()

    (2)(LR)

    LR = (t ta)/CR--------------------------------------------------(2)

    LR()

    t(mm)

    ta(mm)

    CR(mm)

    P = a LR 10 ---------------(3)

    a= fefcfm

    fe

    fc

    ()

    fm]

    fefcfm

  • 40

    (TEAM WORK)

    (A) fe:

    (B) fc:

    (C) fm: ISO18000

    Fe

    Fc

    Fm

    -----

    ----

    ----ISO18000-

    Fe

    Fc

    Fm

    Fe

    Fc

    Fm

    -----

    ----

    ----ISO18000-

  • 41

    (1)

    (2)()

    (

    )

    (3)

    (ta)

    83

    (t)

    93

    (t)

    t=93

    -83

    YCR=t/Y

    LR=t-ta/CR

    fe fc fma=fe*fc*fm

    (P)

    D1501 31.0 3.2 28 31.0 30.9 -0.10 10 -0.01 310 0.9 0.7 0.9 0.57 10

    D1502 29.0 3.2 26 29.0 29.1

    10 0 0.9 0.8 0.9 0.65 10

    E1300 20.0 3.2 17 20.0 20.2

    10 0 0.9 0.8 0.9 0.65 10

    E1402A 33.0 3.2 30 33.0 33.1

    10 0 0.9 0.8 0.9 0.65 10

    E1402B 33.0 3.2 30 33.0 33.0

    10 0 0.9 0.8 0.9 0.65 10

    E1404 22.0 3.2 19 22.0 21.8 -0.20 10 -0.02 150 0.9 0.8 0.9 0.65 10E1412 20.0 3.2 17 20.0 19.7 -0.30 10 -0.03 96.67 0.9 0.8 0.9 0.65 10E1413 20.0 3.2 17 20.0 19.4 -0.60 10 -0.06 43.33 0.9 0.8 0.9 0.65 10E1416 10.0 3.2 6.8 10.0 9.8 -0.20 10 -0.02 150 0.9 0.8 0.9 0.65 10

    E1506A 35.0 3.2 32 35.0 35.0

    10 0 0.9 0.8 0.9 0.65 10

    E1506B 35.0 3.2 32 35.0 35.0

    10 0 0.9 0.8 0.9 0.65 10

    E1602 12.0 3.2 8.8 12.0 11.4 -0.60 10 -0.06 43.33 0.9 0.8 0.9 0.65 10E1702 29.0 3.2 26 29.0 28.9 -0.10 10 -0.01 310 0.9 0.9 0.9 0.73 10E1707 33 0 3 2 30 33 0 32 7 0 30 10 0 03 96 67 0 9 0 9 0 9 0 73 10

    (P)

    (ta)

    83

    (t)

    93

    (t)

    t=93

    -83

    YCR=t/Y

    LR=t-ta/CR

    fe fc fma=fe*fc*fm

    (P)

    D1501 31.0 3.2 28 31.0 30.9 -0.10 10 -0.01 310 0.9 0.7 0.9 0.57 10

    D1502 29.0 3.2 26 29.0 29.1

    10 0 0.9 0.8 0.9 0.65 10

    E1300 20.0 3.2 17 20.0 20.2

    10 0 0.9 0.8 0.9 0.65 10

    E1402A 33.0 3.2 30 33.0 33.1

    10 0 0.9 0.8 0.9 0.65 10

    E1402B 33.0 3.2 30 33.0 33.0

    10 0 0.9 0.8 0.9 0.65 10

    E1404 22.0 3.2 19 22.0 21.8 -0.20 10 -0.02 150 0.9 0.8 0.9 0.65 10E1412 20.0 3.2 17 20.0 19.7 -0.30 10 -0.03 96.67 0.9 0.8 0.9 0.65 10E1413 20.0 3.2 17 20.0 19.4 -0.60 10 -0.06 43.33 0.9 0.8 0.9 0.65 10E1416 10.0 3.2 6.8 10.0 9.8 -0.20 10 -0.02 150 0.9 0.8 0.9 0.65 10

    E1506A 35.0 3.2 32 35.0 35.0

    10 0 0.9 0.8 0.9 0.65 10

    E1506B 35.0 3.2 32 35.0 35.0

    10 0 0.9 0.8 0.9 0.65 10

    E1602 12.0 3.2 8.8 12.0 11.4 -0.60 10 -0.06 43.33 0.9 0.8 0.9 0.65 10E1702 29.0 3.2 26 29.0 28.9 -0.10 10 -0.01 310 0.9 0.9 0.9 0.73 10E1707 33 0 3 2 30 33 0 32 7 0 30 10 0 03 96 67 0 9 0 9 0 9 0 73 10

    (P)

  • 42

    ()

    (4)

    (ta)

  • 43

  • 44

    2.2.4

    HAZOP

    HAZOP

    ()

    ( API571API581API579

    )

  • 45

    (Criticality Analysis CA)

    (Failure Rate)

  • 46

    (P&IDs)

  • 47

    (Vessel Drum Knockout Pot)

    (External Leak) (External Rupture) (Plugged) (Coil Leak) (Coil Rupture) (Coil Fouled)

    (Reactor)

    (External Leak) (External Rupture) (Liner Cracked) (Coil Leak) (Coil Rupture) (Coil Fouled) O-ring Mixer Sensor Sensor Sensor Sensor

    Sensor Sensor Sensor Sensor Sensor Sensor

    Sensor Sensor

    (Scrubber Column)

    (External Leak) (External Rupture) (Tray Rupture) (Tray Plugged) (Packed Bed Plugged) (Bed Support Collapsed)

  • 48

    (Contacting Surface Fouled) (Electrostatic Plate Fails off) (Electrostatic Plate Shorted) (Electrostatic Plate Fouled)

    / (Pump/Motor)

    (External Leak) (External Rupture) (Fails to Start) (Fails off While Running) (Started Prematurely) (Operates too Long) ( / ) (Operates at

    Degraded Head/Flow Performance: too Fast too Slow etc)

    / (Blower/Fan)

    (External Leak) (External Rupture) (Fails to Start) (Fails off While Running) (Started Prematurely) (Operates too Long) ( / ) (Operates at

    Degraded Head/Flow Performance: too Fast too Slow etc)

    / (Valves/Dampers)

    (External Leak) (External Rupture) (Internal Leak)

  • 49

    (Plugged) (Fails to Open) (Fails to Close) (Fails to Change Position) (Spurious Positioning) (Opens Prematurely) (Closes Prematurely)

    (Filter/Strainer)

    (External Leak) (External Rupture) (Internal Element Rupture) (Element Plugged)

    (Relief Devices)

    (External Leak) (External Rupture) (Plugged) (Fails to Open on Demand) (Fails to Re-seat) (Opens Prematurely) (Closes Prematurely)

    (Flame Arrestor)

    (External Leak) (External Rupture) (Mesh Plugged) (Mesh Ruptured)

    (Sensor Element)

    (External Leak) (External Rupture) (Tap Plugged) (Fails with No Output Signal) (Fails with a Low Output

    Signal) (Fails with a High Output

    Signal) (Fails to

    Respond to an Input Change) (Spurious Output Signal)

    (Sensor Switch)

    (External Leak) (External Rupture) (Tap Plugged) (Fails Open)

  • 50

    (Fails Close) (Activates at a Lower

    Set-point) (Activates at a Higher

    Set-point) / (Transmitter/Transducer)

    (External Leak) (External Rupture) (Tap Plugged) (Fails with No Output Signal) (Fails with a Low Output

    Signal) (Fails with a High Output

    Signal) (Fails to

    Respond to an Input Change) (Spurious Output Signal)

    // (Gauges/Indicators/Recorders)

    (Fails with No Output Signal) (Fails with a Low Output

    Signal) (Fails with a High Output

    Signal) (Fails to

    Respond to an Input Change) (Spurious Output Signal)

    2.8

    (

    )

    (A)

    :

  • 51

    (B):

    (C)

    ( ISO 18000)

    ()

    A

    2000

    B 1000 2000

    C 500 1000

    D 500

    E

    1

    2

    3

    4

    5

  • 52

    1 2 3 4 5

    A 1 1 2 3

    B 1 2 3 4

    C 3 3 4 4

    D 4 4 4 4

    E

    1

    2

    3

  • 53

    1 3 3

    2 3 3

    3

    4

    FMEA

  • 54

    : : :

    : : : :

  • 55

    (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    (7)

    (1)

    (2)

    (3)

    (4) (2)

  • 56

    (1)

    (2) ()(

    ..)

    (3)

    (4)

    (5)

    (6)

  • 57

    ()

    1.(

    )

    3.

    2.

    4.Fail Safe

    1. SOP

    2.

    3.

    4.

    5.

    1.

    2.

    3.

    1. SOP

    2.

    3.

    4.

    5.

    1.

    2.

    4.

    1.

    2. SOP

    3.

    4.

  • 58

    2.2.5

    ()

    (1)

    (2)

    (3)

    (4)

    (1)(2)(3)(4)

    (Basic process control system BPCs) (Safety

    instrumentation system SIS)(1)

    (2)

    ()

    :

  • 59

    (())

    (())

    (())

    TI

    LI

    (()) (())

    (()) (())

    (()) (())

    TI

    LI

    TI

    LI

    (OSHA) 1992

    (PSM) 1996 (RMP)

  • 60

    (good engineering

    practice) American Society of Mechanical Engineers(ASME)

    American Petroleum Institute(API) American National Standards

    Institute(ANSI) National Fire Protection Association(NFPA)

    American Society for Testing and Materials(ASTM) 1996

    (Instrument Society of America ISA)

    (ANSI/ISA S84.01-1996)

    1997 (American National

    Standards Institute ANSI)ANSI/ISA S84.01-1996

    (OSHA)

    (PSM)

    (RMP)

    (Safety integrity level SIL)

    (OSHA)(PSM)

  • 61

    IEC

    61511(2003) IEC 61508(2000) ISA-TR84.00.02(2002)

    (Functional safety)

    (PFD)

    SIL

  • 62

    (Safety Integrity Level)

    (Availability Required)

    (Probability to Fail on Demand)

    () (1/PFD)

    4 >99.99% E-005 to E-004 100000 to 10000 3 99.90-99.99% E-004 to E-003 10000 to 1000 2 99.00 - 99.90% E-003 to E-002 1000 to 100 1 90.00 - 99.00% E-002 to E-001 100 to 10

    SIL

    SIL

    4

    (Catastrophic Community Impact)

    3

    (Employee and Community Impact)

    2

    (Major Property and Production Protection. Possible Injury to employee)

    1

    (Minor Property and Production Protection)

  • 63

    (SIS)

    SIL

    (Probability of failure on demand PFD)

    PFD SIL

  • 64

    (1)

    PFD/PID

    (

    )

    PES 2.7

    510-2(1/Yr) 510-7(1/Yr)

    () 200

    (1/510-3)PES 500 (1/210-3)

    PES SIL

    SIL

    (2) SIL

    SIL

    Risk Level5*10-2 (1/Yr)

    (before)

    Probability of Failureon Demand (PFD)

    2*10-3

    Probability of Failureon Demand (PFD)

    5*10-3

    Risk Level5*10-7 (1/Yr)

    (after)

    PES

    PES(IPL)

    SIL

    Risk Level5*10-2 (1/Yr)

    (before)

    Probability of Failureon Demand (PFD)

    2*10-3

    Probability of Failureon Demand (PFD)

    5*10-3

    Risk Level5*10-7 (1/Yr)

    (after)

    PES

    PES(IPL)

    SIL

  • 65

    SIL

    SIL

    SIL SIL

    SIL

    RiskConsequence Frequency-----------------------------(4)

    Risk

    R

    Consequence

    (

    )

    C

    Frequency

    F

    SIL

    C: EUC EUC

    (

  • 66

    )

    E:

    P:

    O:(

    )

    SIL

    (ABCDEF

    GH) SIL

    ///

    (Risk reduction) SIL

    SIL

    PES

    A PES

    B C 1

    D 2

    E F 3

    G 4

    H PES

  • 67

    SIL

    O 3 O 2 O 1

    A

    B A

    C B A

    D C B

    E D C

    F E D

    G F E

    H G F

    S IL

    C 1

    C 2

    C 3

    C 4

    E 1

    E 2

    E 1

    E 2

    P 1

    P 2

    P 1

    P 2

    O 3 O 2 O 1

    A

    B A

    C B A

    D C B

    E D C

    F E D

    O 3 O 2 O 1

    A

    B A

    C B A

    D C B

    E D C

    F E D

    G F E

    H G F

    S IL

    C 1

    C 2

    C 3

    C 4

    E 1

    E 2

    E 1

    E 2

    P 1

    P 2

    P 1

    P 2

  • 68

    / C1 500 C2 1

    1

    500 1000

    C3 2

    1000 2000

    C4 2000

    E1 1 () E2 1

    P1

    1.

    2.

    3.

    4.

    5. EUC EUC

    P2

  • 69

    ()

    O1 1.

    ( PES Hydraulic Pneumatic) EUC

    EUC

    PES SIL

    2. EUC

    O2

    O3

    (3)

    Sensor Subsystem(Sensors and input interface) Logic Subsystem

    Final element Subsystem(Output interface and

    final elements)

  • 70

    10011002 2002

    1002D 2003

    (Safe failure fraction SFF)

    UAS(User-Approved Safety)

    MTTF

    DC

    MTTR

    (Proof test interval)

    (Logic Solver) SIL

    PFD

    (Fault tolerance N)

    (A B )

    (4) PFDSIL

    PFD Fault Tree Analysis Reliability

    Block Diagram Markov Models

    PFD

    PFD

    SIL

    SIL

    SIS Architectures

    (Sensors)

  • 71

    PES (Input Modules)

    SIS (Logic solver)

    PES (Output Modules)

    (Final control elements)

    UAS(User-Approved Safety)

    (5)

    PFD SIL

    PFD

    SIL

    (6)

    96 05 09

    (A) 8

    http://law.moj.gov.tw/Scripts/newsdetail.asp?no=1D0120025http://law.moj.gov.tw/Scripts/newsdetail.asp?no=1D0120025http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D01200258http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D01200258http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D01200258

  • 72

    (B) 13

    http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002513http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002513http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002513

  • 73

    (C) 14

    (D) 21

    http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002514http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002514http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002514http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002521http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002521http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002521

  • 74

    (E) 25

    (F) 28

    A B

    http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002525http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002525http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002525http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002528http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002528http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002528

  • 75

    (G) 30

    http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002530http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002530http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002530

  • 76

    (H) 31

    ()

    (I) 37

    (J) 68

    http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002531http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002531http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002531http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002537http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002537http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002537http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002568http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002568http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002568

  • 77

    L1 L4

    L1 L4

    (K) 70

    http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002570http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002570http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002570

  • 78

    CNS

    (L) 72

    (M) 73- 1

    http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002572http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002572http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002572http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002573-1http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002573-1http://law.moj.gov.tw/Scripts/Query1B.asp?no=1D012002573-1

  • 79

    2.2.6

  • 80

    (1)

    (2)

    (3)

    (4)

    (1)

    (2)

    (3)

    (4)

    (5)

  • 81

    (6)

    2.3

    (1)

    (2)

    (3)

    (4)

  • 82

    /

    3

    6~9

    /

    3

    6~9

    ~

    2.3.1 ()

    (1)

    3

    95 10

    3

    0920054383

  • 83

    (2)

    2.10

    C6H12O --> C6H11O1/2H2---------------------(5)

    (T-250)

    (B-250)(R-201)

    200 1(KG/CM2G)

    40

    (C-201) 40(V-203)

    (V-203)

    R-201C-201

    V-203

    (3)

    (Material safety datasheet MSDS)

    P&ID

  • 84

    EM

    TV

    T-250 B-250

    R-201

    Coolant in

    Coolant out

    C-201

    V-203

    202201

    203

    204

    205

    206

    207

    209

    210

    208

    211

  • 85

    ( ) ( )

    (Vol)

    (Vol)

    161 (0.95)

    (3.46)

    68 100 2.4 300

    157 (0.95)

    (3.38)

    44 99 1.1 9.4 420

    -253 (0.07) 2 4 75 574

  • 86

    (KG/CM2G)

    (KG/HR)

    201

    79 2 2000 100 PSV-201

    FIC-201

    202

    60 2 2000 100 PSV-202

    203

    50 1 2000 100 PSV-203

    204

    60 2 2000 100 PSV-204/205

    TAHH-202

    TIC-201

    205 / 200 1.5 2500 40

    30 30

  • 87

    (KG/CM2G)

    (KG/HR)

    206 50 1.2 1900 60

    40

    PSV-206

    207

    50 1 1900 60

    40

    LIC-201

    LAHH-201

    LALL-201

    208

    50 1.2 600 50

    50

    PSV-206

    209 60 2 500 PSV-207

    210

    350 16.5 200 PSV-208

    211 3 5 2300 PSV-209

  • 88

    (4)

    (Melting temperature Tm)

    0.5

    ( )

    (KG/CM2G)

    R-201 Inner wall: SA234-WPB

    Outter wall: SA234-WPB

    Inner wall: 500

    Outter wall:500

    Inner wall: 20

    Outter wall:20

    C-201 Shell side/Head: SA-106-B

    Tube side: SA-106-B

    350 5

    V-203 Shell: SA-516-70

    Head: SA-516-70

    100 0.71

    3

  • 89

    ( ) (KG/CM2G)

    220 188 200 17 2 1 1.5 0.1

    63 38 50 12 1.8 0.8 1.2 0.1

    62 40 50 11 1.2 0.5 1 0.05

    (5)

    2.3.2 ()

    (1)()

    (V-203)

    ()(2)

  • 90

    R-201 ASME Sec.8 Div.1 2002

    C-201 ASME Sec.8 Div.1 2002

    V-203 ASME Sec.8 Div.1 2002

    (3)

    ()

    ()

    R-201 1 2 1

    C-201 1 3 0

    V-203 1 3 1

    (4)

  • 91

    (Coating)

    (Coating)

    (Lining)

    (Cladding)

    R-201

    C-201

    V-203

    (5)

    ()

    2.3.3 ()

    (1)

    (2)

    (TIC-201)

    (TAH-202)

    DCS (HMI) DCS

  • 92

    (FIC-202/203) DCS

    (TAH-203) DCS

    (HMI) DCS

    (LIC-201)

    (FIC-204)

    DCS (HMI) DCS

    (3)

    (TAHH-202)

    (TAHH-203)

    (LAHH-201)

  • 93

    (PAHH-201)

    SIL

    (TAHH-202)

    2

    (TAHH-203) 1

    EM

    TV

    T-250 B-250

    R-201

    Coolant in

    Coolant out

    C-201

    V-203

    (Logic Solver)

    TT

    TT

    LT

    PT

  • 94

    SIL

    (LAHH-201)

    1

    (PAHH-201)

    1

    2.3.4 ()

    2.3.4.1

    1.

    (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    (7)

    (8)

    (9)()

    (10)

    2.

  • 95

    (1)

    (2)

    (3)

    (4)

    (5)

    3.

    (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    (7)

    (8)

    (9)

    2.3.4.2

    1.:

    (

    )

  • 96

    ()

    ()

    ()

    2.3.4.3

    ()

    ()

    ()

    2.3.4.4

    2.3.4.5

    ()

    ()

  • 97

    2.3.4.6

    (

    )

    2

    2.3.4.7

    2.3.4.8

    1.

    (

    ~)

    (1)-

    (2)-

    (3)-

    (4)-

    (5)-

    (6)-

    (7)-

  • 98

    2.

    (1)

    NDT

    (2)

    A.

    B.

    C.

    D.

    (3)

    ()

  • 99

    A.

    (FFS)

    B.

    C.

    3.

    (1)

    (20%)

    (20%)

    (2)

    (3)

  • 100

    (4)

    (5)

    (6)

    4.

    (1) :

    (2):

  • 101

    (3):

    (A)NT$ 400

    NT$ 400

    (B)20 NT$ 50

    NT$ 50 20 NT$

    1000

    (C)(NT$ 400 NT$

    1000 )6NT$ 233

    (D)

    NT$ 70

    (E)(4)(5)

    NT$ 233 NT$ 70 NT$ 163

    2.3.5 ()

    2.3.5.1

    (

    )1.

    2.

    3.

    2.3.5.2 (

    )

    V-203

    ()(CR)

  • 102

    (LR)

    (1)(CR)

    CR = t/Y------------------------------------------------(6)

    t Y (mm)

    Y ()

    92 3 94 4 CR

    = (22.3 21.5)/2 = 0.4 (mm)

    (2)(LR)

    LR = (t ta)/CR------------------------------------------------(7)

    LR()

    t(mm) = 21.5mm

    ta(mm) = 16.5mm

    CR(mm)

    CR (0.4 mm)

    LR = (21.5 16.5)/0.4 = 12.5 ()

    V-203

    0

    5

    10

    15

    20

    25

    (mm)

    22.3 21.5

    22.5 21.7

    22.6 22.3

    22.1 22.2

    16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5

    92 94 96 98 100 102 104 106 108

  • 103

    2.3.5.3

    2.3.5.4

    2.3.5.5

    2.3.5.6

    (

    )

    2.3.6 ()

    2.3.6.1

    2.3.6.2

    1.(R-201)(

    )(V-203)(

    )2.3.6.3

    2.3.7

    ()

  • 104

    ()

  • 105

  • 106

    KG/CM2G

    ( )

    1 R-201 Inner wall: ST35BI

    Outter wall: WSTE36

    1.5 200 H2H2O

    2 C-201 Shell side/Head:

    DIN H

    Tube side:

    DIN ST37.81

    1.2 50 H2H2O

    3 V-203 Shell:RST37-2

    Head: RST37-2

    1 50 H2O

    V-203

    V-203

    V-203

    /

    1 V-203

    2

    50~200

    3

  • 107

    V-203

    4

    50~200

    5

    (-4~120 ) : :

    50~200

    6

    7

    8

    9

    10 (HE)

    149 oC

    11

    12

    2.3.7.1

    ()

  • 108

    1

    10

    APIASME

    CNS

    1

    2

    12.5

    APIASME

    CNS

    1

    3

    APIASME

    CNS

    1

    4

    API-RP527

    API CNS9969

    1

    5

    10

    (1)

    (5ppm)

    (2)

    (5ppm) 6

    (3)

    VOC

    (5ppm)

    7

    (

    )

    1.()

    (1)

  • 109

    UT (

    Level 1 Level 2 )

    V-203

    A~H WL1 ( 60%) 12.5 6 ( I~N)

    1

    V-203

    A F

    B G

    C H

    D

    E I~N

    WL1

  • 110

    (V-203)

    (2)()

    ()

    UT (

    Level 1 Level 2 )

    WC1

    WL1

    PN

    N1N2

    N3

    N5

    N6M1

    N7N4

    N8N9

    WC2

    A

    B

    C DE F

    G

    H

    L I

    J

    K

    M

    N

  • 111

    V-203

    (WC1/WC2 WL1 ) 12.5 WC1 WC2 WL1

    1

  • 112

    WC1

    WL1

    PN

    N1N2

    N3

    N5

    N6M1

    N7N4

    N8N9

    WC2

    WC1

    WL1

    (V-203)

    (3)

    MT (

    Level 1 Level 2 )

  • 113

    V-203 2.16 N1 N8

    (4)

    2.

    3.

    (1)

    CNS9969 API-RP527

  • 114

    (2)

    ISO DCS

    (ISO-20-22)

    DCS

    V-203 (TAHH-202)(TAHH-203)(LAHH-201)(PAHH-201)

    (3)

    ISO

    (ISO-20-23)

    DCS

    (

    )

  • 115

    V-203

    (TAHH-202)(TAHH-203)(LAHH-201)(PAHH-201) ()

    ISO

    (ISO-20-23)

    4.

    5.

    10

    6.

    (1)(2)(3) VOC

  • 116

    (

    )( VOC

    )

    (1)

    (2)

    (5ppm)

    (3) VOC VOC

    (1000ppm)

    (1)

    (2)

    (3) VOC

    7.

    1.1 (10.0kg/cm2) 1

    0.5kg/cm2

  • 117

    1

    8.

    1

  • 118

    2.3.7.2

    1.

    (FFS)

  • 119

    2.

    (1)

    (2)

    RBI

    (3)

    (4)

  • 120

    bypass

    50 100 80 V-203

    1 kg/cm2G 1.71 kg/cm2G 1.4 kg/cm2G

    2.3.7.3

    1.

  • 121

    V-203

    (mm)

    (mm)

    (mm) 94 4 92 3

    A 15.6 22.0 21.6 21.6

    B 15.6 22.0 21.5 21.7

    C 16.5 22.0 22.3 21.5

    D 16.5 22.0 22.5 21.7

    E 16.5 22.0 22.6 22.3

    F 16.5 22.0 22.1 22.2

    G 15.6 22.0 21.7 22.3

    H 15.6 22.0 21.5 22.3

    2.38 (

    )

    (1)(CR)

    CR = t/Y--------------------------------------------------(8)

    t Y (mm)

    Y ()

    92 3 94 4 CR

    = (22.3 21.5)/2 = 0.4 (mm)

    (2)(LR)

  • 122

    LR = (t ta)/CR----------------------------------------------------(9)

    LR()

    t(mm) = 21.5mm

    ta(mm) = 16.5mm

    CR(mm)

    CR (0.4 mm)

    LR = (21.5 16.5)/0.4 = 12.5 ()

    (3) P a

    P = a LR10 a = fe fc fm-------------------(10)

    P() P > 10

    LR()

    a

    fe = 0.9 ()

    fc = 0.7 ()

    fm = 0.8 ()

    a = fe fc fm = 0.9 0.8 0.7 = 0.504

    P = a LR = 0.504 12.5 = 6.310

    P 6

    2.

    (1)

  • 123

    (2)

    3.

    (

    )

  • 124

    V-203

    R-201

    C-201

    4.

    /

    ()

    ()

    ()

    ()

    V-203 8 6.3 5

    R-201 8 5.4 5

    C-201 5.2 5

  • 125

    3.1

    ()()

    (1) (Activity Frequencyf)

    (2) (Incident Probability P)

    (3) (Incident Consequence C)

    (4) R=F(fP)Cn n1-----------------(11)

    n

    (Impact)

    P C

    n C ()

  • 126

    ()

    (As Low As Reasonably

    Practicable ALARP)

    ()

    ()

    Consequence Frequency

    RISK

    or

    Consequence Frequency

    RISK

    or

  • 127

    (/108)

    () 4

    0-15

    1-3

    3

    8

    10

    12

    45

    67

    (16-65 ) 1

    5

    57

    (Kletz"The Risk Equations-What Risks Should We Run")

    3.2

    (Chemical

    process quantitative risk analysis CPQRA)

    (1)

    (2)

  • 128

    (3)

    (4)

    (5)

    (6)

    (7)

    (8)

  • 129

    3.3

    (Idividual

    Risk)

    (Indices)

    (Individual Risk)(Societal Risk)

    1.(Indices) (Equivalent Social Cost Index)

    (Fatal Accident Rate)

    108

    (Individual Hazard Index)

    FAR

    (Average Rate of Death)

    (Mortality Index)

    2.(Individual Risk) (Individual Risk Contour)

  • 130

    (Individual Risk Profile)

    (Maximum Individual Risk)

    (Average Individual Risk [exposed population])

    (Average Individual Risk [total population])

    3.(Societal Risk) (Societal Risk Curve [F-N Curve])

    N (N N )

    As Low As Really Achievable ALARA

  • 131

    As Low As Reasonably Practicable

    ALARP

    ALARP

    ALARP

    (HSE. The tolerability of risk from nuclear power stations.

    London: Health and Safety Executive 1992)

    (ALARP)

    ALARP

    10-3~-4/Yr

    10-6/Yr

    Unacceptableregion

    The ALARP ortolerability region(risk is undertakenonly if benefits isdesired)

    Broadly acceptableregion

    Negligible risk

  • 132

    Risk Indices

    Individual Risk IRSocietal Risk SR

    (1)Fatal Accident Rate FAR

    FAR

    108

    108 1000

    50 250 8

    FAR/ 108

    (2)Individual Risk Contour

    5x10-4/

    5x10-4/

    Individual Risk Contour

  • 133

    (3)Societal Risk Curve or F-N Curve

    F-N

    N F N

  • 134

    (Individual Risk)

    DOW F& EI

    ()

    x y

    ifiiyxPfIR

    ,,,= -----------------------------------------(12)

    f i= I Yr-1

    Pfi= I x y

    fi

    fi=FI Poi PocI------------------------------------------------(13)

    FI= I( i)

    (Fault Tree Analysis)Yr-1

  • 135

    Poi= I i

    Poci= I i i

    BLEVE()

    (P o i)

    (Poc i)(P o i Poc i)(Event

    Tree Analysis)

    =

    =n

    iiyxyx IRIR

    1,,, ---------------------------------------------(14)

    FAR 2

    PfIPfI

    (1) (Effect Model)

    (Probability Unit Pr)

    Pr=a+b 1n--------------------------------------------(15)

    a b

    (a)

    )10

    ln(56.29.14Pr 43/4tI

    += -----------------------------(16)

    t=sec

    I=w/m2

  • 136

    (b)

    Pr=-77.1+6.91 ln Ops-----------------------------------(17)

    Ops=Pa lpsi=6.9 Kpa

    (c)

    Pr=a+b ln(Cnt)---------------------------------------------(18)

    t=min

    C=ppm

    a b n ()

    (a b n)

    a b c

    -35.9 1.85 2

    -109.78 5.3 2

    -8.29 0.92 2

    -31.42 3.008 1.43

    -15.67 2.10 1

    (2) Pr ()

  • 137

    (P %)(Pr)

    P % Pr 0.1 1.91 0.5 2.42 1 2.67 5 3.36 10 3.72 20 4.16 30 4.48 40 4.75 50 5.00 60 5.25 70 5.52 80 5.84 90 6.28 95 6.64 99 7.33

    99.5 7.58 99.9 8.00

    3.4

    (1)(2)

    (3)

    3.4.1

    (/)

    (1)

    (2)

  • 138

    (3)

    (4) :

    A-

    B:C:D:E:F:

    10

    (m/s)

    6 C D D

  • 139

  • 140

  • 141

    3.4.2

    (unconfined vapor

    cloud explosion UVCE)(boiling liquid expending

    vapor explosion BLEVE)(fire ball)(pool fire)

    (jet fire)

    (Overpressure)

    (Confined Explosion)

    ()

    (Flash Fire)

    (Pool Fire)(Jet Fire)

    (1)

    (2)

    (3)

    (4)

  • 142

    3.4.2.1 (UVCE)

    (1)

    UVCE

    72% 23%

    (Deflagration)(Detonation)

    (Thermal Expansion)

    (Turbulence)

    UVCE

    UVCE

    UVCE

    1 15

    100

    UVCE

    (Burning Rate) UVCE

    UVCE

    UVCE 1 bar (15 psi)

    (2)

    (Upper and Lower Flammable LimitsUFL

    LFL)

  • 143

    (Flash Point)

    (Auto Ignition Temperature)

    (Heat of Combustion)

    (Molecular Weight)

    (Combustion Stoichiometry)

    LEL

    Flash Fire

    LFL

    UVCE TNT TNT

    (Explosion Yield Factor)

    (TNT)

    TNT

    TNTEcMEcW = ---------------------------------------------(19)

    WTNT TNT kg 1b

    Mkg 1b

    0.01~0.1

    Ec(KJ/kg Btu/1b)

    EcTNTTNT (4437~4765KJ/kg 1943~2049Btu/1b)

  • 144

    Substances With Yicld Factors of Y=.03 Acetaldehyde 3-Methyl-Butene-1

    Acctone Methyl-Butyl-Ketone Acrylonitrile Methyl Chloride

    Amyl Alcobol Methyl-Ethyl-Ketone Benzene Methyl Formate

    13-Butadiene Methyl Mercaptan Butene-1 Methyl-Propyl-Ketone

    Carbon Monoxide Monochlorobenzene Cyanogen N-Amyl Acetatee

    11-Dichloroethane Naphthalene 12-Dichloroethane N-Butane

    Di-Methyl Ether N-Butyl Acetate Dimethyl Sulphide N-Decane

    Ethane N-Heptane Ethanol N-Hexane

    Ethyl Acetate N-Pentane Ethylamine N-Propanol

    Ethyl Benzene N-Propyl Acetate Ethyl Chloride O-Dichlorobenzene

    Ethyl Cyclohexane P-Cymene Ethyl Format Petroleum Ethere

    Ethyl Proprionate Phthalic Anhydride Furfural Alcohol Propane

    Hydrocyanic Acid Proprional dehyde Hydrogen Propylene

    Hydrogen Sulphide Propylene Dichloride Iso-Butyl Alcohol P-Xylene

    Isobutylene Styrene Iso-Octane Tetrafluroethylene

    Iso-Propyl Alcohol Toluene Methalamine Vinyl Acetate

    Methane Vinyl Chloride Methanol Vinylidene Chloride

    Methyl Acetane Water Gas

    Substances With Yield Factors of Y=.06 Acrolein Ethylene

    Carbon Disulphide Ethyl Nitrile Cycclohexane Methyl-Vinyl-Ether Di-Ethyl Ether Phthalic Anhydride Di-Vinyl Ether Propylene Oxide

    Substances With Yield Factors of Y=.19

  • 145

    Substances With Yield Factors of Y=.19 Acetylene Isopropyl Nitrate

    Ethylene Oxide Methyl Acetylene Ethyl Nitrate Nitromethane

    Hydrazine Vinyl Acetylene

    TNT

    /

    TNT (

    TNT [11]AIChE in

    conjunction with The Process Safety Institute and JBF AssociatesInc(1994). Safety Analysis & Risk Assessment for

    Chemical Process Industry Practioners Course3Consequence

    Assessment and Mitigation)

  • 146

    TNT(

    TNT

    [11]AIChE in conjunction with The Process Safety Institute and JBF AssociatesInc(1994). Safety Analysis & Risk Assessment

    for Chemical Process Industry Practioners Course3

    Consequence Assessment and Mitigation)

    3.7/3.8

    Z=R/(WTNT)1/3---------------------------------------------------(20)

    Z(ft/lbm1/3)

    Pr(Psi)

    Ps(Psi)

    Is

  • 147

    (1)

    (2)

    (3)

    (4)(TNT)

    (5)(/)

    3.4.2.2

    (1)

    ()

    (corrosion)(errosion)

  • 148

    TliquidTliquid boiling point

    TliquidTliquid boiling point

    80%

    (2)

    TNT TNT

    ( 3.6/3.7) V P1

    P0

    WTNT=1.410-6VP1/P0T0/T1RT1 lnP1/P2-----------(21)

    WTNTTNT 1bm

  • 149

    V ft3

    P1 psia

    P2 psia

    P0 14.7 psia

    T1 R

    T0 492(R)

    R 1.987 (Btu/1b mole-R)

    1.4610-6 2.810-3 lbmole/ft32000 Btu=1

    1b TNT

    TNT UVCE

    (1)

    (2)(TNT) WTNT

    (3)(/)

    3.4.2.3 (BLEVE)(Fireball)

    (1)

    BLEVE

  • 150

    BLEVE

    200

    BLEVE (Liquid

    petroleum gas)

    10~20

    (2)

    BLEVE

    BLEVE

    (thermal intensity)

    (propane) 250 psig

    4 4 BLEVE

    1200

    300~400 psig

    BLEVE

    (Peak fireball diameter)(m)

    Dmax=6.48M0.325-----------------------------(22)

    (Fire ball duration)(s)

  • 151

    tBLEVE=0.825M0.26---------------------------(23)

    (Centeer height of Fire ball)(m)

    HBLEVE=0.75Dmax----------------------------(24)

    (Initial ground level hemisphere diameter)(m)

    Dinitial=1.3Dmax--------------------------------(25)

    M (kg)

    QR=EF21------------------------------------------------------(26)

    QR(kW/m2)

    E(surface emitted flux) (kW/m2)

    F21

    ()

    =1 20m

    20~40% =1

    (humidity)

    =2.02(PwX)-0.09------------------------------------------(27)

    0~1

    Pw(Pascals N/m2)

    X(m)

    (E)

    (smoky) BLEVEs (200~350

    kW/m2)

    0.25~0.4

  • 152

    BLEVE2

    max

    rad

    t)D(MHcFE

    = ----------------------------------------(28)

    E(kW/m2)

    MBLEVELPG (kg) (mass of LPG in BLEVE)

    Hc(kJ/kg)

    Dmax(m)

    Frad(0.25~0.4)

    tBLEVE(s)

    22

    21 X4DF = --------------------------------------------------(29)

    F21

    D

    X(m)

    BLEVE

    (1)

    (2)(TNT) WTNT(

    WTNT)

    (3)(/)

    (4)

    (5) E(kW/m2)

    (6) QR(kW/m2)

  • 153

    3.4.2.4 (Confined Explosions)

    (1)

    (Dust Explosions)(Vapor explosions)

    (Explosion

    Venting)

    (2)

    ASME Code

    (Maximum allowable working pressure

    MAWP)(use of next

    available plate thickness)

    MAWP 2.5

    (deflagration)(detonation)

  • 154

    (Hydrogen)(acetylene)(ethylene)

    P2(max)/P1=N2T2/N1T1=M1T2/M2T1------------------------------(30)

    M

    N

    T

    P

    P max(peak value)

    1

    2

    TNT

    TNT (/

    )

    r

    r=120(WTNT)1/2-----------------------------------------------(31)

    WTNT =TNT kg

  • 155

    (Nozzle)

    (1)

    (2)(

    (MAWP))

    (3)

    (TNT) WTNT

    (4)( 3.6/3.7)

    3.4.2.5 (Pool Fire)(Jet Fire)

    (1)

    (Domino effect)

    (2)

  • 156

    Qx=Efa-----------------------------------------------------------(32)

    Qx= x (W/m2)

    =

    E=(W/m2)

    fa=

    241faX

    = -----------------------------------------------------------(33)

    X=(m)

    =2.02(PwX)-0.09---------------------------------------------------(34)

    0~1

    Pw(Pascals N/m2)

    X(m)

    E =mbHc(b2)/(2bab2)----------------------------------(35)

    mb(Kg/m2-sec)

    Hc(J/Kg)

    b(m)

    a(m)

    (1)

  • 157

    (2)(m)

    (3)(m)

    (4)(W/m2)

    (5)

    (6)

    (7)

    (Gas jet)

    Ex=Qth/4D2-------------------------------------------------(36)

    Ex = x (KW/m2)

    =

    Qth=(W/m2)

    =

    D=

    3.4.3

    UVCEBLEVE

  • 158

    3.4.3.1

    API RP 521

    (Btu/hr/ft2) KW/m2

    320 1.00

    500 1.74 60 740 2.33 40 920 2.90 30

    1500 4.73 16

    2200 6.94 9

    3000 9.46 6

    3700 11.67 4

    6300 19.87 2

  • 159

    (kW/m2)

    37.5

    25

    12.5

    9.5 8 20

    4 20

    0%

    1.6

    500

    3.4.3.2

    (Explosion effect models)

    (1) 5(psig)

    (2) 1.5(psig)

    (3) 0.7(psig)

    (4) 0.3(psig) 10%

  • 160

    UVCEs (Positive pressure phase of the

    blast wave) 10 100 (ms)

    (psig)

    0.02 (137dB 10~15Hz)

    0.03

    0.04 (143dB)

    0.1

    0.15

    0.3 95%10%

    0.4

    0.5 ~ 1.0

    0.7

    1.0

    1~2

    1.3

    2

    2~3

  • 161

    (psig)

    2.3

    2.5 50%

    3 (3000 )

    3~4

    4

    5 (Tall hydraulic press)

    5~7

    7

    7~8 (8~12 )

    9

    10 (7000 )(12000 )

    300

  • 162

    3.5

    3.5.1

    (Exposure Period)

    (

    )

    R(t)1F(t)--------------------------------------------------------------(37)

    R(t) t

    F(t)

    t

    F(t)(Probability

    Density Function)f(t)

    f(t)dF(t)/dt---------------------------------------------------------------(38)

    F(t) dt)t(ft

    0-----------------------------------------------------------(39)

    R(t)1 dt)t(ft

    0--------------------------------------------------(40)

    R(t) dt)t(ft

    ------------------------------------------------------(41)

  • 163

    3.5.2

    (Time-Related)

    (Demand-Related):

    (t)()

    t

    (nD)()

    nD

    106

    103

    (Standby Generator)

    Prob

    abili

    ty d

    ensi

    ty

    F(t) R(t)

    Time to failure

    f(t)

    t0

  • 164

    PUMP

    ()

    ()

    F[t] ox G[DnD]------------------------------------------------------(42)

    time-related failure rate texposure period

    Ddemand-related failure rate nDtotal number of demands

    F[ ] G[ ]

    STANDBY

    3.5.3

  • 165

  • 166

    ()

    (AIChE/CCPS)

    (1) ()

  • 167

    (2)

    (3)

    (1)(2)

    3.5.4

    3.5.4

    (Failure Mode)

    (Failure Cause)

    (Failed to start)

    (Catastrophic failure)

    (Degraded failure)

    (Incipient failure)

    (1) (Active Equipment)

    (2) (Passive Equipment)

  • 168

    1.

    2.

    : 1./ 2. 3. 4.4.

    : 1. 2. 3. 4. 5.

    1. 2. 3.

    1.

    2.

    3.

  • 169

    1. 2. 3 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

    1. 2.

  • 170

    3. 4. 5. 6. 7. 8. 9.

    1. 2. 3.

  • 171

    (t)(Bathtub

    Curve)(Congenital

    Defects) t2

    (Accelerating Wear-out)

    R(t) f(t) (t)

    3.5.5

    (Plant-specific data)

    (Generic data)

    (Judgemental data)

    Failu

    re ra

    te,

    (t)

    Prob

    abili

    ty d

    ensi

    ty, f

    (t)R

    elia

    bilit

    y, R

    (t)

    Tim-in-service, t (or Equipment Age)

    t20 t1

    1

    f(t)

    (t)

    R(t)

    (t)=C

  • 172

    3.5.5.1

    (1)

    (2)

    (3)

    (4)

    (t)

    (t)(nD)

    (nD)

    Plant Physical Data

    Unit ID

    Mission list

    (////)

    (Y/N)

    (////)

    (Y/N)

    1 2

  • 173

    1.() 2.

    1. 2. 3.

  • 174

    3.5.5.2

    (Generic Data)

    (1)AIChE/CCPS (Science Applications

    International Corporation)

    Guidelines for process equipment

    reliability data with data tablesISBN0-8169-0422-7

    (2)API581

    (3)exida

    Safety equipment reliability handbook(second edition)

    ISBN-100-9727234-1-2

    (4)DNV API OREDA(Offshore Reliability Data Book)

    Offshore Reliability Data HandbookISBN82 515 0188

    1

  • 175

    DATA ON SELECTED PROCESS SYSTEMS AND EQUIPMENT

    Taxonomy No. 4.3.3.2 Equipment Description PRESSURE - SAFETY RELIEFVALVES - SPRING - LOADED

    Operating Mode Process Severity UNKNOWN

    Aggregated time in service (106hrs)Population Samples Calendar time Operating time

    No. of Demands

    Failures (per 106hrs) Failures (per 103 demands)Failure mode Lower Mean Upper Lower Mean UpperCATASTROPHIC a. Scat Leakage b. Fails to Open c. Spurious Operation

    c.1 Opens Prematurely 0.275 1.68 4.80 c.2 Failure to Reclose

    Once Open 0.127 5.18 22.7

    d. Fails to Open on Demand 0.0079 0.212 0.798

    DEGRADED a. Interstage Leakage INCIPIENT

    Equipment Boundary

    DUTLET

    INLET

    BDUNDARY

  • 176

    API581

    (1/Yr)

    5(mm) 25(mm) 100(mm)

    6E-2 5E-4 1E-4

    6E-3 5E-4 1E-4

    8E-5 2E-4 2E-5 6E-6

    1E-3 1E-4

    6E-3 6E-4

    9E-4 1E-4 5E-5 1E-5

    / 2E-3 3E-4 5E-8 2E-8

    4E-5 1E-4 1E-5 6E-6

    4E-5 1E-4 1E-5 6E-6

    1

    0.75

    1E-5 3E-7

    1 1

    5E-6 5E-7

    1 2

    3E-6 6E-7

    1 4

    9E-7 6E-7 7E-8

    1 6

    4E-7 4E-7 8E-8

  • 177

    (1/Yr)

    5(mm) 25(mm) 100(mm)

    1 8

    3E-7 3E-7 8E-8 2E-8

    1 10

    2E-7 3E-7 8E-8 2E-8

    1 12

    1E-7 3E-7 3E-8 2E-8

    1 16

    1E-7 2E-7 2E-8 2E-8

    1

    16

    6E-8 2E-7 2E-8 1E-8

    4E-5 1E-4 1E-5 6E-6

    1E-4 3E-4 3E-5 2E-5

    0.7 0.01 0.001 0.001

    4E-5 1E-4 1E-5 2E-5

    3.5.5.3

    Generic Data

    Generic Data

    Generic Data

    Cn

    1iiGA f

    == ---------------------------------------------(43)

  • 178

    A

    GGeneric Data

    fi i (i1 n)

    n

    Generic Data

    Generic Data 1.910-5/hr

    1.071.141.071.071.21 1.69

    3.210-5/hr

    Generic Data

    (fi)

    1.07 1.14

    1.14 1.28

    1.07 1.14

    1.14 1.07

    1.07 1.07

    1.42 1.21

    1.21 1.21

    1.07 1.07

    1.07 1.07

    1.07 1.07

    1.07 1.07

  • 179

    API581

    Generic Data

    ()(Generic Data)FeFm-----------------(44)

    Fe

    Fm

    (1)

    ()

    (2)

    (3)

    (4)()

    (5)

    (6)

    (7)

    (8)

    (9)

    (10)

    (11)

    (12)

  • 180

    (13)

    (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    (7)

    (8)

    (9)

    (10)

    (11)

    (12)

    (13)

  • 181

    ()

    (%)

    30

    16

    12

    7

    6

    4

    4

    / 2

    19

  • 182

    1. RBI RBI

    RBI

    2.

    (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    3.

    (A)

    (1)

    (2)

    (3)

  • 183

    (B)

    :

    (MI)

    ISO

    (1)

    (2)

    (3)

    (4)

    (5)

    (C)

  • 184

    [1] ()

    (57 ) 2005.

    [2]

    (57 ) 2005.

    [3]

    (57 ) 2005.

    [4]

    (57 ) 2005.

    [5]

    (57 ) 2005.

    [6]

    (57 ) 2005.

    [7]

    / 2006

    (TRCA 2006 Annual Conference) 2006.

    [8] 2005.

    [9]

    TISCHUK 2004.

    [10] AIChE/CCPS (1989). Chemical Process Quantitative Risk Analysis. Center for Chemical Process Safety American Institute of

    Chemical Engineers New York.

    [11] AIChE in conjunction with The Process Safety Institute and JBF AssociatesInc(1994). Safety Analysis & Risk Assessment for

    Chemical Process Industry Practioners Course3Consequence

    Assessment and Mitigation.

    [12] IEC 61511-1 Functional Safety - Safety Instrumented Systems

  • 185

    for the Process Industry Sector - Part 1: Framework definitions

    system hardware and software requirements 2003.

    [13] IEC 61511-3 Functional Safety - Safety Instrumented Systems

    for the Process Industry Sector Part 3: Guidance for the determination of the required safety integrity levels 2003.

    [14] IEC 61508-2 Functional Safety of Electrical/Electronic/

    Programmable Electronic Safety-related systemsPart 2:

    Requirements for electrical/electronic/programmable electronic safety-related systems 2000.

    [15] IEC 61508-6 Functional Safety of Electrical/Electronic/

    Programmable Electronic Safety-related Systems - Part 6: Guidelines on the application of IEC 61508-2 and IEC 61508-3

    2000.

    [16] IEC 61508-7 Functional Safety of Electrical/Electronic/

    Programmable Electronic Safety-related Systems - Part 7: Overview of techniques and measures 2000.

    [17] IEC 61508-1 Functional Safety of Electrical/Electronic/

    Programmable Electronic Safety-related Systems - Part 1: General requirements 1998.

    [18] IEC 61508-3 Functional Safety of Electrical/Electronic/

    Programmable Electronic Safety-related Systems - Part 3: Software requirements 1998.

    [19] IEC 61508-5 Functional Safety of Electrical/Electronic/

    Programmable Electronic Safety-related Systems - Part 5:

    Examples of methods for the determination of safety integrity levels 1998.

    [20] EWICS Guidelines for the Use of Programmable Logic

  • 186

    Controllers in Safety-related Systems 1998.

    [21] Center for Chemical Process Safety Guidelines for Safety

    Automation of Chemical Processes. A.I.Ch.E. New York 1992.

    [22] TWI and Royal & Sun Allicance Engineering. Best practice for risk based inspection as a part of plant integrity management Health

    Safety Executive(HSE)(Contract Research Report 363/2001).

    [23] Brown S.J. (1985). Energy Release Protection for Pressurized

    systems. Part I Review of Studies into Blast and Fragmentation. Applied Mechanics Reviews 38 (12 December) 1625-1651.

    [24] Risk-Based Inspection API RP580. 2002.

    [25] Risk-Based Inspection Base Resource Document API Publication 581. First Edition May 2000.

    A(Availability Required)V-203

    I~NV-203Plant Physical Data