45
1435-1436 م ي ل ح ل دا ب ع ع ي د د/ ب1 1436-1437

1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

Embed Size (px)

Citation preview

Page 1: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

د/ بديع عبدالحليم 1435-1436 11436-1437

Page 2: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

د/ بديع عبدالحليم 21436-1437

Page 3: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

د/ بديع عبدالحليم 31436-1437

Page 4: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

د/ بديع عبدالحليم 1435-1436 4

E LECT R ICCHARGE

APLCATIONS FOR STATIC E LECT RICITY

E LECT R ICPOTENTIAL

E LECT R ICFIELDS

CAPACITANCE

CURRENT AND RESISTANCE

CIRCUITS

1436-1437

Page 5: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

د/ بديع عبدالحليم 1430-1431 51436-1437

Page 6: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

د/ بديع عبدالحليم 1435-1436 6

Flux of an Electric Field

Gauss’ Law

Gauss’ Law and Coulomb’ Law

Applying Gauss’s Law : Planar Symmetry

1436-1437

Page 7: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

1436-1437

Applying Gauss’s Law : Spherical Symmetry

Page 8: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

1436-1437

Flux of an Electric Field

Page 9: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

Gaussian surface

This Gaussian surface,Can have any shape, but the shape that minimizes our calculations ofthe electric field is one that mimics the symmetry of the charge distribution

A Gaussian surface is a closed surface in three-dimensional space through which the flux of a vector field is calculated

or

1436-1437

Page 10: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

Area Vector

Area Vector

1436-1437

Page 11: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23-2 Flux

Electric field vectors and field lines pierce an imaginary, spherical Gaussian surface that encloses a particle with charge +Q.

Now the enclosed particle has charge +2Q.

Can you tell what the enclosed charge is now?Answer: -0.5Q

1436-1437

Page 12: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23-2 Flux

Suppose that you aim a wide airstream of uniform velocity at a small square loop of area.Let Φrepresent the volume flow rate (volume per unit time)

This rate depends on the angle between and the plane of the loop. If is perpendicular to the plane, the rate is equal to vA

1436-1437

Page 13: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23-3 Flux of an Electric Field

The area vector for an area element (patch element) on a surface is a vector that is perpendicular to the element and has a magnitude equal to the area dA of the element.

The electric flux through a patch element with area vector is given by a dot product:

(a) An electric field vector pierces a small square patch on a flat surface.

(b) Only the x component actually pierces the patch; the y component skims across it.

(c) The area vector of the patch is perpendicular to the patch, with a magnitude equal to the patch’s area.

Electric Flux

1436-1437

Page 14: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

Now we can find the total flux by integrating the dot product over the full surface.

The total flux through a surface is given by

The net flux through a closed surface (which is used in Gauss’ law) is given by

where the integration is carried out over the entire surface.

23-3 Flux of an Electric Field

1436-1437

Page 15: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23-3 Flux of an Electric Field

1436-1437

Page 16: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23-3 Flux of an Electric Field

(a) EA;

(b) - EA;

(c) 0;

(d) 0

1436-1437

Page 17: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23-3 Flux of an Electric Field

Flux through a closed cylinder, uniform field

1436-1437

Page 18: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

1436-1437

Page 19: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23-4 Gauss’ Law

Gauss’ law relates the net flux ϕ of an electric field through a closed surface (a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

we can also write Gauss’ law as

Two charges, equal in magnitude but opposite in sign, and the field lines that represent their net electric field. Four Gaussian surfaces are shown in cross section.1436-1437

Page 20: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23-4 Gauss’ Law

Surface S1.The electric field is outward for all points on this surface. Thus, the flux of the electric field through this surface is positive, and so is the net charge within the surface, as Gauss’ law requires

Surface S2.The electric field is inward for all points on this surface. Thus, the flux of the electric field through this surface is negative and so is the enclosed charge, as Gauss’ law requires.

Two charges, equal in magnitude but opposite in sign, and the field lines that represent their net electric field. Four Gaussian surfaces are shown in cross section.

1436-1437

Page 21: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23-2 Gauss’ Law

Surface S3.This surface encloses no charge, and thus qenc = 0. Gauss’ law requires that the net flux of the electric field through this surface be zero. That is reasonable because all the field lines pass entirely through the surface, entering it at the top and leaving at the bottom.

Surface S4.This surface encloses no net charge, because the enclosed positive and negative charges have equal magnitudes. Gauss’ law requires that the net flux of the electric field through this surface be zero. That is reasonable because there are as many field lines leaving surface S4 as entering it.

Two charges, equal in magnitude but opposite in sign, and the field lines that represent their net electric field. Four Gaussian surfaces are shown in cross section.

1436-1437

Page 22: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

(a) 2; (b) 3; (c) 11436-1437

Page 23: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

1436-1437

Page 24: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

1436-1437

Page 25: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23-5 Gauss’ Law and Coulomb’ Law

Because Gauss’ law and Coulomb’s law are different ways of describing the relation between electric charge and electric field in static situations, we should be able to derive each from the other. Here we derive Coulomb’s law from Gauss’ law and some symmetry considerations.

1436-1437

Page 26: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23-5 Gauss’ Law and Coulomb’ Law

1436-1437

Page 27: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

3. (a) equal; (b) equal; (c) equal

1436-1437

Page 28: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23-8 Applying Gauss’ Law: Planar Symmetry

Non-conducting Sheet

Two conducting Plates

1436-1437

Page 29: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

𝜆=𝑞𝐿

σ

ρ=𝑞𝑉

the charge per unit length

the charge per unit Area

the charge per unit Volume

1436-1437

Page 30: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23-8 Applying Gauss’ Law: Planar Symmetry

Figure (a-b) shows a portion of a thin, infinite, non-conducting sheet with a uniform (positive) surface charge density σ. A sheet of thin plastic wrap, uniformly charged on one side, can serve as a simple model. Here,

Is simply EdA and thus Gauss’ Law,

becomes

where σA is the charge enclosed by the Gaussian surface. This gives

Non-conducting Sheet

1436-1437

Page 31: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23-5 Applying Gauss’ Law: Planar Symmetry

Figure (a) shows a cross section of a thin, infinite conducting plate with excess positive charge. Figure (b) shows an identical plate with excess negative charge having the same magnitude of surface charge density σ1. Suppose we arrange for the plates of Figs. a and b to be close to each other and parallel (c). Since the plates are conductors, when we bring them into this arrangement, the excess charge on one plate attracts the excess charge on the other plate, and all the excess charge moves onto the inner faces of the plates as in Fig.c. With twice as much charge now on each inner face, the new surface charge density (call it σ) on each inner face is twice σ1.Thus, the electric field at any point between the plates has the magnitude

Two conducting Plates

1436-1437

Page 32: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

1436-1437

Page 33: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23-9 Applying Gauss’ Law: Spherical Symmetry

1436-1437

Page 34: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23-9 Applying Gauss’ Law: Spherical Symmetry

A thin, uniformly charged, spherical shell with total charge q, in cross section. Two Gaussian surfaces S1 and S2 are also shown in cross section. Surface S2 encloses the shell, and S1 encloses only the empty interior of the shell.

In the figure, applying Gauss’ law to surface S2, for which r ≥ R, we would find that

And, applying Gauss’ law to surface S1, for which r < R,

Thus, if a charged particle were enclosed by the shell, the shell would exert no net electrostatic force on the particle. This proves the second shell theorem.

1436-1437

Page 35: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

Any spherically symmetric charge distribution, such as that of Fig. 23-19, can be constructed with a nest of concentric spherical shells. For purposes of applying the two shell theorems, the volume charge density ρ should have a single value for each shell but need not be the same from shell to shell. Thus, for the charge distribution as a whole, ρ can vary, but only with r, the radial distance from the center.We can then examine the effect of the charge distribution “shell by shell.”

In Fig. 23-19a, the entire charge lies within a Gaussian surface with r R. The charge produces an electric field on the Gaussian surface as if the charge were a point charge located at the center, and Eq. 23-15 holds.

Figure 23-19b shows a Gaussian surface with r R. To find the electric field at points on this Gaussian surface, we consider two sets of charged shells—one set inside the Gaussian surface and one set outside.

1436-1437

Page 36: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

Letting q represent that enclosed charge, we can then write

If the full charge q enclosed within radius R is uniform, then q enclosed within radius r is proportional to q:

1436-1437

Page 37: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23-6 Applying Gauss’ Law: Spherical Symmetry

Inside a sphere with a uniform volume charge density, the field is radial and has the magnitude

where q is the total charge, R is the sphere’s radius, and r is the radial distance from the center of the sphere to the point of measurement as shown in figure.

1436-1437

Page 38: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

4. 3 and 4 tie, then 2, 1

1436-1437

Page 39: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

23 Summary

Gauss’ Law• Gauss’ law is

• the net flux of the electric field through the surface:

• Infinite non-conducting sheet

• Outside a spherical shell of charge

• Inside a uniform spherical shell

• Inside a uniform sphere of charge

Eq. 23-15

Eq. 23-20

Applications of Gauss’ Law• surface of a charged conductor

• Within the surface E=0.• line of charge

Eq. 23-6

Eq. 23-11

Eq. 23-6

Eq. 23-12

Eq. 23-13

Eq. 23-16

1436-1437

Page 40: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

Tutorial

1436-1437

Page 41: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

•7 A point charge of 1.8 µC is at the center of a Gaussian cube 55cm on edge. What is the net electric flux through the surface?

1436-1437

Page 42: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

•18 The electric field just above the surface of the charged conducting drum of a photocopying machine has a magnitude E of 2.3 x105 N/C. What is the surface charge density on the drum?

1436-1437

Page 43: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

33 In Fig. 23-40, two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have excess surface charge densities of opposite signs and magnitude 7.00 x 10-22 C/m2. In unit-vector notation, what is the electric field at points (a) to the left of the plates, (b) to the right of them, and (c) between them?

1436-1437

Page 44: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

42 Two large metal plates of area 1.0 m2 face each other, 5.0 cm apart, with equal charge magnitudes |q | but opposite signs. The field magnitude E between them (neglect fringing) is 55 N/C.Find |q | .

The surface charge density is given by

Since the area of the plates is A=1.0 m2 , the magnitude of the charge on the plate is

Q =σ A= 4.9×10−10 C.

1436-1437

Page 45: 1435-1436 د/ بديع عبدالحليم 1 1436-1437. د/ بديع عبدالحليم 2 1436-1437

Home workNo. 2, 5, 16

1436-1437