13894

Embed Size (px)

Citation preview

  • 8/21/2019 13894

    1/222

    HSRI

    Report No. HuF 6

    Brake Force Requirement Study: Driver

    Vehicle Braking Performance as Function

    of Brake System Design Variables

    R G

    Mortimer L Segel

    H

    Dugoff

    J.D. Campbell C.M Jorgeson R

    W

    Murphy

    Highway Safety Research Institute

    University o f Michigan

    Huron Parkway and Baxter Road

    Ann Arbor Michigan

    481

    05

    April

    10 1970

  • 8/21/2019 13894

    2/222

    The c o n t e n t s o f t h i s

    r e p o r t r e f l e c t t h e v ie w s

    o f t h e Highway S a f e t y R e s e ar ch I n s t i t u t e wh ic h

    i s r e s p o n s i b l e f o r t h e f a c t s an d t h e a cc u ra c y

    o f t h e d a t a p r e s e n t e d h e r e i n

    T he c o n t e n t s do

    n o t n e c e s s a r i l y r e f l e c t t h e o f f i c i a l v ie w s o r

    p o l i c y o f t h e D ep ar tm e nt o f T r a n s p o r t a t i o n .

    T h i s r e p o r t d oe s n o t c o n s t i t u t e s t a n d a r d

    s p e c i f i c a t i o n o r r e g u l a t i o n .

  • 8/21/2019 13894

    3/222

     

    4

    T~t le nd Su bt~t le

    5.

    Report Date

    1

    Brake Force Requirement Study: Driver -Vehic le

    Braking Per formance a s a Func t ion of Brake

    S ys te m D es ig n V a ~ i a b l e s

    7 Author(s)

    R . G .

    Mortimer , L. Sege l ,

    H

    Dugoff,

    J . D . Campbell, C.M. Jo r ge son ,

    R.W.

    Murphy

    3. R ec~ p ~ en t satalog Xo

    I

    Report No.

    9.

    Performing Organ~zat~oname and Address

    Highway S a f e ty R e se a rc h I n s t i t u t e

    Univers i ty of Michigan

    Ann Ar bo r, Mic hig an 48105

    2 Government Access~onNo.

    12. Sponsoring Agency Name and Address

    Federa l Highway Adminis t ra t ion

    Nat io na l Highway S af et y Bureau

    Washington, D . C . 20591

    Apr i l 10 , 1970

    6

    Perforrn~ngOrgan~zat~onode

    8.

    Performing Org an~z at~on eport No.

    HuF-6

    10.

    Work Uut No.

    11. Contract or Grant No.

    FH-11-6952

    13. Type of Report and Pe r~o dCovered

    F i n a l R e p o r t

    J u l v

    1

    1 9 6 8 - A ~ r i l10. 1970

    14

    Sponsonng Agency Code

    15. Supplementary Notes

    1 1 6 Abstract The o b j e c t i v e o f t h i s s t u d y was t o d e f i n e t ho s e b r ak e c h a r a c t e r i s t i c s ,

    w i t h in t he spa c e bounded by th e r e l a t i on sh ip be twe en b r a ke pe da l f o r c e and

    v e h i c l e d e c e l e r a t i o n , w hi ch l e a d t o a c c e p t a b l e d r i v e r - v e h i c l e p er fo rm an ce .

    A

    d r i v e r - v e h i c l e b r a k i n g t e s t was pe rf or me d i n w hi ch t h e d e c e l e r a t i o n / p e d a l f o r c e

    r a t i o , t h e pe d al di s pl a ce m en t , t h e s u r f a c e - t i r e f r i c t i o n , a nd d r i v e r c h ar a c t er -

    i s t i c s ( ag e, w ei g ht ) w ere s y s t e m a t i c a l l y v a r i e d i n o r d e r t o d et er mi n e t h e i n f l u -

    e nc e o f th e s e v a r i a b l e s upon minimum s top p ing d i s t a nc e a nd o t he r pe rf o rm a nc e

    v a r i a b l e s . The t e s t s t h a t w ere p er fo rm ed on a low c o e f f i c i e n t of f r i c t i o n s u r -

    f a c e showed t h a t hi g h v a l u e s of d e c e l e r a t i o n / p e d a l f o r c e g a i n r e s u l t i n l a r g e

    number o f whee l loc kups and lower mean de c e l e r a t i on i n b r ing ing th e ve h ic l e t o a

    s t o p , compared t o i n t e r m e d i a t e o r low d e c e l e r a t i o n / p e d a l f o r c e g a i n l e v e l s .

    T e s t s c o n d uc t ed on i n t e r m e d i a t e a nd hi g h c o e f f i c i e n t of f r i c t i o n s u r f a c e s s howed

    t h a t h i g h a n d i n t e r m e d i a t e d e c e l e r a t i o n / p e d a l f o r c e g a i n s p ro du ce d g r e a t e r mean

    de c e l e r a t i on s and g r e a te r f r e que n c ie s o f whe el loc kups tha n lowe r ga in sys t e m s .

    The f re qu en cy o f l o s s o f l a t e r a l c o n t r o l was s i g n i f i c a n t l y g r e a t e r w it h t h e h i gh

    d e c e l e r a t i o n / p e d a l f o r c e g a i n b ra k e s on a l l s u r f a c e s t h a n wi t h l o we r g a i n s .

    There were minor be ne f i t s of 2 .5 inc h ped a l d isp lace ment compared t o ze ro inch es .

    P o t e n t i a l b ra k e f a i l u r e s and t h e i r e f f e c t s upon p e d a l f o r c e r e qu i re m en t s we re

    a n a l y ze d . The i m p l i c a t i o n s o f t h e f i n d i n g s f o r a v e h i c l e b r a k i n g s t a n d a r d w er e

    shown i n t er m s o f de c e le r a t i on / pe d a l f o r c e ga in and pe da l f o r c e .

    7

    Key

    Words

    u n c l a s s i f i e d u n c l a s s i f i e d I xx 200

    I

    B R A K I N G , DECELERATION, STOPPING DISTANCE,

    D R I V E R B R A K I N G ,

    PEDAL FORCE, PAVEMENT

    FRICTION, BRAKE FAILURE.

    A v a i l a b i l i t y i s u n l i m i t e d . Document

    may be r e l e a s e d t o th e C le a r inghouse

    f o r F e d er a l S c i e n t i f i c and T e ch n ic a l

    I n f o r m a t ion , S p r i ng f i e ld , Va. 22151

    f r

    s a l e t o t h e p u b li c .

    19.

    Secur~tyClass~f of thls report)

    20.

    Securlty Classif.(of thls page)

    21 No, of Pages 22 Pr~ce

  • 8/21/2019 13894

    4/222

  • 8/21/2019 13894

    5/222

    TABLE

    OF

    CONTENTS

    L i s t of T a b l es

    L i s t of F i g u r e s

    Acknowledgements

    I n t r o d u c t i o n

    ummary of Tasks

    L i t e r a t u r e R e v i e w

    F o o t F o r ce C a p a b i l i t y o f D r i v e r s

    3 Dr i ve r Brak ing Pe r fo rmance a s a Func t i on o f

    Pedal -Force and Pedal -Displacement Level s

    D r i v e r B r a k i n g P r a c t i c e

    F a i l u r e A n a l y s i s

    Recommendations

    asks

    L i t e r a t u r e R e v i e w

    n t r o d u c t i o n 5

    eda l Force a s a Func t ion of Des ign Param eters 9

    rake System Design

    9

    edal Force Des ign Goals 9

    eda l Force/Brake Torque Re l a t i ons h ip 9

    r a k e P r o p o r t i o n i n g 1 2

    es ign Pr ac t i ce and Trends 13

    r a k e u s a g e 1 5

    rake Usage Measurements 15

    ade and Fade Tes t ing

    1 6

    he Phenomenon of Fade 1 6

    hermal Ana lys i s 17

    i n i n g M a t e r i a l s 1 8

    a de a nd P e d a l E f f o r t 1 8

    rake Sys tem Degr ada t io n 19

    ydr aul ic System 19

    ear o f F r i c t i o n E l emen t s 2

  • 8/21/2019 13894

    6/222

    S ki dd in g a s R e l a t e d t o B r a k i n g 20

    Impor tance o f Brak ing Cont ro l i n Acc iden ts 2

    Braking Dynamics

    2 1

    R oad Tire F r i c t i o n C o e f f i c i e n t s

    2 2

    Skid Co ntr ol by Braking Modulation 23

    Te st in g of t h e Vehicle Tire Brake System 25

    Dec ele ra t ion Per formance 25

    Stopping Dis t ance 5

    De ce le ra ti on Measurement 5

    Di r e c t i on a l C on t r o l 26

    Cont ro l o f Brak ing Tes t s 6

    r iver Response

    7

    S t a t i c D r iv e r V e hi c le R e l a t i o n s h ip s 27

    Dr ive r T r a n s i e n t R esponse C h a r a c t e r i s t i c s 8

    Dri ver Brak e Pe da l System Dynamics 31

    Foot Force Capabi l i ty o f rivers 32

    In t ro duc t io n 32

    Method

    34

    Apparatus 34

    P i l o t S t u d y

    38

    Procedure

    3 8

    R e s u l t s . .

    38

    M a i n s t u d y 4

    Procedure

    4

    S ub je c t s 4 1

    R e s u l t s 4 1

    Discuss ion 4

    Driver Braking Performance as

    a

    Funct ion of

    edal Force ana Pedal Displacem ent 50

    n t r o d u c t i o n 5

    ethod

    52

    ub je c t s

    52

    he Tes t Vehic le 5 2

  • 8/21/2019 13894

    7/222

    G en er a l D es c r i p t i o n . . . . . . . . . . . 52

    . . . . . . . . . . . .he Brake Syst em 55

    Brake P ropor t ion ing

    . . . . . . . . . .

    58

    B;ake System Pa ra me te rs . . . . . . . 60

    Speed Control System . . . . . . .

    6

    D at a C o l l ec t i o n I n s t r u m en t a t i o n

    . . . .

    6 3

    Independen t Var i ab les

    . . . . . . . . . . . .

    70

    Dependent Variables . . . . . . . . . . . . .

    7

    P r oc e du r e: P i l o t S t u d i e s . . . . . . . . . . 71

    . . . . . . . . . . . . . .

    ydroplan ing 71

    . . . . . . . . . . .roce dure: Braking Te st 74

    Performance and Su bje ct ive Data Record ing 7 5

    Experimental Design . . . . . . . . . . . . . 76

    . . . . . . . . . . . . . . . . . . . . . .

    esu l t s 76

    Braking Dis tance . . . . . . . . . . . . . . . 76

    D ece l e r a t i o n . . . . . . . . . . . . . . . . . 77

    . . . . . . . . . . . . . . . . .

    raking

    T i m e

    84

    For ty Percen t Decrease in Speed . . . . . . . 85

    Wheel Lockup Frequency . . . . . . . .

    86

    . . . . . . . . . . . .

    heel Lockup Du ra ti on 86

    Proportion of Wheel Lockup T i m e t o

    . . . . . . . . . . . . . .

    o ta l Brak ing T i m e 9 5

    L os s o f L a t e r a l C o n t r o l . . . . . . . . .

    9 5

    . . . . . . . . . .a t in gs o f C o n t r o l l a b i l i t y 99

    . . . . . . . . . . . .at ing s of Pe dal Force 9 9

    Between Subject Performance Comparison . . . 00

    Correlation Between Maximum Pedal Forces

    Measured i n th e Vehi cle and th e Buck . . . . 00

    . . . . . . . . . . . .

    ub je ct Age and Weight 103

    . . . . . . . . . . . . . . . . . . . .

    i scuss ion 103

    . . . . . . . . . . . .

    ec ele ra t ion Measures 103

    . . . . . . . . . . .

    oss of Co ntr ol Measures 104

  • 8/21/2019 13894

    8/222

    Su bj ec t i ve Measures 06

    D r ive r V e h ic l e Br a king E f f i c i e n c y 06

    De r i va t i on of t h e PFG Envelope 09

    evelopment of a Re vi si on t o MVSS 105

    1 1 2

    D r i v e r B r a k i n g P r a c t i c e

    1 1 4

    n t r o d u c t i o n

    1 1 4

    ethod 115

    pparatus 115

    Procedure 20

    ub je c t s 120

    esu l t s 120

    i s c us s ion 1 2 4

    F a i l u r e A n a l y s i s 1 2 5

    n t r o d u c t i o n 1 2 5

    a i l u r e Modes 125

    i n e P r e s s u r e F a i l u r e 1 25

    ower Boos t Fa i lu re 133

    rake Fade 136

    F a c to r s I n f lu e n ci n g t h e P a r t i a l F a i l u r e o f

    rake Systems 140

    onsequences of Fa i l ur e 147

    f f ec t s on Vehic le Performance 147

    I n f l u e n ce of P a r t i a l F a i l u r e s on D ri ve r

    eh ic l e Braking Per formance 148

    Genera l D iscuss ion 57

    Recommendations 62

    ppendices

    Appendix

    I

    D e r iv a t io n o f Cons t a n t P e da l

    D i s

    p la c e m e n t /D e c e l e r a t i on Cha r a c t e r

    s t i c

    ppendix

    I

    I n s t r u c t i o n t o es t S u b j e c t s

    1 6 6

    n s t r u c t i o n s P r a c t i c e Run

    ns t r uc t i on s O f f i c i a l Run 168

  • 8/21/2019 13894

    9/222

    A p p e n d i x

    I

    V e h i c l e I n s t r u m e n t a t i o n f o r

    e c e l e r a t i o n R e c o rd i n g 7 5

    D e c e l e r a t i o n M e as ure me nt 7 5

    D e c e l e r a t i o n C a l i b r a t i o n 7 7

    r ak e L i n e P r e s s u r e 8

    r a k e L i n e P r e s s u r e C a l i b r a t i o n 8

    S a m p le D a t a 8

    n s t r u c t i o n s t o D r i v e r 8 3

    T r i p S h e e t

    8 4

    R e f e r e n c e s 8 5

    v

  • 8/21/2019 13894

    10/222

  • 8/21/2019 13894

    11/222

    L ST

    O

    T BLES

    P a g ea b l e

    2 1

    PILOT STUDY MEDIAN RIGHT AND LEFT FOOT FORCE BY

    THREE GROUPS OF SU BJ EC TS FOR STANDARDtf AND

    INDUCED MOTIVATION INSTRUCTION. DATA ARE I N

    OUNDS.

    AGE DISTRIBUTION OF FEMALE AND MALE SUBJECTS.

    WEIGHT DISTRIBUTION OF FEMALE AND MALE SUBJECTS

    CUMULATIVE PERCENT RIGHT FOOT FORCE DISTRIBU-

    T I O N : 2 7 6 FEMALE DRIVERS

    CUMULATIVE PERCENT RIGHT FOOT FORCE DISTRIBU-

    I O N : 3 3 M A L E D R I V E R S .

    C H A R A C T E RI S T IC S O F T HE T E S T S U B J E C T S ( D R I V E R S ) .

    EDAL FORCE GAINS

    PILOT TEST: MEAN BRAKING

    DISTANCE (FEET)

    ON

    DRY AND WET FOR POWER AND MANUAL BRAKE.

    P I L O T T E S T : MEAN DECELERATION

    f

    / ; e c 2 ON

    DRY AND WET FOR POWER AND MANUAL BRAKE.

    PILOT

    T E S T : MEAN TIME

    (SECONDS) TO DECREASE

    SPEED BY

    1 0

    MPH FROM START OF BRAKING ON DRY

    ND WET FOR POWER AND MANUAL BRAKE.

    MEAN BRAKING DISTAN CE (F EE T) AS A FUNCTION OF

    S P E E D , DECELEIIATION/PEDAL FORCE GAIN AND

    R I C T I O N. DATA F OR

    2 8

    S U B J E C T S

    ANALYSIS OF VARIANCE OF TRANSFORMED DECELERA-

    TION PERFORMANCE.

    GEOMETRIC MEAN DECEL ERATIO N, I N g FOR THE

    INTERACTION OF

    S P E E D ,

    DECELERATION/PEDAL FORCE

    AI N AND SURFA CE. DATA FOR

    2 8

    S U B J E C T S

    NEWMAN-KEULS TEST

    O F

    MEAN DECELERATION FOR

    DECELERATION/PEDAL FORCE GA INS AT EACH

    SURFACE AND SPEED

  • 8/21/2019 13894

    12/222

    P a g e

    a b l e

    3 . 1 0 .

    RANK ORDER OF DECE LERA TION /PEDA L FORCE GA IN S

    D I F F E R I N G S I G N I F I C A N T L Y I N D R I V E R MEAN BRAK-

    I N G D E C E L E R A T I O N . .

    8 4

    MEAN

    TIME

    TO REDUCE S PEE D BY 4 0 PERCENT FOR

    MAIN EF FE CT S OF SPEED , PFG AND SURFACE.

    MEAN NUMBER OF WHEEL LOCKUPS PER TRIAL FOR

    MAIN E F F E C T S . 9 1

    MEAN WHEEL LOCKUP TIME PER TRIAL FOR MAIN

    E FF EC TS 9 3

    PERCENT OF TRIALS INVOLVING LOSS OF LATERAL

    CONTROL AS A FUNCTION OF BRAKE SYSTEM, SPEED

    A N D S U R F A C E . . . . . . . . . . . . . . . . . . g g

    MAXIMUM PEDAL FORCES I N THE ST AT IC T ES T AND

    I N T HE T E S T V E H IC L E . C E L L V AL UE S IN D IC A T E

    NUMBER O F S U B JE C T S . 0 3

    CUMULATIVE FREQUENCY DISTRIBUTION OF

    EAK DECELERATIONS (MANUAL BRA KES ). 1 2 2

    CUMULATIVE FREQUENCY DISTRIBUTION OF

    EAK DECELERATIONS (POWER BRAKES) 1 2 3

    TYPICAL

    IIECELERATION/ PEDAL FORCE

    RATIOS.

    HYDRAULIC LINE FAILURES FOR VEHICLES WITHOUT

    O WE RB OO ST 1 2 8

    TYP ICA L DECELERATION CHAR ACTE RISTI CS. HY-

    D R A U L IC L IN E F A IL U R E F O R V E H IC L E W IT H

    P O W E R B O O S T . 3 0

    COMPLIANCE TE ST S, MVSS -105 FOR VEH ICL ES WITH NON-

    P O W E R B R A K E S .

    . . . . . . . . . . . . . . . . . .

    4 1

    C OM PL IA NC E T E S T S , MVSS - 1 0 5 F O R V E H IC L E S W IT H

    P O W ER B R A KE S . 4 2

    TABULATION OF REQUIRED PEDAL FORCES FOR FRONT

    BRAKE CI R C U I T FA IL UR ES I N LOADED, MANUALLY

    B R A K E D S E D A N . . . . . . . . . . . . a . m . . . . 1 5 5

    P R O B A B IL IT Y O F FR ON T BRA KE C IR C U IT F A IL U R E

    RESU LTING I N VEHI CLE DECELERATIO N LOWER THAN

    D E S I R E D .

    a 1 5 5

  • 8/21/2019 13894

    13/222

    Table Page

    A.11.

    Brake Force Modulation Study: Data Collection

    Sheet Official Runs Displacement 0

    .

    . .

    .

    173

    A.11. Brake Force Modulation Study: Data Collection

    Sheet Official Runs Displacement 2.5

    . . . . 174

  • 8/21/2019 13894

    14/222

    L IS T OF

    FIGUR S

    Figu re Page

    1 1

    T y p i c a l h y d r a u l i c b r a k e s y st e m drum t y p e ) . 6

    1 2

    T y p i ca l b r ak e p e rf o rm an ce cu r v es 0

    1 . 3 . The b r ak i n g p r o ces s r ep r e s en t ed a s a f e edb ack

    co n t r o l s y st em 29

    2 1

    Brake and ac ce le ra to r d imens ions . mean /s t andard

    d e v i a t i o n . 1 96 8 ca r s 35

    2 2 Foot pe da l fo rc e measurement buck 6

    2 .3 . Hydra u l i c fo rc e gauge and fo o t pad 37

    2 4

    Cumula tive pe rc en t ped a l fo rc e f o r 276 females 3

    2 . 5 . C u mu la ti ve p e r cen t p ed a l f o r ce f o r 323 m a le s

    4

    3 . 1. The h y d r a u l i c b r ak e co n t r o l s y s t em 4

    3 .2 . Brake co n t ro l sy s t em 57

    . 3 . B r ak in g e f f i c i e n c y o f t h e t e s t v eh i c l e 5 9

    3 .4 . P e d a l f o r c e a nd d i s p la c e m e n t f o r e a c h d e c e l -

    e r a t i o n / p e d a l f o r c e l e v e l 62

    3 .5 . Peda l

    displacenent decelration

    r ange 2

    3 . 6 . P er fo rm a nc e r e c o r d i n g d i s p l a y s i n t h e

    t e s t

    v e h i c l e 4

    3 .7 . P er fo rm an ce d a t a c o l l e c t i o n i n s t r u m e n t a t i o n

    bloc k d iagram 5

    3 . 8 .

    D e c e l e r a t i o n a s a f u n c t i o n o f l o ck e d w he el

    v e l o c i t y and s u r f a c e

    8

    3 .9 . Tes t c a r i n t h e t r a c k . s ho wi ng l a n e m ar ke r

    cones and s t imu lu s/g oa l lamps 69

    . 10 . D e c el e ra t io n /p e da l f o r c e f o r p i l o t t e s t car s 72

    3.11.

    Mean b r a k i n g d i s t a n c e a s a f u n c t i o n o f d e c e l -

    r a t i o n / p e d a l f o r c e g a i n . s p e ed and s u r f a c e 78

    3 . 12 . Mean b r ak i n g d i s t an ce a s a f u n c t i o n o f s u r f ac e

    and ped a l d i sp la cemen t 9

    3 . 13 . G eom e tr ic mean d e ce l e r a t i o n a s a f u n c t i o n o f

    e c e l e r a t i o n / p e d a l f o r c e g a i n . s p ee d a nd s u r f a c e 82

    x i i

  • 8/21/2019 13894

    15/222

    Page

    Mean t i m t o r e d u c e s p e ed by 40 a s a f u n c t i o n

    o f d e c e l e r a t i o n / p e d a l f o r c e g a i n s p ee d a nd

    s u r f a c e . . . . . . . . . . . . . . . . . . . . 87

    Mean numbzr of wheel lockups as a f u n c t i o n o f

    d e c e l e r a t i o n / p e d a l f o r c e g a i n a nd s p e ed . 88

    Mean number of wheel lockups

    as

    a f u n c t i o n o f

    d e c e l e r a t i o n / p e d a l f o r c e g a i n a nd d i s p l a c em e n t 89

    Mean number of wheel lo ckups a s a fu nc ti on o f

    d e c e l e r a t i o n / p e d a l f o r c e g a i n an d s u r f a c e . 90

    Mean wheel lockup time a s a f u n c t i o n o f s p e ed

    and su rf ac e . 92

    Mean wheel lockup

    t i m as

    a f u n c t i o n o f d e c e l e r a -

    t i o n / p e d a l f o r c e g a i n and s u r f a c e . 94

    P e r c e n t wh ee l l o c ku p t i m e / t o t a l b r a k i n g time

    a s

    a

    f u n c t i o n o f s u r f a c e and s pe e d

    9 6

    P e r c e n t wh ee l l oc k up t i m e / t o t a l b r a k i n g time

    a s a f u n c t i o n of d e c e l e r a t i o n / p e d a l f o r c e g a i n

    and su r f ac e . 97

    P er ce n t of t r i a l s i n v o l vi n g l o s s o f l a t e r a l con-

    t r o l a s a f u nc t i on of d e c e l er a t i o n /p e d a l f o r c e

    g a i n s u r f a c e a nd s p e e d : 0 i n c h d i s p l a c em e n t . 98

    P e r ce n t of t r i a l s i n v ol v i ng l o s s of l a t e r a l con-

    t r o l a s a f u nc t i o n o f d e c el e r at i on / p ed a l f o r c e

    g a i n s u r f a c e and s p e ed : 2 5 inche s d i sp lacement . 98

    Mean c o n t r o l l a b i l i t y r a t i n g f o r 28 s u b j e c t s a s a

    f u n c t i o n o f d e c e l e r a t i o n / p e d a l f o r c e g a i n and

    peda l d i sp laceme l i t 01

    Mean r a t i n g o f f o r c e r e q u i r e d f o r 28 s u b j e c t s a s

    a f u n c t i o n of d e c e l e r a t i o n / p e d a l f o r c e g a i n and

    d i s p l a c e m e n t 0 1

    Braking performance of t h e b e s t s u b j e c t gr oup

    mean a nd p o o r e s t s u b j e c t a s a f u n c t i o n o f d e c c l -

    e r a t i o n / p e d a l f o r c e g a i n and s u r f a c e 02

    x i i i

  • 8/21/2019 13894

    16/222

    Page

    Mean braking ef f ic iency

    as

    a f u n c t i o n of d e c e l e r -

    a t i o n / p e d a l f o r c e g a i n s pe ed and s u r f a c e . . l o 8

    C u t - o f f PFG v a l u e s f o r s a t i s f a c t o r y d r i v e r -

    veh ic l e b rak in g per fo rmance . 11 1

    The recommended de ce le ra t i on /p ed al fo rc e space 11 3

    Dat a r e co r d i n g i n s t r u m e n t a t i o n i n t r u n k o f

    t e s t

    c a r . 1 1 6

    Deceler a t ion/p edal fo rc e f o r manual and power

    ra ke mode. 1968 Plymouth 4-door se da n. .11 7

    Lon git udi nal l o ca t i o n of manual and power brake

    p e d a l s and a c c e l e r a t o r 1 1 8

    Height and location of power and manual brake

    p e d a l an d a c c e l e r a t o r . 1 19

    Cumula tive pe rc ent of de ce le ra t i on s f o r manual and

    power brakes 1 2 1

    Dece lera . t ion /peda l fo rce f o r a loaded passenge r ca r

    wi t h o u t vacuum a s s i s t : f r o n t b r a k e s o p e r a t i v e and

    i n o p e r a t i v e 1 2 7

    Dece le ra t ion /peda l fo rce fo r a loaded passenge r ca r

    wi t h vacuum a s s i s t : f r o n t b r a k e s o p e r a t i v e and

    i n o p e r a t i v e 1 3 1

    B oo st c h a r a c t e r i s t i c s o f a vacuum a s s i s t b r a k e

    system . I35

    raking performance diagram. -137

    Fade-e ffec t iv eness d iagram 13g

    Cumula tive pe rcen t o f ve h ic l e s w i th lower

    gain : manual bra kes 143

    Cumulat ive pe r cen t o f ve h ic l e s w i th lower

    ga in: power brak es 1 4 4

    Cumula tive perc en t of ve hi c l es wi th lower

    a in: 30mph. .145

    Peak d e c e le r a t io n - c u m ul a t i ve d i s t r i b u t i o n o f

    l l d a t a .149

  • 8/21/2019 13894

    17/222

    Page

    P e d a l f o r c e

    c p bilities

    of male and female

    d r i v e r s u s i n g r i g h t f o o t w i t h i nd uc e d m o t i v a t i o n. 150

    C um ul at iv e p ed a l f o r ce d is t ri b ut A .o n s f o r f r o n t

    a x l e br ak e c i r c u i t f a i l u r e i n a l oa de d se da n

    w i t h m a n u a l b r a k e s . 1 5 2

    C umu la ti ve pe d al f o r c e d i s t r i b u t i o n s f o r f r o n t

    a x l e br a ke c i r c u i t f a i l u r e i n a l oa de d se da n w i t h

    power b rak es . 1 5 3

    C um ul at iv e p ed a l f o r ce d i s t r i b u t i o n s f o r power

    a s s i s t f a i l u r e i n a l oa de d s ed an . 1 54

    Sample of sp eed pe dal f or ce and wheel lock-

    up time h i s t o r i e s f o r t h e b e s t and w o rs t s ub-

    j e c t : d e c e l e r a t i o n / p e d a l f o r c e r a t i o 0 .06 5 g / l b . 70

    Sample of spe ed ped al fo rc e and wheel lockup

    time h i s t o r i e s f o r t h e b e s t a nd w o rs t s u b j e c t :

    d e c e le r a t i o n /p e d a l f o r c e r a t i o 0.004 g / lb . I 7 1

    Sample of sp ee d ped al f or ce and wheel lockup

    t i m

    h i s t o r i e s f o r t h e b e s t a nd w or st s u b je c t :

    d e c e l e r a t i o n /p e d a l f o r c e r a t i o 0.012 g / l b 1 7 2

    De ce le ra t ion magn.i.tude in s t ru me nt at io n . 76

    Top: Acce leromete r ca l i b r a t i on check vo l t ag e .

    Bot tom: Ac ce le ra t i on check and acc eler omet er

    s t e p r e s p o n s e . I 7 8

    V e l o c i t y d e r i v a t i v e acce l e r o m e t e r low p as s

    f i l t e r d i f f e r e n t i a t o r f re qu en cy r es po ns e. 179

    Top: B rake l i n e p r e s s u r e ca l i b r a t i o n check.

    B ottom: D ece l e r a t i o n ca l i b r a t i o n check . I 8 0

    r ak e l i n e p r e s s u r e and d ec e l e r a t i o n d a t a s am pl e. 182

  • 8/21/2019 13894

    18/222

  • 8/21/2019 13894

    19/222

      CKNOWLEDGEMENTS

    T h i s r e s e a r c h p rog ra m i n d r i v e r an d v e h i c l e b r a k i ng p e r f o r -

    mance was conducted by s t a f f of t h e Human Fac to rs and Phys ic a l

    F a c t o r s D e pa r tm en t s a t t h e Highway S a f e t y R es e ar c h I n s t i t u t e .

    The p rogram was unde r th e d i r e c t i on o f D r R G Mort imer

    Human F ac t o r s Depar tment and

    M r L .

    S e g e l P h y s i c a l F a c t o r s

    Department who were r e s p o n s i b l e f o r t h e o v e r a l l p l an n i ng and

    e xe cu ti o n of t h e r e s e a r ch t a s k s a nd t h e f i n a l r e p o r t .

    M r

    H . Dugoff p r ov i de d a s s i s t a n c e i n o v e r a l l p r o j e c t p l a nn i n g

    and i n many s p e c i f i c p r o j e c t t a s k s . The d e s i g n o f t h e e l e c t r o -

    h y d r a u l i c s e r v o c o n t r o l s y s te m i n t h e b r a ki n g t e s t v e h i c l e an d t h e

    d a t a r e c o r d i n g s y st e ms were c a r r i e d o u t by

    Mr. J

    Campbell. The

    r e a r d i s c b r a ke c o nv e r si o n a nd o t h e r a s p e c t s o f m e c ha ni c al e n g i -

    ne er in g w er e t h e r e s p o n s i b i l i t y o f

    M r

    J W i r t h . I n s t r u m e n t a t i o n

    was co ns t ruc ted and ve h i c l e modi f i ca t io ns and ma intenance were

    c a r r i e d o u t by Messrs. J B o i s s o n n e a u l t G Popp and R . S t e i n

    a l l of t h e P h y s i c a l F a c t o r s D e pa rt me nt .

    M r R.

    Murphy and

    M r R . L im pe rt w er e r e s p o n s i b l e f o r c o n d uc t i ng t h e e n g i n e e r i n g

    segments o f th e Fa i l u r e Ana lys i s Sec t io n . The Review o f t he

    L i t e r a t u r e was c a r r i e d o u t by Mr. D F i s h e r .

    M r C . J o r g e s o n d i r e c t e d

    t h e

    o pe ra t i on s a t t h e t e s t i n g s i t e

    and was r e s p o n s i b l e f o r t h e d a t a c o l l e c t i o n p h as e i n t h e b r a k i ng

    t e s t . H e was a s s i s t e d by D r J Lower D r

    D

    Damkot M r H Sch ick

    M r

    G

    Popp and Ilr.

    R .

    S t e i n . A na ly se s o f t h e d a t a wer e c a r r i e d

    o u t by D r . J Lower and M r C . J o r g e s o n . M r S. S t u r g i s measured

    t h e b r a k e p e d al c o n f i g u r a t i o n s an d an a l yz e d t h e p e d a l f o r c e a nd

    peak d e c e l e r a t i o n d a t a .

    S e c r e t a r i a l S e r v i c e s a s s o c i a t e d wi t h t h e p r o j e c t w ere admin-

    i s t e r e d

    by

    Mrs.

    M

    Damberg Ilrs. D . Davis and Mrs S P o t t s .

  • 8/21/2019 13894

    20/222

  • 8/21/2019 13894

    21/222

    INTRODU TION

    One of the most desirable and important characteristics of

    motor vehicles is that they should have qood handling charac-

    teristics in terms of directional response to steering inputs

    and performance as affected by accelerator and brake applica-

    tion. A previous report by the Highway Safety Research Institute

    (HSRI) was concerned with evaluating the present status of vehicle

    handling properties and of the potential role of these character-

    istics upon collisions (HSRI, 1967). In that study, various

    aspects of the man-vehicle interface were identified as having

    safety significance.

    For example, the ability of the driving population to exert

    the pedal forces required to brake a car is one facet of this

    interface. Further, this facet has both a static and dynamic

    component. From a static viewpoint, it appears desirable to

    build motor vehicles such that a specific percentile of the driv-

    ing population can exert the maximum pedal forces associated

    with peak decelerations on dry, high-friction surfaces. From a

    dynamic standpoint, it appears that pedal-force characteristics

    should also enable driving population to attain maximum

    braking performance irrespective of the friction conditions pre-

    vailing at the tire-road interface. By maximum braking perfor-

    mance we mean the shortest distance to slow or stop that can

    be obtained without excessive locking of the wheels in order

    that sufficient control and stability prevail for holding the

    vehicle in the desired lane of travel.

    It is primarily the dynamic aspect of the man-vehicle

    interface with which this study is concerned. The braking

    process is viewed as a task in which the driver must control

    and modulate his pedal force such that he achieves the shortest

    braking distance possible under the prevailing road conditions,

  • 8/21/2019 13894

    22/222

    while further satisfying the requirement that the trajectory

    of his vehicle be under reasonable control. The investigation,

    as conceived, is concerned with both the static and dynamic

    component of the ergonomics of braking. The major question

    addressed is:

    In the distribution of anthropometric character-

    istics and perceptual-motor skills possessed by the driving popu-

    lation, how do the relationship of pedal force and pedal dis-

    placement to vehicle deceleration influence the braking perfor-

    mance of the man-vehicle combination? . From the standpoint of

    generating a braking standard, this question can be rephrased

    to: What are the bounds on brake pedal force/vehicle decelera-

    tion space wherein the bulk of the driving population shall find

    it possible to maximize deceleration while making controlled

    (i.e., well modulated) braking maneuvers on both,dry pavement

    and surfaces with a reduced coefficient of friction? .

    SUMM RY

    O

    T S K S

    The study was conceived as having six major phases which

    will be briefly discussed here so as to provide the reader with

    a general orientation of the overall approach.

    1 LITERATURE REVIEW

    A review of the literature was carried out pertinent to

    an analysis of the pedal force/vehicle deceleration character-

    istics of an automotive vehicle. The factors considered impor-

    tant in the review were brake system design, brake usage, skid-

    ding, brake testing, and driver characteristics. The review was

    submitted earlier as an interim report.

    2 FOOT FORCE CAPABILITY OF DRIVERS

    The vehicle braking system is actuated with the feet of

    the driver and, therefore, it is essential to learn more of the

    foot force capabilities of individuals comprising the driving

    population.

    A procedure was developed by which left and right

  • 8/21/2019 13894

    23/222

    f o o t maximum fo rc e e xe r t io n cou ld be measured f o r a l a r ge sample

    o f f emale and male d r iv e r s . The pu rpose was t o de te rmine a

    s u i t a b l e u pp er f o r c e

    l m t

    f o r t h e o p e ra t i on o f v e h i c l e s e r v i c e

    b r a k e s .

    3

    DRIVER BRAKING

    PERFORMANCE

    AS

    A FUNCTION OF PEDAL-FORCE AND

    PEDAL-DISPLACEMENT LEVELS

    The ma j or emp hasi s i n t h i s s t u d y was t o l e a r n more o f t h e

    dynamic r e l a t i o n s h i p s betwe en t h e d r i v e r a s a c o n t r o l l e r of

    t h e b r ak e sy st em a nd v a r i o u s c h a r a c t e r i s t i c s of t h a t sy st em

    Ma jor v a r i a b l e s t o be c o n s i d e r e d w er e t h e r e l a t i o n s h i p be tw ee n

    t h e f o r c e a p p l i e d t o t h e p e d a l and t h e r e s u l t i n g d e c e l e r a t i o n of

    t h e v e h i c l e and t h e p e d al d i sp l ac e me n t i n a f f e c t i n g t h e st o p -

    p i ng d i s t a n c e i n a b ra k in g t a s k r e q u i r i n g v e h ic l e d i r e c t i o n a l

    co n t ro l . The co r e o f t h e exper imen t was t h e deve lopmen t o f a

    s p e c i a l t e s t v e h i c l e i n which v a r i a t i o n s i n br a ke r e s po ns e c ha r-

    a c t e r i s t i c s c o ul d b e r e a d i l y o b ta i ne d . A d r i v e r - v e h i c l e b r a k i n g

    t e s t was d ev e lo p ed and m easu rement s t ak en t o d e t e rm i n e t h e e f f e c t

    o f t h e v a r i a b l e s o f i n t e r e s t on b r a k i n g p er fo rm an ce .

    4

    DRIVER

    BR KING

    PRACTICE

    t

    was n e c e s sa r y t o o b t a i n e m p i r i c a l d a t a d e s c r i b i n g t h e

    l e v e l s o f d e c e l e r a t i o n t h a t d r i v e r s employ u nd er no rma l d r i v i n g

    co n d i t i o n s . Such d a t a w er e n eeded a s a p a r t of an o t h e r ph ase of

    t h i s program t h e f a i l u r e a n a l y s i s s i n c e b ra ke d e c e l e r a t i o n

    l e v e l s c an f or m o ne c r i t e r i o n m eas ur e o f r eq u i r ed p e rf o rm ance

    b o t h u nd e r n or ma l an d f a i l e d co n d i t i o n s .

    5.

    FAILURE ANALYSIS

    An a n a l y s i s was co n d uc t ed t o a s ce r t a i n t h e e f f e c t upon

    v e h i c l e pe rf or ma nc e of v a r i o u s f a i l u r e s i n t h e b r a k i n g sy st em .

    C o n di t i on s u nd er whi ch s u c h f a i l u r e s a r e l i k e l y t o o c c ur w er e

    co n s i d e r ed and t h e co ns equ en ces e s t i m a t ed fr om t h e r eq u i r e d

    d e c e l e r a t i on l e v e l p r ob a b i l i t y and t h e a b i l i t y of t h e d r i v e r t o

    e x e r t t h e n ee de d p e d a l f o r c e .

  • 8/21/2019 13894

    24/222

    6.

    RECOMMENDATIONS

    Finally based upon the preceding work recommendations

    for a modified brake performance standard were made utilizing

    the information that had been gathered in the analytic and experi-

    mental phases of the project.

  • 8/21/2019 13894

    25/222

    T S K S

    1

    LITERATURE REVIEW

    INTRODUCTION

    Brak ing i s a complex energy conve rs ion p r oces s whereby t h e

    k i n e t i c en er gy of t h e v e h i c l e

    i s c o n ve r t e d i n t o t h e r ma l e n er g y

    a t t h e b ra k es and a t t h e r o a d- t i r e i n t e r f a c e . During t h e b r ak i ng

    p r o c e s s , t h e p e d a l f o r c e a c t s th r o ug h a m e c h an i c a l- h y dr a u l ic s y s-

    tem

    t o a pp l y a r e t a r d i n g t o rq u e t o e ac h o f t h e f o u r w he el s of t h e

    v eh i c l e . The b r ak i n g t o r q u e i s op po se d by t h e i n e r t i a o f t h e

    w he el a nd t h e f r i c t i o n a l f o r c e between t h e

    t i r e

    a nd t h e r o a d , w i t h

    t h e n e t r e s u l t be i ng t h e d e c e l e r a t i o n of t h e v e h i c l e . The c ha ra c-

    t e r i s t i c s

    o f t h e m ech an i ca l - h y dr au l i c s y s t em d e t e r m i n e t h e b r ak i n g

    t o rq u e a v a i l a b l e a t e ac h w he el , w h i le t h e r o a d - t i r e f r i c t i o n c o ef -

    f i c i e n t and t h e m ec ha nic s o f t h e v e h i c l e d e t er m in e t h e d e c e l e r a t -

    i n g f o r c e s . C on se qu en tl y, t h e c o n t r o l of t h e d e c e l e r a t i o n o f a

    v e h i c l e t h r o u gh b r ak e p ed a l f o r ce d epend s on t h e s t a t i c and d yn am ic

    c h a r a c t e r i s t i c s o f t h e e n t i r e s ys te m, i n c l u d in g t h e d r i v e r .

    I n t h e r e vi ew t h a t f o l l o w s , t h e t e rm in ol og y e s t a b l i s h e d by t h e

    So c i e t y o f Automot ive Eng ineer s SAE) f o r t he au tomot ive ve h i c l e

    b ra ki ng pr oc es s SAE J6 56 cI 1968; SAE J65 7a, 1968)

    w i l l

    be used .

    By d e f i n i t i o n , b r ak i ng i s i n i t i a t e d i n a m ot or v e h i c l e by a d r i v e r

    a p p ly i ng a f o r c e t o t h e f o o t - a c t u a te d l e v e r t e rm ed t h e b r a ke p e d a l.

    The m ag ni tu de o f t h e a c t u a t i n g f o r c e a t any i n s t a n t i s

    c a l l e d

    th

    p e d al f o r c e . The v a r i a t i o n o f t h i s f o r c e by t h e o p e r a t o r w i t h

    time i s d e f i n e d h e r e a s p e d a l f o r c e m od u la t io n .

    s e t

    o f s i m p l i f i e d e q u a t io n s d e s c r i b i n g t h e o p e r a t i o n of a

    t y p i c a l b r a k e s y st em

    i s

    p r e s e n t e d b el ow . The r e l a t i o n s h i p s

    w l l

    b e h e l p f u l i n e va l u at i n g t he l i t e r a t u r e p e r t i n e n t t o t h e br ak in g

    p r o ces s , an d w l l s e r v e t o d e f i n e t h e v a r i a b l e s t h a t a r e i nv ol ve d.

    F i g u r e

    1 1

    i l l u s t r a t e s a t y p i c a l b ra k e s ys te m C ro us e, 1 9 6 5) .

  • 8/21/2019 13894

    26/222

    rMaster C v l i n d e r

    FRONT BR KES RE R BR KES

    Fig u re 1 1 T y p i c a l h y d r a u l i c b r a k e s y s te m drum t y p e ) .

  • 8/21/2019 13894

    27/222

    Application of a pedal force, F, causes the brake pedal to be

    displaced through a distance

    XI.

    The pedal linkage is designed

    to yield a mechanical advantage of force, r, between the pedal

    and the master cvlinder piston, resulting in a displacement of

    the piston, X2, that is less than the displacement X1.

    The master

    cylinder, with an area Am, traps the oil in the brake line, there-

    by developing a hydraulic pressure, p. Since there are frictional

    losses, it is common to assume a pedal efficiency, E, that is

    less than unity. The relationship between line pressure and pedal

    force is actually nonlinear but may be simplified for illustration

    purposes

    Brown,

    1965).

    where

    In power brakes, a vacuum-powered device assists the driver by

    multiplying the force by a factor

    K.

    This power boost modi-fies

    the above relationship to:

    It should be noted that the factor

    K

    may be a nonlinear function

    of the pedal force.

    In the brake proper, a friction material having a coefficient

    il is pressed against the brake drum or disc), resulting in a

    brake torque,

    T.

    Measurements Brown, 1965, Shigley, 1963, Stroh,

    1968) have shown that the relationship between brake torque and

    line pressure is not necessarily linear and is very much dependent

    upon the type of brake employed. Thus, we have:

    T kp

    where

    k , brake type, brake geometry, A ~ ~ )

    and

    area of wheel cylinder.

  • 8/21/2019 13894

    28/222

    The development of v eh ic le de ce le ra ti on by means of bra ke

    to rq u e fo l l o ws d i r e c t l y when wheel i n e r t i a

    i s

    neg lec ted and it

    i s

    assumed t h a t no sk idd ing occurs . The dec e le ra t io n of a

    v eh i c l e du e t o ap p l i ed b rake t o rq u e can b e ex pre s s ed a s :

    where

    g a c c e l e r a t i o n of g r a v i t y

    E  

    e f f e c t i v e r a di us of wheel i

    i

    v eh ic l e we ig h t

    i

    b rake t o rq u e a t wh ee l

    i

    On combinin g Eq ua ti on s

    3 ,

    4 and 5 t h e d e c e l e r a t i o n o f a v e h i c l e

    can b e ex p re s s ed a s a fu n c t i o n o f p ed a l fo r ce v i z :

    where

    On t h e ot he r hand t h e maximum de c el er a ti on t h a t can be pro-

    duced i n a locked-wheel s t op can be reduced t o th e

    s imple expres -

    s io n :

    a

    max Yt9

    7 )

    where

    measured r o a d - t i r e f r i c t i o n c o e f f i c i e n t

    v

    under locked-wheel condi t ions .

    t s h ou ld b e no t ed t h a t n e i t h e r Eq ua t io n 6 nor

    7

    h ol d s f o r t h e

    brak ing reg ime i n which th er e i s s u b s t a n t i a l s l i p p i n g between

    t i r e and r o ad w i t h t h e w he el s t i l l r o t a t i n g .

  • 8/21/2019 13894

    29/222

    PEDAL FORCE AS

    A

    FUNCTION OF DESIGN PARAMETERS

    BR KE SYSTEM DESIGN.

    Pedal Force Design Goals .

    A

    s u c c e s s f u l br a k e s ys t em d e s i g n

    s h ou ld embody t h e c h a r a c t e r i s t i c s o f r e l i a b i l i t y , p r e c i s en e s s of

    c o n t r o l , and t h e a b i l i t y t o w i t hs t a nd s h o r t pe r i o d s of e xt re me

    o v e r l oa d V a l l i n , 1 9 6 8 ).

    The s e l e c t i o n of com po nent s f o r t h e

    b r a k e s ys t e m R obs on, 1 9 67 ) e s t a b l i s h e s t h e n om in al c h a r a c t e r i s -

    t i c s

    o f t h e p e d a l f o r c e / br a k e t or q u e r e l a t i o n s h i p . The f i n a l

    produce, however, i s t h e r e s u l t o f many assumpt ions , compromises ,

    a n d d e s i g n c h o i c e s .

    Ped al Force/Brake Torque Re la t i ons h i p . One measure of b ra ke

    performance i s t h e p l o t o f t h e b ra k e t o r qu e v e r s u s l i n e p r e ss u r e

    Wi nge , 1 9 6 1 ) ; n am e ly , a g r ap h i ca l r ep r e s en t a t i o n o f E q u a t i on

    f o r a c o n s ta n t l i n i n g c o e f f i c i e n t o f f r i c t i o n . T yp ic a l p e rf o r-

    mance cu r v e s o b t a i n ed ex p e r i m en t a l l y w i t h d i s c and drum b r ak es

    a r e shown i n F i g u r e 1 . 2 .

    S e v e r a l f e a t u r e s of t h e p e rf o rm an c e cu r v e f o r t h e drum b r a k e

    may be noted.

    The o f f s e t of t h e c u r ve n e a r t h e o r i g i n i s

    termed

    t h e p u s h ou t p r e s s u r e and

    i s

    t h e b r ak e l i n e p r e s su r e n ec e ss a ry t o

    o ve rcome t h e b r ak e s h o e r e t u r n s p r i n g s .

    The co n c av i t y o f t h e p e r -

    fo rma nc e c ur v e r e s u l t s f rom t h e d i s t o r t i o n o f t h e s h oe s and t h e

    drum Winge, 1961) and t he r e f o r e may va ry con si de ra b l y f rom one

    b r a k e d e s i g n t o a n o t h e r . A lt ho ug h drum d i s t o r t i o n h a s b ee n c a l -

    c u l a t e d a n a l y t i c a l l y Winge, 1 9 6 1 ) , t h e i n f l u e n c e o f drum d i s t o r -

    t i o n r em ai ns t o b e i n c o r po r a t e d i n t o t h e o r e t i c a l b ra ke t o r q u e

    a n a l y s i s .

    C o n s eq uen t l y , t h e co ncave f ea t u r e o f t h e d rum b r ak e

    per fo rmance cu rve

    i s

    n o t p r e s e n t i n t h e o r e t i c a l l y d e r iv e d b ra ke

    t o r q u e / l i n e p r e s s u r e r e l a t i o n s h i p s S h i g l e y , 1963; S t e e d s , 1960:

    S t r o h , 1 9 6 8 )

    W it h t h e a i d o f E q u a t i o n 5 ,

    t

    can b e shown t h a t t h e v eh i c l e

    d e c e l e r a t i o n i s a p p r o xi m a t e l y p r o p o r t i o n a l t o t h e sum o f t h e

    i n d i v i d u a l b r ak e t o r q u es when n o s k i d d i n g o ccu r s . C o ns eq uen t ly ,

    any d e s ig n f e a t u r e a f f e c t i n g t h e l i n e a r i t y of t h e p ed a l f or c e /

    v e h i c l e d e c e l e r a t i o n r e l a t i o n s h i p .

    I f t h e drum b r ak e s a r e u t i l i z e d ,

  • 8/21/2019 13894

    30/222

    Line Pressure--.

    A )

    Disc

    rake

    B) r u m rake

    Figure 1 2

    Typical brake performance curves

  • 8/21/2019 13894

    31/222

    t h e n o n l i n e a r i t i e s a s s o c i a t e d w i t h t h e b ra ke t o r q u e / l i n e p r e s s u r e

    cu r v e a r e i n t r o d u ced . T h er e

    i s

    some ev id ence Leah , 1964) t o in d i -

    c a t e t h a t t h e b ra ke l i n e p r e s s u r e i t s e l f may n o t b e e x a c t l y pr o-

    p o r t i o n a l t o t h e p e d al e f f o r t . I n t h e c as e o f power a s s i s t e d b r a ke s ,

    t h e l i n e p r e s s u r 3 h a s b ee n r e p o r t e d S p u r r , 19 65 ) a s b e i ng d i r e c t l y

    p r o p o r t i o n a l t o t h e p e d a l e f f o r t u p t o a l i n e p r e s s u r e co rr es po nd -

    i n g t o s a t u r a t i o n o f t h e vacuum a s s i s t component,

    D i s c b r ake s y s t em s a r e g en e r a l l y ack no wl ed ged a s h av i n g a

    l i n e a r m odu la tion c h a r a c t e r i s t i c ; i . e . , t h e v e h i c l e d e c e l e r a t i o n

    i s

    a p pr o xi m at e ly p r o p o r t i o n a l t o t h e p e d a l e f f o r t .

    t

    has been

    r e p o r t e d Brown, 1 96 5) t h a t t h i s f e a t u r e o f d i s c b r a ke s a ll o w s t h e

    d r i v e r t o a v o i d u n i n t e n t i o n a l w he el l o ck u p and p e r m i ts h i g h d e c e l -

    e r a t i o n r a t e s u nd er a d v e rs e r oa d c o n d i t i on s . t s h o u l d b e n o t ed ,

    how ever, t h a t t h i s l a s t s ta t e m en t r e s u l t e d f rom q u a l i t a t i v e d r i v e r

    e v a l u a t i o n s r a t h e r t h a n a n e x t e n s i v e s t u d y.

    t was s t a t e d e a r l i e r t h a t t h e b r ak e t o r qu e i s d e pe nd en t on

    t h e l i n i n g c o e f f i c i e n t of f r i c t i o n a s w e l l a s t h e br ak e l i n e p re s-

    s u r e . A lt ho ug h t h e t o r q u e o u t p u t s o f b o t h drum and d i s c b r ak es

    a r e , i n t h e main, p r o p o r t io n a l t o t h e br ak e l i n e p r e s s u r e , t h e s e

    b ra ke s d i f f e r s u b s t a n t i a l l y i n t h e i r be ha vi or w i th r e s p e c t t o

    c ha nge s i n t h e l i n i n g c o e f f i c i e n t of f r i c t i o n . The t o r qu e o u t -

    p u t o f a d i s c b r a k e

    i s

    d i r e c t l y p r o po r t i o na l t o t h e c o e f f i c i e n t

    o f f r i c t i o n f o r a g i v en l i n e p r e s s u r e The B en di x C or p. , 1 9 6 4 ) .

    Most drum b r a ke d e s i g n s h av e a s e l f - e n e r g i z i n g f e a t u r e i . e . , t h e

    b r ake a s s i s t s i n i t s own a c t u a t i o n ) whic h r e s u l t s i n t h e b r a ke

    t o r qu e b e in g v e ry s e n s i t i v e t o ch ang es i n t h e c o e f f i c i e n t o f f r i c -

    t i o n o f t h e b r ak e l i n i n g L ueck , 1 96 5; K i n ch i n , 1 96 1; F u r i a

    e t

    a l . ,

    1967 ; Farob in , 196 8) . Thus , bo th f ade and t he normal day- to-day

    v a r i a t i o n s i n t h e f r i c t i o n c o e f f i c i e n t Winge, 1961) o f t h e l i n i n g

    c an ha ve a n e x a g g e r a t e d e f f e c t on t h e p e d a l e f f o r t of a drum b r a ke

    s ys te m. F u r t h e r , t h e r e i s an i nc r ea s ed p o s s i b i l i t y of s i d e t o

    s i d e v a r i a t i o n s i n b r ak i n g t o r q u e when a d rum b r ak e s y s t em i s

    employed. Th i s phenomenon may r e s u l t i n an und es i rab le d i r e c t i o n a l

    r e sp o ns e of t h e v e h i c l e F u r i a e t a l . , 1967; L i s t e r , 1 96 5)

  • 8/21/2019 13894

    32/222

    One factor affecting the choice between drum and disc brakes

    is the self-energizing design of most drum brakes. In effect,

    this self-actuation feature assists the driver in applying the

    brakes, thus allowing relatively low pedal effort for a given

    brake torque. Compared to the self energizing drum brake (Farobin,

    1968; Winge, 1963) a typical disc brake requires four to five

    times the wheel cylinder area and twice the hydraulic line pressure

    to produce the same brake torque. In terms of brake pedal actua-

    tion this implies higher pedal efforts and greater pedal displace-

    ment (Shaw, 1965; SAE, 1963; Burke Prather, 1965). This problem is

    often solved by using a power assist.

    Brake Proportioning. When a four-wheeled vehicle decelerates

    there is a transference of load (Parker, 1960; Taborek, 1957) onto

    the front wheels because the body s center of qravity is above the

    ground plane. To achieve optimum braking the proportioning of

    the braking effort between the front and rear axles should match

    the instantaneous load distribution (Taborek, 1957; Alexander,

    1967). Manufacturers build in a front to rear proportioning

    (Automotive Industries, 1968), but a brake system having a fixed

    front to rear braking ratio can only achieve optimum performance

    for a given rate of deceleration (chase, 1949; Hofelt, 1959;

    Parker Newcomb, 1964). Typically, brake proportioning is fixed

    with 60 percent to 70 percent of the braking occurring at the

    front wheels (Automotive Industries, 1968).

    A series of tests on vehicles having different weight dis-

    tributions and different brake proportioning has shown (Alexander,

    1967) that a front/rear brake ratio equalling the wheel load dis-

    tribution of the vehicle at a deceleration of 1.0 g is desirable

    if the car is to remain directionally stable when heavily braked

    on all surfaces. On low coefficient surfaces, however, this

    would result (Parker, 1960) in premature front wheel lockup and

    a deceleration less than maximum for that surface. The overall

    effect of proportioning on the driver-vehicle performance during

    braking is that under certain conditions the driver may be able

    12

  • 8/21/2019 13894

    33/222

    t o ap p l y h i g h e r p e d a l e f f o r t s and ach i ev e h i g h e r maximum d ece l -

    e r a t i o n s w i t h o u t i n c u r r i n g w he el l oc ku p.

    One s o l u t i o n t o t h e p r ob le m o f p r o p e r p r o p o r t i o n i n g i s t o

    v a r y t h e br a k e pr o p o r t i o ni n g w i t h t h e d e c e l e r a t i o n of t h e c a r .

    T hi s c an b e done by c o n t r o l l i n g t h e p r e s s u r e a t e ac h a x l e i n

    c or re sp on de nc e t o t h e a x l e l o a d i n g ( F u r i a e t

    a l , , 19 67 ; E at on

    S c h r e u r , 1 96 6; E n g i n e e r i ng , 1 9 6 4 ) , b u t t h e u s u a l p r o c e d ur e i s t o

    l m t

    o r p r o p o r t i o n t h e r e a r b r a k e h y d r a u l i c p r e s s u r e a bo ve some

    f i x e d u pp er l m t ( F u r i a e t a l . , 1 96 7) . A t b e s t , ho weve r, t h e s e

    l a t t e r methods a r e on l y compromises a s a r e s u l t o f v a r i a t i o n s i n

    v e h i c l e l o ad i n g and b r ak e p er f or m an ce.

    DESIGN PRACTICE AND TRENDS. V eh ic l e b r a k i n g sy st em s may be

    c l a s s i f i e d a s b e i ng e i t h e r fo ur -w he el drum, f r o n t d i s c and r e a r

    drum ( h y b r i d ) , o r fo u r- w hee l d i s c . D i s c b r ak es hav e b een

    common i n Eu ro pe f o r s ev e r a l y ea r s ( F u r i a e t a l . , 1 96 7; Hu n ti n gt o n,

    1964; S t r i e n , 1 9 6 1 ) , b u t ha ve be en i n t r o d uc e d o n l y r e c e n t l y i n

    t h e U n i te d S t a t e s ( Bu rk e e t a l . , 1965 ; T ignor , 1966 ; Thomas, 196 7) .

    Only on e A m er ican - bu i l t c a r h a s f o u r -w h ee l d i s c b r ak es a s s t an d a r d

    e q ui p me n t, a nd on e m a n uf a c t ur e r o f f e r s them a s a n e x t r a c o s t

    o p t i o n . S e v e r a l a uto ma lt er s o f f e r f r o n t d i s c br a k e s a s s t a n d a r d

    equipment whi le most l i s t them a s an o p t i o n ( Au to mo ti ve I n d u s t r i e s ,

    1 96 8; Ki ng , 1 9 6 8 ) . D i s c b r ak e s w er e f i r s t made av a i l a b l e o U.S.

    c a r s i n 1 96 5, an d 2.19 p e r c e n t of t h e c a r s s o l d were s o eq u ip p ed.

    By 1 96 7 t h i s p e r c e n t a ge ha d r i s e n t o 6. 22 p e r c e n t , a nd t

    i s

    e xp ec te d t h a t t h i s t r e n d

    w i l l

    co n t i n u e .

    I n r e c e n t y e a r s t h e r e h a s be en a t r e n d t o wa r ds l o we r p e d a l

    e f f o r t s t o a ch i e ve a gi v en d e c e l e r a t i o n . I n 1 935 a d e s i gn bogey

    ( a s t a n d a r d of p e r fo r m ance ) was ad o p t ed ( C h ase , 1 94 9) f o r t h e

    r a t e o f d e c e l e r a t i o n f o r a g iv en pe d al p r e s s ur e , s p e c i f y i n g t h a t

    a b rake sys t em shou ld r eq u i re be tween 100 l b and

    1 3

    l b of p e d al

    e f f o r t t o a c h i ev e a d e c e l e r a t i o n of

    2

    f t / s e c 2 . T h i s b og ey was

    e x te n de d i n 1 949 ( C ha s e, 1 94 9) t o r ed u c e t h e r e q u i r e d p e da l e f f o r t

    t o a s low a s 77 l f o r t h e same d e c e l e r a t i o n . The p ur po se of t h i s

  • 8/21/2019 13894

    34/222

    new bogey was t o se t an upper l i m i t of b ra ke s e n s i t i v i t y t h a t

    would

    s t i l l

    exc lud e b rakes capab le o f lock ing th e wheel s on d r y

    pavement e.g.

    v

    1 . 0 ) w i t h

    l ess

    t h a n 100 l b of p e da l e f f o r t .

    t

    was n ot ed t h a t a number o f t h e c a r s t e s t e d o b t a i n e d 20 f t / s e c 2

    d e c e l e r a t i o n s w i t h p e d a l f o r c e s l ower t h a n t h o se a l lo we d by t h e

    new d e s i g n b og ey . T h er e h a s b ee n n o l i t e r a t u r e p u b l i sh e d i n t h e

    i n t e r i m d e a l i n g wi th t h e d e s i r a b i l i t y of v a r i ou s d e c e l e r a t i o n

    v e r s u s p e da l e f f o r t c u r ve s.

    Some recent ly publ i shed design summaries have

    i n d i c a t e d

    s a t i s f a c t o r y p er fo rm an ce w i t h v e h i c l e b r a k e s y st em s t h a t a c hi ev ed

    2 0

    f t / s e c 2 d e c e l e r a t i o n s w i t h 50 l b Brown, 1 9 6 5 ) ,

    4 4

    l h Winge,

    1 96 31 , and 3 1 l b Va n s t e e n k i s t e , 19 63 ) of p e d a l e f f o r t , Data

    p r e s e nt e d i n a b ra k i n g t e s t of f ou r d i f f e r e n t B r i t i s h b u i l t c a r s

    Mack en zi e e t a l . , 1 96 6) a l lo we d t h e c a l c u l a t i o n o f c o mp a ra t iv e

    d a t a : f o r a 20 f t / s e c 2 d e c e l e r a t i o n , t h e r e q u ir e d p e da l e f f o r t s

    ranged from

    48

    l b t o 73 l b .

    A l l

    f o u r c a r s wer e e q ui pp ed w i t h

    hybr id b rake sys t ems ,

    Compara t ive da ta de r ived f rom o the r

    p u b l i sh e d p er fo rm an ce c u r v e s i n c l u d e s ev en f o r e i g n s p o r t s c a r s

    Motor ing Which?, 1968) re qu i r in g 40 l b t o

    7 9

    l b of p e da l e f f o r t ,

    and s i x fo re ig n sedans Motoring Which?, 1968) re qu i r in g 39 l b

    t o 50 l b , a l l f o r a 20 f t / s e c 2 d e c e le r a t i o n .

    These c a r s were

    e qu ip pe d w i t h a l l t h r e e t y p e s of b r a k e s y st em s .

    A l l

    but one of

    t h e s e c a r s r e p r e s e n t pe rf or ma nc e i n e x ce s s of t h e l i m i t sugges ted

    i n 1 94 9, i n d i c a t i n g t h a t t h e i n t r o d u c t i o n of power b r a k e s o r

    advan ces i n br ak e s t a b i l i t y have r e s u l t e d i n a c o n s id e ra b le s h i f t

    i n t h e d e s i g n b og ey to wa rd l ower p e d a l e f f o r t s . Motor Ve h i c l e s a f e t y

    S t an d ar d No. 1 05 1 96 8) s p e c i f i e s t h a t t h e s e r v i c e b r a k e p e r-

    f or ma nc e of m ot or v e h i c l e p a s se n g er c a r s m us t n o t b e l e s s t h a n

    t h a t d es cr ib ed i n S e ct i o n D

    of

    SAE Recommended Practice J9 7

    1 9 6 8 ) , when t e s t e d i n a c c o r d a nc e w i t h

    SAE

    Recommended P r a c t i c e

    J843a 19 68 ). The

    SAE

    s t a n d a r d s p e r m i t

    a

    very b road range o f

    braking performance

    SAE

    Pu bl ic a t io n SP-299, 19 67 ) . For example ,

    on d r y P o r t l a n d c ement c o n c r e t e t h e y o n l y r e q u i r e t h a t t h e b r a ke

  • 8/21/2019 13894

    35/222

    p ed al e f f o r t f a l l i n t h e r ang e of 1 5 t o 120 l b i n o r d e r t o a c hi ev e

    a d e ce l e r a t i o n of 20 f t / s e c2 f ro m 60 mph w h i l e m a i n t a i n i n g t h e

    v e h i c l e w i t h i n a 1 2 f o o t l a n e .

    BRAKE USAGE

    BRAKE USAGE MEASUREMENTS. S e v e r a l s t u d i e s (C a rp en te r Lees ,

    1 95 6) have b een made i n v es t i g a t i n g t h e u s e b r ak es r ec e i v e d u r i n g

    n o r m a l d r i v i n g .

    A l l

    b u t one of t h e s t u d i e s

    were

    European and

    i n v o l v e d a v a r i e t y of d r i v i n g c o n d i t i o n s . D ur in g a t e s t i n v o l v i n g

    f o u r d r i v e r s o v e r a d i s t a n c e of 1400 m i l e s ,

    t

    was found th a t on ly

    5

    p e r c e n t o f t h e s t o p s ex ce ed ed an a v er a g e d e c e l e r a t i o n of . 3 g

    and t h a t 50 p e r cen t o f a l l s t o p s we re made a t . 09 g o r l o w er

    ( C a r p e n t e r , 1 9 5 5 ) . I n a t e s t i n v o l v i n g 23 d r i v e r s o v e r 300 m i l e s

    o f European d r iv in g , t h e average o f t he maximum de ce le ra t i on s

    observed on a number of d i f f e r e n t t e s t r o u t e s v a r i e d b et we en 2 1 g

    and .34 g, t h e mean bei ng .26 g. The s i n g l e maximum de c e le ra t io n

    re cor ded was .6 g. A B r i t i s h s t u d y ( L i v s ey , 196 0- 61) i n v o l v i n g

    16 v e h i c l e s co v e r i n g a w id e s e l e c t i o n of v e h i c l e t y p es was co n-

    d u c te d o v er f o u r d i f f e r e n t r o u t e s , i n c l u d i n g f a s t m ai nr oa d, c r o s s

    co u n t r y , w i n di n g r o ad s , and an a l p i n e d e s cen t . t was found t h a t

    d e c e l e r a t i o n s on a l l t h e r o u t e s were u s u a l l y i n t h e r an ge o f 2

    t o

    3

    g , and r a r e l y exceeded

    4

    g . T h i s

    i s

    i n ag reemen t wi th an

    A meri can s t u d y w hi ch o b t a i n ed d e ce l e r a t i o n f r eq u en cy d a t a o n an

    Itin town d r i v i n g co ur se (Kumrner Meyer, 19 65 ) . t was f e l t

    t h a t t h e b r ak i n g l e v e l s ex p e r i en ced w e r e t h e maximum t h a t w ould

    b e g e n e r a t e d by t h e g e n e r a l p u b l i c . A d d i t i o n a l l y

    t

    was found

    t h a t t h e r o o t mean s q u a r e of t h e s p eed a t w hi ch b r ak i n g was

    i n i t i a t e d f o r a l l t h e ro u te s i n cr ea se d i n d i r e c t pr op or t i on t o

    t h e v e h i c l e s ' maximum s p e e d, b u t t h e p r o p o r t i o n a l i t y c o n s t a n t

    was d i f f e r e n t f o r t h e f o u r r o ut e s .

    Ano ther B r i t i s h s tud y (McKenzie e t a l . , 1962-63 ) was made

    a t t e m p t i n g t o e s t a b l i s h m a th em at ic al r e l a t i o n s h i p s which

    woul

    en ab l e t h e p r e d i c t i o n o f b r ake u s ag e. By d e f i n i n g two p a r am e t e r s ,

    vo

    a c h a r a c t e r i s t i c sp ee d a s s o c i a t e d w i th t h e r o u t e , and M des -

    c r i b i n g t h e manner o f d r i v i n g , t h e a v e ra g e d e c e l e r a t i o n c o ul d be

    15

  • 8/21/2019 13894

    36/222

    e x p r e s se d a s

    a ( .039 .09 3)g

    where

    M

    )*45(i0) 2

    max

    i s

    t h e a v e ra ge r o u t e s pe ed f o r t h e c a r ,

    and

    'max

    i s

    t h e t o p

    speed o f which th e ca r i s c a pa b le . F or t h e c a r s t e s t e d , t h e

    d e c e l e r a t i o n s r a n g e d f r o m 15 g t o . 28 g on a l l r o u t e s , and t h e

    r o o t mean sq u a r e of t h e sp ee d a t whi ch b r a k i n g was i n i t i a t e d

    c ou ld b e r e l a t e d t o Vo an d f o r e ac h r o u t e .

    I n c o n cl u s i o n, t h e n , i t a p p e a r s t h a t t h e d e c e l e r a t i o n s e x p e r -

    i e n c ed by a p a r t i c u l a r c a r d u r i n g r o u t i n e d r i v i n g dep en ds on t h e

    d r i v e r a nd t h e t o p s p ee d p er fo rm an ce of t h e c a r , and t h a t t h e s e

    d e c e l e r a t i o n s w i l l r a r e l y e x c e e d

    . 3

    g . S i n c e none o f t h e s t u d i e s

    d e a l t wi th emergency b rak ing , th e f requency of occur r ence and th e

    magn itu de o f t h e d e c e l e r a t i o n s i n s uc h a s i t u a t i o n a r e s t i l l unde-

    te rmined.

    FADE AND FADE

    T E S T I N G .

    The Phenomenon of Fade. Brake f a d e

    SAE

    J657a , 1968)

    i s

    t h e

    g e n e r a l t e rm used t o d e s c r i b e any on e of s e v e r a l c o n d i t i o n s wh ic h

    r e s u l t i n r ed uc ed br ak e t o r q u e / l i n e p r e s s ur e g a i n f o r a g iv en

    v e h i c l e . Hea t f a d e r e s u l t s f ro m t h e c ha ng e i n b r a k e p a r a m et e r s

    caused by t h e e ne rg y d i s s i p a t e d a t t h e l in in g- dr um i n t e r f a c e ;

    w at er f a d e r e s u l t s from t h e r ed u ct i on i n t h e l i n i n g c o e f f i c i e n t

    o f f r i c t i o n du e t o wa t e r c o n ta m i n a ti o n ; an d washo ut d e sc r i b e s

    f a d e d ue t o any o t h e r c au s e ( ~ l e e t wner, 1966; P er c y,

    1 . 9 5 2 .

    H eat f a d e h as r e c e iv e d by f a r t h e g r e a t e s t a t t e n t i o n i n t h e

    l i t e r a t u r e . A s n ot ed e a r l i e r , t h e b r ak e t o r q ue d ep en ds on t h e

    l i n i n g f r i c t i o n c o e f f i c i e n t , t h e l i n e p r e s s u re , and t h e g eometry

    of th e b rake . Hea t f a de r e s u l t s (Her r i ng , 1967) i n two ways--

    t h e r m al d i s t o r t i o n o f t h e b r a k e ge om et ry a nd ch an g es i n t h e

    a p p a re n t c o e f f i c i e n t of f r i c t i o n o f t h e l i n i n g due t o h i gh t emp era-

  • 8/21/2019 13894

    37/222

    t u r e s . The l a t t e r mode o f b r a k e f a d e

    i s

    a p p a r e n t l y t h e m os t

    i n f l u e n t i a l , however no compar isons have been re po r t ed . Con-

    s i d e ra b l e e f f o r t

    i s

    b ei ng d i r e c t e d t o wa rd s c o n t r o l l i n g t h e

    tem-

    p e r a t u r e

    r i s e

    i n t h e b r a k e a nd t o w a rd s d e v el o pi n g f a d e res i s -

    t a n t l i n i n g m a t e r i a l s ( W ei nt ra ub B e r na r d, 1968; J a c k o

    e t

    a l . ,

    1 9 6 8 ) .

    T he rm al A n a l y s i s . T h e o r e t i c a l i n v e s t i g a t i o n s ha ve con-

    ce r n zd t h em s e l v es w i t h t h e t em p e r a t u r e

    r i s e

    expec ted du r ing

    br ak in g wi th bo th drum br ak es (F az ek as , 1953; Newcomb, 1958-59;

    Bannister , 1957; Noon e t a l . , 1 96 4) and d i s c b ra k e s (Noon, e t a l . ,

    1964; Newcomb, 195 9; Newcomb, 196 0; Ri ch ar ds on Sa un de rs , 19 6 3 ) .

    An a n a l y s i s of drum and d i s c br ak es (Newcomb, 1960; Newcomb

    M i l l n e r , 1965-66; P e t r o f , 1 96 5) i n d i c a t e s t h a t of t h e h e a t ge n-

    e r a t e d d u r i n g a s i n g l e s t o p , 95 p e r c e n t i s d i ss i p a t ed a t t he

    drum wh i l e 99 per ce n t

    i s

    d i s s i p a t e d a t t h e d i s c . Durincj a s i n g l e

    s t o p t h e t e m p e r a t u re s a c h ie v e d a r e a p p ro x im a t el y t h e same f o r

    b o t h drum and d i s c b r ak es . The i n c r ea s ed co n v ec t i o n co o l i n g

    ca pa c i ty of d i s c b ra kes ( Van s te enk i s t e , 1963; Newcomb Mi l l ne r ,

    1965-66; Newcomb, 19 60 ) , however, r e s u l t s i n lower avera ge

    tem-

    p e r a t u r e s d u r in g r e p e a t e d b r a k i n g . T h i s f a c t , combined w i t h t h e

    d i s c b r a k e s lower s e n s i t i v i t y t o l i n i n g c o e f f i c i e n t c ha ng es ,

    h a s be en t h e r e a s on f o r

    i t s

    adop t ion on h igh per fo rmance veh ic l es

    (Lueck , 1965; Hun t ing ton , 1964 ; Ihn ac ik ,

    J r

    Meek, 1967; Kemp,

    1 9 6 1 ) .

    O th er d e s i g n v a r i a t i o n s s uc h a s b i m e t a l l i c b r a ke drums

    (Automob il e Eng ineer , 1959; Eng i neer in g , 1959) and ve n t i l a t ed

    d i s c s (K off man, 1 95 6) h av e a l s o been u s ed t o r ed u ce t em p e r a t u r e

    r i s e (SAE 5971 , 19 68) . Var iou s pap ers have p re sen ted p roce dures

    f o r c a l c u l a t in g th e a pp ro p r i a t e b rake s i z e (Newcomb, 1964; Newcomb,

    1 96 4; R ab in ow i cz , 1 96 4) f o r v eh i c l e s on t h e b a s i s o f en e rg y

    a b s o r pt i o n c o n s i d e r a t i o n s , and f o r e s t a b l i s h i n g t e s t s c h ed ul es

    f o r e v a l u a t i n g b r a ke f a d e p er fo rm a nc e by d r i v i n g t e s t s (M ac ke nz ie

    e t

    a l . , 1962-63; L i vs e y e t a l . , 1960-61) .

  • 8/21/2019 13894

    38/222

    Lin ing Mat e r i a l s . Sev e ra l t h eo r i e s have been advanced

    (H er rin g, 1967; Rabins Harke r, 1960; Garg Rabins , 1965)

    dea l in g wi th t h e mechanism of fade caused by an in c re as e i n th e

    l i n i n g t e mp e ra t ur e . The most r e c e n t o f t h e s e ( ~ e r r i n g , 9 67)

    has proposed t h a t th e phenomenon i s du e t o a n e v o l u t i o n o f g a se s

    from t h e l i n i n g m a t e r i a l which t e n d s t o s e p a r a t e t h e r u bb i ng s u r -

    f a c e s . A d d i t i o n a l work h as b een done i n v e s t i g a t i n g t h e e f f e c t s

    o f compos it ion (Weint raub Berna rd, 1968 ; Jacko e t a l . , 1968)

    on t h e t he rm al s t a b i l i t y and f ad e c h a r a c t e r i s t i c s of f r i c t i o n

    m a t e r i a l s .

    I n v e s t i g a t o r s ha ve a l s o been c on c er n ed w i t h d e v e l o p i n g

    a p p r o p r i a t e

    t e s t

    e qu ip me nt ( Wi lson e t a l . , 1 96 8; And erson e t a l . ,

    1 9 6 7 ;

    Clayton Manufactur ing Co. , 1967; Percy , 1951) f o r th e

    e v a l u a t i o n o f l i n i n g m a t e r i a l s . C hoo sing an a p p r o p r i a t e f r i c t i o n

    m a t e r i a l

    s

    a t ra de- of f ( F l ee t Owner, 1966; Autocar , 1965;

    Burkman Hi gh le y, 1967; Mulvogue, 196 6) between good and bad

    c h a r a c t e r i s t i c s of t h e a v a i l a b l e p r o d u ct s . Many S o c i e t y o f

    Autom otive En gi n ee rs (SAE J6 61 a, 1968 ; SAE J8 40 a, 196 8; SAE 566 7,

    1968) and Fe de ra l (F ed er al S p e c i f i c a t i o n No. KKK-L-370c, 1961;

    In te r i m Fed era l Sp ec i f ic a t io n HH-L-00361d, 1965; Vi rg in ia

    Equipment S af et y Commission, 1966; Fede ra l Sp ec if ic at i o n No.

    HH-L-361b, 1952) st an da rd s have been gen era ted t o pro vid e guide-

    l i n e s i n b ra ke l i n i n g e v a lu a t io n .

    Fade and Peda l E f fo r t . The d r i v e r w l l sense any dec rease

    i n t h e l i n i n g c o e f f i c i e n t of f r i c t i o n a s a de cr ea se d ga in i n t h e

    s ys tem , i . e . , g r e a t e r p ed al e f f o r t w l l b e r e q u i r e d t o p ro du ce

    t h e same v e h i c l e d e c e l e r a t i o n .

    I ieat fade i s n o t a p ro ble m i n n or ma l d r i v i n g c o n d i t i o n s

    (V al l i n , 1968; MacKenzie , 1966) a s th e brake tem pera tur es a r e

    ge ne ra l l y below 300 F.

    The performanc e s t an d ar d recommended by

    SAE s p e c i f i e s (SAE J8 43 a, 1968; SAE J9 37 , 1968) t h a t i n f o u r

    su c c e s s i v e s t o p s f r o m

    6

    mph no t more t h an

    2

    l b peda l e f f o r t

    s h a l l be n ec e ss a ry t o a ch ie ve a d e c e l e r a t i o n o f 15 f t / s e c 2 .

  • 8/21/2019 13894

    39/222

    Normal brake effectiveness by the same standards is specified

    as being 15 to 120 lb to achieve a 20 ft/sec2 deceleration.

    Most drivers are more likely to encounter fade through

    water contamination of the lining than through heat fade. The

    mechanism is basically the same in that the effective lining

    coefficient is reduced, thereby requiring higher pedal efforts.

    SAE Recommended Practice (SAE Publication SP-299, 1967; SAE J937,

    1968) specifies that 8 ft/sec2 decelerations should be obtain-

    able from 25 mph with less than 200 lb pedal effort after a two

    minute soaking of the vehicle s brakes.

    BRAKE SYSTEM DEGRADATION. The performance of a brakinq

    system may be decreased by wear or failure of any one of its

    components. Failure here refers to both catastrophic failure

    such as

    a

    ruptured brake line or to marginal performance caused

    by the deterioration of a single component.

    A comprehensive

    brake system failure analysis of motor vehicles, such as that

    normally performed in the aircraft industry (Glasenapp Gaffney,

    1967), has never appeared in the literature. A qualitative dis-

    cussion of many of the factors affecting brake performance is

    available (White, 1963), but it is written from the viewpoint

    of vehicle inspection. Some work has been done in determininq

    the effectiveness of different dual braking arrangements (Vallin,

    1968). Federal Standards (Federal Standard No. 515/9, 1965;

    VSS No. 105, 1968) specify that following a pressure loss in a

    portion of a hydraulic braking system, the remaining portion of

    the system must be capable of stopping the vehicle from 60 mph

    in less than 646 feet on dry Portland cement concrete while main-

    taining the vehicle within a 12 foot lane. Deqradation of the

    braking system will generally result in increased pedal forces

    and/or greater pedal travel, or a total loss of braking.

    Hydraulic System. Hydraulic brake fluid performance is

    affected by its boiling point, water avidity, freezing point,

    viscosity, and corrosive action on rubber parts (Markey, 1956;

    SAE J664, 1968; Ker, 1968; Shiffler et al., 1968; Hanson Coryell,

  • 8/21/2019 13894

    40/222

    1960; Sharrard Hanson, 1956). Considerable legislation, based

    mainly on SAE Recommended Practice (SAE J70b, 1968; Wright,

    19651, has been passed (Richards, 1954; Lederer, 1955; Federal

    Specification No. W-B-680a, 1967) to control the quality of brake

    fluid reaching the consumer.

    Motor Vehicle Safety Standard No.

    116 (1969) sets federal specifications for hydraulic brake fluid

    using the testing procedures set forth in SAE Standard J70b

    (SAE J70b, 1968; Wright, 1965). Other SAE publications include

    information on the storage and handling (Niehaus Shiffler, 1966;

    Shiffler, 1966; SAE 575, 1968) of brake fluid, brake line hoses

    (SAE J40d, 1968), and hydraulic cylinder seals (SAE J60, 1968;

    SAE J65, 1968). Motor Vehicle Standard No, 106 (1968) sets federal

    specifications for hydraulic brake hoses.

    Wear of Friction Elements. The wear characteristics of the

    lining and drum (or disc) depend on the particular combination

    of the materials used (Willer, 1967; Lang, 1961). Lining wear is

    compensated for on all current U.S. production vehicles by auto-

    matic adjusters (Automotive Industries, 1968) and is therefore

    only a problem when this device fails. Procedures for determin-

    ing lining wear performance are specified in various SAE publi-

    cations (SAE J661a, 1968; SAE J667, 1968) yet no specific level

    of performance is suggested. Other SAE documents cover the

    lining bonds (SAE J840a, 1968) and rivets (Csathy, 1964) for

    attaching the brake lining or pad to the shoe.

    SKIDDING AS RELATED TO BRAKING

    IMPORTANCE OF BRAKING CONTROL IN ACCIDENTS. Skiddinq, as

    used here, is any situation in which there is gross slippage

    between one or all of the vehicle s tires and the road surface.

    Skidding of

    a

    vehicle occurs when the limits of adhesion between

    the tire and the road are exceeded, and frequently results in a

    loss of directional control of the vehicle. The relationship

    between braking, skidding, and highway accidents should not be

    underestimated.

  • 8/21/2019 13894

    41/222

    In a study Grime, 1963) of 453 accidents involving one or

    more vehicles, more than three-fourths of the accidents involved

    skidding, and loss of control occurred following application of

    the brakes in more than half of these. It was not made clear in

    this study whether or not there was a cause and effect relation-

    ship between braking and skidding or whether skiddinq was simply

    symptomatic of the situation.

    A

    similar trend was indicated in

    a survey of commercial vehicle accidents Starks, 1963). Althouqh

    two-thirds of all accidents occur on dry roads, the incidence of

    accidents involving skidding is two to seven times higher when

    the roads are wet Grime Giles, 1954-55; Bulmer, 1962; Normann,

    1953). It is felt that improved braking control Grime, 1963) in

    many of these skidding accidents would have had a beneficial

    effect.

    BRAKING DYNAMICS. During braking there is a dynamic trans-

    fer of weight onto the front wheels of a vehicle with a corres-

    ponding decrease at the rear wheels. Consequently there is a

    redistribution of usable braking torque between the front and

    rear axles for every different vehicle deceleration Parker, 1960;

    Newcornb Spurr, 1967; Lister, 1963; Ellis, 1963; Chandler, 1960).

    Studies of vehicle dynamics during braking Lister, 1965; Odier,

    1960; Radt Milliken, 1960; Jones, 1962-63) have shown that the

    initial speed, braking characteristics, road surface friction

    coefficient, and vehicle parameters are important factors deter-

    mining the directional response characteristics of the car. If

    a brake application should result in 100 percent longitudinal

    slip of a tire, the lateral force capability of that tire is

    reduced essentially to zero Francis, 1963). This means that

    locking the f r o ~ t heels in a braking maneuver results in nearly

    total steering loss. Locking the rear wheels causes the car to

    slew around if the vehicle encounters a yawing moment disturbance.

    If all wheels lock, the car can sideslip as well as rotate,

    depending on whether or not there is an external disturbance con-

  • 8/21/2019 13894

    42/222

    sisting of a side force and a yawing moment.

    ROAD-TIRE FRICTION COEFFICIENTS. As indicated by Equation

    7

    the deceleration produced in a locked-wheel braking maneuver

    is determined by the locked-wheel coefficient of friction between

    the tire and the road. It is possible, however, for the friction

    coefficient achieved by a rolling, braked tire to allow decel-

    erations in excess of those produced under locked-wheel condi-

    tions. Considerable research has shown Csathy, 1964; Frood,

    1962; Virginia Council of Highway Investigation and Research,

    1959; Giles, 1963; ASTM Special Technical Publication No. 326,

    1962; Texas Transportation Institute, 1962) that the effective

    coefficient of friction achieved by a rolling tire is dependent

    on many variables, the primary one being the longitudinal slip

    of the tire.

    Longitudinal slip is the ratio of the equivalent ground

    speed of the tire to the actual vehicle speed. Measurements

    have shown that the coefficient of friction reaches a maximum

    at a longitudinal slip of 10 percent to 30 percent and then

    decreases gradually to a value termed the sliding coefficient

    at 100 percent slip. For a given tire, the shape of this curve

    and its magnitude varies Hofelt, 1959; Kulberg, 1962) with

    both the surface condition and the vehicle speed. It has been

    found that both the peak and sliding coefficients generally

    decrease with increasing speed, but the peak value decreases at

    a lower rate Kulberg, 1962; Schulze Beckman, 1962). s the

    speed increases, the value of slip at which the coefficient is

    maximum tends to decrease Goodenow et al., 1968). The measured

    coefficient of friction for a public road is by no means a con-

    stant and varies seasonally Csathy, 1964; Kummer lleyer, 1967

    and from lane to lane Mahone, 1962) on the highway. The tread

    pattern, construction, and composition of the tire influence

    the tire-road friction coefficient Easton, 1960; Mechanical

    Engineering, 1968; Kelley, Jr. Allbert, 1968) whereas tire

  • 8/21/2019 13894

    43/222

    inflation pressure appears to have negligible effect DeVinney,

    1967). Wet road surfaces change the frictional characteristics

    of the road Kelley, Jr. Allbert, 1968; Maycock, 1965-66;

    Obertop, 1962; Hoefs, 1961) and introduce the additional factor

    of hydroplaning Allbert, 1968). It appears that vehicle speed

    DeVinney, 1967) is the single most important variable in wet

    surface conditions, the coefficient decreasing with increasina

    vehicle speed. Investigations have also been made on winter

    driving conditions NSC, 1966; Sapp, 1968; NSC, 1962) and tread

    wear Leland Taylor, 1964).

    Although the problem of accurately measuring the coeffi-

    cient of friction Texas Transportation Institute, 1962; Goodwin

    Whitehurst, 1962; Davisson, 1968) of a road surface has been

    dealt with in many ways, basically three methods have been used:

    skid trailers, vehicle stopping distance measurements Whitehurst,

    1965), and portable testers ASTM Special Technical Publication

    No. 366, 1965). Skid trailers of various designs Kulberg, 1962;

    Goodenow et al., 1968) have been employed to measure both the

    sliding and peak friction coefficients. Comparisons between the

    British Portable Tester and automobile-stopping distance measure-

    ments

    Rizenbergs Ward, 1967) have shown a useful correlation

    ASTM Special Technical Publication No.366, 1965) between their

    results when patterned tires are used. In all skid resistance

    measurements Frood et al., 1962) the conditions and methods

    must be carefully controlled to obtain consistent results.

    SKID CONTROL BY BRAKING MODULATION. An examination of the

    frictional characteristics of the tire-road interface indicates

    that maximum braking is obtained when tire slip is maintained

    near the peak of the curve. Braking beyond this point Bulmer,

    1962)

    can result in significantly longer stopping distances

    Lister Kemp, 1961) and the loss of directional control. Modu-

    lating the pedal force so as to control the wheel slip at the

    peak of the curve is a difficult task for the driver, so simpler

    methods of pedal modulation have been suggested.

    2

  • 8/21/2019 13894

    44/222

    Pumping and cadence braking Lister Kemp, 1961) are two

    ways of improving braking performance and maintaining steering

    control. The philosophy of these methods is that repeated on-

    off braking will

    cause the tire slip to pass repeatedly through

    the peak of the coefficient/slip curve, Pumping consists of

    applying and releasing the brakes rapidly, while cadence braking

    is pumping the brakes in resonance with the pitch motion of the

    car. Comparisons Lister Kemp, 1961) indicate that these two

    methods can achieve shorter stopping distances than those of

    locked-wheel stops on low coefficient surfaces. On high coeffi-

    cient surfaces the stopping distances were the same, although

    pumping or cadence braking also enabled the driver to maintain

    directional control.

    Anti-wheel-lock systems have been employed for several years

    on large aircraft Collier, 1958) and a few systems have been

    developed for automotive use

    SAE

    J840a, 1968; Autocar, 1962;

    Automobile Engineer, 1958; Lister Kemp, 1958; SAE J660, 1968).

    When using these systems, the driver operates as usual under

    normal conditions; however, as the driver causes the wheels to

    approach lockup in

    a

    panic s t o ~ , he device takes over. Using

    an inertia switch Design News, 1959; Design News, 1957; Machine

    Design, 1959) to sense impending wheel lockup, the anti-skid

    device automatically pumps the brakes to maintain a slip rate

    close to that value producing maximum adhesion. Control is

    returned to the driver when he reduces the pedal effort. Other

    anti-skid systems operate similarly but derive the wheel acceler-

    ation signal from wheel velocity. It is claimed that several of

    these systems Lister Kemp, 1958; Scafer Howard, 1968) pro-

    vide performance superior to locked wheel stops by improving

    driver steering control and shortening stoppinq distances, par-

    ticularly in adverse driving conditions.

  • 8/21/2019 13894

    45/222

    TESTING OF THE VEHICLE-TIRE-BRAKE SYSTEM

    DECELERATION PERFORMANCE. The deceleration performance

    (Tignor, 1966; Harding, 1961) achieved during a stop can be

    expressed as a function of (a) the stopping distance, (b) the

    average deceleration produced during the stop, and (c) the degree

    of driver control.

    Stopping Distance. The total distance covered during a

    braking maneuver includes the distance traveled during the driver s

    response time and the actual deceleration of the vehicle. During

    the driver s response period the vehicle would be continuing at

    nearly the initial velocity. The deceleration experienced during

    the braking interval depends on the rolling resistance, aerodynamic

    drag, and engine drag as well as the braking torque and the coeffi-

    cient of friction existing at the tire-road interface.

    Stopping distance may be measured experimentally by integra-

    tion of a fifth wheel velocity signal or by direct distance mea-

    surement. The latter method can be made reasonably accurate by

    employing an explosively-fired chalk pellet (Lister, 1959) to

    indicate the point of brake application. Minimum driver response

    times have been measured by recording the time period between the

    flashing of a signal and the start of brake application (Normann,

    1953, Konz Daccarett, 1967).

    Deceleration Measurement. An average value of vehicle decel-

    eration can be computed from a measurement of the initial speed

    and stopping distance. An instantaneous value can be obtained by

    differentiation of a fifth wheel velocity signal (Carpenter, 1956)

    or by direct measurement with an

    accelerometer on board the

    vehicle (Harding, 1961). The computation of average deceleration

    method is not useful, however, in correlating pedal force with

    deceleration. Accelerometers on board the vehicle have the prob-

    lem (Harding, 1961) of being sensitive to the vibrations caused by

    normal road roughness, the pitch motion during braking, nd the

    ascent and descent of grades. The latter two problems may be

  • 8/21/2019 13894

    46/222

    eliminated by mounting the accelerometer on a stabilized platform

    within the vehicle.

    The velocity signal differentiation method

    avoids the difficulties encountered with the on-board acceler-

    ometer and has been successfully used in brake usage tests

    Carpenter, 1955). This method does, however, suffer from a loss

    in frequency response because of the necessary electrical filter-

    ing circuits.

    Directional Control. Studies in which measurements have

    been made of the steering control required during braking have

    not appeared in the literature. The few quantitative measurements

    of directional response that have been made consist of a deter-

    mination of the final angular deviation of the vehicle from its

    intended path after a straight line braking maneuver Lister,

    1963). Although tests and evaluations of anti-skid systems

    Traffic Institute, Northwestern University, 1960) have included

    cornering maneuvers during severe braking, quantitative evalua-

    tions of improvements in directional stability and control with

    respect to co