59
EPOXY PRODUCTS FOR HIGH EPOXY PRODUCTS FOR HIGH PERFORMANCE COMPOSITES PERFORMANCE COMPOSITES Kompozyt Kompozyt-expo 25 expo 25-26 November 2015; 26 November 2015; Krakowie Krakowie Toine Dinnissen; Technical Service Manager CEE, CIS and Italy Toine Dinnissen; Technical Service Manager CEE, CIS and Italy Toine Dinnissen; Technical Service Manager CEE, CIS and Italy Toine Dinnissen; Technical Service Manager CEE, CIS and Italy [email protected] [email protected] Trademark of Olin Corporation

151125 Krakau Composites

Embed Size (px)

Citation preview

Page 1: 151125 Krakau Composites

EPOXY PRODUCTS FOR HIGHEPOXY PRODUCTS FOR HIGHPERFORMANCE COMPOSITESPERFORMANCE COMPOSITES

KompozytKompozyt--expo 25expo 25--26 November 2015;26 November 2015; KrakowieKrakowie

Toine Dinnissen; Technical Service Manager CEE, CIS and ItalyToine Dinnissen; Technical Service Manager CEE, CIS and ItalyToine Dinnissen; Technical Service Manager CEE, CIS and ItalyToine Dinnissen; Technical Service Manager CEE, CIS and Italy

[email protected]@OlinBC.com

™ Trademark of Olin Corporation

Page 2: 151125 Krakau Composites

OUTLINEOUTLINEOlin CorporationOlin Corporation

Composites; Why and What ?Composites; Why and What ?Composites; Why and What ?Composites; Why and What ?

BisphenolBisphenol--A Epoxy ResinsA Epoxy Resins

AccelerationAcceleration

High Glass TransitionHigh Glass Transition

Epoxy Novolac ResinsEpoxy Novolac Resins

New Epoxy Novolac ResinNew Epoxy Novolac Resin

“Burning“Burning--topic” ???topic” ???

™ Trademark of Olin Corporation

Page 3: 151125 Krakau Composites

New Olin

BLUE CUBEBLUE CUBE

EpoxyСhlor.Org

Cl, NaOH in US

Chlor-Alkali productschlorine, caustic, bleach etc.

Chemical DistributionWinchester ammunitionCl, NaOH in US Winchester ammunition

™ Trademark of Olin Corporation

Page 4: 151125 Krakau Composites

New Olin

Olin / Blue Cube “merger” will triple Olin’s annual revenues

™ Trademark of Olin Corporation

Page 5: 151125 Krakau Composites

Integrated Business Model

HardenersCausticCaustic

WaterTreatmentPolymers Civil Engineering

Dis

trib

uto

rs

AllylChloride EPI

LiquidEpoxy

SpecialtyEpoxies

Blends

Hardeners

Solid/SolidSolutions

Brominated

CumeneCumene

AcetoneBenzeneBenzene

Phenol BPA

CausticCaustic

PropylenePropylene

ChlorineChlorine

Adhesives

Coatings.

Composites

Electronics

Poly-carbonate

Dis

trib

uto

rsF

orm

ula

tors

BrominatedEpoxies

BenzeneBenzene Electronics

Olin upstream and downstream of epoxies

Core Olin epoxy products

External downstream

Fo

rmu

lato

rs

™ Trademark of Olin Corporation

Page 6: 151125 Krakau Composites

Global Epoxy Business

Pisticci

Rheinmuenster

Stade

Baltringen

Gumi

ShanghaiFreeport

Zhangjiagang

Horgen

Roberta

Epoxy Manufacturing Site

R&D Center

Technical Service Center

Guaruja

Zhangjiagang

Sao Paulo

™ Trademark of Olin Corporation

Page 7: 151125 Krakau Composites

COMPOSITESCOMPOSITESCOMPOSITESCOMPOSITESWhy and WhatWhy and What

™ Trademark of Olin Corporation

Page 8: 151125 Krakau Composites

Mechanical Properties Comparison

Black Steel Stainless Steel316

Hastelloy® C GRP

(Mat & Roving)

Density [gr/cm3] 7.8 7.9 8.9 1.5

Tensile Modulus [GPa] 207 193 180 10-15

Tensile Strength [MPa] 450 590 550 120-250Tensile Strength [MPa] 450 590 550 120-250

Heat Conductivity [W/mºC] 46 15 12 0.2

Thermal ExpansionCoefficient

[mm/mm ºC]x10-6

12 16 12 23

PE PP PVC PVDF GRP

Density [gr/cm3] 0.95 0.90 1.4 1.75 1.5Density [gr/cm ] 0.95 0.90 1.4 1.75 1.5

Tensile Modulus [MPa] 80 80-130 300-350 1200 10,000-15,000

Tensile Strength [MPa] 30 30 60 50 120-250

Heat Distortion

Temperature [ºC]

40 45 75-100 90 100-200

All data are typical data and not to be construed as specifications

™ Trademark of Olin Corporation

Page 9: 151125 Krakau Composites

Fibre Reinforced Composites

Property Epoxy Unsaturated Polyester (UPR) andEpoxy Vinyl Ester Resin (EVER)

Phenolic

Cure mechanism Polymerization of resinplus hardener

Catalyticcopolymerization

CondensationPolymerization

(produces water)

Wet impregnation, typicalsystem

Liquid resins plus amineor other hardeners

Styrene-modified resins plus peroxidecatalysts

Liquid phenolics plus acidcatalysts

Cure temperature (°C) 25-150 25-100 25-170

Typical cure time (min) 60-180 10-60 60-180

Stability of resin (alone) Excellent Fair Poor

Cure-shrinkage of system Low (2-3%) High (6-8%) High

Adhesion to metal Excellent Fair Fair

Physical properties of Excellent Excellent Excellent/Bad (best heatPhysical properties ofcured laminate

Excellent Excellent Excellent/Bad (best heatresistance, most brittle)

All data are typical dataand not to be construedas specifications

™ Trademark of Olin Corporation

Page 10: 151125 Krakau Composites

Epoxy versus Polyester

• In all high performance Fiber Reinforced Plastic applications EPOXY binders are the“state of the art” (Aircraft, Aerospace, Racing boats/kayaks/cars/surf/snow-boards, skies, largewindmill blades,…..)

• WHY ? Best value for money !–(cost of the binder is relatively small versus cost of the finished object)

• EP binder systems have Performance Advantages over PE in 5 major areas:

better adhesion,

best mechanical properties (particularly strength and stiffness),

improved resistance to fatigue and micro cracking, improved resistance to fatigue and micro cracking,

low degradation (diminution of properties) from water penetration,

best resistance to osmosis (surface degradation due to water permeability)

™ Trademark of Olin Corporation

Page 11: 151125 Krakau Composites

Adhesion

Epoxy Resin have far better adhesion than unsaturated Polyesters

* polar hydroxyl- (for each epoxy group) and ether-groups improve adhesion

* low shrinkage* low shrinkage

More homogeneous bond between fibers and binder and better transfer of loadbetween different components

High adhesion is very important in resisting micro-cracking

Bond between core and binder is usually the weak link

™ Trademark of Olin Corporation

Page 12: 151125 Krakau Composites

Mechanical Properties

• Tensile Strength and Stiffness Data freely available ex. INTERnet

Room temperature cured Epoxy = 20-30% stronger than Polyester. After post-curethe difference becomes even bigger. Polyester boats typically are not post-curedthe difference becomes even bigger. Polyester boats typically are not post-curedwhereas epoxy boats are. Polyester boats often “post-cure” in service.

Consequences;• Initial almost double strength of post-cured EP boats versus non Post Cured PE• Cosmetics;

•Volume shrinkage epoxy about 2 % immediately•PE volume shrinkage up to 7% over longer period, print through effect

™ Trademark of Olin Corporation

Page 13: 151125 Krakau Composites

Fatigue Resistance & Micro-cracking

• Maximum Strength is not the sole criteria,such load is seldom applied to for instancea hull.

• Micro-cracking occurs well before reachingultimate strengthultimate strength

• Loss of adhesion between binder andfibers

• Cracking away from the fibers = transversemicro-cracking

• Strain that a composite can take beforemicro-cracking will depend on adhesionand toughness

Typical binder Stress/Strain curves(Post-cured for 5 hours at 80 °C)

• Superior ability to withstand cyclic loadingis THE main advantage of Epoxy bindersystems over Polyester binder system. Thisis the reason that in high demandingapplication exclusively epoxy binders areused.

™ Trademark of Olin Corporation

Page 14: 151125 Krakau Composites

Degradation from Water

• All resin will absorb moisture

• increase of weight

• affects resin-fiber bonds = gradual /long term loss of mechanical properties

• Polyester (and vinyl-ester) give hydrolysis of ester linkages

• thin PE laminates retains only 65% of its inter-laminar shear strength over a period of one year• thin PE laminates retains only 65% of its inter-laminar shear strength over a period of one year

• epoxy resins under similar conditions will retain >90% of its initial properties.

™ Trademark of Olin Corporation

Page 15: 151125 Krakau Composites

Osmosis

• All resin will absorb moisture that will;

• react with hydrolysable components,

• dissolves un-reacted components (catalysts,…)

• Tiny “cells” of concentrated solution are formed.

• Osmotic pressure “pull” extra water to the cells (to dilute the salts)• Osmotic pressure “pull” extra water to the cells (to dilute the salts)

• Pressure in the cells will increase

– Chicken-pox (=blistering)

• Polyester (and vinyl-ester) give high risk hydrolysis of ester linkages

• Epoxy has low water transmission rate and high water resistance

™ Trademark of Olin Corporation

Page 16: 151125 Krakau Composites

Epoxy versus Polyester

•Epoxy Resin

•Bonding Strength 2000 psi

•Tough Binder

•Low moisture absorption

•Epoxy Vinylester Resin

•Bonding Strength 500 psi

•Intermediate moisture absorption

•Unsaturated Polyester•Bonding Strength <<500 psi•Not tough, fractures easily = micro-cracking

•High moisture absorption•Low moisture absorption(low osmotic blistering)

•Low Shrinkage (very goodappearance)

•Very high adhesion to all sorts offibers (glass, carbon, kevlar,…)

•Intermediate moisture absorption

•Contains Styrene (EH&S)

•Cure sensitive to moisture andtemperature

•Difficulties bonding dissimilar or

•High moisture absorption(high osmotic blistering)

•Highest shrinkage

•Bonding to glass, not for carbon,•Very high adhesion to all sorts offibers (glass, carbon, kevlar,…)

•Very good bonding to dissimilar oralready cured material (repairsystems)

•Versatile and “State of the Art”

•Difficulties bonding dissimilar oralready cured material. (good forglass, less for carbon, kevlar,…)

•Cheaper than Epoxy

•Bonding to glass, not for carbon,kevlar,…

•Cheapest Resin•“Cheap Stuff”

™ Trademark of Olin Corporation

Page 17: 151125 Krakau Composites

Epoxy Products in Composites

• Features:

– Excellent adhesion to many (difficult) substrates

– Low shrinkage upon cure

– Excellent Chemical Resistance– Excellent Chemical Resistance

– Excellent Mechanical Properties

– Good Heat Resistance

– …

• Often used to produce light weight composite parts that can replace metalarticles.

• e.g. FRP pipes, automotive parts, storage tanks, wind-mill blades, ….• e.g. FRP pipes, automotive parts, storage tanks, wind-mill blades, ….

™ Trademark of Olin Corporation

Page 18: 151125 Krakau Composites

BISPHENOLBISPHENOL--A EPOXY RESINA EPOXY RESINBISPHENOLBISPHENOL--A EPOXY RESINA EPOXY RESINDescriptionDescription

PortfolioPortfolio

Fast CureFast Cure

High Temperature ResistanceHigh Temperature Resistance

™ Trademark of Olin Corporation

Page 19: 151125 Krakau Composites

Crude Oil Brine Salt

Naphta Electrolysis

Epoxy Resin Route

Benzene Propylene CL2 NaOH

Cumene Allylchloride

Acetone Phenol

EpichlorohydrinBisphenol-A

OH O

OHHO

OOH

HOClCa(OH)2

C l

ClO

EpichlorohydrinBisphenol-A

Polycarbonate Epoxy Resins

OHHO ClO

™ Trademark of Olin Corporation

Page 20: 151125 Krakau Composites

Standard Bisphenol-A epoxy resin

Bisphenol A(A = Acetone)

Epichlorohydrin

OCl

Epichlorohydrin

OCl

OHHO

(A = Acetone)

OOO O

DGEBA = Diglycidylether of Bisphenol A

BADGE = Bisphenol-A Diglycidylether

LER = standard liquid epoxy resin D.E.R.™ 33X-series

Viscosity = ± 4000 mPa.s

O O

™ Trademark of Olin Corporation

Page 21: 151125 Krakau Composites

High Molecular Weight Species

ClO

+

OHHO

Diglycidyl ether of bisphenol A (DGEBA)

Resin n=0

NaOHOO

O O

OOO

OO

Typically between 5 and 15%

Diglycidyl ether of bisphenol A - Oligomer

NaOH

n=1,2,3...

Increase in viscosity

OO

OHO

OOO

n

™ Trademark of Olin Corporation

Page 22: 151125 Krakau Composites

Mono-Hydrolyzed Resin (alpha-glycol)

Diglycidyl ether of bisphenol A (DGEBA)

OOO O

O OHCl

O

O H

Monohydrolyzed Resin (MHR)

H2O

1,2-Diol / α-GlycolfunctionOO

OH

OHO

Monohydrolyzed Resin (MHR)

Increase in viscosityIncrease in OH groups – can have impact on wetting, adhesion and reactivityDecrease in Epoxy Functionality

Typically between 0.1 and 5%

™ Trademark of Olin Corporation

Page 23: 151125 Krakau Composites

Depending on the process conditions used, theLER will have different composition and properties.Side reactions will decrease the epoxy contentreduced functionality !) and affect resin properties

Liquid Epoxy Resin Composition

reduced functionality !) and affect resin propertiessuch as viscosity, reactivity, wetting, adhesion.

Side reactions/products include:

•Higher oligomer formation•Hydrolysis of epoxy groups (MHR)•Total Chlorine•Total Chlorine

•Epichlorohydrin•Ionic chloride•incomplete dehydrochlorination (HyCl)•formation of bound chlorides

™ Trademark of Olin Corporation

Page 24: 151125 Krakau Composites

Bisphenol-A Liquid Epoxy Resins

D.E.R.™ 332Epoxy Resin

D.E.R. 330Epoxy Resin

D.E.R. 331™Epoxy Resin

Epoxide Equivalent Weight [gr/eq]A.S.T.M. D-1652

171 – 175 176 - 185 182 – 192

Viscosity @ 25 °C [mPa.s] 4000 – 6000 7000 - 10000 11000 - 14000Viscosity @ 25 °C [mPa.s]A.S.T.M. D-445

4000 – 6000 7000 - 10000 11000 - 14000

340 / average EEW 1.97 1.89 1.82

Mix with D.E.H.™ 24 hardener [phr] 14.0 13.5 13.0

Mix-viscosity @ 25 °C [mPa.s] 900 1250 2250

Time to gel, 500 grams [min] 43 40 25

Heat Deflection Temperature [°C] 107 104 111

with Nadic-Methyl-Anhydride [°C] 156

with BF3-MEA [°C] 168

™ Trademark of Olin Corporation

Page 25: 151125 Krakau Composites

Bisphenol-A Liquid Epoxy Resins

Resin D.E.R.™ 330 Epoxy Resin D.E.R. 331™ Epoxy Resin

D.E.H.™ 24 Hardener wt% Change wt% Change

Days; 7 28 120 7 28 120

Sulfuric Acid (30%) 0.56 1.24 2.85 0.69 1.80 3.10Sulfuric Acid (30%) 0.56 1.24 2.85 0.69 1.80 3.10

Acetone 0.17 0.74 4.48 0.45 2.10 7.70

Sodium Hydroxide (50%) 0.00 -0.06 -0.11 0.00 0.04 0.02

Jet-fuel 0.03 -0.01 0.09 0.02 -0,01 0.09

Distilled Water 0.40 0.79 1.68 0.41 0.88 1.70

Thermal Degradation

Hours 100 200 300 500 100 200 300 500Hours 100 200 300 500 100 200 300 500

weight loss @ 160 °C 0.95 0.95 1.32 1.41 0.71 1.00 1.40 1.60

weight loss @ 210 °C 2.11 3.77 7.39 3.40 5.40 6.80 7.80

™ Trademark of Olin Corporation

Page 26: 151125 Krakau Composites

NEW INNOVATIONNEW INNOVATIONNEW INNOVATIONNEW INNOVATIONFast CureFast Cure

™ Trademark of Olin Corporation

Page 27: 151125 Krakau Composites

Accelerated Epoxy Resins

EEW onsolids

[gr/eq]

Viscosity @25 °C

[mPa.s]

Description

D.E.R.™ 3411 epoxy resin 185 – 205 4500 – 5500 Very fast curing modified bisphenol-A/F liquid epoxy resinD.E.R.™ 3411 epoxy resin 185 – 205 4500 – 5500 Very fast curing modified bisphenol-A/F liquid epoxy resinwithout reactive diluent. Is suitable for fast setting, lowtemperature curing systems as crystallization resistant startingbase resin.

D.E.R. 3412 epoxy resin 187 – 207 850 – 1150 Very fast curing di-functional reactive diluent modifiedbisphenol-A/F liquid epoxy resin. Is suitable for crystallizationresistant, fast setting, low temperature curing epoxy bindersystems.

D.E.R. 3414 epoxy resin 190 – 210 2500 – 4500 Master-batch accelerated Bisphenol-A epoxy resin. Activationabove 50°C. Designed for fast, heat curing composites.

D.E.R. 3415 epoxy resin 190 – 210 2500 – 4500 Master-batch accelerated Bisphenol-A epoxy resin. Active atroom temperature. Especially suitable for low temperaturecuring epoxy binder systems in civil engineering and coatingapplications or for fast curing composites.

™ Trademark of Olin Corporation

Page 28: 151125 Krakau Composites

D.E.R.™ 3414 epoxy resin

70

80

90

100

100% D.E.R.™ 330 epoxy resin

95% D.E.R. 330 + 5% D.E.R. 3414

90% D.E.R. 330 + 10% D.E.R. 3414

22

0

10

20

30

40

50

60

70

%F.S

.

90% D.E.R. 330 + 10% D.E.R. 3414

80% D.E.R. 330 + 20% D.E.R. 3414

00 50 100 150 200 250 300

Gel-time [min]

Gel-times; resp. 262, 69, 39 and 22 minutes

at Room Temperature with IPD

™ Trademark of Olin Corporation

Page 29: 151125 Krakau Composites

Formulations [pbw] A B C

D.E.R.™ 330 epoxy resin 85 70 55

D.E.R. 3415 epoxy resin 15 30 45

D.E.R.™ 3414 epoxy resin

IPDA (not optimized level) 27 27 27

Tg, °C (4.5 min @ 90 °C) 38 47 49

Tg, °C (5.5 min @ 90 °C) 45 51 53

Tg, °C (6.5 min @ 90 °C) 55 62 63

Tg, °C (7.5 min @ 90 °C) 58 63 67

• D.E.R. 3415 is a bisphenol-A based epoxy resin modified with a catalyst which can be activated• D.E.R. 3415 is a bisphenol-A based epoxy resin modified with a catalyst which can be activatedat temperature above 50°C while maintaining very good pot life at ambient temperature

• It can be blended with any other epoxy resins (either aromatic and aliphatic)

• It is compatible with most of the amine curing agents (aromatic and aliphatic amines)

• It can be used to adjust the reactivity of different amine curing systems by adding differentlevels into the curing systems

™ Trademark of Olin Corporation

Page 30: 151125 Krakau Composites

NEW INNOVATIONNEW INNOVATIONNEW INNOVATIONNEW INNOVATIONHigh TemperatureHigh Temperature

™ Trademark of Olin Corporation

Page 31: 151125 Krakau Composites

High(er) Temperature Resistance

4,4'-Methylenedianiline (MDA) is a suspectedcarcinogen. It is included in the "substances of veryhigh concern" list of the European Chemicals Agency(ECHA).

Pure methylenedianiline is a highly toxic, colorless solid.

May be fatal if swallowed, inhaled or absorbed

DiethyleneTolueneDiamine

May be fatal if swallowed, inhaled or absorbedthrough skin. Causes irritation to the skin, eyes andrespiratory tract. Combustible solid or liquid when heated.May cause methemoglobinemia. Affects blood,cardiovascular system, central nervous system, liver andkidneys and may cause cancer.

Ancamine DL-50 (MDA-blend)Highly viscous / solid = light to dark brown @ 50,000 - 55,000 mPa.s (AHEW = 51 gr/eq)

DETDALow viscosity liquid = clear amber liquid @ 100 - 200 mPa.s (AHEW = 46 gr/eq)

Need 10% less per 100 kilo epoxyMuch lower viscosity = allows blending and use at muchlower temperatures (room temperature)

™ Trademark of Olin Corporation

Page 32: 151125 Krakau Composites

D.E.H.™ 650 Curing Agent

™ Trademark of Olin Corporation

Page 33: 151125 Krakau Composites

Labeling according to EC Directives:Hazard Symbol: Xn - Harmful

N - Dangerous to the EnvironmentRisk Phrases: R 21/22 - Harmful in contact with skin and if swallowed.

R 48/22 - Harmful: danger of serious damage to health by prolonged exposure if swallowedR 36 - Irritating to eyes.R 50/5 - very toxic to aquatic organisms, may cause long-term adverse effect in aquatic environment

D.E.H.™ 650 Curing Agent

ASTM D-7903 point Flex

MDA Ref. D.E.H.™ 650

Tg (DSC, °C) 167 178

Flexural Strength[MPa]

110 116

Modulus [MPa] 2707 3137

Strain [%] 8.3 6.3

D.E.H.™ 650 hardener @ 37 °C

Strain [%] 8.3 6.3

Stress @ Break[MPa]

106 116

K1c FractureToughness

0.76 0.61

Pot-life 150 grams

MDA-reference @ 57 °C

™ Trademark of Olin Corporation

Page 34: 151125 Krakau Composites

EPOXY NOVOLAC RESINSEPOXY NOVOLAC RESINSEPOXY NOVOLAC RESINSEPOXY NOVOLAC RESINSHigh Temperature and ChemicalHigh Temperature and ChemicalResistance CompositesResistance Composites

™ Trademark of Olin Corporation

Page 35: 151125 Krakau Composites

Bisphenol-F epoxy resin and Epoxy Novolac

Liquid bisphenol A epoxy resin

A ≡ Acetone

Liquid bisphenol F epoxy resin

F ≡ Formaldehyde

OO

OO

OOO O O

bisphenol A bisphenol-Fepoxy resin epoxy resin

Mw 340 312

EEW 170 156

Viscosity 10,000 4,000

O O O

O

O

O

O

ortho - para

O

O

O

O

ortho - ortho

O O O

n

OO

OHO

OOO

bisphenol A bisphenol-Fresin resin

Mw for n = 1 624 442

EEW 312 147

Average Functionality ???

™ Trademark of Olin Corporation

Page 36: 151125 Krakau Composites

Dow Epoxy Novolac Resins

Epoxy Novolac Resins EEWon solids[gr/eq]

Viscosity@ 25 °C[mPa.s]

Description

D.E.N.™ 425 Epoxy Novolac 169 – 175 9500 – 12500 D.E.N. 425 liquid epoxy novolac resin fills the gap between bisphenol F epoxyresins and viscous epoxy novolac resins. Its multi-functionality (± 2.5) producesa tightly cross-linked network, yielding improved resistance against variousa tightly cross-linked network, yielding improved resistance against variouschemicals. Unlike other epoxy novolac resins, this grade does not necessarilyrequire post cure.

D.E.N. 431 Epoxy Novolac 172 – 179 1100 – 1700@ 51.7°C

D.E.N. 431 epoxy novolac resin has multi-epoxy functionality (± 2.8) whichmakes it useful in adhesives, electrical and structural laminates, coatings andcastings for elevated temperature service. Where the higher viscosity of D.E.N.438 epoxy novolac resin cannot be tolerated.

D.E.N. 438™ Epoxy Novolac 176 – 181 31000 – 40000@ 51.7 °C

D.E.N. 438 epoxy novolac resin is a widely used general purpose epoxy novolacresin. It is recognized as a standard for high temperature applications. D.E.N.438 has multi- epoxy functionality (± 3.6) and exhibits high chemicalresistance and excellent elevated temperature performance. Adhesives basedon D.E.N. 431 are ideal binders for abrasives in grinding and polishing products.

D.E.N. 439 Epoxy Novolac 191 – 210 15000 – 35000 D.E.N. 439 epoxy novolac resin is a widely used general purpose epoxy novolacD.E.N. 439 Epoxy Novolac 191 – 210 15000 – 35000@ 71°C

D.E.N. 439 epoxy novolac resin is a widely used general purpose epoxy novolacresin. D.E.N. 439 has multi-epoxy functionality (±3.8) which is slightly morereactive than D.E.N. 438 epoxy novolac resin.

D.E.N. 440 Epoxy Novolac 186 – 192 35000 – 70000@ 71°C

D.E.N. 440 epoxy novolac resin is an extremely high functional (± 4.4) epoxynovolac resin. Offers highest performance in this product group with regards tomechanical, temperature and chemical resistance properties.

™ Trademark of Olin Corporation

Higher epoxy functionality ===> Higher crosslink densityExcellent solvent/chemical resistance.Higher Temperature ResistanceGel at lower conversion

Page 37: 151125 Krakau Composites

D.E.N.™ 438™ Epoxy Novolac Resin

Resin

NMA

days 7 28 120 7 28 120

Sulfuric Acid (30%) 0.44 0.68 0.77 0.33 0.83 0.55

Hydrochloric Acid (36%) 0.24 0.60 1.50 0.32 0.56 1.36

Nitric Acid (40%) 0.59 1.37 3.11 0.40 1.10 1.70

Ammonium Hydroxide (28%) 0.77 1.31 1.92 0.67 1.24 1.84

D.E.N.™438™ D.E.R.™ 331™

(wt% change) (wt% change)

For high temperatureand /or chemicalresistance propertiesAmmonium Hydroxide (28%) 0.77 1.31 1.92 0.67 1.24 1.84

Acetic Acid (25%) 0.57 0.93 1.12 0.46 0.73 0.90

Acetone 0.24 1.15 5.07 4.80 13.00 22.30

Toluene 0.07 0.14 0.32 0.06 0.09 0.28

Sodium Hydroxide (10%) 0.42 0.64 0.64 0.37 0.51 0.50

JP4 Fuel 0.00 0.01 0.12 0.02 0.02 0.16

Distilled water 0.55 0.97 1.13 0.52 0.82 0.87

resistance propertiesDow Epoxy Novolacresins are the bestchoice.

D.E.N.™438™ Epoxy Novolac Resin

All data are typical data and not to be construed as specifications

D.E.N.™438™ Epoxy Novolac Resin

Epoxy Equivalent Weight [gr/eq] 176 - 181Viscosity @ 52°C [mPa.s] 31000 - 40000

™ Trademark of Olin Corporation

Page 38: 151125 Krakau Composites

300

Glass Transition Temperature

MTPHA

Resin D.E.N.™438™ D.E.R.™331™

Curing Agent

Temperature Hours

160 °C 100 0.11 0.36

200 0.08 0.48

300 0.10 0.71

BF3 * MEA

% Weight LossAll data are typical dataand not to be construedas specifications

D.E.N.™ 438™ Epoxy Novolac Resin

100

150

200

250

[°C]

MTPHA

DiCy

NMA

DETDA

DDS

BF3*MEA

300 0.10 0.71

500 0.05 0.86

210 °C 100 1.73 2.60

200 2.97 4.00

300 3.82 4.90

500 5.02 5.50

260 °C 100 11.30 19.60

200 13.15 D

0

50

D.E.R.™330 D.E.N.™438™

™ Trademark of Olin Corporation

Page 39: 151125 Krakau Composites

MTHPA versus DETDA

D.E.H.™ 70 curing agent D.E.H. 650 curing agent

Resin D.E.R.™ 330 D.E.N.™ 438™ D.E.R.™ 330 D.E.N.™ 438™

EEW [gr/eq] 176 – 185 176 - 181 176 – 185 176 - 181

Mix-ratio [phr] D.E.H. 70 / MI85 / 1

D.E.H. 70 / MI85 / 1

26.0 26.385 / 1 85 / 1

Cure Schedule; Hours @ °C 2 hrs @ 85 °C3 hrs @ 150 °C

2 hrs @ 85 °C2 hrs @ 150°C2 hrs @ 200 °C

2 hrs @ 120 °C2 hrs @ 177 °C

2 hrs @ 120 °C2 hrs @ 177°C2 hrs @ 225 °C

Glass Transition Temperature [°C] 148 149 182 220

Coefficient of Linear Expansion [ppm/°C] 70 66 74 69

Water Absorption, 2 weeks boil [%] 1.45 1.49 2.35 2.47

Flexural Strength [MPa] 128 138 108 110

Flexural Modulus [GPa] 3.27 3.51 2.64 3.06

Strain @ Yield [%] 6.7 6.7 6.9 6.1

Cured density [gr/cm3] 1.190 1.224 1.140 1.210

™ Trademark of Olin Corporation

Page 40: 151125 Krakau Composites

• Gelation is Controlled by Functionality

Carothers: % Cure @ Gel Ξ 2 / favg

Flory: % Cure @ Gel Ξ 1

[1 + (f-2)]1/2

Gel-point can be Predicted

• Gelation is Controlled by Functionality

react 3 moles of D.E.R.™330 epoxy resin = 6 reactive groupswith 2 moles of amino-ethyl piperazine = 6 reactive groupsaverage functionality = 12 groups / 5 mole = 2.4

Gel Point ~ 2/2.4 ~ 83% cure at Gel

react 7 moles of D.E.R.™330 epoxy resin = 14 reactive groupswith 2 moles of tetra-ethylene-pentamine = 14 reactive groupsaverage functionality = 28 groups / 9 mole = 3.11

Gel Point ~ 2/3.11 ~ 64% cure at GelGel Point ~ 2/3.11 ~ 64% cure at Gel

react 14 moles of D.E.N.™425 epoxy resin = 35 reactive groupswith 5 moles of tetra-ethylene-pentamine = 35 reactive groupsaverage functionality = 70 groups / 19 mole = 3.68

Gel Point ~ 2/3.68 ~ 54% cure at Gel

Higher Functionality is Early Mould Release

™ Trademark of Olin Corporation

Page 41: 151125 Krakau Composites

NEW INNOVATIONNEW INNOVATIONNEW INNOVATIONNEW INNOVATIONEven Higher…Even Higher…

™ Trademark of Olin Corporation

Page 42: 151125 Krakau Composites

Opportunity Statement

D.E.N.™ 440 epoxy novolac resin, a differentiated Epoxy Phenol Novolac designed for improved hightemperature applications. The product offers higher functionality (F±4.5) to form tightly cross linkednetwork that shows higher Tg and improved chemical resistance. Hot melt (solvent-free) prepreg andadhesive makers will also benefit from its’ low melt viscosity and improved tackiness.

Technical Hypothesis: Higher Tg leads to higher heat deflection temperature (HDT), which isgenerally desired in hotmelt prepreg to reduce production-cycle time. Low melt viscosityand improved tackiness enhance the process-ability.

™ Trademark of Olin Corporation

Page 43: 151125 Krakau Composites

D.E.N.™ 438™ Epoxy Novolac Resinversus

D.E.N. 440 Epoxy Novolac Resin

Part A D.E.N.™ 438™ Epoxy Novolac D.E.N. 440 Epoxy Novolac

Epoxy Resin 80.2 80.2Epoxy Resin 80.2 80.2

Part B

D.E.N. 431 Epoxy Novolac 19.8 19.8

DICY 5.6 5.6

UREA 2.8 2.8

Uncured rheology properties

η* @ 80oC (Pa*s) 1.5 6.4

G* @ 1rad/s (MPa@25°C)) 0.005 0.21

Cured polymer propertiesCured polymer properties

Tonset (oC) 117 117

Tg (oC)160oC cured 193 215Flexure Modulus (GPa) *2.93 *3.53

KIC (MPa*m0.5) *0.58 *0.52

™ Trademark of Olin Corporation

Page 44: 151125 Krakau Composites

D.E.N.™ 440 Epoxy Novolac Resin vs e-BPAN

Part ABisphenol A resin eBPAN

D.E.N.™ 440Epoxy Novolac

Variable resin 16 16

D.E.R™ 383 Liquid Epoxy Resin 32.1 25.7 25.7

D.E.R. 662 Solid Epoxy Resin 48.1 38.5 38.5D.E.R. 662 Solid Epoxy Resin 48.1 38.5 38.5

Part B

D.E.N. 431 Epoxy Novolac Resin 19.8 19.8 19.8

DICY 5.6 5.6 5.6

UREA 2.8 2.8 2.8

Uncured rheology properties

G* @ 1rad/s (MPa@ 25°C)) 0.07 0.22 0.07

η* @ 80oC (Pa*s) 9.2 11.4 7.4

Cured polymer propertiesCured polymer properties

Tonset (oC) 118 117 118

Tg (oC)140oC cured 136 152 149

Flexure Modulus (GPa) 3.14 3.08 3.27

KIC (MPa*m0.5) 1.02 0.85 0.85

™ Trademark of Olin Corporation

Page 45: 151125 Krakau Composites

Competitive Situation

• DEN 440 shows higher Tg than that ofEOCN and DEN 438, but similar to eBPAN

• Epon SU8 is one of the eBPANs which ispopular in NA, while presence of KEB 3165is mainly in APAC. Viscosity is very highis mainly in APAC. Viscosity is very high

• THPEGE shows superior performance withhigher price (>2 times).

Materials Suppliers Comments

EOCN-

1020-55Nippon Epoxy Cresol Novolac

Epalloy-

9000CVC

Tris-Hydroxy Phenyl

Ethane Triglycidyl Ether9000

CVC Ethane Triglycidyl Ether

(THPE-GE)

Epon SU-8 Hexion Epoxy Bis-Phenol A

Novolac, (eBPAN) high

functionality SERKEB-3165 Kolon

™ Trademark of Olin Corporation

Page 46: 151125 Krakau Composites

NEW INNOVATIONNEW INNOVATIONNEW INNOVATIONNEW INNOVATIONBurning hot development…Burning hot development…

™ Trademark of Olin Corporation

Page 47: 151125 Krakau Composites

Flame Retardancy

• Aluminum Trihydrate

• Phosphorous Compounds

VE1021224M3 VE102124M1

Viscosity @ 25 °C [mPa.s] 9100 1400• Phosphorous Compounds

• need a lot and give high viscosity

• Brominated Epoxy Resins

• Solid (about 40% Bromine)

• Solid in Solution (about 20% Bromine)

EEW [gr/eq] 199 164

% Bromine 24.5 15.2

• NEW Liquid Brominated Epoxy Resin

™ Trademark of Olin Corporation

Page 48: 151125 Krakau Composites

Olin Epoxy Portfolio comprises;

The Epoxy business of the Olin Corporation is Committed and Reliable partners for our Clients

• High Quality standard Raw Materials

• D.E.R™ 33x epoxy resins

• D.E.N.™ 43x epoxy novolac resins

• D.E.H.™ curing agents (incl. D.E.H. 70 anhydride hardener)• D.E.H.™ curing agents (incl. D.E.H. 70 anhydride hardener)

• Higher Temperature Performance

• D.E.H. 650 curing agent

• D.E.N. 440 epoxy novolac resin

• Viscosity

• Diluents (mono-, di- or multi-functional); D.E.R.™ 7xx series

• Bisphenol-F epoxy resin(s); D.E.R. 354, 351, 352

• Cure rate• Cure rate

• Room temperature / Latent accelerated resins; D.E.R. 34xx

• Long(er) pot-life amines (D.E.H™ 23 or 2132 curing agent)

• Flexibility

• Amines (e.g. D.E.H. 23), diluents (e.g. D.E.R. 732P) orD.E.R. 3913 Flexible epoxy resins

• Flame Retardancy

™ Trademark of Olin Corporation

Page 49: 151125 Krakau Composites

Page 49

Page 50: 151125 Krakau Composites

Thank You !!!

Univar Poland Sp. z.o.o.

Meet us for face-to-face discussion at the EXPO; Booth W06

Univar Poland Sp. z.o.o.

Katarzyna Izbaner-Jasnikowska

+48 (0) 516177351

[email protected]

Joanna Radzikowska

+48 (0) 502531653

[email protected]@univareurope.com

Olin Corporation

Toine Dinnissen

[email protected]

™ Trademark of Olin Corporation

Page 51: 151125 Krakau Composites

Page 51

Page 52: 151125 Krakau Composites

Isophoronediamine

Product / Formulation 1 2 3 4 5

D.E.R.™ 330 epoxy resinEEW = 185 gr/eq

100 100 100 100 100

Isophorone diamineAHEW = 43 gr/eq

22 23 24 25 26

Liquid properties

Reactivity at 25°CReactivity at 25°C

Gel time [min] 161 158 156 152 151

Time to peak [min] 315 303 321 321 332

Exotherm [°C] 42 57 46 43 50

Reactivity at 50°C

Gel time [min] - 48 47 - -

Time to peak [min] - 51 50 - -

Exotherm [°C] - ca. 250 ca. 250 - -

Physical properties 2)

Tg (by DMA) after 1 h [°C] 161.5 167.2 170.5 167.4 166.1 166

168

170

172

174

Tg (by DMA) after 2 h [°C] 161.4 167.6 170.6 167.6 167.5

Tg (by DMA) after 3 h [°C] 164.4 170.4 172 170.5 167.6

Tensile test @ 1 h at 150 °C cure

Stress [MPa] 76.9 73.4 80.2 74.5 73.3

Modulus [GPa] 2.8 2.79 2.62 2.69 2.54

Strain [%] 4.19 4.14 5.7 4.51 5.27

160

162

164

166

21 22 23 24 25 26 27

1 hour

2 hours

3 hours

Theoretical mixing Ratio : 23.0 phr D.E.R. 330 epoxy resinEmpirical mixing ratio : 24.0 phr D.E.R. 330 epoxy resin

™ Trademark of Olin Corporation

Page 53: 151125 Krakau Composites

Recent Innovation – More FlexibilityColor 30 APHAAmine number 472 mg KOH/gViscosity 15 mPa.s @ 25 °CDensity 0.96 g/cm3Mol. Weight 230AHEW 63 gr/eq

D.E.R.™ 330 epoxy resin 100 100

D.E.H.™ 23 amine hardener 32 25

IPDA - 5D.E.H. 23

60

70

80

90

100

Mix-viscosity [mPa.s @ 23°C] 320 620

Tg [°C]; DSC 90 98

Flexural Strength [MPa] 102 131

Flexural Modulus [GPa] 3.14 3.38

Tensile Strength [MPa] 66.9 73.8

Izod impact Strength [cm-kg/cm] 7.08 8.17

Elongation at Break [%] 10.0 8.0

20

30

40

50

60

20 24 28 32 36 40 44

Glass Transition Temperature [°C]

Heat Deflection Temperature [°C]

Theoretical mixing Ratio : 31.1 phr D.E.R. 330 epoxy resinEmpirical mixing ratio : 32.0 phr D.E.R. 330 epoxy resin

Elongation at Break [%] 10.0 8.0

™ Trademark of Olin Corporation

Page 54: 151125 Krakau Composites

Glass Transition Temperature, TgTg = The Temperature Range where a polymer changes

from Glass to Rubber

* Secondary Bonds are Broken* Molecular Mobility Increases* Free Volume Increases* Strength Decreases

Tg = The Temperature Range where a polymer changesfrom Glass to Rubber

* Secondary Bonds are Broken* Molecular Mobility Increases* Free Volume Increases* Strength Decreases

20

25

30

* Strength Decreases* Flexibility Increases* Internal Stress is Relieved

* Strength Decreases* Flexibility Increases* Internal Stress is Relieved

Vitrification

Slow Cure

Fast Cure

Tg = Cure Temp.

Cure is diffusion controlledGlassy

0

5

10

15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Cure Time

Tg = Cure Temp.

When the Tg of the Growing Polymer Reaches the CureTemperature, The Polymer VitrifiesExtend of cure is determined by the Tg, Average Functionality

Liquid /Rubber

Cure isKineticallyControlled

™ Trademark of Olin Corporation

Page 55: 151125 Krakau Composites

Tg versus Cured Property

Tg < Service TemperatureTg > Service Temperature

Epoxy-Cycloaliphatic AmineCured @ 100°C

Epoxy-PolyamideCured @ 25°CCured @ 100°C

Tg = 110°CService Temperature 80°C

Cured @ 25°CTg = 30°CService Temperature 40°C

Glassy, RigidLow Impact ResistanceHigh Internal StressHigher Barrier Properties

Rubbery, ToughHigh Impact ResistanceLow Internal StressLower Barrier Properties

Functionality Gel PointCrosslinkingFunctionality TgGel PointCrosslinking

Gel PointDry TimePot Life

ChemicalResistanceStrength

RheologyChemicalResistanceShrinkage

% CureGlass/RubberInternal Stress

Reactivity

™ Trademark of Olin Corporation

Page 56: 151125 Krakau Composites

Gelation

∞Covalently Bonded Polymer Network

Molecular Weight Infinitely High∞

Polymer Properties develop at Gel-Point

Sol Gel

Gel = “One” macromolecule

Sol = Low molecular weight fraction

Solvent SolubleNo Physical StrengthFluid Behavior50% of Shrinkage

Solvent In-solublePhysical StrengthElastic Behavior50% of Shrinkage

Gel Point

Monomers

™ Trademark of Olin Corporation

Page 57: 151125 Krakau Composites

Gelation versus Functionality

Active Groups per Molecule 2 Functional Epoxy Groups

OOO

OOO

5 Functional Amine-Hydrogen Groups

OHO O

n

Functionality ≤ 2 Linear Molecular Weight Build

A A B B A A B BB B A A B B

AB

No Cross linking

Functionality > 2 Cross Linking

Cross linking leads to gelation

™ Trademark of Olin Corporation

Page 58: 151125 Krakau Composites

Gel-point can be Predicted

Carothers: % Cure @ Gel Ξ 2 / favg

Flory: % Cure @ Gel Ξ 1

[1 + (f-2)]1/2

• Gelation is Controlled by Functionality

react 3 moles of D.E.R.™330 epoxy resin = 6 reactive groupswith 2 moles of amino-ethyl piperazine = 6 reactive groupsaverage functionality = 12 groups / 5 mole = 2.4

Gel Point ~ 2/2.4 ~ 83% cure at Gel

react 7 moles of D.E.R.™330 epoxy resin = 14 reactive groupswith 2 moles of tetra-ethylene-pentamine = 14 reactive groupsaverage functionality = 28 groups / 9 mole = 3.11

Gel Point ~ 2/3.11 ~ 64% cure at Gel

react 14 moles of D.E.N.™425 epoxy resin = 35 reactive groupswith 5 moles of tetra-ethylene-pentamine = 35 reactive groupsaverage functionality = 70 groups / 19 mole = 3.68

Gel Point ~ 2/3.68 ~ 54% cure at Gel

Higher Functionality is Early Mould Release

™ Trademark of Olin Corporation

Page 59: 151125 Krakau Composites

Crosslink Density:

High Crosslink DensityHigh Crosslink DensityHigh Chemical & Heat ResistanceStrong, RigidHeat Cure Needed

D.E.N.™438™

Low Crosslink DensityLow Crosslink Density

D.E.R.™324

Low Crosslink DensityLow Crosslink DensityModerate Chemical & Heat ResistanceFlexible, ToughCure at Lower Temperatures

High X-Link DensityD.E.R.™ 331 / Imicure(1) EMI 24Cure @ 150 °C

Flexural Strength 21,000 psiFlexural Modulus 540,000 psiElongation @ Break 2 %Cure @ 150 °C

Low X-Link DensityD.E.R.™ 331 / Jeffamine(2) D-400Cure @ 30 °C

Glass Transition 160 °C3 hr acetone boil 1 %wt gain

Flexural Strength 11,200 psiFlexural Modulus 406,000 psiElongation @ Break 60 %Glass Transition 30 °C3 hr acetone boil 29 %wt gain

™ Trademark of Olin Corporation