71
7/23/2019 11534 Réservoir D'Eau 6800L http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 1/71 Codeware, Inc. Sarasota, FL, USA www.codeware.com COMPRESS Pressure Vessel Design Calculations Item: Split Stream Dearator Vessel No: V-1234 Customer: Magaladon Oil Venture Contract: C-45490-R56 Designer: John Doe Date: April 1, 2001 You can edit this page by selecting Cover Page settings... in the report  menu.

11534 Réservoir D'Eau 6800L

Embed Size (px)

Citation preview

Page 1: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 1/71

Codeware, Inc.

Sarasota, FL, USA

www.codeware.com

COMPRESS Pressure Vessel Design Calculations

Item: Split Stream Dearator

Vessel No: V-1234

Customer: Magaladon Oil Venture

Contract: C-45490-R56

Designer: John Doe

Date: April 1, 2001

You can edit this page by selecting Cover Page settings... in the report  menu.

Page 2: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 2/71

Table of ContentsGeneral Arrangement Drawing................................................................................................................................1/69

Deficiencies Summary..............................................................................................................................................2/69

Pressure Summary...................................................................................................................................................3/69

Revision History........................................................................................................................................................4/69

Settings Summary.....................................................................................................................................................5/69

Radiography Summary.............................................................................................................................................7/69

Thickness Summary.................................................................................................................................................8/69

Weight Summary.......................................................................................................................................................9/69

Long Seam Summary.............................................................................................................................................10/69

Hydrostatic Test......................................................................................................................................................12/69

Vacuum Summary...................................................................................................................................................13/69

Liquid Level bounded by Bottom of vessel..........................................................................................................14/69

Transition #1............................................................................................................................................................15/69

Cylinder #1...............................................................................................................................................................26/69

Cylinder #2...............................................................................................................................................................34/69

Legs #1.....................................................................................................................................................................47/69

Transition #2............................................................................................................................................................55/69

Seismic Code...........................................................................................................................................................66/69

Page 3: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 3/71

General Arrangement Drawing

1/69

Page 4: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 4/71

Deficiencies Summary

Deficiencies for Transition #1Transition calculations cannot be completed until a component is attached to the small end of the cone (or thediscontinuity is eliminated).

The half apex angle is greater than 30 degrees. This results in UW-3 Category B weld joints being UW-12 type 8. Auser defined joint efficiency should be used.

Deficiencies for Transition #2

Transition calculations cannot be completed until a component is attached to the small end of the cone (or thediscontinuity is eliminated).The half apex angle is greater than 30 degrees. This results in UW-3 Category B weld joints being UW-12 type 8. A

user defined joint efficiency should be used.

Warnings Summary

Warnings for Cylinder #1Do/t > 1000 which is outside of ASME code range. U-2(g) analysis performed. (warning)

Warnings for Cylinder #2Do/t > 1000 which is outside of ASME code range. U-2(g) analysis performed. (warning)

Warnings for Legs #1WRC 107: Rm / t > 300 (ratio not covered by WRC 107; Rm / t = 300 used which may be unconservative) (warning)

Warnings for Vessel

The vessel does not have a bottom closure (head or cover). (warning)The vessel does not have a top closure (head or cover). (warning)

2/69

Page 5: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 5/71

Pressure Summary

Component Summary

Identifier

P

Design

(psi)

T

Design

(°F)

MAWP

(psi)

MAP

(psi)

MDMT

(°F)

MDMT

Exemption

Impact

Tested

Transition #1 0 200 2,83 3,19 -320 Note 1 No

Cylinder #1 0 200 17,63 19,73 -320 Note 2 No

Cylinder #2 0 200 15,9 19,73 -320 Note 3 No

Transition #2 0 200 2,39 6,38 -320 Note 4 No

Legs #1 0 200 0 N/A N/A N/A N/A

Chamber Summary

Design MDMT -20 °F

Rated MDMT -320 °F @ 0 psi

MAWP hot & corroded 0 psi @ 200 °F

MAP cold & new 3,19 psi @ 70 °F

(1) This pressure chamber is not designed

for external pressure.

Notes for MDMT Rating

Note # Exemption Details

1. Impact test exempt per UHA-51(g) (coincident ratio = 0,0843)

2. Impact test exempt per UHA-51(g) (coincident ratio = 0,0849)

3. Impact test exempt per UHA-51(g) (coincident ratio = 0,1551)

4. Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0,10%) = -320°F

3/69

Page 6: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 6/71

Revision History

Revisions

No. Date Operator Notes

0 12/11/2015 mnmeil New vessel created ASME Section VIII Division 1 [COMPRESS 2015 Build 7500]

4/69

Page 7: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 7/71

Settings Summary

COMPRESS 2015 Build 7500

ASME Section VIII Division 1, 2013 Edition

Units U.S. Customary

Datum Line Location 0,00" from bottom seam

Vessel Design Mode Get Thickness from Pressure

Minimum thickness 0,0625" per UG-16(b)

Design for cold shut down only No

Design for lethal service (full radiography required) No

Design nozzles forDesign P, find nozzle MAWP andMAP

Corrosion weight loss 100% of theoretical loss

UG-23 Stress Increase 1,20

Skirt/legs stress increase 1,0Minimum nozzle projection 6"

Juncture calculations for α > 30 only Yes

Preheat P-No 1 Materials > 1,25" and <= 1,50" thick No

UG-37(a) shell tr calculation considers longitudinal stress No

Cylindrical shells made from pipe are entered as minimum thickness No

Nozzles made from pipe are entered as minimum thickness No

Pipe caps are entered as minimum thickness No

Butt welds Tapered per Figure UCS-66.3(a)

Disallow Appendix 1-5, 1-8 calculations under 15 psi No

Hydro/Pneumatic Test

Shop Hydrotest Pressure 1,3 times vessel MAWP

Test liquid specific gravity 1,00

Maximum stress during test 90% of yield

Required Marking - UG-116

UG-116(e) Radiography None

UG-116(f) Postweld heat treatment None

Code Cases\Interpretations

Use Code Case 2547 No

Use Code Case 2695 No

Apply interpretation VIII-1-83-66 Yes

Apply interpretation VIII-1-86-175 Yes

5/69

Page 8: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 8/71

Apply interpretation VIII-1-01-37 Yes

Apply interpretation VIII-1-01-150 Yes

Apply interpretation VIII-1-07-50 Yes

No UCS-66.1 MDMT reduction No

No UCS-68(c) MDMT reduction No

Disallow UG-20(f) exemptions No

UG-22 Loadings

UG-22(a) Internal or External Design Pressure Yes

UG-22(b) Weight of the vessel and normal contents under operating or testconditions

Yes

UG-22(c) Superimposed static reactions from weight of attached equipment

(external loads)No

UG-22(d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs Yes

UG-22(f) Wind reactions No

UG-22(f) Seismic reactions Yes

UG-22(j) Test pressure and coincident static head acting during the test: No

Note: UG-22(b),(c) and (f) loads only considered when supports are present.

6/69

Page 9: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 9/71

Radiography Summary

UG-116 Radiography

ComponentLongitudinal Seam Top Circumferential Seam Bottom Circumferential Seam

MarkCategory

(Fig UW-3)Radiography / Joint Type

Category(Fig UW-3)

Radiography / Joint TypeCategory

(Fig UW-3)Radiography / Joint Type

Transition #1 A None UW-11(c) / Type 1 B N/A / Type 8 B None UW-11(c) / Type 1 None

Cylinder #1 A None UW-11(c) / Type 1 B None UW-11(c) / Type 1 B None UW-11(c) / Type 1 None

Cylinder #2 A None UW-11(c) / Type 1 B None UW-11(c) / Type 1 B None UW-11(c) / Type 1 None

Transition #2 A None UW-11(c) / Type 1 B None UW-11(c) / Type 1 B N/A / Type 8 None

UG-116(e) Required Marking: None

7/69

Page 10: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 10/71

Thickness Summary

Component Data

Component

IdentifierMaterial Diameter

(in)

Length

(in)

Nominal t

(in)

Design t

(in)

Total Corrosion

(in)

Joint

ELoad

Transition #1 SA-240 304L 3 / 74 ID 10 0,0625 0,0065 0 0,70 External

Knuckle of Transition #1 SA-240 304L 74 -- 0,0625 0,0071 0 -- Internal

Cylinder #1 SA-240 304L 74 ID 48 0,0625 0,0067 0 0,70 Internal

Cylinder #2 SA-240 304L 74 ID 48 0,0625 0,0122 0 0,70 Internal

Transition #2 SA-240 304L 3 / 74 ID 10 0,125 0,0653 0 0,70 Internal

Knuckle of Transition #2 SA-240 304L 74 -- 0,125 0,0781 0 -- Internal

Definitions

Nominal t Vessel wall nominal thickness

Design t Required vessel thickness due to governing loading + corrosion

Joint E Longitudinal seam joint efficiency

Load

Internal Circumferential stress due to internal pressure governs

External External pressure governs

WindCombined longitudinal stress of pressure + weight + wind

governs

SeismicCombined longitudinal stress of pressure + weight + seismicgoverns

8/69

Page 11: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 11/71

Weight Summary

Weight (lb) Contributed by Vessel Elements

Component Metal

New*

Metal

CorrodedInsulation

Insulation

SupportsLining

Piping

+ Liquid

Operating Liquid Test LiquidSurface Area

ft2New Corroded New Corroded

Transition #1 88,9 88,9 0 0 0 0 894,5 894,5 894,5 894,5 34

Cylinder #1 202,4 202,4 0 0 0 0 7 451,9 7 451,9 7 451,9 7 451,9 78

Cylinder #2 202,4 202,4 0 0 0 0 7 451,9 7 451,9 7 451,9 7 451,9 78

Transition #2 177,7 177,7 0 0 0 0 894,7 894,7 894,7 894,7 34

Legs #1 97,7 97,7 0 0 0 0 0 0 0 0 12

TOTAL: 769,1 769,1 0 0 0 0 16 693 16 693 16 693 16 693 235

*Shells with attached nozzles have weight reduced by material cut out for opening.

Weight (lb) Contributed by Attachments

ComponentBody Flanges

Nozzles &

FlangesPackedBeds

Ladders &

PlatformsTrays

TraySupports

Rings &Clips

VerticalLoads

Surface

Areaft2

New Corroded New Corroded

Transition #1 0 0 0 0 0 0 0 0 0 0 0

Cylinder #1 0 0 0 0 0 0 0 0 0 0 0

Cylinder #2 0 0 0 0 0 0 0 0 0 0 0

Transition #2 0 0 0 0 0 0 0 0 0 0 0

Legs #1 0 0 0 0 0 0 0 0 0 0 0

TOTAL: 0 0 0 0 0 0 0 0 0 0 0

Vessel Totals

New Corroded

Operating Weight (lb) 17 462 17 462

Empty Weight (lb) 769 769

Test Weight (lb) 17 462 17 462

Surface Area (ft2) 235 -

Capacity** (US gal) 2 002 2 002

**The vessel capacity does not includevolume of nozzle, piping or otherattachments.

Vessel Lift Condition

Vessel Lift Weight, New (lb) 769

Center of Gravity from Datum (in) 44,4632

9/69

Page 12: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 12/71

Long Seam Summary

Shell Long Seam

Angles

Component Seam 1

Transition #1 0°

Cylinder #1 30°

Cylinder #2 0°

Transition #2 30°

Shell Plate Lengths

ComponentStartingAngle

Plate 1

Transition #1 0° 232,6742"

Cylinder #1 30° 232,6742"

Cylinder #2 0° 232,6742"

Transition #2 30° 232,8706"

Notes

1) Plate Lengths use the circumference of the vessel based on the mid diameter of the components.

2) North is located at 0°

10/69

Page 13: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 13/71

Shell Rollout

11/69

Page 14: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 14/71

Hydrostatic Test

Horizontal shop hydrostatic test based on MAWP per UG-99(b)

Gauge pressure at 70°F=1,3*MAWP*LSR

= 1,3*0*1= 0 psi

Horizontal shop hydrostatic test

IdentifierLocal testpressure

(psi)

Test liquidstatic head

(psi)

UG-99(b)stress

ratio

UG-99(b)pressure

factor

Transition #1 (1) 2,673 2,671 1 1,30

Cylinder #1 2,673 2,671 1 1,30

Cylinder #2 2,673 2,671 1 1,30

Transition #2 2,673 2,671 1 1,30

(1) Transition #1 limits the UG-99(b) stress ratio.

(2) The zero degree angular position is assumed to be up,and the test liquid height is assumed to the top-most flange.

The field test condition has not been investigated.

12/69

Page 15: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 15/71

Vacuum Summary

Largest Unsupported Length Le

Component Line of Support

Elevation

above Datum

(in)

Length Le

(in)

Transition #1 Top - 116 2,9344

- Transition #1 Top 116 2,9344

- Transition #1 Bottom 106 2,9344

Transition #1 Bottom - 106 2,9344

Cylinder #1 Top - 106 96

Cylinder #1 Bottom - 58 96

Cylinder #2 Top - 58 96

Cylinder #2 Bottom - 10 96

Transition #2 Top - 10 2,9315

- Transition #2 Top 10 2,9315

- Transition #2 Bottom 0 2,9315

Transition #2 Bottom - 0 2,9315

13/69

Page 16: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 16/71

Liquid Level bounded by Bottom of vessel

ASME Section VIII Division 1, 2013 Edition

Location from Datum (in) 116

Operating Liquid Specific Gravity 1

14/69

Page 17: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 17/71

Transition #1

ASME Section VIII Division 1, 2013 Edition

Component Cone

Material SA-240 304L (II-D p. 86, ln. 43)

ImpactTested

NormalizedFine GrainPractice

PWHTOptimize MDMT/

Find MAWP

No No No No No

DesignPressure (psi)

DesignTemperature (°F)

DesignMDMT (°F)

Internal 0 200-20

External 0 200

Static Liquid Head

Condition Ps (psi) Hs (in) SG

OperatingLarge 0,36 10

1

Small 0 0

Test horizontalLarge 2,67 74

1

Small 1,39 38,5

Dimensions

Inner DiameterLarge 74"

Small 3"

Length 10"

Nominal Thickness 0,0625"

CorrosionInner 0"

Outer 0"

KnuckleThickness tkl 0,0625"

Radius r1 4,4475"

Weight and Capacity

Weight (lb) Capacity (US gal)

New 88,95 107,28

Corroded 88,95 107,28

Radiography

Longitudinal seam None UW-11(c) Type 1

Top Circumferential seam None UW-11(c) Type 1

Bottom Circumferential seam None UW-11(c) Type 1

15/69

Page 18: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 18/71

Results Summary

Governing condition UG-16

Minimum thickness per UG-16 0,0625" + 0" = 0,0625"

Design thickness due to internal pressure (t) 0,0071"

Design thickness due to external pressure (te) 0,0065"

Design thickness due to combined loadings + corrosion 0,0039"

Maximum allowable working pressure (MAWP) 2,83 psi

Maximum allowable pressure (MAP) 3,19 psi

Maximum allowable external pressure (MAEP) 0 psi

Rated MDMT -320 °F

UHA-51 Material Toughness Requirements

tr = 0,36*74 / (2*0,1739*(16 700*0,7 - 0.6*0,36)) = 0,0066"

Stress ratio = tr*E* / (tn - c) = 0,0066*0,8 / (0,0625 - 0) = 0,0843

Impact test exempt per UHA-51(g) (coincident ratio = 0,0843)

Rated MDMT = -320°F

Material is exempt from impact testing at the Design MDMT of -20°F.

Design thickness, (at 200 °F) UG-32(h) (Large End)

Di = D - 2*r*(1 - cos(α))= 74 - 2*4,4475*(1 - cos(79,9852))= 66,6519"

t = P*Di / (2*cos(α)*(S*E - 0,60*P)) + Corrosion= 0,2*66,6519 / (2*cos(79,9852)*(16 700*0,70 - 0,60*0,2)) + 0= 0,0033"

Design thickness, (at 200 °F) Appendix 1-4(d) (Knuckle)

L = Di / (2*cos(α))

= 66,6519 / (2*cos(79,9852))= 191,635"

M = 0,25*(3 + Sqr(L / r))

= 0,25*(3 + Sqr(191,635 / 4,4475))= 2,391

tk = P*L*M / (2*S*E - 0,20*P) + Corrosion= 0,36*191,635*2,391 / (2*16 700*0,70 - 0,20*0,36) + 0

= 0,0071"Small End design thickness (t = 0") does not govern.

Maximum allowable working pressure, (Corroded at 200 °F) UG-32(h)

P = 2*S*E*t*cos(α) / (Di + 1,20*t*cos(α)) - Pskl

=2*16 700*0,70*0,0625*cos(79,9852) / (66,6519 + 1,20*0,0625*cos(79,9852))

- 0,2

16/69

Page 19: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 19/71

= 3,61 psi

Maximum allowable working pressure, (Corroded at 200 °F) App 1-4(d) (Knuckle)

P = 2*S*E*tk / (L*M + 0,20*tk) - Ps

=2*16 700*0,70*0,0625 / (191,635*2,391 + 0,20*0,0625) -0,36

= 2,83 psi

Small End MAWP (84,34 psi) does not govern.

Maximum allowable pressure, (New at 70 °F) UG-32(h)

P = 2*S*E*t*cos(α) / (Di + 1,20*t*cos(α))

=2*16 700*0,70*0,0625*cos(79,9852) / (66,6519 +1,20*0,0625*cos(79,9852))

= 3,81 psi

Maximum allowable pressure, (New at 70 °F) App 1-4(d) (Knuckle)

P = 2*S*E*tk / (L*M + 0,20*tk)

=

2*16 700*0,70*0,0625 / 

(191,635*2,391 + 0,20*0,0625)= 3,19 psi

Small End MAP (84,34 psi) does not govern.

External Pressure, (Corroded & at 200 °F) UG-33(f)(2)

C = 0,13

t = Do*Sqr(C*Pe / Se) + Corrosion= 74,125*Sqr(0,13*0 / 16700) + 0

= 0,0065"

% Forming strain - UHA-44(a)(2)

EFE = (50*t / Rf)*(1 - Rf / Ro)

= (50*0,3594 / 1,6797)*(1 - 1,6797 / infinity)

= 10,6982%

External Pressure + Weight + Seismic Loading Check (Bergman, ASME paper 54-A-104)

Pv   = [(1 + 0,14*SDS)*W / (2*π*Rm) + M / (π*Rm2)] / cos(α)

  = [1,01*88,9 / (2*π*37,0313) + 39 / (π*37,03132)] / cos(79,9852)  = 2,2828 lb/in

α   = Pv / (Pe*Do)  = 2,2828 / (0*74,125)

  = 30,7963n = 30

m = 1,23 / (L / Do)2

  = 1,23 / (2,9344 / 74,125)2

  = 784,8765

Ratio Pe   = (n2 - 1 + m + m*α) / (n2 - 1 + m)  = (302 - 1 + 784,8765 + 784,8765*30,7963) / (302 - 1 + 784,8765)

  = 15,3545

17/69

Page 20: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 20/71

Ratio Pe * Pe   ≤ MAEP

(15,3545 * 0 = 0,02) ≤ 0,09

Transition design thickness is satisfactory.

Thickness Required Due to Pressure + External Loads

ConditionPressure P (

psi)

AllowableStress Before

UG-23 StressIncrease (

psi)

Temperature (°F)

Corrosion C(in)

Location LoadReq'd Thk Due to

Tension (in)

Req'd Thk Due

toCompression

(in)

St Sc

Operating, Hot & Corroded 0 16 700 504 200 0Top Seismic 0 0

Bottom Seismic 0,0019 0,0036

Operating, Hot & New 0 16 700 504 200 0Top Seismic 0 0

Bottom Seismic 0,0019 0,0036

Hot Shut Down, Corroded 0 16 700 504 200 0Top Seismic 0 0

Bottom Seismic 0,002 0,0038

Hot Shut Down, New 0 16 700 504 200 0Top Seismic 0 0

Bottom Seismic 0,002 0,0038

Empty, Corroded 0 16 700 525 70 0Top Seismic 0 0

Bottom Seismic 0,002 0,0036

Empty, New 0 16 700 525 70 0Top Seismic 0 0

Bottom Seismic 0,002 0,0036

Vacuum 0 16 700 504 200 0Top Seismic 0 0

Bottom Seismic 0,0022 0,0039

Hot Shut Down, Corroded,

Weight & Eccentric MomentsOnly

0 16 700 504 200 0

Top Weight 0 0

Bottom Weight 0 0

Allowable Compressive Stress, Hot and Corroded- ScHC, (table HA-3)A = 0,125 / (Ro / te)

= 0,125 / (37,0625 / 0,0109)= 0,000037B = 504 psi

S = 16 700 / 1,00 = 16 700 psiScHC = min(B, S) = 504 psi

Allowable Compressive Stress, Hot and New- ScHN

ScHN = ScHC

= 504,2549 psi

Allowable Compressive Stress, Cold and New- ScCN, (table HA-3)

A = 0,125 / (Ro / te)= 0,125 / (37,0625 / 0,0109)

= 0,000037

B = 525 psiS = 16 700 / 1,00 = 16 700 psiScCN = min(B, S) = 525 psiAllowable Compressive Stress, Cold and Corroded- ScCC

ScCC = ScCN

= 524,7357 psi

18/69

Page 21: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 21/71

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableHA-3)

A = 0,125 / (Ro / te)= 0,125 / (37,0625 / 0,0109)= 0,000037

B = 504 psiS = 16 700 / 1,00 = 16 700 psi

ScVC = min(B, S) = 504 psi

Operating, Hot & Corroded, Seismic, Top Seam

tp = P*R / [(2*St*Ks*Ec + 0,40*|P|)*cos(α)] (Pressure)

= 0*1,5 / [(2*16 700*1,00*0,70 + 0,40*|0|)*cos(79,9852)]= 0"

tm = M / [(π*Rm2*St*Ks*Ec)*cos(α)] (bending)

= 0 / [(π*1,67972*16 700*1,00*0,70)*cos(79,9852)]

= 0"tw = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

= 0 / [(2*π*1,6797*16 700*1,00*0,70)*cos(79,9852)]= 0"

tt = tp + tm - tw

(total

required,

tensile)= 0 + 0 - (0)= 0"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0) - (0)|

= 0"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / ((R - 0,40*(t - tm + tw))*cos(α))= 2*16 700*1,00*0,70*(0,0625 - 0 + (0)) / ((1,5 - 0,40*(0,0625 - 0 + (0)))*cos(79,9852))= 5 696,72 psi

Operating, Hot & New, Seismic, Top Seam

tp = P*R / [(2*St*Ks*Ec + 0,40*|P|)*cos(α)] (Pressure)

= 0*1,5 / [(2*16 700*1,00*0,70 + 0,40*|0|)*cos(79,9852)]= 0"

tm = M / [(π*Rm2*St*Ks*Ec)*cos(α)] (bending)

= 0 / [(π*1,67972*16 700*1,00*0,70)*cos(79,9852)]= 0"

tw = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)= 0 / [(2*π*1,6797*16 700*1,00*0,70)*cos(79,9852)]

= 0"

tt = tp + tm - tw(totalrequired,

tensile)= 0 + 0 - (0)

= 0"

tc = |tmc + twc - tpc|(total, net

tensile)= |0 + (0) - (0)|= 0"

19/69

Page 22: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 22/71

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / ((R - 0,40*(t - tm + tw))*cos(α))= 2*16 700*1,00*0,70*(0,0625 - 0 + (0)) / ((1,5 - 0,40*(0,0625 - 0 + (0)))*cos(79,9852))= 5 696,72 psi

Hot Shut Down, Corroded, Seismic, Top Seam

tp = 0" (Pressure)

tm = M / [(π*Rm2

*St*Ks*Ec)*cos(α)] (bending)= 0 / [(π*1,67972*16 700*1,00*0,70)*cos(79,9852)]= 0"

tw = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)= 0 / [(2*π*1,6797*16 700*1,00*0,70)*cos(79,9852)]

= 0"

tt = tp + tm - tw(total required,

tensile)= 0 + 0 - (0)

= 0"

tc = tmc + twc - tpc

(total required,compressive)

= 0 + (0) - (0)

= 0"

Hot Shut Down, New, Seismic, Top Seam

tp = 0" (Pressure)tm = M / [(π*Rm

2*St*Ks*Ec)*cos(α)] (bending)

= 0 / [(π*1,67972*16 700*1,00*0,70)*cos(79,9852)]= 0"

tw = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)= 0 / [(2*π*1,6797*16 700*1,00*0,70)*cos(79,9852)]

= 0"

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (0)= 0"

tc = tmc + twc - tpc

(total required,compressive)

= 0 + (0) - (0)= 0"

Empty, Corroded, Seismic, Top Seam

tp = 0" (Pressure)tm = M / [(π*Rm

2*St*Ks*Ec)*cos(α)] (bending)

= 0 / [(π*1,67972*16 700*1,00*0,70)*cos(79,9852)]

= 0"tw = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

= 0 / [(2*π*1,6797*16 700*1,00*0,70)*cos(79,9852)]= 0"

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (0)= 0"

tc = tmc + twc - tpc

(total required,

compressive)

20/69

Page 23: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 23/71

= 0 + (0) - (0)= 0"

Empty, New, Seismic, Top Seam

tp = 0" (Pressure)tm = M / [(π*Rm

2*St*Ks*Ec)*cos(α)] (bending)

= 0 / [(π*1,67972*16 700*1,00*0,70)*cos(79,9852)]= 0"

tw = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)= 0 / [(2*π*1,6797*16 700*1,00*0,70)*cos(79,9852)]= 0"

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (0)= 0"

tc = tmc + twc - tpc

(total required,compressive)

= 0 + (0) - (0)= 0"

Vacuum, Seismic, Top Seam

tp = P*R / [(2*St*Ks*Ec + 0,40*|P|)*cos(α)] (Pressure)= 0*1,5 / [(2*16 700*1,00*0,70 + 0,40*|0|)*cos(79,9852)]

= 0"tm = M / [(π*Rm

2*St*Ks*Ec)*cos(α)] (bending)= 0 / [(π*1,67972*16 700*1,00*0,70)*cos(79,9852)]

= 0"tw = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

= 0 / [(2*π*1,6797*16 700*1,00*0,70)*cos(79,9852)]= 0"

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (0)

= 0"tpc = P*R / [(2*Sc*Ks + 0,40*|P|)*cos(α)] (Pressure)

= 0*1,5 / [(2*504,25*1,00 + 0,40*|0|)*cos(79,9852)]= 0"

tc = tmc + twc - tpc

(total required,compressive)

= 0 + (0) - (0)

= 0"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / ((R - 0,40*(t - tmc - twc))*cos(α))

= 2*504,25*1,00*(0,0625 - 0 - 0) / ((1,5 - 0,40*(0,0625 - 0 - 0))*cos(79,9852))= 245,73 psi

Operating, Hot & Corroded, Seismic, Bottom Seam

tp = P*R / [(2*Sc*Ks + 0,40*|P|)*cos(α)] (Pressure)

= 0*37 / [(2*504,25*1,20 + 0,40*|0|)*cos(79,9852)]= 0,0002"

tm = M / [(π*Rm2*Sc*Ks)*cos(α)] (bending)

= 39 / [(π*37,03132*504,25*1,20)*cos(79,9852)]

21/69

Page 24: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 24/71

= 0,0001"tw = (0,6 - 0,14*SDS)*W / [(2*π*Rm*Sc*Ks)*cos(α)] (Weight)

=0,59*88,9 / [(2*π*37,0313*504,25*1,20)*cos(79,9852)]

= 0,0021"

tt = |tp + tm - tw| (total, net compressive)= |0,0002 + 0,0001 - (0,0021)|

= 0,0019"twc = (1 + 0,14*SDS)*W / [(2*π*Rm*Sc*Ks)*cos(α)] (Weight)

= 1,01*88,9 / [(2*π*37,0313*504,25*1,20)*cos(79,9852)]

= 0,0037"

tc = tmc + twc - tpc

(total required,compressive)

= 0,0001 + (0,0037) - (0,0002)= 0,0036"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / ((R - 0,40*(t - tm + tw))*cos(α))= 2*16 700*1,20*0,70*(0,0625 - 0 + (0,0001)) / ((37 - 0,40*(0,0625 - 0 + (0,0001)))*cos(79,9852))

= 273,09 psi

Operating, Hot & New, Seismic, Bottom Seam

tp = P*R / [(2*Sc*Ks + 0,40*|P|)*cos(α)] (Pressure)= 0*37 / [(2*504,25*1,20 + 0,40*|0|)*cos(79,9852)]= 0,0002"

tm = M / [(π*Rm2*Sc*Ks)*cos(α)] (bending)

= 39 / [(π*37,03132*504,25*1,20)*cos(79,9852)]

= 0,0001"tw = (0,6 - 0,14*SDS)*W / [(2*π*Rm*Sc*Ks)*cos(α)] (Weight)

=0,59*88,9 / [(2*π*37,0313*504,25*1,20)*cos(79,9852)]

= 0,0021"

tt = |tp + tm - tw| (total, net compressive)= |0,0002 + 0,0001 - (0,0021)|

= 0,0019"twc = (1 + 0,14*SDS)*W / [(2*π*Rm*Sc*Ks)*cos(α)] (Weight)

=1,01*88,9 / [(2*π*37,0313*504,25*1,20)*cos(79,9852)]

= 0,0037"

tc = tmc + twc - tpc

(total required,compressive)

= 0,0001 + (0,0037) - (0,0002)= 0,0036"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / ((R - 0,40*(t - tm + tw))*cos(α))= 2*16 700*1,20*0,70*(0,0625 - 0 + (0,0001)) / ((37 - 0,40*(0,0625 - 0 + (0,0001)))*cos(79,9852))

= 273,09 psi

Hot Shut Down, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / [(π*Rm2*Sc*Ks)*cos(α)] (bending)

22/69

Page 25: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 25/71

= 39 / [(π*37,03132*504,25*1,20)*cos(79,9852)]= 0,0001"

tw = (0,6 - 0,14*SDS)*W / [(2*π*Rm*Sc*Ks)*cos(α)] (Weight)

=0,59*88,9 / [(2*π*37,0313*504,25*1,20)*cos(79,9852)]

= 0,0021"tt = |tp + tm - tw| (total, net compressive)

= |0 + 0,0001 - (0,0021)|= 0,002"

twc = (1 + 0,14*SDS)*W / [(2*π*Rm*Sc*Ks)*cos(α)] (Weight)=

1,01*88,9 / [(2*π*37,0313*504,25*1,20)*cos(79,9852)]

= 0,0037"

tc = tmc + twc - tpc

(total required,

compressive)= 0,0001 + (0,0037) - (0)

= 0,0038"

Hot Shut Down, New, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / [(π*Rm2*Sc*Ks)*cos(α)] (bending)

= 39 / [(π*37,03132*504,25*1,20)*cos(79,9852)]= 0,0001"

tw = (0,6 - 0,14*SDS)*W / [(2*π*Rm*Sc*Ks)*cos(α)] (Weight)

=0,59*88,9 / [(2*π*37,0313*504,25*1,20)*cos(79,9852)]

= 0,0021"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0,0001 - (0,0021)|

= 0,002"twc = (1 + 0,14*SDS)*W / [(2*π*Rm*Sc*Ks)*cos(α)] (Weight)

=1,01*88,9 / [(2*π*37,0313*504,25*1,20)*cos(79,9852)]

= 0,0037"

tc = tmc + twc - tpc

(total required,compressive)

= 0,0001 + (0,0037) - (0)= 0,0038"

Empty, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / [(π*Rm

2*Sc*Ks)*cos(α)] (bending)

= 7 / [(π*37,03132*524,74*1,20)*cos(79,9852)]= 0"

tw = (0,6 - 0,14*SDS)*W / [(2*π*Rm*Sc*Ks)*cos(α)] (Weight)

= 0,59*88,9 / [(2*π*37,0313*524,74*1,20)*cos(79,9852)]

= 0,002"tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,002)|= 0,002"

twc = (1 + 0,14*SDS)*W / [(2*π*Rm*Sc*Ks)*cos(α)] (Weight)

=1,01*88,9 / [(2*π*37,0313*524,74*1,20)*cos(79,9852)]

= 0,0035"

23/69

Page 26: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 26/71

tc = tmc + twc - tpc (total required,compressive)

= 0 + (0,0035) - (0)= 0,0036"

Empty, New, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / [(π*Rm

2*Sc*Ks)*cos(α)] (bending)

= 7 / [(π*37,03132

*524,74*1,20)*cos(79,9852)]= 0"

tw = (0,6 - 0,14*SDS)*W / [(2*π*Rm*Sc*Ks)*cos(α)] (Weight)

=0,59*88,9 / [(2*π*37,0313*524,74*1,20)*cos(79,9852)]

= 0,002"tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,002)|= 0,002"

twc = (1 + 0,14*SDS)*W / [(2*π*Rm*Sc*Ks)*cos(α)] (Weight)

=1,01*88,9 / [(2*π*37,0313*524,74*1,20)*cos(79,9852)]

= 0,0035"

tc = tmc + twc - tpc(total required,compressive)

= 0 + (0,0035) - (0)

= 0,0036"

Vacuum, Seismic, Bottom Seam

tp = P*R / [(2*Sc*Ks + 0,40*|P|)*cos(α)] (Pressure)

= 0*37 / [(2*504,25*1,20 + 0,40*|0|)*cos(79,9852)]= -0,0002"

tm = M / [(π*Rm2*Sc*Ks)*cos(α)] (bending)

= 39 / [(π*37,03132*504,25*1,20)*cos(79,9852)]= 0,0001"

tw = (0,6 - 0,14*SDS)*W / [(2*π*Rm*Sc*Ks)*cos(α)] (Weight)

=0,59*88,9 / 

[(2*π*37,0313*504,25*1,20)*cos(79,9852)]= 0,0021"

tt = |tp + tm - tw| (total, net compressive)= |-0,0002 + 0,0001 - (0,0021)|= 0,0022"

twc = (1 + 0,14*SDS)*W / [(2*π*Rm*Sc*Ks)*cos(α)] (Weight)

=1,01*88,9 / 

[(2*π*37,0313*504,25*1,20)*cos(79,9852)]= 0,0037"

tc = tmc + twc - tpc

(total required,

compressive)= 0,0001 + (0,0037) - (-0,0002)

= 0,0039"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / ((R - 0,40*(t - tmc - twc))*cos(α))= 2*504,25*1,20*(0,0625 - 0,0001 - 0,0037) / ((37 - 0,40*(0,0625 - 0,0001 - 0,0037))*cos(79,9852))= 11,05 psi

24/69

Page 27: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 27/71

Appendix 1-5 calculations are not required for the transition large end as a knuckle is present.

Appendix 1-8(b)(2) reinforcement calculations are not required for the transition large end as a knuckle is present.

25/69

Page 28: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 28/71

Cylinder #1

ASME Section VIII Division 1, 2013 Edition

Component Cylinder

Material SA-240 304L (II-D p. 86, ln. 43)

ImpactTested

NormalizedFine GrainPractice

PWHTOptimize MDMT/

Find MAWP

No No No No No

DesignPressure (psi)

DesignTemperature (°F)

DesignMDMT (°F)

Internal 0 200-20

External 0 200

Static Liquid Head

Condition Ps (psi) Hs (in) SG

Operating 2,09 58 1

Test horizontal 2,67 74 1

Dimensions

Inner Diameter 74"

Length 48"

Nominal Thickness 0,0625"

CorrosionInner 0"

Outer 0"

Weight and Capacity

Weight (lb) Capacity (US gal)

New 202,43 893,68

Corroded 202,43 893,68

Radiography

Longitudinal seam None UW-11(c) Type 1

Top Circumferential

seamNone UW-11(c) Type 1

Bottom Circumferential

seam None UW-11(c) Type 1

26/69

Page 29: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 29/71

Results Summary

Governing condition UG-16

Minimum thickness per UG-16 0,0625" + 0" = 0,0625"

Design thickness due to internal pressure (t) 0,0067"

Design thickness due to external pressure (te) 0,006"

Design thickness due to combined loadings + corrosion 0,0005"

Maximum allowable working pressure (MAWP) 17,63 psi

Maximum allowable pressure (MAP) 19,73 psi

Maximum allowable external pressure (MAEP) 0,38 psi

Rated MDMT -320 °F

UHA-51 Material Toughness Requirements

tr = 2,09*37 / (16 700*0,7 - 0.6*2,09) = 0,0066"

Stress ratio = tr*E* / (tn - c) = 0,0066*0,8 / (0,0625 - 0) = 0,0849

Impact test exempt per UHA-51(g) (coincident ratio = 0,0849)

Rated MDMT = -320°F

Material is exempt from impact testing at the Design MDMT of -20°F.

Design thickness, (at 200 °F) UG-27(c)(1)

t = P*R / (S*E - 0,60*P) + Corrosion= 2,09*37 / (16 700*0,70 - 0,60*2,09) + 0= 0,0067"

Maximum allowable working pressure, (at 200 °F) UG-27(c)(1)

P = S*E*t / (R + 0,60*t) - Ps

= 16 700*0,70*0,0625 / (37 + 0,60*0,0625) - 2,09= 17,63 psi

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

P = S*E*t / (R + 0,60*t)= 16 700*0,70*0,0625 / (37 + 0,60*0,0625)

= 19,73 psi

External Pressure, (Corroded & at 200 °F) UG-28(c)

L / Do = 96 / 74,125 = 1,2951

Do / t = 74,125 / 0,006 = 12397,2732Experimental basin formula

Pa = [2,42*E / (1 - µ2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)

0,50)] / 3

= [2,42*27300000 / (1 - 0,302)0,75]*[(0,006 / 74,125)2,50 / (96 / 74,125 - 0,45*(0,006 / 74,125)0,50)] / 3= 0 psi

27/69

Page 30: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 30/71

Design thickness for external pressure Pa = 0 psi

ta = t + Corrosion = 0,006 + 0 = 0,006"Maximum Allowable External Pressure, (Corroded & at 200 °F) UG-28(c)

L / Do = 96 / 74,125 = 1,2951Do / t = 74,125 / 0,0625 = 1186,0000

Experimental basin formula

Pa = [2,42*E / (1 - µ2

)0,75

]*[(t / Do)2,50

 / (L / Do - 0,45*(t / Do)0,50

)] / 3= [2,42*27300000 / (1 - 0,302)0,75]*[(0,0625 / 74,125)2,50 / (96 / 74,125 - 0,45*(0,0625 / 74,125)0,50)] / 3= 0,38 psi

% Forming strain - UHA-44(a)(2)

EFE = (50*t / Rf)*(1 - Rf / Ro)

= (50*0,0625 / 37,0313)*(1 - 37,0313 / infinity)

= 0,0844%

External Pressure + Weight + Seismic Loading Check (Bergman, ASME paper 54-A-104)

Pv   = (1 + 0,14*SDS)*W / (2*π*Rm) + M / (π*Rm2)

  = 1,01*291,4 / (2*π*37,0313) + 2 432 / (π*37,03132)  = 1,8351 lb/in

α   = Pv / (Pe*Do)  = 1,8351 / (0*74,125)

  = 24,7563n = 8

m = 1,23 / (L / Do)2

  = 1,23 / (96 / 74,125)2

  = 0,7333

Ratio Pe   = (n2 - 1 + m + m*α) / (n2 - 1 + m)

  = (82 - 1 + 0,7333 + 0,7333*24,7563) / (82 - 1 + 0,7333)  = 1,2848

Ratio Pe * Pe   ≤ MAEP

(1,2848 * 0 = 0) ≤ 0,38

Cylinder design thickness is satisfactory.

28/69

Page 31: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 31/71

Thickness Required Due to Pressure + External Loads

ConditionPressure P (

psi)

AllowableStress Before

UG-23 StressIncrease ( psi)

Temperature (°F)

Corrosion C(in)

LoadReq'd Thk Due to

Tension (in)

Req'd Thk Due

toCompression

(in)

St Sc

Operating, Hot & Corroded 0 16 700 2 889 200 0 Seismic 0 0,0005

Operating, Hot & New 0 16 700 2 889 200 0 Seismic 0 0,0005

Hot Shut Down, Corroded 0 16 700 2 889 200 0 Seismic 0 0,0005

Hot Shut Down, New 0 16 700 2 889 200 0 Seismic 0 0,0005

Empty, Corroded 0 16 700 2 989 70 0 Seismic 0,0002 0,0004

Empty, New 0 16 700 2 989 70 0 Seismic 0,0002 0,0004

Vacuum 0 16 700 2 889 200 0 Seismic 0,0001 0,0005

Hot Shut Down, Corroded, Weight &

Eccentric Moments Only0 16 700 2 889 200 0 Weight 0,0004 0,0004

Allowable Compressive Stress, Hot and Corroded- ScHC, (table HA-3)

A = 0,125 / (Ro / t)

= 0,125 / (37,0625 / 0,0625)

= 0,000211B = 2 889 psi

S = 16 700 / 1,00 = 16 700 psi

ScHC = min(B, S) = 2 889 psi

Allowable Compressive Stress, Hot and New- ScHN

ScHN = ScHC

= 2 889 psi

Allowable Compressive Stress, Cold and New- ScCN, (table HA-3)

A = 0,125 / (Ro / t)= 0,125 / (37,0625 / 0,0625)

= 0,000211

B = 2 989 psi

S = 16 700 / 1,00 = 16 700 psi

ScCN = min(B, S) = 2 989 psi

Allowable Compressive Stress, Cold and Corroded- ScCC

ScCC = ScCN

= 2 989 psi

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableHA-3)

A = 0,125 / (Ro / t)

= 0,125 / (37,0625 / 0,0625)

= 0,000211

B = 2 889 psi

S = 16 700 / 1,00 = 16 700 psi

ScVC = min(B, S) = 2 889 psi

29/69

Page 32: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 32/71

Operating, Hot & Corroded, Seismic, Bottom Seam

tp = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0*37 / (2*2 888,78*1,20 + 0,40*|0|)

= 0"

tm = M / (π*Rm2*Sc*Ks) (bending)

= 2 432 / (π*37,03132*2 888,78*1,20)

= 0,0002"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,59*291,4 / (2*π*37,0313*2 888,78*1,20)

= 0,0002"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0,0002 - (0,0002)|

= 0"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,01*291,4 / (2*π*37,0313*2 888,78*1,20)

= 0,0004"

tc

= tmc

 + twc

 - tpc

(total required, compressive)

= 0,0002 + (0,0004) - (0)

= 0,0005"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,0625 - 0 + (0,0001)) / (37 - 0,40*(0,0625 - 0 + (0,0001)))

= 47,43 psi

Operating, Hot & New, Seismic, Bottom Seam

tp = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)= 0*37 / (2*2 888,78*1,20 + 0,40*|0|)

= 0"

tm = M / (π*Rm2*Sc*Ks) (bending)

= 2 432 / (π*37,03132*2 888,78*1,20)

= 0,0002"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,59*291,4 / (2*π*37,0313*2 888,78*1,20)

= 0,0002"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0,0002 - (0,0002)|

= 0"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,01*291,4 / (2*π*37,0313*2 888,78*1,20)

= 0,0004"

tc = tmc + twc - tpc (total required, compressive)

= 0,0002 + (0,0004) - (0)

= 0,0005"

30/69

Page 33: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 33/71

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,0625 - 0 + (0,0001)) / (37 - 0,40*(0,0625 - 0 + (0,0001)))

= 47,43 psi

Hot Shut Down, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)

= 2 432 / (π*37,03132*2 888,78*1,20)

= 0,0002"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,59*291,4 / (2*π*37,0313*2 888,78*1,20)

= 0,0002"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0,0002 - (0,0002)|

= 0"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 1,01*291,4 / (2*π*37,0313*2 888,78*1,20)

= 0,0004"

tc = tmc + twc - tpc (total required, compressive)

= 0,0002 + (0,0004) - (0)

= 0,0005"

Hot Shut Down, New, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 2 432 / (π*37,03132*2 888,78*1,20)= 0,0002"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,59*291,4 / (2*π*37,0313*2 888,78*1,20)

= 0,0002"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0,0002 - (0,0002)|

= 0"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,01*291,4 / (2*π*37,0313*2 888,78*1,20)

= 0,0004"

tc = tmc + twc - tpc (total required, compressive)

= 0,0002 + (0,0004) - (0)

= 0,0005"

Empty, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

31/69

Page 34: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 34/71

= 123 / (π*37,03132*2 989,49*1,20)

= 0"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,59*291,4 / (2*π*37,0313*2 989,49*1,20)

= 0,0002"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,0002)|

= 0,0002"twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,01*291,4 / (2*π*37,0313*2 989,49*1,20)

= 0,0004"

tc = tmc + twc - tpc (total required, compressive)

= 0 + (0,0004) - (0)

= 0,0004"

Empty, New, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 123 / (π*37,03132*2 989,49*1,20)

= 0"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,59*291,4 / (2*π*37,0313*2 989,49*1,20)

= 0,0002"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,0002)|

= 0,0002"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,01*291,4 / (2*π*37,0313*2 989,49*1,20)

= 0,0004"

tc = tmc + twc - tpc (total required, compressive)

= 0 + (0,0004) - (0)

= 0,0004"

Vacuum, Seismic, Bottom Seam

tp = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0*37 / (2*2 888,78*1,20 + 0,40*|0|)

= 0"

tm = M / (π*Rm2*Sc*Ks) (bending)

= 2 432 / (π*37,03132*2 888,78*1,20)

= 0,0002"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,59*291,4 / (2*π*37,0313*2 888,78*1,20)

= 0,0002"

tt = |tp + tm - tw| (total, net compressive)

32/69

Page 35: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 35/71

= |0 + 0,0002 - (0,0002)|

= 0,0001"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,01*291,4 / (2*π*37,0313*2 888,78*1,20)

= 0,0004"

tc = tmc + twc - tpc (total required, compressive)

= 0,0002 + (0,0004) - (0)

= 0,0005"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))

= 2*2 888,78*1,20*(0,0625 - 0,0002 - 0,0004) / (37 - 0,40*(0,0625 - 0,0002 - 0,0004))

= 11,62 psi

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 0 / (π*37,03132*2 888,78*1,00)

= 0"

tw = W / (2*π*Rm*Sc*Ks) (Weight)

= 291,4 / (2*π*37,0313*2 888,78*1,00)

= 0,0004"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,0004)|

= 0,0004"

tc = tmc + twc - tpc (total required, compressive)

= 0 + (0,0004) - (0)

= 0,0004"

33/69

Page 36: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 36/71

Cylinder #2

ASME Section VIII Division 1, 2013 Edition

Component Cylinder

Material SA-240 304L (II-D p. 86, ln. 43)

ImpactTested

NormalizedFine GrainPractice

PWHTOptimize MDMT/

Find MAWP

No No No No No

DesignPressure (psi)

DesignTemperature (°F)

DesignMDMT (°F)

Internal 0 200-20

External 0 200

Static Liquid Head

Condition Ps (psi) Hs (in) SG

Operating 3,83 106 1

Test horizontal 2,67 74 1

Dimensions

Inner Diameter 74"

Length 48"

Nominal Thickness 0,0625"

CorrosionInner 0"

Outer 0"

Weight and Capacity

Weight (lb) Capacity (US gal)

New 202,43 893,68

Corroded 202,43 893,68

Radiography

Longitudinal seam None UW-11(c) Type 1

Top Circumferential

seamNone UW-11(c) Type 1

Bottom Circumferential

seam None UW-11(c) Type 1

34/69

Page 37: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 37/71

Results Summary

Governing condition UG-16

Minimum thickness per UG-16 0,0625" + 0" = 0,0625"

Design thickness due to internal pressure (t) 0,0122"

Design thickness due to external pressure (te) 0,006"

Design thickness due to combined loadings + corrosion 0,0042"

Maximum allowable working pressure (MAWP) 15,9 psi

Maximum allowable pressure (MAP) 19,73 psi

Maximum allowable external pressure (MAEP) 0,38 psi

Rated MDMT -320 °F

UHA-51 Material Toughness Requirements

tr = 3,83*37 / (16 700*0,7 - 0.6*3,83) = 0,0121"

Stress ratio = tr*E* / (tn - c) = 0,0121*0,8 / (0,0625 - 0) = 0,1551

Impact test exempt per UHA-51(g) (coincident ratio = 0,1551)

Rated MDMT = -320°F

Material is exempt from impact testing at the Design MDMT of -20°F.

Design thickness, (at 200 °F) UG-27(c)(1)

t = P*R / (S*E - 0,60*P) + Corrosion= 3,83*37 / (16 700*0,70 - 0,60*3,83) + 0= 0,0122"

Maximum allowable working pressure, (at 200 °F) UG-27(c)(1)

P = S*E*t / (R + 0,60*t) - Ps

= 16 700*0,70*0,0625 / (37 + 0,60*0,0625) - 3,83= 15,9 psi

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

P = S*E*t / (R + 0,60*t)= 16 700*0,70*0,0625 / (37 + 0,60*0,0625)

= 19,73 psi

External Pressure, (Corroded & at 200 °F) UG-28(c)

L / Do = 96 / 74,125 = 1,2951

Do / t = 74,125 / 0,006 = 12397,2732Experimental basin formula

Pa = [2,42*E / (1 - µ2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)

0,50)] / 3

= [2,42*27300000 / (1 - 0,302)0,75]*[(0,006 / 74,125)2,50 / (96 / 74,125 - 0,45*(0,006 / 74,125)0,50)] / 3= 0 psi

35/69

Page 38: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 38/71

Design thickness for external pressure Pa = 0 psi

ta = t + Corrosion = 0,006 + 0 = 0,006"Maximum Allowable External Pressure, (Corroded & at 200 °F) UG-28(c)

L / Do = 96 / 74,125 = 1,2951Do / t = 74,125 / 0,0625 = 1186,0000

Experimental basin formula

Pa = [2,42*E / (1 - µ2

)0,75

]*[(t / Do)2,50

 / (L / Do - 0,45*(t / Do)0,50

)] / 3= [2,42*27300000 / (1 - 0,302)0,75]*[(0,0625 / 74,125)2,50 / (96 / 74,125 - 0,45*(0,0625 / 74,125)0,50)] / 3= 0,38 psi

% Forming strain - UHA-44(a)(2)

EFE = (50*t / Rf)*(1 - Rf / Ro)

= (50*0,0625 / 37,0313)*(1 - 37,0313 / infinity)

= 0,0844%

External Pressure + Weight + Seismic Loading Check (Bergman, ASME paper 54-A-104)

Pv   = (1 + 0,14*SDS)*W / (2*π*Rm) + M / (π*Rm2)

  = 1,01*489,6 / (2*π*37,0313) + 7 280 / (π*37,03132)  = 3,8246 lb/in

α   = Pv / (Pe*Do)  = 3,8246 / (0*74,125)

  = 51,5964n = 8

m = 1,23 / (L / Do)2

  = 1,23 / (96 / 74,125)2

  = 0,7333

Ratio Pe   = (n2 - 1 + m + m*α) / (n2 - 1 + m)

  = (82 - 1 + 0,7333 + 0,7333*51,5964) / (82 - 1 + 0,7333)  = 1,5937

Ratio Pe * Pe   ≤ MAEP

(1,5937 * 0 = 0) ≤ 0,38

Cylinder design thickness is satisfactory.

External Pressure + Weight + Seismic Loading Check at Bottom Seam(Bergman, ASME paper 54-A-104)

Pv   = (0,6 - 0,14*SDS)*W / (2*π*Rm) + M / (π*Rm2)

  = 0,59*-16 164,3 / (2*π*37,0313) + 15 / (π*37,03132)  = -40,668 lb/in

α   = Pv / (Pe*Do)  = -40,668 / (0*74,125)

  = -548,6414n = 8m = 1,23 / (L / Do)

2

  = 1,23 / (96 / 74,125)2

  = 0,7333

Ratio Pe   = (n2 - 1 + m + m*α) / (n2 - 1 + m)  = (82 - 1 + 0,7333 + 0,7333*-548,6414) / (82 - 1 + 0,7333)

  = 1

36/69

Page 39: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 39/71

Ratio Pe * Pe   ≤ MAEP

(1 * 0 = 0) ≤ 0,38

Cylinder design thickness is satisfactory.

Thickness Required Due to Pressure + External Loads

ConditionPressure P (

psi)

Allowable

Stress BeforeUG-23 Stress

Increase (psi)

Temperature (

°F)

Corrosion C

(in)Location Load

Req'd Thk Due to

Tension (in)

Req'd Thk Due to

Compression (in)

St Sc

Operating, Hot & Corroded 0 16 700 2 889 200 0Top Seismic 0 0,0011

Bottom Seismic 0,0035 0,002

Operating, Hot & New 0 16 700 2 889 200 0Top Seismic 0 0,0011

Bottom Seismic 0,0035 0,002

Hot Shut Down, Corroded 0 16 700 2 889 200 0Top Seismic 0 0,0011

Bottom Seismic 0,0035 0,002

Hot Shut Down, New 0 16 700 2 889 200 0Top Seismic 0 0,0011

Bottom Seismic 0,0035 0,002

Empty, Corroded 0 16 700 2 989 70 0Top Seismic 0,0003 0,0006

Bottom Seismic 0 0

Empty, New 0 16 700 2 989 70 0Top Seismic 0,0003 0,0006

Bottom Seismic 0 0

Vacuum 0 16 700 2 889 200 0Top Seismic 0 0,0011

Bottom Seismic 0,0035 0,002

Hot Shut Down, Corroded,Weight & Eccentric Moments

Only0 16 700 2 889 200 0

Top Weight 0,0007 0,0007

Bottom Weight 0,0042 0,0042

Allowable Compressive Stress, Hot and Corroded- ScHC, (table HA-3)

A = 0,125 / (Ro / t)= 0,125 / (37,0625 / 0,0625)

= 0,000211

B = 2 889 psi

S = 16 700 / 1,00 = 16 700 psi

ScHC = min(B, S) = 2 889 psi

Allowable Compressive Stress, Hot and New- ScHN

ScHN = ScHC

= 2 889 psi

Allowable Compressive Stress, Cold and New- ScCN, (table HA-3)

A = 0,125 / (Ro / t)

= 0,125 / (37,0625 / 0,0625)

= 0,000211

B = 2 989 psi

S = 16 700 / 1,00 = 16 700 psi

ScCN = min(B, S) = 2 989 psi

37/69

Page 40: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 40/71

Allowable Compressive Stress, Cold and Corroded- ScCC

ScCC = ScCN

= 2 989 psi

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableHA-3)

A = 0,125 / (Ro / t)

= 0,125 / (37,0625 / 0,0625)

= 0,000211

B = 2 889 psi

S = 16 700 / 1,00 = 16 700 psi

ScVC = min(B, S) = 2 889 psi

Operating, Hot & Corroded, Seismic, Above Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0*37 / (2*16 700*1,20*1,00 + 0,40*|0|)

= 0"tm = M / (π*Rm

2*St*Ks*Ec) (bending)

= 7 280 / (π*37,03132*16 700*1,20*1,00)

= 0,0001"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,59*489,6 / (2*π*37,0313*16 700*1,20*1,00)

= 0,0001"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0001 - (0,0001)

= 0"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)= 0*37 / (2*2 888,78*1,20 + 0,40*|0|)

= 0"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 7 280 / (π*37,03132*2 888,78*1,20)

= 0,0005"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,01*489,6 / (2*π*37,0313*2 888,78*1,20)

= 0,0006"

tc = tmc + twc - tpc (total required, compressive)

= 0,0005 + (0,0006) - (0)= 0,0011"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*1,00*(0,0625 - 0,0001 + (0,0001)) / (37 - 0,40*(0,0625 - 0,0001 + (0,0001)))

= 67,72 psi

38/69

Page 41: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 41/71

Operating, Hot & New, Seismic, Above Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0*37 / (2*16 700*1,20*1,00 + 0,40*|0|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 7 280 / (π*37,03132*16 700*1,20*1,00)

= 0,0001"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,59*489,6 / (2*π*37,0313*16 700*1,20*1,00)

= 0,0001"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0001 - (0,0001)

= 0"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0*37 / (2*2 888,78*1,20 + 0,40*|0|)

= 0"

tmc

= M / (π*Rm

2*Sc*K

s) (bending)

= 7 280 / (π*37,03132*2 888,78*1,20)

= 0,0005"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,01*489,6 / (2*π*37,0313*2 888,78*1,20)

= 0,0006"

tc = tmc + twc - tpc (total required, compressive)

= 0,0005 + (0,0006) - (0)

= 0,0011"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*1,00*(0,0625 - 0,0001 + (0,0001)) / (37 - 0,40*(0,0625 - 0,0001 + (0,0001)))

= 67,72 psi

Hot Shut Down, Corroded, Seismic, Above Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 7 280 / (π*37,03132*16 700*1,20*1,00)

= 0,0001"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,59*489,6 / (2*π*37,0313*16 700*1,20*1,00)

= 0,0001"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0001 - (0,0001)

= 0"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 7 280 / (π*37,03132*2 888,78*1,20)

39/69

Page 42: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 42/71

= 0,0005"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,01*489,6 / (2*π*37,0313*2 888,78*1,20)

= 0,0006"

tc = tmc + twc - tpc (total required, compressive)

= 0,0005 + (0,0006) - (0)

= 0,0011"

Hot Shut Down, New, Seismic, Above Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 7 280 / (π*37,03132*16 700*1,20*1,00)

= 0,0001"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,59*489,6 / (2*π*37,0313*16 700*1,20*1,00)

= 0,0001"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0001 - (0,0001)

= 0"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 7 280 / (π*37,03132*2 888,78*1,20)

= 0,0005"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,01*489,6 / (2*π*37,0313*2 888,78*1,20)

= 0,0006"

tc = tmc + twc - tpc (total required, compressive)

= 0,0005 + (0,0006) - (0)

= 0,0011"

Empty, Corroded, Seismic, Above Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 315 / (π*37,03132*2 989,49*1,20)

= 0"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,59*489,6 / (2*π*37,0313*2 989,49*1,20)

= 0,0003"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,0003)|

= 0,0003"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,01*489,6 / (2*π*37,0313*2 989,49*1,20)

= 0,0006"

tc = tmc + twc - tpc (total required, compressive)

40/69

Page 43: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 43/71

= 0 + (0,0006) - (0)

= 0,0006"

Empty, New, Seismic, Above Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 315 / (π*37,03132*2 989,49*1,20)

= 0"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,59*489,6 / (2*π*37,0313*2 989,49*1,20)

= 0,0003"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,0003)|

= 0,0003"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,01*489,6 / (2*π*37,0313*2 989,49*1,20)

= 0,0006"

tc = tmc + twc - tpc (total required, compressive)

= 0 + (0,0006) - (0)

= 0,0006"

Vacuum, Seismic, Above Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0*37 / (2*16 700*1,20*1,00 + 0,40*|0|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 7 280 / (π*37,03132*16 700*1,20*1,00)

= 0,0001"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,59*489,6 / (2*π*37,0313*16 700*1,20*1,00)

= 0,0001"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0001 - (0,0001)

= 0"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0*37 / (2*2 888,78*1,20 + 0,40*|0|)

= 0"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 7 280 / (π*37,03132*2 888,78*1,20)

= 0,0005"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,01*489,6 / (2*π*37,0313*2 888,78*1,20)

= 0,0006"

tc = tmc + twc - tpc (total required, compressive)

41/69

Page 44: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 44/71

= 0,0005 + (0,0006) - (0)

= 0,0011"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))

= 2*2 888,78*1,20*(0,0625 - 0,0005 - 0,0006) / (37 - 0,40*(0,0625 - 0,0005 - 0,0006))

= 11,51 psi

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Above Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 0 / (π*37,03132*2 888,78*1,00)

= 0"

tw = W / (2*π*Rm*Sc*Ks) (Weight)

= 489,6 / (2*π*37,0313*2 888,78*1,00)

= 0,0007"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,0007)|

= 0,0007"

tc = tmc + twc - tpc (total required, compressive)

= 0 + (0,0007) - (0)

= 0,0007"

Operating, Hot & Corroded, Seismic, Below Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0*37 / (2*16 700*1,20*1,00 + 0,40*|0|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 15 / (π*37,03132*16 700*1,20*1,00)

= 0"

tw = (1 + 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 1,01*-16 164,3 / (2*π*37,0313*16 700*1,20*1,00)

= -0,0035"

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (-0,0035)

= 0,0035"

twc = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,59*-16 164,3 / (2*π*37,0313*16 700*1,20*1,00)

= -0,002"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,002) - (0)|

= 0,002"

42/69

Page 45: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 45/71

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*1,00*(0,0625 - 0 + (-0,0035)) / (37 - 0,40*(0,0625 - 0 + (-0,0035)))

= 63,93 psi

Operating, Hot & New, Seismic, Below Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)= 0*37 / (2*16 700*1,20*1,00 + 0,40*|0|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 15 / (π*37,03132*16 700*1,20*1,00)

= 0"

tw = (1 + 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 1,01*-16 164,3 / (2*π*37,0313*16 700*1,20*1,00)

= -0,0035"

tt = tp + tm - tw(total required,

tensile)

= 0 + 0 - (-0,0035)

= 0,0035"

twc = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,59*-16 164,3 / (2*π*37,0313*16 700*1,20*1,00)

= -0,002"

tc = |tmc + twc - tpc|(total, net

tensile)

= |0 + (-0,002) - (0)|

= 0,002"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*1,00*(0,0625 - 0 + (-0,0035)) / (37 - 0,40*(0,0625 - 0 + (-0,0035)))

= 63,93 psi

Hot Shut Down, Corroded, Seismic, Below Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 15 / (π*37,03132*16 700*1,20*1,00)

= 0"tw = (1 + 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 1,01*-16 164,3 / (2*π*37,0313*16 700*1,20*1,00)

= -0,0035"

tt = tp + tm - tw(total required,

tensile)

= 0 + 0 - (-0,0035)

= 0,0035"

43/69

Page 46: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 46/71

twc = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,59*-16 164,3 / (2*π*37,0313*16 700*1,20*1,00)

= -0,002"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,002) - (0)|

= 0,002"

Hot Shut Down, New, Seismic, Below Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 15 / (π*37,03132*16 700*1,20*1,00)

= 0"

tw = (1 + 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 1,01*-16 164,3 / (2*π*37,0313*16 700*1,20*1,00)

= -0,0035"

tt

= tp

 + tm

 - tw

(total required,

tensile)= 0 + 0 - (-0,0035)

= 0,0035"

twc = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,59*-16 164,3 / (2*π*37,0313*16 700*1,20*1,00)

= -0,002"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,002) - (0)|

= 0,002"

Empty, Corroded, Seismic, Below Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 4 / (π*37,03132*16 700*1,20*1,00)

= 0"

tw = (1 + 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 1,01*-181,9 / (2*π*37,0313*16 700*1,20*1,00)

= 0"

tt = tp + tm - tw (total required, tensile)

= 0 + 0 - (0)= 0"

twc = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,59*-181,9 / (2*π*37,0313*16 700*1,20*1,00)

= 0"

tc = |tmc + twc - tpc| (total, net tensile)

= |0 + (0) - (0)|

= 0"

44/69

Page 47: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 47/71

Empty, New, Seismic, Below Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 4 / (π*37,03132*16 700*1,20*1,00)

= 0"

tw = (1 + 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 1,01*-181,9 / (2*π*37,0313*16 700*1,20*1,00)

= 0"

tt = tp + tm - tw (total required, tensile)

= 0 + 0 - (0)

= 0"

twc = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,59*-181,9 / (2*π*37,0313*16 700*1,20*1,00)

= 0"

tc = |tmc + twc - tpc| (total, net tensile)

= |0 + (0) - (0)|

= 0"

Vacuum, Seismic, Below Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0*37 / (2*16 700*1,20*1,00 + 0,40*|0|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 15 / (π*37,03132*16 700*1,20*1,00)

= 0"

tw = (1 + 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 1,01*-16 164,3 / (2*π*37,0313*16 700*1,20*1,00)= -0,0035"

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (-0,0035)

= 0,0035"

twc = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,59*-16 164,3 / (2*π*37,0313*16 700*1,20*1,00)

= -0,002"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,002) - (0)|

= 0,002"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))

= 2*2 888,78*1,20*(0,0625 - 0 - -0,0117) / (37 - 0,40*(0,0625 - 0 - -0,0117))

= 13,92 psi

45/69

Page 48: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 48/71

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Below Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 0 / (π*37,03132*16 700*1,00*1,00)

= 0"

tw = W / (2*π*Rm*St*Ks*Ec) (Weight)

= -16 164,3 / (2*π*37,0313*16 700*1,00*1,00)

= -0,0042"

tt = tp + tm - tw (total required, tensile)

= 0 + 0 - (-0,0042)

= 0,0042"

tc = |tmc + twc - tpc| (total, net tensile)

= |0 + (-0,0042) - (0)|

= 0,0042"

46/69

Page 49: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 49/71

Legs #1

Inputs

Leg material

Leg description 3 inch sch 40 pipe

Number of legs, N 4

Overall length 36"

Base to girth seam length 28"

Bolt circle 76,125"

Foundation allowable bearing stress 1 658 psi

User defined leg eccentricity 0

Effective length coefficient, K 1,2

Coefficient, Cm 0,85

Leg yield stress, Fy 36 000 psi

Leg elastic modulus, E 29 000 000 psi

Anchor Bolts

Anchor bolt size 0,375" series 8 threaded

Anchor bolt material

Anchor bolts/leg 1

Anchor bolt allowable stress, Sb 20 000 psi

Anchor bolt corrosion allowance 0"

Anchor bolt hole clearance 0,375"

Welds

Leg to shell fillet weld 0,0625" (0,0406" required)

Legs braced No

Note: The support attachment point is assumed to be 1 in up from the cylinder circumferential seam.

47/69

Page 50: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 50/71

Weight operating corroded, Moment = 0,0 lbf-ft

Forceattack

angle °

Legposition °

Axialend load

lbf

Shearresisted

lbf

Axialfa

psi

Bendingfbx

psi

Bendingfby

psi

RatioH1-1

RatioH1-2

0

0 4 365,5 0,0 1 958 0 0 0,0981 0,0906

90 4 365,5 0,0 1 958 0 0 0,0981 0,0906

180 4 365,5 0,0 1 958 0 0 0,0981 0,0906

270 4 365,5 0,0 1 958 0 0 0,0981 0,0906

Weight empty corroded, Moment = 0,0 lbf-ft

Forceattack

angle °

Legposition °

Axialend load

lbf

Shearresisted

lbf

Axialfa

psi

Bendingfbx

psi

Bendingfby

psi

RatioH1-1

RatioH1-2

0

0 192,2 0,0 86 0 0 0,0043 0,0040

90 192,2 0,0 86 0 0 0,0043 0,0040

180 192,2 0,0 86 0 0 0,0043 0,0040

270 192,2 0,0 86 0 0 0,0043 0,0040

48/69

Page 51: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 51/71

Weight vacuum corroded, Moment = 0,0 lbf-ft

Forceattack

angle °

Legposition °

Axialend load

lbf

Shearresisted

lbf

Axialfa

psi

Bendingfbx

psi

Bendingfby

psi

RatioH1-1

RatioH1-2

0

0 4 365,5 0,0 1 958 0 0 0,0981 0,0906

90 4 365,5 0,0 1 958 0 0 0,0981 0,0906

180 4 365,5 0,0 1 958 0 0 0,0981 0,0906

270 4 365,5 0,0 1 958 0 0 0,0981 0,0906

Governing Condition : Seismic operating corroded, Moment = 605,4 lb f-ft

Forceattack

angle °

Legposition °

Axialend load

lbf

Shearresisted

lbf

Axialfa

psi

Bendingfbx

psi

Bendingfby

psi

RatioH1-1

RatioH1-2

0

0 2 443,4 30,6 1 096 514 0 0,0734 0,0723

90 4 404,2 30,6 1 975 0 514 0,1176 0,1130

180 4 502,2 30,6 2 019 514 0 0,1198 0,1151

270 4 404,2 30,6 1 975 0 514 0,1176 0,1130

49/69

Page 52: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 52/71

Seismic empty corroded, Moment = 25,9 lbf-ft

Forceattack

angle °

Legposition °

Axialend load

lbf

Shearresisted

lbf

Axialfa

psi

Bendingfbx

psi

Bendingfby

psi

RatioH1-1

RatioH1-2

0

0 94,0 1,3 42 23 0 0,0029 0,0029

90 170,2 1,3 76 0 23 0,0046 0,0045

180 174,4 1,3 78 23 0 0,0047 0,0046

270 170,2 1,3 76 0 23 0,0046 0,0045

Seismic vacuum corroded, Moment = 605,4 lbf-ft

Forceattack

angle °

Legposition °

Axialend load

lbf

Shearresisted

lbf

Axialfa

psi

Bendingfbx

psi

Bendingfby

psi

RatioH1-1

RatioH1-2

0

0 2 443,4 30,6 1 096 514 0 0,0734 0,0723

90 4 404,2 30,6 1 975 0 514 0,1176 0,1130

180 4 502,2 30,6 2 019 514 0 0,1198 0,1151

270 4 404,2 30,6 1 975 0 514 0,1176 0,1130

Leg Calculations (AISC manual ninth edition)

Axial end load, P1 (Based on vessel total bending moment acting at leg attachment elevation)

P1 = (1 + 0,14*SDS)*Wt / N + 48*Mt / (N*D)= (1 + 0,14*0,104)*17 364,14 / 4 + 48*605,4 / ( 4*74,125)= 4 502,24 lbf

Allowable axial compressive stress, Fa (AISC chapter E)

Cc = Sqr(2*π2*E / Fy)= Sqr(2*π2*29 000 000 / 36 000)= 126,0993

K*l / r = 1,2*29 / 1,1637 = 29,9039

Fa = 1 * (1 - (K*l / r)2 / (2*Cc2))*Fy / (5 / 3 + 3*(K*l / r) / (8*Cc)-(K*l / r)3 / (8*Cc

3))= 1 * (1 - (29,9039)2 / (2*126,09932))*36 000 / (5 / 3 + 3*(29,9039) / (8*126,0993)-(29,9039)3 / (8*126,09933))

= 19 948 psi

Allowable axial compression and bending (AISC chapter H)

F'ex = 1*12*π2*E / (23*(K*l / r)2)

= 1*12*π2*29 000 000 / (23*(29,9039)2)= 166 992 psi

F'ey = 1*12*π2*E / (23*(K*l / r)2)

= 1*12*π2*29 000 000 / (23*(29,9039)2)= 166 992 psi

Fb = 1*0,66*Fy

= 1*0,66*36 000

= 23 760 psi

50/69

Page 53: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 53/71

Compressive axial stress

fa = P1 / A= 4 502,24 / 2,23

= 2 019 psi

Bending stresses

fbx = F*cos(α)*L / (Ix / Cx) + P1*Ecc / (Ix / Cx)= 30,56*cos(0)*29 / (3,02 / 1,75) + 4 502,24*0 / (3,02 / 1,75)= 514 psi

fby= F*sin(α)*L / (Iy / Cy)

= 30,56*sin(0)*29 / (3,02 / 1,75)= 0 psi

AISC equation H1-1

H1-1 = fa / Fa + Cmx*fbx / ((1 - fa / F'ex)*Fbx) + Cmy*fby / ((1 - fa / F

'ey)*Fby)

= 2 019 / 19 948 + 0,85*514 / ((1 - 2 019 / 166 992)*23 760) + 0,85*0 / ((1 - 2 019 / 166 992)*23 760)

= 0,1198

AISC equation H1-2

H1-2 = fa / (0,6*1*Fy) + fbx / Fbx + fby / Fby

= 2 019 / (0,6*1*36 000) + 514 / 23 760 + 0 / 23 760= 0,1151

4, 3 inch sch 40 pipe legs are adequate.

Anchor bolts - Seismic empty corroded condition governs

Tensile loading per leg (1 bolt per leg)

R = 48*M / (N*BC) - (0,6 - 0,14*SDS)*W / N= 48*38,3 / (4*76,125) - (0,6 - 0,14*0,104)*768,81 / 4

= -106,49 lbf

There is no net uplift (R is negative).

0,375" series 8 threaded bolts are satisfactory.

Check the leg to vessel fillet weld, Bednar 10.3, Seismic operating corroded governs

Note: continuous welding is assumed for all support leg fillet welds.

Zw = (2*b*d + d2) / 3

= (2*3,5*7 + 72

) / 3= 32,6667 in2

Jw = (b + 2*d)3 / 12 - d2*(b + d)2 / (b + 2*d)

= (3,5 + 2*7)3 / 12 - 72*(3,5 + 7)2 / (3,5 + 2*7)= 137,9146 in3

E = d2 / (b + 2*d)= 72 / (3,5 + 2*7)

= 2,8 in

51/69

Page 54: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 54/71

Governing weld load fx = Cos(90)*30,56 = 0 lbf

Governing weld load fy = Sin(90)*30,56 = 30,56 lbf

f1 = P1 / Lweld

= 4 404,24 / 17,5= 251,67 lbf /in (V

L direct shear)

f2= fy*Lleg*0,5*b / Jw

= 30,56*29*0,5*3,5 / 137,9146= 11,24 lbf /in (V

L torsion shear)

f3 = fy / Lweld

= 30,56 / 17,5

= 1,75 lbf /in (Vc direct shear)

f4 = fy*Lleg*E / Jw

= 30,56*29*2,8 / 137,9146= 17,99 lbf /in (V

c torsion shear)

f5 = (fx*Lleg + P1*Ecc) / Zw

= (0*29 + 4 404,24*0) / 32,6667

= 0 lbf /in (ML bending)

f6 = fx / Lweld

= 0 / 17,5= 0 lbf /in (Direct outward radial shear)

f = Sqr((f1 + f2)2 + (f3 + f4)

2 + (f5 + f6)2)

= Sqr((251,67 + 11,24)2 + (1,75 + 17,99)2 + (0 + 0)2)

= 263,66 lbf /in (Resultant shear load)

Required leg to vessel fillet weld leg size (welded both sides + top)

tw

 = f / (0,707*0,55*Sa

)

= 263,66 / (0,707*0,55*16 700)= 0,0406 in

The 0,0625 in leg to vessel attachment fillet weld size is adequate.

Base plate thickness check, AISC 3-106

fp = P / (B*N)= 4 569,38 / (4*4)

= 286 psi

tb =(N - (d - tL)) / 2*Sqr(3*fp / Sb)

=(4 - (3,5 - 0,216)) / 2*Sqr(3*286 / 24 000)= 0,0676 in

The base plate thickness is adequate.

52/69

Page 55: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 55/71

Check the leg to vessel attachment stresses, WRC 107 (Seismic operating corrodedgoverns)

Applied Loads

Radial load, Pr -30,56 lbf

Circumferential moment, Mc 0 lbf-in

Circumferential shear, Vc

0 lbf

Longitudinal moment, ML 886,2 lbf-in

Longitudinal shear, VL 2 443,41 lbf

Torsion moment, Mt 0 lbf-in

Internal pressure, P 3,83 psi

Mean shell radius, Rm 37,0313"

Local shell thickness, T 0,0625"

Design factor 3

Maximum stresses due to the applied loads at the leg edge (includes pressure)

γ  = Rm / T = 37,0313 / 0,0625 = 592,5

WRC 107: R m  / t > 300 (ratio not covered by WRC 107; R m  / t = 300 used which may be unconservative) 

C1 = 1,75, C2 = 3,5 in

Local circumferential pressure stress = P*Ri / T =2 266 psi

Local longitudinal pressure stress = P*Ri / (2*T) =1 133 psi

Maximum combined stress (PL+Pb+Q) = 28 399 psiAllowable combined stress (P

L+P

b+Q) = ±3*S = ±50 100 psi

Note: The allowable combined stress (PL+P

b+Q) is based on the strain hardening characteristics of this material.

The maximum combined stress (PL+P

b+Q) is within allowable limits.

Maximum local primary membrane stress (PL) = 6 462 psi

Allowable local primary membrane stress (PL) = ±1,5*S = ±25 050 psi

The maximum local primary membrane stress (PL) is within allowable limits.

53/69

Page 56: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 56/71

Stresses at the leg edge per WRC Bulletin 107

Figure value   β Au Al Bu Bl Cu Cl Du Dl

3C* 24,1131 0,0882 0 0 0 0 318 318 318 318

4C* 42,2557 0,0757 558 558 558 558 0 0 0 0

1C 0,0878 0,0615 0 0 0 0 4 121 -4 121 4 121 -4 121

2C-1 0,0485 0,0615 2 276 -2 276 2 276 -2 276 0 0 0 0

3A* 11,668 0,0595 0 0 0 0 0 0 0 0

1A 0,0815 0,0589 0 0 0 0 0 0 0 0

3B* 32,9963 0,075 -3 638 -3 638 3 638 3 638 0 0 0 0

1B-1 0,0317 0,0593 -19 661 19 661 19 661 -19 661 0 0 0 0

Pressure stress* 2 266 2 266 2 266 2 266 2 266 2 266 2 266 2 266

Total circumferential stress -18 199 16 571 28 399 -15 475 6 705 -1 537 6 705 -1 537

Primary membrane

circumferential stress*-814 -814 6 462 6 462 2 584 2 584 2 584 2 584

3C* 27,9388 0,0757 369 369 369 369 0 0 0 0

4C* 39,5527 0,0882 0 0 0 0 522 522 522 522

1C-1 0,0689 0,078 3 234 -3 234 3 234 -3 234 0 0 0 0

2C 0,0392 0,078 0 0 0 0 1 840 -1 840 1 840 -1 840

4A* 19,1241 0,0595 0 0 0 0 0 0 0 0

2A 0,0385 0,0673 0 0 0 0 0 0 0 0

4B* 12 0,075 -2 481 -2 481 2 481 2 481 0 0 0 0

2B-1 0,0356 0,0683 -19 169 19 169 19 169 -19 169 0 0 0 0

Pressure stress* 1 133 1 133 1 133 1 133 1 133 1 133 1 133 1 133

Total longitudinal stress -16 914 14 956 26 386 -18 420 3 495 -185 3 495 -185

Primary membranelongitudinal stress*

-979 -979 3 983 3 983 1 655 1 655 1 655 1 655

Shear from Mt 0 0 0 0 0 0 0 0

Circ shear from Vc 0 0 0 0 0 0 0 0

Long shear from VL

0 0 0 0 -2 792 -2 792 2 792 2 792

Total Shear stress 0 0 0 0 -2 792 -2 792 2 792 2 792

Combined stress (PL+Pb+Q) -18 199 16 571 28 399 -18 420 8 320 5 745 8 320 5 745

* denotes primary stress.

54/69

Page 57: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 57/71

Transition #2

ASME Section VIII Division 1, 2013 Edition

Component Cone

Material SA-240 304L (II-D p. 86, ln. 43)

ImpactTested

NormalizedFine GrainPractice

PWHTOptimize MDMT/

Find MAWP

No No No No No

DesignPressure (psi)

DesignTemperature (°F)

DesignMDMT (°F)

Internal 0 200-20

External 0 200

Static Liquid Head

Condition Ps (psi) Hs (in) SG

OperatingLarge 3,83 106

1

Small 4,19 116

Test horizontalLarge 2,67 74

1

Small 1,39 38,5

Dimensions

Inner DiameterLarge 74"

Small 3"

Length 10"

Nominal Thickness 0,125"

CorrosionInner 0"

Outer 0"

KnuckleThickness tkl 0,125"

Radius r1 4,4475"

Weight and Capacity

Weight (lb) Capacity (US gal)

New 177,66 107,29

Corroded 177,66 107,29

Radiography

Longitudinal seam None UW-11(c) Type 1

Top Circumferential seam None UW-11(c) Type 1

Bottom Circumferential seam None UW-11(c) Type 1

55/69

Page 58: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 58/71

Results Summary

Governing condition Internal pressure

Minimum thickness per UG-16 0,0625" + 0" = 0,0625"

Design thickness due to internal pressure (t) 0,0781"

Design thickness due to external pressure (te) 0,0066"

Design thickness due to combined loadings + corrosion 0,0301"

Maximum allowable working pressure (MAWP) 2,39 psi

Maximum allowable pressure (MAP) 6,38 psi

Maximum allowable external pressure (MAEP) 0 psi

Rated MDMT -320 °F

UHA-51 Material Toughness Requirements

Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0,10%) = -320°F

Material is exempt from impact testing at the Design MDMT of -20°F.

Design thickness, (at 200 °F) UG-32(h) (Large End)

Di = D - 2*r*(1 - cos(α))

= 74 - 2*4,4475*(1 - cos(79,9852))= 66,6519"

t = P*Di / (2*cos(α)*(S*E - 0,60*P)) + Corrosion= 3,99*66,6519 / (2*cos(79,9852)*(16 700*0,70 - 0,60*3,99)) + 0

= 0,0653"Design thickness, (at 200 °F) Appendix 1-4(d) (Knuckle)

L = Di / (2*cos(α))= 66,6519 / (2*cos(79,9852))= 191,635"

M = 0,25*(3 + Sqr(L / r))= 0,25*(3 + Sqr(191,635 / 4,4475))

= 2,391

tk = P*L*M / (2*S*E - 0,20*P) + Corrosion= 3,99*191,635*2,391 / (2*16 700*0,70 - 0,20*3,99) + 0= 0,0781"

Small End design thickness (t = 0,0031") does not govern.

Maximum allowable working pressure, (Corroded at 200 °F) UG-32(h)

P = 2*S*E*t*cos(α) / (Di + 1,20*t*cos(α)) - Pskl

=2*16 700*0,70*0,125*cos(79,9852) / (66,6519 + 1,20*0,125*cos(79,9852)) -3,98

= 3,64 psi

56/69

Page 59: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 59/71

Maximum allowable working pressure, (Corroded at 200 °F) App 1-4(d) (Knuckle)

P = 2*S*E*tk / (L*M + 0,20*tk) - Ps

=2*16 700*0,70*0,125 / (191,635*2,391 + 0,20*0,125) -3,98

= 2,39 psi

Small End MAWP (163,76 psi) does not govern.

Maximum allowable pressure, (New at 70 °F) UG-32(h)

P = 2*S*E*t*cos(α) / (Di + 1,20*t*cos(α))

=2*16 700*0,70*0,125*cos(79,9852) / (66,6519 +1,20*0,125*cos(79,9852))

= 7,62 psi

Maximum allowable pressure, (New at 70 °F) App 1-4(d) (Knuckle)

P = 2*S*E*tk / (L*M + 0,20*tk)

=2*16 700*0,70*0,125 / (191,635*2,391 +0,20*0,125)

= 6,38 psi

Small End MAP (167,95 psi) does not govern.

External Pressure, (Corroded & at 200 °F) UG-33(f)(2)

C = 0,13

t = Do*Sqr(C*Pe / Se) + Corrosion= 74,25*Sqr(0,13*0 / 16700) + 0

= 0,0066"

% Forming strain - UHA-44(a)(2)

EFE = (50*t / Rf)*(1 - R

f / R

o)

= (50*0,7188 / 1,8594)*(1 - 1,8594 / infinity)

= 19,3286%

External Pressure + Weight + Seismic Loading Check (Bergman, ASME paper 54-A-104)

Pv   = [(0,6 - 0,14*SDS)*W / (2*π*Rm) + M / (π*Rm2)] / cos(α)

  = [0,59*-16 870,7 / (2*π*37,0625) + 12 / (π*37,06252)] / cos(79,9852)  = -243,8733 lb/in

α   = Pv / (Pe*Do)  = -243,8733 / (0*74,25)

  = -3 284,4887n = 24

m = 1,23 / (L / Do)2

  = 1,23 / (2,9315 / 74,25)2

  = 789,0945

Ratio Pe   = (n2 - 1 + m + m*α) / (n2 - 1 + m)  = (242 - 1 + 789,0945 + 789,0945*-3) / (242 - 1 + 789,0945)

  = 1

Ratio Pe * Pe   ≤ MAEP

57/69

Page 60: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 60/71

(1 * 0 = 0) ≤ 0,36

Transition design thickness is satisfactory.

Thickness Required Due to Pressure + External Loads

ConditionPressure P (

psi)

Allowable

Stress BeforeUG-23 Stress

Increase (

psi)

Temperature (°F)

Corrosion C(in)

Location LoadReq'd Thk Due to

Tension (in)Req'd Thk Due toCompression (in)

St Sc

Operating, Hot & Corroded 0 16 700 1 005 200 0Top Seismic 0,0301 0,0174

Bottom Seismic 0,0013 0,0007

Operating, Hot & New 0 16 700 1 005 200 0Top Seismic 0,0301 0,0174

Bottom Seismic 0,0013 0,0007

Hot Shut Down, Corroded 0 16 700 1 005 200 0Top Seismic 0,0301 0,0174

Bottom Seismic 0,0013 0,0007

Hot Shut Down, New 0 16 700 1 005 200 0Top Seismic 0,0301 0,0174

Bottom Seismic 0,0013 0,0007

Empty, Corroded 0 16 700 1 044 70 0Top Seismic 0,0003 0,0002

Bottom Seismic 0 0

Empty, New 0 16 700 1 044 70 0Top Seismic 0,0003 0,0002

Bottom Seismic 0 0

Vacuum 0 16 700 1 005 200 0Top Seismic 0,0301 0,0174

Bottom Seismic 0,0013 0,0007

Hot Shut Down, Corroded,Weight & Eccentric Moments

Only0 16 700 1 005 200 0

Top Weight 0 0

Bottom Weight 0 0

Allowable Compressive Stress, Hot and Corroded- ScHC, (table HA-3)A = 0,125 / (Ro / te)

= 0,125 / (37,125 / 0,0217)= 0,000073

B = 1 005 psiS = 16 700 / 1,00 = 16 700 psi

ScHC = min(B, S) = 1 005 psiAllowable Compressive Stress, Hot and New- ScHN

ScHN = ScHC

= 1005,3211 psi

Allowable Compressive Stress, Cold and New- ScCN, (table HA-3)A = 0,125 / (Ro / te)

= 0,125 / (37,125 / 0,0217)= 0,000073

B = 1 044 psi

S = 16 700 / 1,00 = 16 700 psiScCN = min(B, S) = 1 044 psi

Allowable Compressive Stress, Cold and Corroded- ScCC

ScCC = ScCN

= 1043,8631 psi

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (table

HA-3)A = 0,125 / (Ro / te)

= 0,125 / (37,125 / 0,0217)= 0,000073

58/69

Page 61: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 61/71

B = 1 005 psiS = 16 700 / 1,00 = 16 700 psi

ScVC = min(B, S) = 1 005 psi

Operating, Hot & Corroded, Seismic, Top Seam

tp = P*R / [(2*St*Ks*Ec + 0,40*|P|)*cos(α)] (Pressure)

= 0*37 / [(2*16 700*1,20*0,70 + 0,40*|0|)*cos(79,9852)]= 0"

tm = M / [(π*Rm2

*St*Ks*Ec)*cos(α)] (bending)= 12 / [(π*37,06252*16 700*1,20*0,70)*cos(79,9852)]= 0"

tw = (1 + 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)= 1,01*-16 870,7 / [(2*π*37,0625*16 700*1,20*0,70)*cos(79,9852)]

= -0,0301"

tt = tp + tm - tw

(total

required,tensile)

= 0 + 0 - (-0,0301)= 0,0301"

twc = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

= 0,59*-16 870,7 / [(2*π*37,0625*16 700*1,20*0,70)*cos(79,9852)]

= -0,0174"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,0174) - (0)|= 0,0174"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / ((R - 0,40*(t - tm + tw))*cos(α))= 2*16 700*1,20*0,70*(0,125 - 0 + (-0,0301)) / ((37 - 0,40*(0,125 - 0 + (-0,0301)))*cos(79,9852))

= 414,08 psi

Operating, Hot & New, Seismic, Top Seam

tp = P*R / [(2*St*Ks*Ec + 0,40*|P|)*cos(α)] (Pressure)

= 0*37 / [(2*16 700*1,20*0,70 + 0,40*|0|)*cos(79,9852)]= 0"

tm = M / [(π*Rm2*St*Ks*Ec)*cos(α)] (bending)

= 12 / [(π*37,06252*16 700*1,20*0,70)*cos(79,9852)]= 0"

tw = (1 + 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)= 1,01*-16 870,7 / [(2*π*37,0625*16 700*1,20*0,70)*cos(79,9852)]

= -0,0301"

tt = tp + tm - tw

(total

required,

tensile)= 0 + 0 - (-0,0301)

= 0,0301"twc = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

= 0,59*-16 870,7 / [(2*π*37,0625*16 700*1,20*0,70)*cos(79,9852)]= -0,0174"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,0174) - (0)|

= 0,0174"

59/69

Page 62: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 62/71

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / ((R - 0,40*(t - tm + tw))*cos(α))= 2*16 700*1,20*0,70*(0,125 - 0 + (-0,0301)) / ((37 - 0,40*(0,125 - 0 + (-0,0301)))*cos(79,9852))= 414,08 psi

Hot Shut Down, Corroded, Seismic, Top Seam

tp = 0" (Pressure)

tm = M / [(π*Rm2

*St*Ks*Ec)*cos(α)] (bending)= 12 / [(π*37,06252*16 700*1,20*0,70)*cos(79,9852)]= 0"

tw = (1 + 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)= 1,01*-16 870,7 / [(2*π*37,0625*16 700*1,20*0,70)*cos(79,9852)]

= -0,0301"

tt = tp + tm - tw

(total

required,tensile)

= 0 + 0 - (-0,0301)= 0,0301"

twc = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

= 0,59*-16 870,7 / [(2*π*37,0625*16 700*1,20*0,70)*cos(79,9852)]

= -0,0174"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,0174) - (0)|= 0,0174"

Hot Shut Down, New, Seismic, Top Seam

tp = 0" (Pressure)tm = M / [(π*Rm

2*St*Ks*Ec)*cos(α)] (bending)

= 12 / [(π*37,06252*16 700*1,20*0,70)*cos(79,9852)]= 0"

tw

= (1 + 0,14*SDS

)*W / [(2*π*Rm

*St

*Ks

*Ec

)*cos(α)] (Weight)

= 1,01*-16 870,7 / [(2*π*37,0625*16 700*1,20*0,70)*cos(79,9852)]= -0,0301"

tt = tp + tm - tw

(totalrequired,

tensile)= 0 + 0 - (-0,0301)= 0,0301"

twc = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)= 0,59*-16 870,7 / [(2*π*37,0625*16 700*1,20*0,70)*cos(79,9852)]

= -0,0174"

tc = |tmc + twc - tpc|(total, net

tensile)

= |0 + (-0,0174) - (0)|= 0,0174"

Empty, Corroded, Seismic, Top Seam

tp = 0" (Pressure)

tm = M / [(π*Rm2*St*Ks*Ec)*cos(α)] (bending)

= 4 / [(π*37,06252*16 700*1,20*0,70)*cos(79,9852)]= 0"

tw = (1 + 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

60/69

Page 63: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 63/71

= 1,01*-177,7 /  [(2*π*37,0625*16 700*1,20*0,70)*cos(79,9852)]

= -0,0003"

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (-0,0003)= 0,0003"

twc = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

=0,59*-177,7 / 

[(2*π*37,0625*16 700*1,20*0,70)*cos(79,9852)]= -0,0002"

tc = |tmc + twc - tpc| (total, net tensile)

= |0 + (-0,0002) - (0)|= 0,0002"

Empty, New, Seismic, Top Seam

tp = 0" (Pressure)tm = M / [(π*Rm

2*St*Ks*Ec)*cos(α)] (bending)= 4 / [(π*37,06252*16 700*1,20*0,70)*cos(79,9852)]= 0"

tw = (1 + 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

= 1,01*-177,7 / [(2*π*37,0625*16 700*1,20*0,70)*cos(79,9852)]

= -0,0003"

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (-0,0003)

= 0,0003"twc = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

=0,59*-177,7 / [(2*π*37,0625*16 700*1,20*0,70)*cos(79,9852)]

= -0,0002"tc = |tmc + twc - tpc| (total, net tensile)

= |0 + (-0,0002) - (0)|

= 0,0002"

Vacuum, Seismic, Top Seam

tp = P*R / [(2*St*Ks*Ec + 0,40*|P|)*cos(α)] (Pressure)= 0*37 / [(2*16 700*1,20*0,70 + 0,40*|0|)*cos(79,9852)]= 0"

tm = M / [(π*Rm2*St*Ks*Ec)*cos(α)] (bending)

= 12 / [(π*37,06252*16 700*1,20*0,70)*cos(79,9852)]

= 0"tw = (1 + 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

= 1,01*-16 870,7 / [(2*π*37,0625*16 700*1,20*0,70)*cos(79,9852)]

= -0,0301"

tt = tp + tm - tw

(total

required,tensile)

= 0 + 0 - (-0,0301)= 0,0301"

twc = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)= 0,59*-16 870,7 / [(2*π*37,0625*16 700*1,20*0,70)*cos(79,9852)]= -0,0174"

tc = |tmc + twc - tpc| (total, net

61/69

Page 64: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 64/71

tensile)= |0 + (-0,0174) - (0)|

= 0,0174"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / ((R - 0,40*(t - tmc - twc))*cos(α))

= 2*1 005,32*1,20*(0,125 - 0 - -0,2022) / ((37 - 0,40*(0,125 - 0 - -0,2022))*cos(79,9852))= 123,11 psi

Operating, Hot & Corroded, Seismic, Bottom Seam

tp = P*R / [(2*St*Ks*Ec + 0,40*|P|)*cos(α)] (Pressure)= 0*1,5 / [(2*16 700*1,00*0,70 + 0,40*|0|)*cos(79,9852)]

= 0"tm = M / [(π*Rm

2*St*Ks*Ec)*cos(α)] (bending)

= 0 / [(π*1,85942*16 700*1,00*0,70)*cos(79,9852)]= 0"

tw = (1 + 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)= 1,01*-29,6 / [(2*π*1,8594*16 700*1,00*0,70)*cos(79,9852)]= -0,0013"

tt = tp + tm - tw

(total

required,tensile)

= 0 + 0 - (-0,0013)

= 0,0013"twc = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

= 0,59*-29,6 / [(2*π*1,8594*16 700*1,00*0,70)*cos(79,9852)]

= -0,0007"

tc = |tmc + twc - tpc|(total, net

tensile)= |0 + (-0,0007) - (0)|

= 0,0007"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / ((R - 0,40*(t - tm + tw))*cos(α))

= 2*16 700*1,00*0,70*(0,125 - 0 + (-0,0013)) / ((1,5 - 0,40*(0,125 - 0 + (-0,0013)))*cos(79,9852))= 11 468,65 psi

Operating, Hot & New, Seismic, Bottom Seam

tp = P*R / [(2*St*Ks*Ec + 0,40*|P|)*cos(α)] (Pressure)= 0*1,5 / [(2*16 700*1,00*0,70 + 0,40*|0|)*cos(79,9852)]

= 0"tm = M / [(π*Rm

2*St*Ks*Ec)*cos(α)] (bending)

= 0 / [(π*1,85942*16 700*1,00*0,70)*cos(79,9852)]

= 0"tw = (1 + 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

= 1,01*-29,6 / [(2*π*1,8594*16 700*1,00*0,70)*cos(79,9852)]= -0,0013"

tt = tp + tm - tw

(totalrequired,

tensile)= 0 + 0 - (-0,0013)= 0,0013"

twc = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

62/69

Page 65: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 65/71

= 0,59*-29,6 / [(2*π*1,8594*16 700*1,00*0,70)*cos(79,9852)]= -0,0007"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,0007) - (0)|

= 0,0007"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / ((R - 0,40*(t - tm + tw))*cos(α))= 2*16 700*1,00*0,70*(0,125 - 0 + (-0,0013)) / ((1,5 - 0,40*(0,125 - 0 + (-0,0013)))*cos(79,9852))= 11 468,65 psi

Hot Shut Down, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / [(π*Rm2*St*Ks*Ec)*cos(α)] (bending)

= 0 / [(π*1,85942*16 700*1,00*0,70)*cos(79,9852)]

= 0"tw = (1 + 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

= 1,01*-29,6 / [(2*π*1,8594*16 700*1,00*0,70)*cos(79,9852)]

= -0,0013"

tt = tp + tm - tw(totalrequired,tensile)

= 0 + 0 - (-0,0013)= 0,0013"

twc = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

= 0,59*-29,6 / [(2*π*1,8594*16 700*1,00*0,70)*cos(79,9852)]= -0,0007"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,0007) - (0)|= 0,0007"

Hot Shut Down, New, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / [(π*Rm

2*St*Ks*Ec)*cos(α)] (bending)

= 0 / [(π*1,85942*16 700*1,00*0,70)*cos(79,9852)]= 0"

tw = (1 + 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

= 1,01*-29,6 / [(2*π*1,8594*16 700*1,00*0,70)*cos(79,9852)]= -0,0013"

tt = tp + tm - tw

(totalrequired,

tensile)

= 0 + 0 - (-0,0013)= 0,0013"

twc = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)= 0,59*-29,6 / [(2*π*1,8594*16 700*1,00*0,70)*cos(79,9852)]

= -0,0007"

tc = |tmc + twc - tpc|(total, net

tensile)= |0 + (-0,0007) - (0)|= 0,0007"

63/69

Page 66: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 66/71

Empty, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / [(π*Rm

2*St*Ks*Ec)*cos(α)] (bending)= 0 / [(π*1,85942*16 700*1,00*0,70)*cos(79,9852)]

= 0"tw = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

= 0 / [(2*π*1,8594*16 700*1,00*0,70)*cos(79,9852)]= 0"

tt = tp + tm - tw (total required,tensile)

= 0 + 0 - (0)

= 0"

tc = tmc + twc - tpc

(total required,

compressive)= 0 + (0) - (0)

= 0"

Empty, New, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / [(π*Rm2*St*Ks*Ec)*cos(α)] (bending)

= 0 / [(π*1,85942*16 700*1,00*0,70)*cos(79,9852)]= 0"

tw = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

= 0 / [(2*π*1,8594*16 700*1,00*0,70)*cos(79,9852)]= 0"

tt = tp + tm - tw(total required,

tensile)= 0 + 0 - (0)

= 0"

tc = tmc + twc - tpc

(total required,

compressive)= 0 + (0) - (0)= 0"

Vacuum, Seismic, Bottom Seam

tp = P*R / [(2*St*Ks*Ec + 0,40*|P|)*cos(α)] (Pressure)

= 0*1,5 / [(2*16 700*1,00*0,70 + 0,40*|0|)*cos(79,9852)]= 0"

tm = M / [(π*Rm2*St*Ks*Ec)*cos(α)] (bending)

= 0 / [(π*1,85942*16 700*1,00*0,70)*cos(79,9852)]= 0"

tw = (1 + 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)= 1,01*-29,6 / [(2*π*1,8594*16 700*1,00*0,70)*cos(79,9852)]

= -0,0013"

tt = tp + tm - tw(totalrequired,

tensile)= 0 + 0 - (-0,0013)

= 0,0013"twc = (0,6 - 0,14*SDS)*W / [(2*π*Rm*St*Ks*Ec)*cos(α)] (Weight)

= 0,59*-29,6 / [(2*π*1,8594*16 700*1,00*0,70)*cos(79,9852)]= -0,0007"

tc = |tmc + twc - tpc|(total, net

tensile)

64/69

Page 67: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 67/71

= |0 + (-0,0007) - (0)|= 0,0007"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / ((R - 0,40*(t - tmc - twc))*cos(α))= 2*1 005,32*1,00*(0,125 - 0 - -0,0085) / ((1,5 - 0,40*(0,125 - 0 - -0,0085))*cos(79,9852))

= 1 066,85 psi

Appendix 1-5 calculations are not required for the transition large end as a knuckle is present.

Appendix 1-8(b)(2) reinforcement calculations are not required for the transition large end as a knuckle is present.

65/69

Page 68: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 68/71

Seismic Code

Building Code: ASCE 7-10 ground supported

Site Class C

Importance Factor, Ie 1,0000

Spectral Response Acceleration at short

period (% g), Ss

13,00%

Spectral Response Acceleration at period of1 sec (% g), S1

5,70%

Response Modification Coeficient from

Table 15.4-2, R3,0000

Acceleration-based Site Coefficient, Fa 1,2000

Velocity-based Site Coefficient, Fv 1,7000

Long-period Transition Period, TL 12,0000

Redundancy factor, ρ 1,0000

Risk Category (Table 1.5-1) IIUser Defined Vertical AccelerationsConsidered

No

Vessel Characteristics

Height 11,1667 ft

WeightOperating, Corroded 17 462 lb

Empty, Corroded 769 lb

Vacuum, Corroded 17 462 lb

Period of Vibration Calculation

Fundamental Period, TOperating, Corroded 0,193 sec (f = 5,2 Hz)

Empty, Corroded 0,038 sec (f = 26,2 Hz)

Vacuum, Corroded 0,193 sec (f = 5,2 Hz)

The fundamental period of vibration T (above) is calculated using the Rayleigh method of approximation

T = 2 * PI * Sqr( {Sum(Wi * yi2 )} / {g * Sum(W i * yi )} ), where

Wi is the weight of the ith lumped mass, andyi is its deflection when the system is treated as a cantilever beam.

66/69

Page 69: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 69/71

2.4 Combining Nominal Loads Using Allowable StressDesign

Load combinations considered in accordance with ASCEsection 2.4.1:

5. D  + P + P s  + 0.7E 

8. 0.6D  + P + P s  + 0.7E 

Parameter description

D  = Dead load

P  = Internal or external pressure load

P s 

= Static head load

E  = Seismic load

Seismic Shear Reports:

Operating, CorrodedEmpty, Corroded

Vacuum, CorrodedBase Shear Calculations

Seismic Shear Report: Operating, Corroded

ComponentElevation of Bottom

above Base (in)

Elastic Modulus E

(106 psi)

Inertia I

(ft4)

Seismic Shear at

Bottom (lbf)

Bending Moment at

Bottom (lbf-ft)

Transition #1 124 27,5 * 12 3

Cylinder #1 76 27,5 0,4809 82 203

Cylinder #2 (top) 28 27,5 0,4809 118 607

Legs #1 0 29,0 0,0006 122 890

Cylinder #2 (bottom) 28 27,5 0,4809 4 1

Transition #2 28 27,5 * 3 1

*Moment of Inertia I varies over the length of the component

67/69

Page 70: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 70/71

Seismic Shear Report: Empty, Corroded

ComponentElevation of Bottom

above Base (in)Elastic Modulus E

(106 psi)Inertia I

(ft4)Seismic Shear at

Bottom (lbf)Bending Moment at

Bottom (lbf-ft)

Transition #1 124 28,3 * 1 1

Cylinder #1 76 28,3 0,4809 3 10

Cylinder #2 (top) 28 28,3 0,4809 5 26

Legs #1 0 29,0 0,0006 5 38

Cylinder #2 (bottom) 28 28,3 0,4809 1 0

Transition #2 28 28,3 * 1 0

*Moment of Inertia I varies over the length of the component

Seismic Shear Report: Vacuum, Corroded

ComponentElevation of Bottom

above Base (in)Elastic Modulus E

(106 psi)Inertia I

(ft4)Seismic Shear at

Bottom (lbf)Bending Moment at

Bottom (lbf-ft)

Transition #1 124 27,5 * 12 3

Cylinder #1 76 27,5 0,4809 82 203

Cylinder #2 (top) 28 27,5 0,4809 118 607

Legs #1 0 29,0 0,0006 122 890

Cylinder #2 (bottom) 28 27,5 0,4809 4 1

Transition #2 28 27,5 * 3 1

*Moment of Inertia I varies over the length of the component

11.4.3: Maximum considered earthquake spectral response acceleration

The maximum considered earthquake spectral response acceleration at short period, SMS 

SMS 

= Fa * Ss = 1,2000 * 13,00 / 100 = 0,1560

The maximum considered earthquake spectral response acceleration at 1 s period, SM1

SM1

= Fv * S1 = 1,7000 * 5,70 / 100 = 0,0969

11.4.4: Design spectral response acceleration parameters

Design earthquake spectral response acceleration at short period, SDS 

SDS 

= 2 / 3 * SMS 

= 2 / 3 * 0,1560 = 0,1040

Design earthquake spectral response acceleration at 1 s period, SD1

SD1

= 2 / 3 * SM1

= 2 / 3 * 0,0969 = 0,0646

11.6 Seismic Design Category

The Risk Category is II.From Table 11.6-1, the Seismic Design Category based on S

Ds  = 0,1040 is A.

From Table 11.6-2, the Seismic Design Category based on SD1 = 0,0646 is A.This vessel is assigned to Seismic Design Category A.

Note: This vessel is assigned to Seismic Design Category A, and seismic design is per Section 11.7. The VAccel Termis not applicable.

68/69

Page 71: 11534 Réservoir D'Eau 6800L

7/23/2019 11534 Réservoir D'Eau 6800L

http://slidepdf.com/reader/full/11534-reservoir-deau-6800l 71/71

Base Shear Calculations

Operating, CorrodedEmpty, CorrodedVacuum, Corroded

Base Shear Calculations: Operating, Corroded

Per ASCE Section 11.6, this vessel is assigned to Seismic Design Category A, as (SD1 = 0,0646) < 0.067, and (SDs  =0,1040) < 0.167.In accordance with ASCE Section 11.7, seismic load is determined with Equation 1.4-1.

V = 0.01 * W * 0.7 (Only 70% of seismic load considered as per Section 2.4.1)

= 0.01 * 17 462,1289 * 0.7

= 122,23 lb

Base Shear Calculations: Empty, Corroded

Per ASCE Section 11.6, this vessel is assigned to Seismic Design Category A, as (SD1

 = 0,0646) < 0.067, and (SDs 

 =

0,1040) < 0.167.In accordance with ASCE Section 11.7, seismic load is determined with Equation 1.4-1.

V = 0.01 * W * 0.7 (Only 70% of seismic load considered as per Section 2.4.1)

= 0.01 * 769,1284 * 0.7

= 5,38 lb

Base Shear Calculations: Vacuum, Corroded

Per ASCE Section 11.6, this vessel is assigned to Seismic Design Category A, as (SD1

 = 0,0646) < 0.067, and (SDs 

 =0,1040) < 0.167.

In accordance with ASCE Section 11.7, seismic load is determined with Equation 1.4-1.

V = 0.01 * W * 0.7 (Only 70% of seismic load considered as per Section 2.4.1)

= 0.01 * 17 462,1289 * 0.7

= 122,23 lb