1305

16920 spring 2001

Embed Size (px)

Citation preview

  • ! "$#&%

    '

    )(+*,*-!/.

    01234576

  • 8 9 :=?A@B-C4DE/F!:G

    H/IJH KMLNOPQRTSJLNVUXWYS[Z]\^_S`LN abdcfegih

    jk

    jlnmporqs

    k4tu

    sv

    k

    miw

    xzy

    s|{~}

    j

    j

    j

    j/ sv{

    j

    v

    j

    v

    m

    j

    v

    j

    v

    o

    u4

    w !& }

    T__T_TXT>dT

    x

    f[nf&fffTnXXAf$/`!]XJ-$fffdX!!

    Xff3[ff_X[z]T5[_!!"fX,/ff!!

    $Xz!

    o

    3X

    w

    /ff/T!X`XT

    k

    f4_

    !X-"fX

    J[T"3]T/T_d[T$`_p][TYJ_

  • D-E)FHGJIKLMNPOQGRF/STMUVWM#SGRNXVF,KY,MY,Z-M(M[]\QGRY,KENPM^OQF,M_,_,KNQI`Y,ZQM#aQGUGNQSTM#ERbcMN-MFId

    G_ e)f

    e)g(h

    h

    h

    h ijTk

  • 5d`GJJJS0JfJe!fgD`SfS

    S

    v@bv#Df[

    L!SfSh!nSMJS&!J!JS)SG!2UDMJ!RS

    _U5aDUegVUhXJUhU

    l

    g=[Uj0JyS

    S

    \QMSJ_!SbjS&

    !g!JQDbJJ]`SJM2SQbL

    l-5 G&

    =yUV7

    -5

    _byUV7

    -5

    5V7

    v

    7

    LS#abJg=-hgNf#USlJ-SJ!aM#

    !g!J_=2Ul0SjS

    S

    j-aN`!SRSJMal

    Q_J=[JbfSd`QX[SSgN

    gyS)5JLNU]bS!y

    DS

    SM`!_R=V[hD\!U!!_bS`

    XM0#&XM0

    Mh

    b

    n

    S

    n5hNfS2a

    O

    !JXh

    h

    S

    X

    "

    #

    $

    %'&)(*,+-(/.102n`Q`SJM!Sd`

  • Z\[]_^

    ]_`)a-b8cd

    []^

    ]_`)aecfhgjik

    Z\[lm^

    lm`)ab@cd

    [ln^

    lm`)aecf"gYik

    ]^

    gpo

    d crq d

    b

    ots

    Z

    f

    u

    Z ]

    `

    k

    ln^

    gvo

    dwcrq d

    b

    ots

    Z

    f

    u

    Z l

    `

    k

    xzy{|)}4~y/{'{H5~:m|{;n{;

    gY'

    ]

    k

    l

    k

    k

    k

    5

    |Gm~{|~n{n:H5|\{'m4~5|/{HD!{~!~|/e

    g

    ]

    c

    l

    }\

    g

    ]

    o

    l

    8

    o

    gw

    k

    k

    k

    k

    8

    UW):

    m:{

    d

    b

    os

    Z

    f"gji

    U{H:{n},8{DH5|m|!{~

    n

    ~{H:

    |/5~m~:y

    }5~y/{O:{

    ]

    m|

    l

    5{e|/5~

    |4{{|4{|~

    8{'!{~O

    gYi

    }~:y/{H|

    ]_^

    ]

    `

    g

    o

    d

    u

    Z

    ~8H5|E{Wm{{H-}n/{H~@{m5~:m|)}n~:y~z|e~y/8Hm:{

    gji

    }|EOy/yDHm:{U@{

    m|

    l

    ~:e{D/|_~:m|G:y~:y5~12

    gwi

    }/m|E~y/{'{H5~:m|{;n{;

    gY

    ]

    k

    l

    k

    k

    k

    ,)

    @x

    :

    n!{

    d

    b

    ots

    Z

    f$i

    xzy/\m:{/{|~:m~~y/{y{mtn!{/4~G|/

    ]

    5|

    l

    5{m/{

    n|=/~:{;

    d

    b

    os

    Z

    f i

    _

    x5n{

    g

    ]

    c

    l

    }

    g_

    ]

    o

    l

    5|G~:y/{1{H~n|

    {Hn{H

    z

    c

    gY

    k

    k

    k

    k

    D,m4;, t

    cr;

    gw

    b

    c

    H

  • ,/:

    4 "!#:%$\'&)(*#+-,/.10203/.

    2455"$6$87:9$=?@02#03A "+-BCAED//03A

    FHGIFHGI

  • p2 w4{-y/wy *YfV

    /

    ! #"%$'&%&)(+*,-+&/.102(

    &

    -

    3547684:9=?479A@B=?4DCE9FCE@GCH8IKJML#N)O29P/H)QSRUT#N89VP8CE@GCN89?W#JMN)Q

    JXH8Q+4D9N)@YWSZN[N)@E=F\

    ^]_*F`ba2&/$c

    1

    &)dea2`7f`

    a?`

    Fg

    `h&)d

    jiBk>lnmVlnoqpr

    -

    ikslnmVl+Xtop

    u

    9@E=2CvWUT#N8O2Q#W74w;r4U;eCEIEIxH/PyP8Q+4:W#Wz@E=F4zW:N)I{O2@GCN89|Nn}~FH8Q+HyL#N8I{CT4#7OFH8@GCN89?WwO%WSCE9%rCE9FCE@4

    C 4:Q4:9VT4H89VPrCE9FCE@4MI47Z'479F@XA4:@B=?NPW7\

    p _hfw4{p}/8w *Yf

    Cy1}:N8QW:N)I{6CE9b=%R~F47QS

    L#N8I{CT4#:OFH)@CN)9?W7\

    u

    9~FH8QS@GCT7O2IH8Q#J_rCE9CE@4^N8I{O2Z4'A47@E=FN[P8W;eCEIEIML4U4+y@4:9VP/4#P@NP/4#H8I

    ;eCE@B=9N)9FI{CE9V4#H8Q=%R~F47Q7LN)I{CT4#:OFH)@CN)9?W7\

  • _B Y>rjenAFYns Es

    UF/2G+%v)VF/#hB

    'F1

    +>^%%7/F2+1/_/

    +87 F

    "!#$&%')(*!,+-.+/0"1:23

    ,45)67) 85.+49

    :@

    A=[BDCE=[1)E=w/+=[x?GF?H=I

    JK'EL71M$NO1)(*!,+GM: KK(G!P5:58K0

    ,QE7HR5SKTR7LF8EU7!8,+D| 227,+DA2"7#RS-E3

    SGR74SG2.+49WV8287+DH8X)(*!,++*M7H:E?$YZ7EK0K77,Q

    ERS[6Y\].+89

    _^ _a`cbed2ne6fAznts |{}y8vb

    BjrVS~s 8vivF

    --UL-O7&7

    _A d2nr

    Esl

    =7VrF8=b)

    >

    /EF?+#)5BDCb8=722vqE=)4q?S+1/

    +8=72K

    ;

  • 4U

    7&

    7

    Tj5G#

    47HYj5*8)lEAD P70c5l1D7"iG7T5Z

    ,"

  • 8+9;: =@?BADCFEHG IKJ*LNMO1P%Q

    0 1 2 3 4 5 60.5

    0

    0.5

    1

    1.5

    2

    2.5

    x

    g(x)

    g1(x)g2(x)

    IKJ*LNMO1PRP

    1 2 3 4 5 6 7 8 9 100

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    k

    |Ck|

    g1(x)g2(x)

    SUT%VXWYT%V+Z@[\]^[`_ abc_dfe/ghij_ kl_*mT%i,nWocWV,Wpi,q"\srRWtUuv`wlwx#y{z|}uu

    ~R^%FcX"^cKp;%R,*RpN`Ks%RKN

    RpNcp3,;pp6NR%%^%;cXHRcp,;p

    RRp%X3N,,p^p,NNR>#%NcK,HN3NKl^c

    ^%NcN;Np^R%UR^pNN3RU^cUNU^p_ abc_NN

    YFpX/F_ kl_^,^%"s%;{^N^FNNKK^^js^}6^X^pKpj^N

    ps}%^%c

    8+9;8 HYGlRGRH?{RH

    IKJ*LNMO1P

    {K

    bB

    b

    b

    w

    {

    bB

    b

    b

    bB

    k

    b

    b

    bB

    b

    b

    d

    k

    H

    kc

    i,W#Tm

    d

    k

    @^

    kc

    l

    \qT%n\rTiX

    e

  • N^ 6Xp3^pX^p+RX%6HU^pX^pFH@R%c^p;^

    }^^^

    "R%Fc+^cKp`/p;

    #%NH c

    NXY

    ^N*X^cNp

    },pXc^+N@^%^j

    R; j^cKp;%>R^cK^^+ c l j

    "!#!$ %'&)(*,+.-/0 % 1

    2$3465798

    :

    ;=@? A)BDC/EGFIH6J

    KMLONQP

    RC$JS= RCTFIH6JUE

    V;WC$JS= ;XCTFYH6JZE

    [

    R

    ^;,\^cK^N",^]pcNX^%/}G]p`NN_^

    pp}^^^cRp%cN*R^c^pU`RN"XR%csa^`,%'R%N %K

    pRBNK^6G]pNXbN*"dcfeNX+,X%%UNN,^]pcNX

    cg^cK^%KN

    hYiWj kml^n

    o

    >pqAr=(/E

    kml^n

    o

    ?dp9A= sut

    vwyxZzr{ |~}$xZzY 9z 0yzY zY

  • ^/>"qO/Q9r)MW
  • $%&

    $')(+* ,-".

    %/&

    0132546879

    $%/&

    $' (:* ,-".

    % &= '

    (@?AB(

    %C

    &

    ;:D % &"= '

    AB(

    %C

    &FEG/H

    &IKJ

    % =MLN; '

    AO( P

    Q

    &R

    G

    P

    % C

    & E GH

    &IJ

    ES

    &T

    D U VXW>YZ[\VX[3]^`_badc"VfeX_g

  • :

    /

    35k

    /

    | >3

    "

    F5

    5

    fl

    /

    M

    M

    kNik"fmFrr

    k`b3b

    j

    m

    35

    0 2 4 6 8 10 121.5

    1

    0.5

    0

    0.5

    1

    1.5

    x

    u(x,

    t)

    t=0t=1

    !

    35"

    #%$

    #

    $

    '&ok)(+*

    l

    \

    ,(-*

    \

    .(-*

    /

    /

    /

    $

    10

    \

    $

    10

    .(-*

    M

    M

    352

    >

    $

    K

    $

    354

  • 687%9

    68:=

    7 9

    =?;A@CBEDFEG HJILKNMOQPSR

    T

    = UVXW+Y[Z\)V

    ]

    B^D _a`cbSdefSegXhCbJikjl;nm=ocBEDp;qm

    ]

    @Crsutwvyx{zJV5\|x[v}s8rSF

    ~

    mwD e8

    mBED _a`cbSdefSegXhCbJikjl;>aD @.W+rhCXdL`chCbJiF

    D `cbpg@Em

    7%X

    Z|CW8xEY)V5\tVXXWcuY[Wr

    7J

    F

    Q1? .w+c^

    VXrV58V5\%Y[Vx{zJV5Vas+z\)szW8W-Y)v}s8r VXzSVXrxsrY[VWc8V5V5rY[

    ~-

    o+D@s8\WcV5rZ

    V5\DFjVx)WcuY[SW-YwY)VWcVavyxw vyx{zJV5\|x[v}8V

    s8rx{VLZV5r5Vs+! vyx{zJV5\|x[v}s8rvyxY)W-Y

    Y[Vx{SW+zJVs+Y[Vx{s8}Z Y)v}s8rv}|WrVW8xY[VWc8Vz\[s8zW+LW-Y[Vx

    Vx[V5Va\)s

    Y[V

    W

    s-VY)W

    }VY[W+Ys8\

    T

    ;

    ]

    @NY[VWcVVXLZW-Y)v}s8rSFjY)Vx{zJV5Vsz\[s8zW+LW-Y)v}s8rvx

    s8rx{Y)W+rLYs8\W}

    sVXxWrY)V5\)Vs8\[VWrvrv}Y[vyW+x{WzSVv}

    Vz\[Vx{VX\[8VXWxvY

    z\)szW8W+Y[VXx

    Us8\

    T

    ;

    jl;mwD

    W+rS?WcVXxv}Y[v DJv}z\[s8zW+LW-Y[VWs+Y

    CWx{Y[VX\Y[WrY)VWc8VXxvY)x

    W+ DjkWrY[VX\[V5s\)VWrLvrv}Y[vyW+5sr v}Y[vsrv}

    |WrVvY|xx[W+zJVWxY[Vx{s8}Z Y)v}s8rVXs8}8VXx

    VaWx[sprs+Y)VY[W+YV5r v}JVX\[VXr8YwV5\)v}-W-Y)v}8VwY)V5\

    xW+\)Vz\)VXx[V5rLYjY[Vx[sZ Y[vsrv}

    V v

    v}YkW

    V5WcvsZ\v|uvyxY)V\)VXx[ZYks+s

    vrvraY[V v%V5\)V5rLY!Y)V5\

    x!z\)VXx[V5rLY

    Us8\v}rx{Y)WrVaW+rVXLZW+Y[vsrx[Z|Wx

    7S

    ;qm

    7%

    7J

    v}1V5 v

    vY

    s+Y[z\)szW8W+Y[vsr

    W+rS V5Wc%Y[vxXW+rVXW8x{v}

    Vx[V5VXr

    rsY[vrpY[SW-YvrY)vxw5Wx[V=?;nmBEDmD

    . E!{w>'!{

    HJILKNMOQP

    7J

    7

    ;> ?@C

    ~+

    F

    v}Y[

    7

    @.8F;

    7

    @

    ~+

    F

    7

    @CLF;

    7

    @

    ~-

    F

    V5VXY)s VY)V5\

    vrVars8r

    Y)\[vvW1zW+v\|x@

    7

    G1@CJF)SGSF

    HJILKNMOQP

    Yw5Wr

    VVXW8x{vVX\[v}VXY[W+YY[VVXv}8V5r-W+ZVXxW\[V8

    G

    ;

    T

    s\

    T

    ;

    ]

    ~

    55X

    ]

  • a5XX[8))[5+[}[?+)

    8

    "!#!"!

    $&%('*),+.-0/21.)436578/*98:;%)4:A@B;CD>ACEF;CGCE>?C(HBI>"JLK>"@NM;>OPCDB;QR?OSBQTQU>PR(VNB;@W;JX@,KYCDBZCE>?>"JLK4>P@*MF[]\N>S^OF@`_>

    OB;ab_PJX@>WcJX@*CdB[}e

    F;@W8

    .f

    =?>g@BCd>eF;[]RPB&CEFChJX@iFWW;JXCjJB;@kCdBcCXEN>l>PJLK4>"@NM;F;[]\N>PR

    F;@Wk>"JLK>"@NM;>OPCDB;QRGRUENB;Hm@nF_B;M;>ToNp

    rq

    o

    p

    JsRtF;[uR"BAF;@n>"JLK4>P@*M>O"CdBQ

    f

    v

    JX@O>CE>l>"JLK4>P@*aiBwW>PRgOB;JX@OPJW>eHmJXCXEtCE>yx8B;\ QTJ>"QabB#W>TRohH>lOF;@zQU>dKFQUW{B;\ QBQTJLKJX@F;[

    x8B;\ QTJ>"Qz>S|TVNF;@NRTJB;@0FRzF@I>S|PVF@RTJB;@IJX@ICD>PQTa}R}B~z>PJLK4>P@*aiBwW>PR

    f

    @i~PFO"C(ogCE,JsRt[F;CjCd>"Q

    JX@NCD>"QjVQU>"C(JB@bJsRl"\ JXCD>yK>"@>"QUF[ F@WFVV[]J>TRlJX@iRTJXCj\NF;CjJB;@RgJX@bH8E,JOEiCE>x8B;\ QTJ>"QgaiBwW>PR

    >"JXCXEN>PQWB@B;CG>S|JsRTC(o{BQWBZ@BC{OB;JX@OPJW>HmJXCEYCE>>"JLK>"@NabB#W>TRB~bCE>W;J &>PQU>"@NCjJF;[

    BSVN>"QUF;CDB;Q

    f

    P}ciG"."}

    ly*m}Ag &, 4Xn

    }[pX5gSUS )}8

    &

    U

    y

    hp*

    U

    { )}8

    "QU>AH>F;QU>F;RR\ azJX@4KYCXENF;CCE>>"JLK4>P@*MF[]\N>TRdh>PJLK4>P@*M>O"CdBQREF;M;>Z_>>"@rB;QUW>PQU>WIJX@

    RT\NOSEFzHF}CEFCyJ ~GF;@Z>"JLK>"@NM;F;[L\N>&EF;R{Fiaz\ []CjJ V[]JO"JXCj6JXCHmJX[X[OSB@NCjQTJ_P\ CD>eCD>PQTa}R

    CDBiCXEN>GRT\ abF;CjJB;@

    f

  • nhTZ m# ;hUD ^ z jh*

    nt*#U{UN&yz;S"i &Uz S?mStSN#g^8NUkU

    iPS .U"NSUUsNw

    .Uy`U t

    UN"

    c

    t

    8

    l#U

    s.UN#N;S;SeeNTSz Ul,U#zlS4UwGU

    UeUN",;S"

    ,NbU&"",;lcNUPs#

    UN#N;Sk;S

    A!

    "

    #$%&

    #('

    #

    #

    )

    )

    !

    "

    #*$+%

    ,

    '

    #

    ,

    #

    ,

    '

    #

    ,

    &

    #

    '

    # -

    '

    #

    y

    '

    %

    #/.102

    Uy

    "

    #$%

    '

    %

    #/.302

    #

    54

    6y#,N# "U#UiYU#i*S}# S^bU S("U# Si87D #*#N "4

    S"9

    :#

    &

    ;

    :#=@?ABCDFE1>@GHI>JI?*B

    ;

    K?SML6N"s;U*

    OQPSR3T5UWVYX[Z\1][P^\1_`1XWa8P__\*]FP^`*b5Xcad\*b/edUfUNg8ZUhaW]iUhjQXkPbadUl\m_\1V[RUWVlUWPSRUWbn1\1_poUlqrP__(RUWbUWVN\*]sU

    _\*VFRUWVt]FPuvUtn3\*VkP^\1][P^`1bXt]wT5\*]qrP__T5\1n1Ux]i`QedUtuy\*]sadT5Udj3z+]wT@Vh`1oR3T{]TUY`1VkPSRPb\1_Ud|Wo\1][P^`1bz

    qrP]wT}T@PSR3T5UWVQX[Z\1][P^\1_IjU8VkPn1\1][Pn1UkXW~

    `1V=]wT5U=TUh\*]Uh|Wo\1][P^`1b/XW`1_Sn3Udjy`1b\1VWeWP]FVh\1Vkvj`1uv\1PbXqUcqrP__UNg8ZUhaW]]TUQU8PSRUWbn1\1_poU8X

    ]i`ehUVNUd\1_\*bj9bU[R\1][Pn1UjUdad\1d~xb]wT5U}`*]TU8VMT\1bj1z8`1Vv]wT5Uvq\1n1UUd|Wo\1][P^`1b]wT5U

    UWPSRUWbn1\1_poU8XyqrP__ehUZo(VNUW_pPuv\WRPb\*VkZVN`dZ5\R\*]FP^`*b*~vPb\1__p3zlqUyqrP__UNg8ZUda8]Y]wT5U

    UWPSRUWbn1\1_poU8Xm]i`}edURU8bU8Vh\1_Iad`*u=Z_UNgbo(uyedUWVdXcqTU8bad`1bn1Uda8][Pn1U{\*bj}j*P Yo@XkPn3U{]iU8Vku{X

    \1VhUxZVNUkXWUWb]Pb]wT5UUh|Wo\1][P^`1b~

    3

  • rlrv

    (c1k**F*cl+d8dF*mY((F1F3NwdFF*(WkhW

    118M

  • "!$##%&'!"(*)+,$ &-/.0)#123254

    67)#4&.89/2#":;?)5A@

  • B C$DFEGDHIJKDLMINOIE5PQIRC5STNU'VGWXY

    ZO[\Z ]^`_a2b\c/d efchgjikmlnk\_9i oqpsrut/vw

    xGyjz`{}|}yT~yyzn{}qy*Tuz`yqyy~~{}uyy~-u?y|1~ujuy*} yyqy

    {qFu{n~~zny{uuGm{{y{qFu{yyu|{u|}y~u?my~*\

    } 2yyqy~yy9yOuun~y9{q1{zny~&my|yqus~`z?{qFu

    {}}n~

    G`Q;qs-\\qF`sF\q1``n-sQ}

    `&`}

    2

    11

    q

    hnOFn T

    nnnFF n`q1s1F

    sFs}sF

    Mh Q !"#$%&h'

    (

    F/

    )

    *

    ,+.-&/0s

    Qh21s\&```}nj43qFF`n!576

    Fn

    ZO[8 9;:=

  • NOPRQTSKUVWSYXZUZP\[]X7^_PVa`7bYc4SX7^E[edf^OP`bchgYXibjk[lSc!b'mRc4bYn,Pdo^qprPsUrVtPuP;^OS^G`7SdudHPodv^OVtbwrUxO

    SYc]c^]O7Pq`7bY[]X^ld;yz{|'}x{x~|a'|HHK@ iZ]TB

    7t2Yt

    Z }

    z

    x$K

    Z}

    z

    x$K

    {

    =

    ZR

    {

    z

    K$x

    }x{

    KtHrWr

    {

    ZR {

    z

    K$

    ie$l $=l

    iZ]T

    H

    G;

    yz

    {

    $

    |tz

    {

    |tz

    {t

    ~

    K7ru2Hru7r>ZtKtireZ

    }yz~

    riK@

    riK_

    _Z

    i

    _Z

    i

    }

    {

    G

    H_Z'

    riK_

    _Z

    i

    }

    {

    riK_Z_

    H@

    HWH@Z@

    HoiK@

    }x{t

    iZ]TB

    >W'74rWte

    yl

    4u'>2HW4Ytr

    ~

    {

    $

    {

    {t

    v

    W

    t

    rWu

    W

    W

    HZtKtx

    W

    W

    uqrW

    bYVPWZSj`c4PSdHPuubYXipbYVtpPVWSWn,SYVWpBp[ >PHVtPXuPSu`r`iVWbH[]j S^[lbXWSXuPn"Vo[]^^_PX

    Sd}

    {

    y}x{}x{

    G

    }x{

    ~W2ykzi~H

    iZ]TB

    . y

    xr2KtYYW4

    ~

    {

    $

    {

    {t

    x

    K

    K

    KWHWK

  • ,Y_q]7Yio]iuq,WEu_oa]"]\]tu]7T]7_7Ya]7Yl

    eRHWurqtt,;HWuoYYaY\e\uY7os7qYY7t o

    Zt

    !_ "t$#rY_%roY&r(' , ")t*2t+4uo'-,/.

    7Y]7

    0(1

    24365798 :;3;7

  • p9; R;

    ER

    ""!iX^$#i%

    Z&C"% $'

    i()i*

    +E+ ,i-#.i0/

    X.}$21

    35476987:2;

    @?

    A

    BDC

    =FE

  • 2k.$%2c2.%O2.2P%O(O7

    x5

    xm

    O

    m@

    x

    P

    2

    P

    x

    kO.M229

    .

    x

    x

    P

    (

    99k $c

    2

    K

    99k $c

    Om

    m

    x

    x

    P

    52U.OkOk5N.9k7..9O,9.c2

    cO$%

    cM7Ox%$%.9z7Ok9O&.O97%

    52ckOk.%

    O97.

    x

    k2c9M2 Dz%PD

    2

    9 $O

    D

    9

    99

    D

    99

    D

    .

    9

    D

    .

    9

    9O...%9%O22F

    M2

    K

    99k $c

    Om

    m

    x

    .2r729k5UO.OOx

    52O.9@2c2M2

    %.O.99

    x

    x

    5N.$m(9U

    Y5N.9k7$j%

    YkOk.9((97Q..

    "!#%$&(')+*,+-.#,/!, 0 1*,+23&45!6&-07

    x

    kOkt%9%O27OkO

    .N%N.29k5kc

    .kx25(97.08*2O2

    cO&.%O@%t2k$(25..%9%

    O2%N%&c*7O92

    x

    cN25(97%N.29k72%9%

    O2)%t:92

    M7O

    ;

    Om

    ;

    o44scRuBco/

    5

    !

    !

    /s

    !

    !

    /sc

    !

    !

    \ W

    __ R! \

    1_"

    #4uo / osc

    Zo4

  • $%'&( )+* ,

    -/.10325476983:

    -/.@?BADC

    ,

    -/EF0G2H476983:

    -/EJ?KA

    L

    8MONP8JQJRS:

    -T.VUW-/EYX[Z

    ;\=

    U

    I+]^RQ

    ?

    $

    %

    &_( )

    *

    =J`a`

    C

    I\`9>a`

    Ccb

    ;

    -/.

    `

    UB-TE

    `

    ?

    dDegfih

    NP8JQJRS:

    =kjmlonI+jmp

    $

    %

    &( )

    *mq

    ;!l

    C

    2

    ?

    `

    C

    q

    ;rp

    C

    2

    ?

    `

    s

    :

    -/.+UW-/EYX[Z

    tvurw xzy|{~}1Jy|{~ay @3+'

    '

    X

    q

    la`

    C

    q

    p`

    ,>

    `

    s

    :

    -/.+UB-/EkXZ

    pjl

    '

    X

    q

    la`

    >

    `

    '_

    ;

    e

    `

    ?

    s

    :

    T

    R

  • ! "#%$!&'&(#%)*",+-#.0/!132 45

    6879;:=-@BADCFE>HGIE?C=JKHM-CN>HGI:N7O

  • !"#!$%!'&

    (*),+ -.

    !0/10 243567

    .

    !0/8&29/:

    ;

    ),+ -5=

    ?*@@!8

    .

    .

    !035/2A!6$

    .

    !CBEDGFIH

    .

    24J@&

    K

    L1M

    NO

    O

    O

    O

    O

    O

    O

    P

    K

    QRSR

    K

    Q>RAT

    K

    Q>RAU VWVXV

    K

    QR4Y

    K

    Q T,R

    K

    Q T9T

    K

    Q T9U Z

    Z

    Z

    Z

    Z

    Z

    K

    Q@U,R[Z

    Z

    Z

    Z

    Z

    Z

    Z

    Z

    Z

    V

    Z

    Z

    Z

    Z

    Z

    Z

    V V

    K

    Q\] R4Y

    K

    Q\ R VWVXV^V

    K

    Q\ Y ] R

    K

    Q@\ Y

    _W`

    `

    `

    `

    `

    `

    `

    acb

    K

    d1M

    NO

    O

    O

    O

    O

    O

    O

    P

    K

    e

    RSR

    K

    e

    R4T

    K

    e

    RAU VXVXV

    K

    e

    R4Y

    K

    e

    T,R

    K

    e

    TST

    K

    e

    T9U Z

    Z

    Z

    Z

    Z

    Z

    K

    e

    U,RfZ

    Z

    Z

    Z

    Z

    Z

    Z

    Z

    Z

    V

    Z

    Z

    Z

    Z

    Z

    Z

    V V

    K

    e

    \] RAY

    K

    e

    \ R VWVXVgV

    K

    e

    \ Y ] R

    K

    e

    \ Y

    _W`

    `

    `

    `

    `

    `

    `

    a

    hji'kClmnpoqrhji'ksotuhjvnwx4yuz{4|}lmn~5ink:x4yun@i0wx45i0h5{4uy8h%lvx9nw@0xAislmnh5i0k

    k:x4vnlxAi0wvnwz*nlx45n{A|65wx4@nGEhji0kCICvnwz*nlx45n{A|

    0

    W

    XWf

    *I

    **

    XWf*

    W

    u

    0

    X

    *XXf

    **

    *

    ^WX

    W

    u

    n@lq8h5i0kt1'nlmny8hjlvx4@nwclm'h%l@5i6lh5xAiClm0ni5vy8hj{4xAnkGn@x45ni6nl5vwcjoq

    hji'kGotpvnwz'nlxAn@{4|,wn@nw{Ax9k:nm#0w@:cn@h5iGvxln

    o

    q1

    qjcq

    q

    o

    t

    t>t

    t

    mnvn

    cq

    h5i0k

    t

    hjvnlmnk:x9hj5i0h5{*y8hjlvx4@nwjn@x45ni#>h5{A0nw

    |xAi'wnvlxAilm0nhj*%5n}n@:zvnwwx45i0wp5v8o

    q

    h5i0ko

    t

    x4i6lE5vuy8h%lvxAn60hjlx45i

    zvn@y1{lxAz0{A|r#|

    q

    hji'kGz*wly1{Alx4z{A|G#|

    t

    :cn5:lhjx4i

    cq

    qE

    t

    q

    t%ct

    q

    t6

    n0ix4i

    q

    t

    hji'k

    1

    q

    t

    nz0vz'6wnlmn{A{4%c5x4ih5{A5vxlmy

    1

    q

    7t

    >>

    >@>

    1>>

    5v

    @@

    7

    @

    q

    p

    t

    n 50wn@v5nlm0h%llmny6wln:z'ni0wxAnwln@z0w

    hji0k

    5i{4|1x4i#5{Anyp{Alx4z{4x4h%lx45i85

    y8h%lvx9nwj7wx4@nE5vEm6'w@xAE#lmnp@wljlmnh5'%nh5{A5vxlmyw@hj{4nw

    {4xAnpr>

    nm0h>nhj{4vnh5k:|1xAi'k:x4h%lnkrh5'%nlm0hjllmnn@v|wz'nx9hj{*wlv0lvn5lmny8h%lvx9nw

    q

    h5i0ks

    t

    h5{A{4%5vh5iGn5n@iCyu5vnnrx4n@i6lxAyuz{4n@yunilh%lxAiG5lm0nyuhjlvxGzv:k#

    0lw0wx4i0hwl105vx4n@vvh5i0wvy8w8,5vp'h5wl#x4in}vh5i0wvy8wx4ilmx9wph5wnl

    5lhjx4ih1i0nhjv{4|r5z:lxAy8h5{w{A:lxAiC@wl8,{45

    @

  • !"#

    $&%(' )*,+(-.-/*,01)324*6587(9;: = ?A@/BDC;EGFIH

    JLK"MNK&O,K8PRQTSIUWVYXZKM\[^]IK8KN_Z[`KS4URVYQaSQcb[^]IKed,S4VD[`KXTV f8KMNK"SAPRKhgiK"[^]IQjXk[lQSAQTSm`MNKRP[`nTS.oaprqsnTM

    XtQaginaVDSIU"u

    vGwxayzw8{s|/}Nw"yzw~(}Nwj{|~(Z.{s|I

    h

    {|

    t|;

    A

    t|;

    a;

    \

    wyNw

    .

    xa|4

    xayzwkt{stw|e

    KnTURURprgK[D]4nT[k[^]IKRQTprSAXZnTMWQcb8\>PRnTSRKXaVDVYXZKRXGVDS4[`Q

    nTSX

    UWp4Pz]

    [^]InT[

    u&S3

    VDMWVYPR].qK"[

    I

    RQTprSAXZnTMWPRQaSAXTVD[VYQTS4UnTMNKnzZAqVYKRX

    O]IK"MNKRnUiLK"prginaS4SPRQaSAXTVD[VYQTS4U

    j

    1A

    naMNKnzZAqVYKRXQaSGuV_.KRXLQaMhQZVDS4

    [zIKRQTprSXtnaMWPRQTSXTVD[VYQTSIUVDS4TQTqjVDS/o[D]4KbRprSAP"[VYQaSnaSAX[^]IK8SAQaMWginaqXZKMWVDTnT[VDTKPRQTprqX

    nTqUQRKKRnUWVDqVDSAPRQTM4QTMNna[lKRXZu

    eYAY IY

    ?A@/BDC;EGFIF

    KMNKR"prVDMNK3nSAQaS4mlUWVDS/otprqnaMgnzZAVDS.ozK"[O,KzK"SnMNKRP[`nTS.oaprqsnTMMNKloaVYQaS18nTSX[^]IK

    XtQaginaVDSQ(bkVDS4[`KMzKWUW[u

    ^rN

    Yr(

    h

    xa|

    wrw"}NwyNi{s|Iwxa|w/I{sTxasw"|/}\IyNZIsw"}ziw~NtstwjZ|

    WSQTMNXZKM3[lQU"QTqTKQTprMiMNQt"qK"gQaS18O,KSAKRKRXQaprMXTV f8KMNK"S4[VYnTqKRp4na[VYQaS[`QRK

    Kz_WMNKUzU"KRXVDSGURp4PR]nO,nT[D]4nT[hnaqDq,XtK"MWVDna[VDTKWUnTMzK[lnjtK"SO>VD[D]MNKUIKRP"[\[lQ[^]IKiVDSXtK"m

    4KSXtK"S4[,TnTMWVYnZqsKWUh3naSAXu

    j

  • l4TD.TiD4\RThAzZDc8eZjWD/k^.iRtAD.TzTWT rY

    WDAT/4RW"INz8rz(WY\Z"ANaYalRR.446IR" RTD

    t"TT`z`iDrz4"R6iNt"laD

    !" $# %'&(*),+.-/&021435146879(;:)9+ ?"@BADCFEHG4I

    JiRDhAsRIaDKLrsa MhzYaYaKN,kIa^ITO.

    PRQTS,UWV*XZY5P[QTS9QT\;U^];XUWV8QT\;U^]*XWX

    _ `La b

    cedgfh ij

    k

    Pml n \leP

    fZo

    ]lP

    i

    Pmpqn \pP

    f o

    ]eprP

    i

    sutvxw;tvyyz{|~}{y^y

    \

    l*

    ]

    l*

    \p

    {w

    ]p

    ?"@BADCFEHG*

    \n5\*QSFUWV*X Sn5S9QT\;UW]*X

    ]n5]8QTS,UWV*X Vn5V8QT\;U^]*X

    \

    ]

    n

    \l \

    p

    ]

    l

    ]p

    S

    Vx

    S

    V

    n

    S

    f

    S

    i

    V

    f

    V

    i

    \

    ]

    k

    \

    l

    \p

    ]el \

    p2

    n

    S

    f

    S

    i

    V

    f

    V

    i

    8

    n

    V

    i

    S

    i

    V

    f

    S

    f

    nS

    f

    V

    i

    S

    i

    V

    f

    ?"@BADCFEHG*

    P

    l

    n

    QTV

    i

    P

    f

    V

    f

    P

    i

    X

    Pmpn

    Q

    S

    i

    P

    f

    o

    S

    f

    P

    i

    X

    {>w

    P

    l.l

    n

    S

    QTP

    l

    Xn ;\

    l

    \

    o

    ]

    l

    ]9

    P

    l

    n

    ;V

    i

    \

    V

    f

    ]R

    P

    l

    n

    Pmppqn ?"@BADCFEHG>

    9>{|~|

    QTP

    ll

    o

    P"pprXnx

    ;

    ytey

    Q=uP

    fWfO

    P

    f^i

    o2

    P

    ii

    o

    P

    i

    o

    P

    f

    Xn

  • "r*>;">e^**

    5>u2;

    BW

    L

    L

    2

    >

    B ^

    L

    5"

    24

    mT*'DKD;$[=D;LLDr=DLOD"D4De"D4

    =>

    "

    '^DTL"8

    "~

    ! "$#&%'"$()+*-,-./.~0."^21

    3,41

    )65 ~;879

    :

    ;

    #

    (

    #

    %

    (

    ) :

    ;

    2

    3%WrOA@"^*CB

    ED[FDDmGBT*T*HD;mLL

    I

    J

    LK&* MN

    M

    "

    N

    #

    "

    #

    N

    (

    "

    (

    :

    PO

    T

    "

    #

    "

    (

    )

    N

    Q

    R"

    #

    20"$S)

    N

    T

    U

    ^V "

    #

    %'"

    (

    )Z :

    ;

    -%W>W)L

    X4YCZ[Y\XGY\]_^Y

    =

    `acbed

    a

    gfh'e"i];LkjRDmGh BWD^lL

    =Lm

    honcp-qFqrr

    `Rs

    b

    h

    s

    ZD"8XD>DVf

    m

    >=^.utL=

    a

    vu^CY

    *0wChx^u";mhm^eyl

    s

    A@e'Dih'e"znDL|{q

    =

    "LDBB

    p-qFq3}B

    :

  • R$cz4-R-C4\+HH?|eg-&R683W26R

    0&6kHRc-3FF

    W

  • SMA-HPC 2002 NUS

    16.920J/SMA 5212 Numerical Methods for PDEs

    Thanks to Franklin Tan

    Finite Differences: Parabolic Problems

    B. C. Khoo

    Lecture 5

  • SMA-HPC 2002 NUS

    Outline

    Governing Equation Stability Analysis 3 Examples Relationship between and h Implicit Time-Marching Scheme Summary

    2

  • SMA-HPC 2002 NUS

    [ 2 2 0,u x t =

    GoverningEquation

    3

    Consider the Parabolic PDE in 1-D

    0subject to at 0, atu u x u u x = = =

    If viscosity Diffusion Equation If thermal conductivity Heat Conduction Equation

    0x = x =

    0u

    ( ), u x t =

    ] u x

    = u

    ?

  • SMA-HPC 2002 NUS

    Stability Analysis Discretization

    4

    Keeping time continuous, we carry out a spatial discretization of the RHS of

    There is a total of 1 grid points such that , 0,1, 2,....,

    jN j x j

    + = =

    0x = x = 0x 1x 3x 1Nx Nx

    2

    2

    u t

    =

    x N

    u x

  • SMA-HPC 2002 NUS

    Stability Analysis Discretization

    5

    2 1 2

    2

    2 ( j j

    j

    u uu O x x

    + =

    2

    2Use the Central Difference Scheme for u

    x

    which is second-order accurate.

    Schemes of other orders of accuracy may be constructed.

    1 2 )j u

    x + +

  • SMA-HPC 2002 NUS 6

    Stability Analysis Discretization

    We obtain at

    0

    0

    Note that we need not evaluate at and since and are given as boundary conditions.

    N

    N

    u x x x u

    = =

    1 1 22: 2 )o

    du x u udt x

    = + 2

    2 2 32: 2 )du x u udt x

    = +

    1 2: 2 )j

    j j j

    du x u u

    dt x

    + = +

    1 1 12: 2 )

    N N N N

    du x u udt x

    = +

    x u

    1 ( u

    1 ( u

    1( j u

    2 ( N u

  • SMA-HPC 2002 NUS 7

    Stability Analysis Matrix Formulation

    Assembling the system of equations, we obtain 1

    1 2

    2

    2

    2

    1 1 2

    2 1

    01 1

    0

    1 1

    1 0

    1

    o

    jj

    NN N

    du u udt x du

    udt

    udu x dt

    udu u xdt

    =

    0

    0

    A

    2

    2

    2

    +

  • SMA-HPC 2002 NUS 8

    Stability Analysis PDE to Coupled ODEs

    Or in compact form

    du Au bdt

    = G G G

    We have reduced the 1-D PDE to a set of Coupled ODEs!

    [ ]1 1where T Nu u u = G

    2 0 0 T

    o u b x

    = G

    + 2 u

    20 Nu

    x

  • SMA-HPC 2002 NUS 9

    Stability Analysis Eigenvalue and

    Eigenvector of Matrix A

    If A is a nonsingular matrix, as in this case, it is then possible to find a set of eigenvalues { 1 1, ,...., ,....,j = For each eigenvalue , we can evaluate the eigenvector consisting of a set of mesh point values , i.e.

    j j

    j i

    V v

    1 1 Tj j j

    NV v v =

    ( from det 0.A }2 N

    2 j v

    )I =

  • SMA-HPC 2002 NUS 10

    Stability Analysis Eigenvalue and

    Eigenvector of Matrix A

    The ( 1) ( 1) matrix formed by the ( 1) columns diagonalizes the matrix byj

    N E N V

    1E AE = 1

    2

    1

    where

    N

    = 0

    0

    N A

  • SMA-HPC 2002 NUS 11

    Stability Analysis Coupled ODEs toUncoupled ODEs

    Starting from du Au bdt

    = + G G G

    1Premultiplication by yieldsE

    1 1duE E Au E bdt

    = G G G

    ( 1 1 1duE E A EE u E bdt = G G G

    I

    ( 1 1 1duE E AE E u E bdt = G G G

    1 +

    )1 + )1 +

  • SMA-HPC 2002 NUS 12

    Stability Analysis Coupled ODEs to Uncoupled ODEs

    1 Let and , we haveU E u F E b = GG G d U Fdt

    = + JG JGG

    which is a set of Uncoupled ODEs!

    1 1duE u E bdt

    = + G G G

    Continuing from

    1= G

    U

    1 E

  • SMA-HPC 2002 NUS 13

    Stability Analysis Coupled ODEs to Uncoupled ODEs

    Expanding yields

    Since the equations are independent of one another, they can be solved separately.

    The idea then is to solve for and determineU EU= G GG

    1 1 1 1

    dU U dt

    = + 2

    2 2 dU U dt

    = +

    j j j

    dU U

    dt = +

    1 1 1

    N N N

    dU U dt

    =

    u

    F

    2 F

    j F

    1 N F +

  • SMA-HPC 2002 NUS 14

    Considering the case of independent of time, for the general equation,th

    b j

    G Stability Analysis

    Coupled ODEs to Uncoupled ODEs

    1jt j j

    j

    U e F = is the solution for j = 1,2,.,N1.

    Evaluating, ( ) 1 tu EU E ce E E b = JJJJGG G Complementary

    (transient) solution Particular (steady-state)

    solution

    ( 11 1 1where j N Tt tt t j ce c e c e c e c e = JJJJG

    j c

    1= G

    ) 2 2 t N

  • SMA-HPC 2002 NUS

    We can think of the solution to the semi-discretized problem

    15

    Stability Analysis Stability Criterion

    ( ) 1 tu E ce E E b = JJJJGG G

    This is the criterion for stability of the space discretization (of a parabolic PDE) keeping time continuous.

    Since the transient solution must decay with time,

    for all j( )Real 0j

    Each mode contributes a (transient) time behaviour of the form to the time-dependent part of the solution.j t

    j e

    as a superposition of eigenmodes of the matrix operator A.

    1

  • SMA-HPC 2002 NUS 16

    Stability Analysis Use of Modal (Scalar)

    Equation

    It may be noted that since the solution is expressed as a contribution from all the modes of the initial solution, which have propagated or (and) diffused with the eigenvalue

    , and a contribution frj

    u

    G

    om the source term , all the properties of the time integration (and their stability properties) can be analysed separately for each mode with the scalar equation

    jb

    j

    dU U Fdt

    = +

  • SMA-HPC 2002 NUS 17

    Stability Analysis Use of Modal (Scalar)

    Equation

    The spatial operator A is replaced by an eigenvalue , and the above modal equation will serve as the basic equation for analysis of the stability of a time-integration scheme (yet to be introduced) as a function of the eigenvalues of the space-discretization operators.

    This analysis provides a general technique for the determination of time integration methods which lead to stable algorithms for a given space discretization.

  • SMA-HPC 2002 NUS 18

    1 11 1 12 2

    2 21 1 22 2

    du a u a udt du a u a udt

    =

    =

    1 1 12

    2 1 22

    Let , u a

    u u a =

    G du Audt

    = G G

    Consider a set of coupled ODEs (2 equations only):

    Example 1 Continuous Time

    Operator

    +

    +

    1

    2

    a A

    a =

  • SMA-HPC 2002 NUS 19

    Proceeding as before, or otherwise (solving the ODEs directly), we can obtain the solution

    1

    1

    1 11 2 12

    2 21 2 22

    t

    t

    u e c e u e c e

    = =

    11 21 1

    21 22

    1

    where and are eigenvalues of and and are

    eigenvectors pertaining to and respectively.

    A

    ( )j As the transient solution must decay with time, it is imperative that Real 0 for 1, 2.j

    Example 1 Continuous Time

    Operator

    2

    2

    1

    1

    t

    t

    c c

    + +

    2

    2

    =

  • SMA-HPC 2002 NUS 20

    Suppose we have somehow discretized the time operator on the LHS to obtain

    1 1 1 1 12 2

    1 2 1 1 22 2

    n n

    n n

    u u a u

    u u a u

    = =

    where the superscript n stands for the nth time level, then

    1 11 12 1

    21 22

    where and Tn n n a u u u u u A

    a = =

    G G

    Since A is independent of time, 1 0

    .... n n nu u AAu A u

    = = = G G G

    Example 1 Discrete Time Operator

    1 1

    1 2

    n

    n

    a

    a

    + +

    2

    n n a Aa

    = G

    2 n A

    = G

  • SMA-HPC 2002 NUS 21

    Example 1 Discrete Time Operator

    1 0 1

    2

    0where =

    0

    n n n

    n u E u

    = JJGG

    ' 1 1 11 1 2 12 2

    ' 2 1 21 1 2 22 2

    n n

    n n

    u c

    u c

    = =

    1 1 0

    2

    ' where are constants.

    ' c

    E u c

    = JJG

    1

    1 1 0

    ,

    .... n

    A E E

    u E E E E E u

    = =

    JJGG As

    A A A

    n E

    '

    '

    n

    n

    c

    c

    + +

    1 E

  • SMA-HPC 2002 NUS 22

    Example 1 Comparison

    Comparing the solution of the semi-discretized problem where time is kept continuous

    [ 1 2

    1 1 12 1

    2 1 22

    t

    t

    u e c

    u e

    = to the solution where time is discretized

    [ 1 1 12 1 1 2 1 22 2

    ' n n

    n

    u c

    u

    = coTh nte di inuofference equation where time is hus exponential

    solution as

    . te

    The difference equation where time is hasdiscretized power solution . n

    ] 12 2

    c

    ] 12 2

    ' c

  • SMA-HPC 2002 NUS 23

    Example 1 Comparison

    In equivalence, the transient solution of the difference equation must decay with time, i.e.

    for this particular form of time discretization.

    1n <

  • SMA-HPC 2002 NUS 24

    Consider a typical modal equation of the form

    t

    j

    du u aedt

    = where is the eigenvalue of the associated matrix .j A (For simplicity, we shall henceforth drop the subscript j). We shall apply the leapfrog time discretization scheme given as

    Substituting into the modal equation yields

    ( 1 2 n

    t t nh

    u u aeh

    +

    = =

    n nu e=

    1

    where 2

    n du u u h dt h

    + =

    Example 2 Leapfrog Time Discretization

    +

    )1 n u + ha+

    1 n

    t

    =

  • SMA-HPC 2002 NUS

    Solution of u consists of the complementary solution cn, and the particular solution pn, i.e.

    un = cn + pn

    There are several ways of solving for the complementary and particular solutions. shift operator S and characteristic polynomial.

    The time shift operator S operates on cn such that

    Scn = cn+1 S2cn = S(Scn) = Scn+1 = cn+2

    25

    ( 1 1 2 2 2 n

    n n n n n hnu u e u h u u ha eh

    +

    + = =

    Example 2 Leapfrog Time Discretization Time Shift Operator

    One way is through use of the

    )1 1n hu a +

  • SMA-HPC 2002 NUS 26

    The complementary solution cn satisfies the homogenous equation

    1

    2

    2

    2

    2

    1( ) 0

    ( 1) 0

    n n

    n n

    n n

    n

    c c c cSc h c S

    S c h Sc c S

    cS S S

    + = =

    =

    =

    2( ) ( 2 1) 0p S S h S= = characteristic polynomial

    Example 2 Leapfrog Time Discretization Time Shift Operator

    1 0

    0

    2

    2

    n

    n

    n

    h

    h

  • SMA-HPC 2002 NUS 27

    The complementary solution to the modal equation would then be

    1 1 2 2 n nc =

    The particular solution to the modal equation is 2 2

    2

    hn h n

    h

    ahe e p e e

    =

    Combining the two components of the solution together,

    ( ) ( )n nu p= ( ) ( )2 2 2 2 1 2 21 2 hn hn h ahe eh h h e e = + + + +

    The solution to the characteristic polynomial is 2 2( ) 1h h h = = + 1 and 2 are the two roots

    Example 2 Leapfrog Time Discretization Time Shift Operator

    n+

    1 h h

    n c +

    2 1 1

    n

    h h h

    +

    S

  • SMA-HPC 2002 NUS 28

    For the solution to be stable, the transient (complementary) solution must not be allowed to grow indefinitely with time, thus implying that

    is the stability criterion for the leapfrog time discretization scheme used above.

    ( ) ( )

    2 2 1

    2 2 2

    1

    1

    h

    h

    = + <

    = <

    Example 2 Leapfrog Time Discretization Stability Criterion

    1

    1

    h

    h

    +

    +

  • SMA-HPC 2002 NUS 29

    Im( )

    Re( )-1 1

    Region of Stability

    The stability diagram for the leapfrog (or any general) time discretization scheme in the -plane is

    Example 2 Leapfrog Time Discretization Stability Diagram

  • SMA-HPC 2002 NUS 30

    In particular, by applying to the 1-D Parabolic PDE 2

    2

    u t

    = the central difference scheme for spatial discretization, we obtain

    which is the tridiagonal matrix.

    Example 2 Leapfrog Time Discretization

    2

    2 1 1 1

    1 1

    A x

    =

    0

    0

    u x

    2

    2

  • SMA-HPC 2002 NUS 31

    Example 2 Leapfrog Time Discretization

    According to analysis of a general triadiagonal matrix B(a,b,c), the eigenvalues of the B are

    2

    2 cos , 1,..., 1

    2 2 cos

    j

    j

    jb c j NN

    j N

    = + = +

    The most dangerous mode is that associated with the eigenvalue of largest magnitude

    max 2

    4 x =

    ( (

    2 max1 ax max

    2 max2 ax max

    1

    1

    h h

    h h

    = + = +

    i.e.

    which can be plotted in the absolute stability diagram.

    a

    x

    =

    ) )

    2 m

    2 m

    h

    h

    +

  • SMA-HPC 2002 NUS 32

    Example 2 Leapfrog Time Discretization Absolute Stability Diagram for

    As applied to the 1-D Parabolic PDE, the absolute stability diagram for is

    Region of stability

    Unit circle

    Region of instability

    2 at h = t = 0

    2 with h increasing

    1with h increasing 1 at h = t = 0

    Re()

    Im()

  • SMA-HPC 2002 NUS 33

    Stability Analysis Some Important

    Characteristics Deduced

    A few features worth considering:

    1. Stability analysis of time discretization scheme can be carried out for all the different modes .

    2. If the stability criterion for the time discretization scheme is

    j valid for

    all modes, then the overall solution is stable (since it is a linear combination of all the modes).

    3. When there is more than one root , then one of them is the principal root which represents

    ( 0

    an approximation to the physical behaviour. The principal root is recognized by the fact that it tends towards one as 0, i.e. lim 1. (The other roots are spurious, which affect the stability

    h h

    but not the accuracy of the scheme.) )h =

  • SMA-HPC 2002 NUS 34

    Stability Analysis Some Important

    Characteristics Deduced

    1

    4. By comparing the power series solution of the principal root to , one can determine the order of accuracy of the time discretization scheme. In this example of leapfrog time discretization,

    1

    he

    h

    = ( ( 1 2 2 2 2 4 42 2 2

    1

    2 2

    1 .1 2 1 2 !

    1 ...2

    and compared to

    1 ..2!

    is identical up to the second order of . Hence, the above scheme is said to be second-order accurate.

    h

    h h h

    hh

    h e

    h

    + + + +

    = + + +

    = + + +

    + ) )1 2 .

    2

    .

    h

    h

    =

  • SMA-HPC 2002 NUS 35

    Analyze the stability of the explicit Euler-forward time discretization 1n du u u

    dt t

    + = as applied to the modal equation

    du udt

    = 1

    1

    Substituting where

    into the modal equation, we obtain (1 ) 0

    n

    n

    du u h h tdt

    u u +

    +

    = = +

    Euler-Forward Time Discretization Stability Analysis

    Example 3

    n

    n

    n

    u

    h

    + =

  • SMA-HPC 2002 NUS 36

    Making use of the shift operator S 1 (1 ) (1 ) [ (1 )] 0n n n nc c Sc h c S h c + + = + = + =

    Therefore ( ) 1 and n

    h c

    = +

    =

    characteristic polynomial

    The Euler-forward time discretization scheme is stable if

    Euler-Forward Time Discretization Stability Analysis

    Example 3

    1 h + or bounded by 1 s.t. 1 in the -plane.h = <

    n h

    n

    h

    1 < h

  • SMA-HPC 2002 NUS 37

    Euler-Forward Time Discretization Stability Diagram

    Example 3

    Im(h)

    0-1-2

    Unit Circle

    Region of Stability

    Re(h)

    The stability diagram for the Euler-forward time discretization in the h-plane is

  • SMA-HPC 2002 NUS 38

    Euler-Forward Time Discretization Absolute Stability Diagram

    Example 3

    max 2

    4As applied to the 1-D Parabolic PDE, x =

    max

    2The stability limit for largest h =

    1-1

    leaves the unit circle at h = 2

    at h (=t) = 0

    Re()

    Im()

    with h increasing

    =

    t

  • SMA-HPC 2002 NUS 39

    Relationshipbetween and h

    = (h)

    Thus far, we have obtained the stability criterion of the time discretization scheme using a typical modal equation. generalize the relationship between and h as follows: Starting from the set of coupled ODEs

    du Au bdt

    = + G G G

    Apply a specific time discretization scheme like the leapfrog time discretization as in Example 2

    1

    2

    n du u u dt h

    + =

    We can

    1 n

  • SMA-HPC 2002 NUS 40

    Relationshipbetween and h

    = (h)

    The above set of ODEs becomes 1

    2

    n nnu Au h

    + = + G GG

    Introducing the time shift operator S

    1

    2

    2

    n nn

    nn

    uSu hAu hbS

    S SA I u bh

    = +

    G GG

    GG

    1

    1 Premultiplying on the LHS and RHS and introducing

    operating on n E

    I EE u

    =

    i G 1

    1 1 1

    2 nS SE AE E E E u E b

    h

    GG

    1 n u bG

    2 n + =

    G

    1 =

  • SMA-HPC 2002 NUS 41

    Relationshipbetween and h

    = (h)

    Putting 1 , nn nU u F E b = GG G

    1

    2j j S S U

    h

    =

    we obtain 1

    1

    2 n S SE U F

    h

    G G

    1

    2 S S

    h

    i.e. 1

    2 n S S U

    h

    = G G

    which is a set of uncoupled equations.

    Hence, for each j, j = 1,2,.,N-1,

    1 n E = G

    j F

    nE =

    nF

  • SMA-HPC 2002 NUS 42

    Relationshipbetween and h

    = (h)

    Note that the analysis performed above is identical to the analysis carried out using the modal equation

    j

    dU U Fdt

    = All the analysis carried out earlier for a single modal equation is applicable to the matrix after the appropriate manipulation to obtain an uncoupled set of ODEs.

    Each equation can be solved independently for and the 's can then be coupled through .

    th

    n n n j

    j U u EU= GG

    +

    n j U

  • SMA-HPC 2002 NUS 43

    Relationshipbetween and h

    = (h)

    1. Uncoupling the set, 2. Integrating each equation in the uncoupled set,

    3. Re-coupling the results to form the final solution.

    These 3 steps are commonly referred to as the

    ISOLATION THEOREM

    Hence, applying any consistent numerical technique to each equation in the set of coupled linear ODEs is mathematically equivalent to

  • SMA-HPC 2002 NUS 44

    Implicit Time-Marching Scheme

    Thus far, we have presented examples of explicit time-marching methods and these may be used to integrate weakly stiff equations.

    Implicit methods are usually employed to integrate very stiff ODEs efficiently. solution of a set of simultaneous algebraic equations at each time-step (i.e. matrix inversion), whilst updating the variables at the same time.

    Implicit schemes applied to ODEs that are inherently stable will be unconditionally stable or A-stable.

    However, use of implicit schemes requires

  • SMA-HPC 2002 NUS 45

    Implicit Time-Marching Scheme

    Euler-Backward

    Consider the Euler-backward scheme for time discretization 1 1n n du u u

    dt h

    + + =

    tdu u aedt

    =

    (

    ( ( 1

    11

    111

    n n n

    n n

    u u eh h u u ahe

    + ++

    ++

    = =

    Applying the above to the modal equation for Parabolic PDE

    yields

    n

    +

    )

    ) ) n

    h

    hn

    u a+

  • SMA-HPC 2002 NUS 46

    Implicit Time-Marching Scheme

    Euler-Backward

    Applying the S operator, ( ) ( 11 n nh S u ahe + =

    the characteristic polynomial becomes

    ( ) ( ) ( )1 0S S = = The principal root is therefore

    2 21 which, upon comparison with 1 .... , is only2

    first-order accurate.

    he h = + + +

    2 21 1 .... 1

    h h

    = = + + +

    The solution is (

    ( 11

    1 1

    n u n

    h

    aheU h e

    + =

    )1 h

    1 h =

    h h

    )

    ) 1 h

    h +

  • SMA-HPC 2002 NUS 47

    Implicit Time-Marching Scheme

    Euler-Backward

    For the Parabolic PDE, is always real and < 0. Therefore, the transient component will always tend towards zero for large n irregardless of h ( t). The time-marching scheme is always numerically stable.

    In this way, the implicit Euler/Euler-backward time discretization scheme will allow us to resolve different time-scaled events with the use of different time-step sizes. scaled events, and then a large time-step size used for the longer time-scaled events. hmax.

    A small time-step size is used for the short time-

    There is no constraint on

  • SMA-HPC 2002 NUS 48

    Implicit Time-Marching Scheme

    Euler-Backward

    However, numerical solution of u requires the solution of a set of simultaneous algebraic equations or matrix inversion, which is computationally much more intensive/expensive compared to the multiplication/ addition operations of explicit schemes.

  • SMA-HPC 2002 NUS

    Summary

    49

    Stability Analysis of Parabolic PDE Uncoupling the set. Integrating each equation in the uncoupled set

    modal equation.

    Re-coupling the results to form final solution. Use of modal equation to analyze the stability |(h)| < 1.

    Explicit time discretization versus Implicit time discretization.

  • 16.920J/SMA 5212

    Numerical Methods for Partial Differential Equations

    Lecture 5

    Finite Differences: Parabolic Problems

    B. C. Khoo

    Thanks to Franklin Tan

    19 February 2003

  • 16.920J/SMA 5212 Numerical Methods for PDEs

    2

    OUTLINE

    Governing Equation Stability Analysis 3 Examples Relationship between and h Implicit Time-Marching Scheme Summary

    Slide 2

    GOVERNING EQUATION

    Consider the Parabolic PDE in 1-D

    If viscosity Diffusion Equation If thermal conductivity Heat Conduction Equation

    Slide 3

    STABILITY ANALYSIS Discretization

    Keeping time continuous, we carry out a spatial discretization of the RHS of

    [ ]2

    2 0,u u

    xt x

    pi

    =

    0subject to at 0, at u u x u u xpi pi= = = =

    0x = x pi=

    0u upi

    ( ), ?u x t =

    2

    2u u

    t x

    =

    0x = x pi=

    0x 1x 2x 1Nx Nx

  • 16.920J/SMA 5212 Numerical Methods for PDEs

    3

    Slide 4

    STABILITY ANALYSIS Discretization

    which is second-order accurate.

    Schemes of other orders of accuracy may be constructed.

    Slide 5

    Construction of Spatial Difference Scheme of Any Order p

    The idea of constructing a spatial difference operator is to represent the spatial differential operator at a location by the neighboring nodal points, each with its own weightage.

    The order of accuracy, p of a spatial difference scheme is represented as ( )pO x . Generally, to represent the spatial operator to a higher order of accuracy, more nodal points must be used.

    Consider the following procedure of determining the spatial operator j

    dudx

    up to the

    order of accuracy ( )2O x :

    There is a total of 1 grid points such that ,0,1,2,....,

    jN x j xj N

    + = =

    2

    2Use the Central Difference Scheme for u

    x

    21 1 2

    2 2

    2 ( )j j jj

    u u uu O xx x

    + +

    = +

    j2

    j1

    j

    j+1

    j+2

    j

    dudx

  • 16.920J/SMA 5212 Numerical Methods for PDEs

    4

    1. Let j

    dudx

    be represented by u at the nodes j1, j, and j+1 with 1 , 0 and

    1 being the coefficients to be determined, i.e.

    ( )1 1 0 1 1 pj j jj

    duu u u O x

    dx

    +

    + + + =

    2. Seek Taylor Expansions for 1ju , ju and 1ju + about ju and present them in a table as shown below.

    (Note that p is not known a priori but is determined at the end of the analysis when the s are made known.)

    uj uj uj uj

    ju

    0 1 0 0

    1 1ju 1 1x 2

    112

    x

    3 116

    x

    0 ju 0 0 0 0

    1 1ju + 1 1x 2

    112

    x 3 116

    x

    1

    1

    k

    j k j kk

    u u=

    +=

    + 1S 2S 3S 4S

    ( 1 )

    This column consists of all the terms on the LHS of (1).

    Each cell in this row comprises the sum of its corresponding column.

  • 16.920J/SMA 5212 Numerical Methods for PDEs

    5

    where

    1

    1 2 3 41

    ....

    k

    j k j kk

    u u S S S S=

    +=

    + = + + + +

    3. Make as many iS s as possible vanish by choosing appropriate k s.

    In this instance, since we have three unknowns 1 , 0 and 1 , we can therefore set:

    1

    2

    3

    000

    SSS

    =

    =

    =

    (Note that in the Taylor Series expansion, one starts off with the lower-order terms and progressively obtain the higher-order terms. We have deliberately set the iS pertaining to the lower-order terms to zero, thereafter followed by increasingly higher-order terms.)

    Hence,

    1

    0

    1

    01 1 111 0 1

    1 0 1 0x

    =

    Solving the system of equations, we obtain

    1

    0

    1

    12

    01

    2

    x

    x

    =

    =

    =

    ( )( )

    1 1 0 1

    2 1 1

    2 23 1 1

    3 34 1 1

    1

    1 12 2

    1 16 6

    j

    j

    j

    j

    S u

    S x x u

    S x x u

    S x x u

    = + +

    = +

    = +

    = +

  • 16.920J/SMA 5212 Numerical Methods for PDEs

    6

    4. Substituting the k s into 1

    1 2 3 41

    ....

    k

    j k j kk

    u u S S S S=

    +=

    + = + + + +

    yields

    ( ) 21 11 12 6j j j ju u u x ux + = + higher-order terms

    In other words,

    ( )1 1 2 ....2j jj ju udu

    u O xdx x

    +

    = = + +

    i.e. the above representation is accurate up to ( )2O x .

    Some useful points to note:

    1. These 4 steps are the general procedure used to obtain the representation of the spatial operator up to the order of accuracy ( )pO x .

    2. For other spatial operators, say 2

    2j

    d udx

    , we simply replace j

    dudx

    in (1) with

    the said spatial operator.

    3. For one-sided representations, one can choose nodal points , 0j ku k+ . This may be important especially for representations on a boundary. For example

    ( )0 1 1 2 2 .... pj j jj

    duu u u O x

    dx + +

    + + + + =

    One possibility is

    ( )1 2 23 42j j jju u udu O x

    dx x+ + +

    + =

    which is also second-order accurate.

    (We can also use a similar procedure to construct the finite difference scheme of Hermitian type for a spatial operator. This is not covered here).

    ( ) , 2pO x p =

  • 16.920J/SMA 5212 Numerical Methods for PDEs

    7

    STABILITY ANALYSIS Discretization

    We obtain at 11 1 22: ( 2 )odu

    x u u udt x

    = +

    22 1 2 32: ( 2 )

    dux u u u

    dt x

    = +

    1 12: ( 2 )jj j j jdu

    x u u udt x

    += +

    11 2 12: ( 2 )NN N N N

    dux u u u

    dt x

    = +

    0

    0

    Note that we need not evaluate at and since and are given as boundary conditions.

    N

    N

    u x x x x

    u u

    = =

    Slide 6

    STABILITY ANALYSIS Matrix Formulation

    Assembling the system of equations, we obtain

    Slide 7

    11 2

    2

    2

    2

    1 1 2

    2 1

    01 2 1

    0

    1 2 1

    1 0

    1 2

    o

    jj

    NN N

    du uudt x

    duudt

    udu xdt

    udu uxdt

    = +

    0

    0

    A

  • 16.920J/SMA 5212 Numerical Methods for PDEs

    8

    STABILITY ANALYSIS PDE to Coupled ODEs

    Or in compact form

    We have reduced the 1-D PDE to a set of Coupled ODEs!

    Slide 8

    STABILITY ANALYSIS Eigenvalue and Eigenvector of Matrix A

    If A is a nonsingular matrix, as in this case, it is then possible to find a set of eigenvalues

    { }1 2 1, ,...., ,....,j N =

    ( )from det 0.A I =

    For each eigenvalue , we can evaluate the eigenvector consisting of a set of mesh point values , i.e.

    jj

    ji

    Vv

    Slide 9

    STABILITY ANALYSIS Eigenvalue and Eigenvector of Matrix A

    The ( 1) ( 1) matrix formed by the ( 1) columns diagonalizes the matrix byj

    N N E NV A

    1E AE =

    [ ]1 2 1where TNu u u u =

    2 20 0 0T

    o Nu ubx x

    =

    du Au bdt

    = +

    1 2 1 Tj j j j

    NV v v v

    =

  • 16.920J/SMA 5212 Numerical Methods for PDEs

    9

    Slide 10

    STABILITY ANALYSIS Coupled ODEs to Uncoupled ODEs

    Starting from du Au bdt

    = +

    1Premultiplication by yieldsE

    1 1 1duE E Au E bdt

    = +

    Slide 11

    STABILITY ANALYSIS Coupled ODEs to Uncoupled ODEs

    Continuing from

    1 1 1duE E u E bdt

    = +

    1 1Let and , we haveU E u F E b = =

    1

    2

    1

    where

    N

    =

    0 0

    ( )1 1 1 1duE E A EE u E bdt = +

    I

    ( )1 1 1 1duE E AE E u E bdt = +

  • 16.920J/SMA 5212 Numerical Methods for PDEs

    10

    d U U Fdt

    = +

    which is a set of Uncoupled ODEs!

    Slide 12

    STABILITY ANALYSIS Coupled ODEs to Uncoupled ODEs

    Expanding yields

    11 1 1

    dU U Fdt

    = +

    22 2 2

    dU U Fdt

    = +

    jj j j

    dUU F

    dt= +

    11 1 1

    NN N N

    dU U Fdt

    = +

    Since the equations are independent of one another, they can be solved separately.

    The idea then is to solve for and determine U u EU=

    Slide 13

    STABILITY ANALYSIS Coupled ODEs to Uncoupled ODEs

    Considering the case of independent of time, for thegeneral equation,th

    bj

    1jtj j j

    jU c e F =

    is the solution for j = 1,2,.,N1.

  • 16.920J/SMA 5212 Numerical Methods for PDEs

    11

    Evaluating, ( ) 1 1tu EU E ce E E b = =

    ( ) 11 21 2 1where j N Tt tt tt j Nce c e c e c e c e =

    The stability analysis of the space discretization, keeping time continuous, is based on the eigenvalue structure of A. The exact solution of the system of equations is determined by the eigenvalues and eigenvectors of A.

    Slide 14

    STABILITY ANALYSIS Coupled ODEs to Uncoupled ODEs

    We can think of the solution to the semi-discretized problem

    as a superposition of eigenmodes of the matrix operator A.

    Each mode contributes a (transient) time behaviour of the form to the time-dependent part of the solution.jt

    je

    Since the transient solution must decay with time,

    ( )Real 0j for all j

    This is the criterion for stability of the space discretization (of a parabolic PDE) keeping time continuous.

    Slide 15

    Complementary (transient) solution

    Particular (steady-state) solution

    ( ) 1 1tu E ce E E b =

  • 16.920J/SMA 5212 Numerical Methods for PDEs

    12

    STABILITY ANALYSIS Use of Modal (Scalar) Equation

    It may be noted that since the solution is expressed as acontribution from all the modes of the initial solution,which have propagated or (and) diffused with the eigenvalue

    , and a contribution frj

    u

    om the source term , all theproperties of the time integration (and their stabilityproperties) can be analysed separately for each mode withthe scalar equation

    jb

    Slide 16

    STABILITY ANALYSIS Use of Modal (Scalar) Equation

    The spatial operator A is replaced by an eigenvalue , and the above modal equation will serve as the basic equation for analysis of the stability of a time-integration scheme (yet to be introduced) as a function of the eigenvalues of the space-discretization operators.

    This analysis provides a general technique for the determination of time integration methods which lead to stable algorithms for a given space discretization.

    Slide 17

    EXAMPLE 1 Continuous Time Operator

    Consider a set of coupled ODEs (2 equations only):

    111 1 12 2

    221 1 22 2

    dua u a u

    dtdu

    a u a udt

    = +

    = +

    1 11 12

    2 21 22

    Let , u a a du

    u A Auu a a dt

    = = =

    Slide 18

    j

    dU U Fdt

    = +

  • 16.920J/SMA 5212 Numerical Methods for PDEs

    13

    EXAMPLE 1 Continuous Time Operator

    Proceeding as before, or otherwise (solving the ODEs directly), we can obtain the solution

    1 2

    1 2

    1 1 11 2 12

    2 1 21 2 22

    t t

    t t

    u c e c e

    u c e c e

    = +

    = +

    11 211 2

    21 22

    1 2

    where and are eigenvalues of and and are

    eigenvectors pertaining to and respectively.

    A

    ( )jAs the transient solution must decay with time, it is imperative thatReal 0 for 1, 2.j =

    Slide 19

    EXAMPLE 1 Discrete Time Operator

    Suppose we have somehow discretized the time operator on the LHS to obtain

    1 11 11 1 12 2

    1 12 21 1 22 2

    n n n

    n n n

    u a u a u

    u a u a u

    = +

    = +

    where the subscript n stands for the nth time level, then

    1 11 121 2

    21 22

    where and Tn n n n n a a

    u Au u u u Aa a

    = = =

    Since A is independent of time,

    1 2 0....

    n n nn

    u Au AAu A u

    = = = =

    In later examples, we shall apply specific time discretization schemes such as the leapfrog and Euler-forward time discretization schemes.

    Slide 20

  • 16.920J/SMA 5212 Numerical Methods for PDEs

    14

    EXAMPLE 1 Discrete Time Operator

    As

    1 0 1

    2

    0 where =

    0

    nn

    n n

    nu E E u

    =

    ' '

    1 1 11 1 2 12 2' '

    2 1 21 1 2 22 2

    n n n

    n n n

    u c c

    u c c

    = +

    = +

    1 1 0

    2

    '

    where are constants.'

    cE u

    c

    =

    Slide 21

    Alternative View

    Alternatively, one can view the solution as:

    01 1

    1 2 02 2

    n

    n n

    n

    U UU U

    =

    0 1where n nU U U E u= =

    EXAMPLE 1 Comparison

    Comparing the solution of the semi-discretized problem where time is kept continuous

    [ ] 12

    1 11 121 2

    2 21 22

    t

    t

    u ec c

    u e

    =

    to the solution where time is discretized

    [ ]1 11 12 11 22 21 22 2

    ' '

    n n

    n

    uc c

    u

    !

    ! !

    = " #" # " #

    $% $ %

    " #

    $ %

    1

    1 1 1 0

    ,

    ....

    n

    A E E

    u E E E E E E u

    =

    = &'& ((

    A A A

  • 16.920J/SMA 5212 Numerical Methods for PDEs

    15

    difference equation where time is continuous has exponentialsolution The

    .

    te

    The difference equation where time is discretized has powersolution .n

    Slide 22

    EXAMPLE 1 Comparison

    In equivalence, the transient solution of the difference equation must decay with time, i.e.

    1n <

    for this particular form of time discretization.

    Slide 23

    EXAMPLE 2 Leapfrog Time Discretization

    Consider a typical modal equation of the form

    t

    j

    duu ae

    dt

    = +

    where is the eigenvalue of the associated matrix .j A

    (For simplicity, we shall henceforth drop the subscript j).

    We shall apply the leapfrog time discretization scheme given as

    1 1

    where 2

    n ndu u u h tdt h

    +

    = =

    Substituting into the modal equation yields

    1 1

    2

    n nu u

    h

    +

    ( )tt nh

    u ae=

    = +

    n hnu ae= +

    Slide 24

  • 16.920J/SMA 5212 Numerical Methods for PDEs

    16

    Reminder

    Recall that we are considering a typical modal equation which had been obtained from the original equation

    du Au bdt

    = +

    EXAMPLE 2 Leapfrog Time Discretization: Time Shift Operator

    ( )1 1 1 1 2 22n n

    n hn n n n hnu u u ae u h u u ha eh

    +

    + = + =

    Solution of u consists of the complementary solution nc , and theparticular solution np , i.e.

    n n nu c p= +

    There are several ways of solving for the complementary andparticular solutions. One way is through use of the shift operator S and characteristic polynomial.

    The time shift operator S operates on nc such that

    1n nSc c +=

    ( )2 1 2n n n nS c S Sc Sc c+ += = =

    Slide 25

    EXAMPLE 2 Leapfrog Time Discretization: Time Shift Operator

    The complementary solution nc satisfies the homogenous equation

    1 12 0

    2 0

    n n n

    nn n

    c h c ccSc h cS

    + =

    =

  • 16.920J/SMA 5212 Numerical Methods for PDEs

    17

    2

    2

    1( 2 ) 0

    ( 2 1) 0

    n n n

    n

    S c h Sc cS

    cS h SS

    =

    =

    Slide 26

    EXAMPLE 2 Leapfrog Time Discretization: Time Shift Operator

    The solution to the characteristic polynomial is

    2 2( ) 1h S h h = = +

    The complementary solution to the modal equation would then be

    1 1 2 2n nn

    c = +

    The particular solution to the modal equation is 22

    2 1

    hn hn

    h hahe ep

    e h e

    = .

    Combining the two components of the solution together,

    nu ( ) ( )n nc p= + ( ) ( )2 2 2 21 2 2 21 1 2 1

    hn hn n

    h hahe eh h h h

    e h e

    = + + + + +

    Slide 27

    EXAMPLE 2 Leapfrog Time Discretization: Stability Criterion

    For the solution to be stable, the transient (complementary) solution must not be allowed to grow indefinitely with time, thus implying that

    ( )( )

    2 21

    2 22

    1 1

    1 1

    h h

    h h

    = + + E&~

    U

    Y\^

    QNciE&i

    NSN

    R

    T}U

    f

    _Ni

    R

    M

    T

    U

    sQ`

    M

    R

    T

    U

    R

    R

    R

    Q

    R

    R

    R

    a

  • bdcefhgSikjlb#clmonZpqfsr

    itjugwvxzyn{pqf}|k~H%7-}7-J@7llH?>HH}d}dEHzJE?sEdH-H}N##'H

    c'ef

    g

    v

    c

    ef

    m

    c

    pqf

    m

    ~Jg

    77!

    ?(

    }oN ?

    known valuesunknown values

    %

    E7

    c'ef

    g

    f

    v

    c

    ef

    m

    c

    p%!hq}>}

    }'>@uHlHz7uJEHd'7-

    known valuesunknown values

    ElJE>?Sv

    %'79h'

    h'

    '~

    c'ef

    g

    f

    v

    c

    ef

    m

    pqf

    m

    ~

  • "!$#&% ' (*),+.-&/1032

    465798;:=?a

    m

    :[WYZPT:[89n3WofgWp:[qR6r

    is@CBtDXk6`vuZwyx>?Fz`Xuv{1a

    |~}g3T OpT p"}TvgT[l3Ts.6"}6Z 3}T6T* o.

    * .6T[3"]vvp[3T.G[ Z3=.;O.}; O6T*T

    s.}l.pZ v ;ZTgOO&

    >i@CBFk x D

    t ==y$3T

    Wh[WW:ZqP :\S7;893Wl89SL:ZqW,P3eR3c8fgW:[qRr*:[qWR3YrWY_8;SLVq89eqL:ZqW\S3R VSh=PTYZW

    \5~rP :ZWr89S]P3\hZh46W8rW7eqP3SQ3Wh:[qWvYZWh[\7:RT:ZqW8;:[WYZPT:[89n3W5Y[RepWr\YZW3OSWepR\7r

    h[VWW5:[qYZR3\Qq]:[qW_\S6SR VSh89SP3hZepWSr8;SQ3rWh[eWSr8;SQ3RYvPT7;:[WY[SPT:[WR3YrWYZhyqW

    7P ::ZWY5YZRepWr\YZWo8heP37;79Wrh[,fgfgWp:ZY[8elPT\h[h4W8rW7

    SRT:[qWY_W*We:[89n3Wlh:[YP :ZWQ36SR VSP3hYZWr6c7P3eP3\h[h46W8rW78;:[WYZPT:[89R3S89h:ZR\5

    rPT:[Wo:[qWWn3WS\S,SR VShXYh:iY[Wrk

    uZwyx

    Z

    >

    j

    u

    Z

    wyx

    {

    u

    Z

    x

    {1

    Zz

    PTSr:ZqWS:[qWR6rreR3fg5*R3SWS:hi"c7P3ek

    uZwyx

    Z

    wyx

    >

    uZwyx

    Z

    wyx

    {

    u[wyx

    [

    {1

    v

    Z

    wyx

    qWgYZWr6c7P3ePT\hZh46W89rW78:ZWYP :Z8;RS8h5R5\7PTYo"R3Y5P3YZP37;79W7epRfg5\:ZPT:[89R3Sth89SepW

    :[qWYZWri"c79Pek5R8;S,:ZhR3S7;Y[W,\8;YZWL:ZqWc7P3ei"YZWrk5*R389S:hP3Sr$:[qWh[WeP3ScW

    \5~rP :ZWrL89SPTS6R3YrWYqWfgWp:ZqRrLYZWP3r8;79W,:ZWSrh:[Rf\7;:[89579Wr89fgWSh[8;RSh

    m

    S

    M6"R3Y89Sh:ZP3SepW:[qWYZWrPTSrc7P3e5R8;S,:Zh=PTYZWoh[qR VScW7;R V

    Red

    Black

    (*),+.-&/103

  • Zy sCtXzvCE

    [y O& jtX

    sE

    "!!#$!% '&)(+*-,./#0 1

    235476%8:9

    ;=

    ?

    fmjIkL|>fl5p}DP

    W~

    jIn:{n:fMuglovGhgun

    ~

    P

    z?

    P

    P

    b

    P

    WW)tI P

    r=y

    t

    'h]pnOfh]fkOf

    S

    YhjIhk:ufh]l5fih>jIk:fmlon:ph>jgjIn:jlu]pn:f+kOpkL|huBuglo{>x_hMwYkOpYfml5f

    ugl5p|h]l5f

    jIh>wl5jIhgu

    W

    fhjIhuglov:wYk:xluhBk:ugl5x|n:+wfikL{>x_hk:pvMn:pxjIh>wl5jIhgu

    g' 'OIi-QBcOO[G$GOI

  • J7o GYQ 57%L

    )I- ") '

    ""

    BS

    ! "$# %

    &('

    +*),+

    J7 -M.0/1/235460487 57%9

    :

    ;=?@A=>BDC

    BEGFH

    ! "# %

    &5IKJ

    +L),MONHY

    P$QSR?TVUXW>YZ[\Q^]_ZQ`Qa]YVZDbcdYeYfg_Z@QhRc@iT\TXZQjR?T^kHYlmbnoQ^]_YeYX[$[c[Z[AYpiqc@Q`g8TXYrgWrc[sq[AZUXt

    QjRUAZ@WDsqg[js_cuTXY$TvTR^iwUY

    xtyFM`xz0{

    R^W^W(iwcQbY}|iwc

    {

    i~bYrc@[YpQa]Ysw[cbXW>YXR?T}TXcWduYl

    Y

    {

    R^W^W(TXYYv]c

    {

    YdY[

    z

    Q^]_ZQbXnoTQjg_lnR^i8 -M.0/1/235460487 57%

    Fwc K$u*_

    x

    *

  • 0.3

    0.2

    0.1

    0

    # Iterations

    log(

    ||e|| L

    2)

    n=10n=20n=40

    0 10 20 30 40 50 60 70 80 90

    5> m01K1q0 qK^O

    _v8eqXH@5>A@_AK1oeDA>V@>_@08DXAX

    ?vDpoXy>OX8Dv>

    >

    pv

    y

    >

    De

    w

    >_Dyx>

    k

    z

  • {|2}J~V|QvyyJ"%@0};Q"%^{|2"0%D^88|2Q}F|yy|~FAQG}CD%ye{|2"

    'H

    0%"

    y"%8|2Q}F||"DL9jAQ}62l{?"QDkJIF|g2DF|@]

    |}F[%}F{Bdk"lQFAD DF|@

    yA

    0%8{O80lQFA@|y}_f"bWdk2

    fv ChF V_5C

    N"%9|@D"AHyO?-?W)SY@WQV@5L9Q@5V@MeD%}X_|2{BQ~%f|}F|FD=

    86A"|@DAQ}F{2}62"Qj=|""y}%0D2|}e|2"~FLDD|2"y}%A"8|{BQ}FA"y2} ]

    g_Bdy =D"8{?DAY%y|222}M|yA^QA}F|2}_L

    6

    "

    B

    2|2A

    N"Fd|"DLY80"_BD"8{]M_vA"y2dF}%A"D%}7|FDv

    y%A"|@DAQ}

    {2}62"Qc2|2}_YA}%A"8|avQADAQ}

    C?' e6j%ahQ'%fV2M0"?@v=6v9b)6a6W5w6H-%j

    "gG2

    Q"%OQ|Q{B2~FA"D|"y2}

    O

    AI{|}C~M^l|2"Ay;"}JDF|@eF|2

    "8|Q2}F|2M}QD"yN{|}[~V"%@0} -]D"%2Q"y}f%2Dc"c"F|0|

    |@D"AY0A"9"_Py}["%d|2A}78|Q2}F|2

    bW

    B

    }M{B

    V-

    cB

    B

    |

    !

    "$#

    !&%

    "$#

    '

    '

    '

    '

    6B

    6l

    '

    '

    '

    '

    w)(

    "Fdy|Q=0y}%_F|2AA=2yy@k2D"%%y|222}M|2y}F|}M{Bj

    C?+* ejlc2J-,/.

    00132

    Gkv

    254-6

    vg=2

    7f%2D FAQ 8eh

    9

  • := ?@BADCFEG HJI$KML5NPOQO

    RTS0UWVYXZ\[]SJ^_Za`bdceSJV_SJ`PVfUgZihQ`P^kjlVYmY`en3V_SomY`WX\pq`SJnl`+ZMho`3V_X&`rtsuhQ`b vJsw[xsyZzVPs&hQV_{ZMho^YZ

    |]^knlVkj}}MZz`X&^YZ\}VYS~{}MbMbn3V_SomY`WX\pq`UWV_XyVY[]XrV0k`b/vDX&Vkjb`reVY{F`m`Xl-s}MSJnl`UWVYXyV_[]X

    r)Vq`WbFvJX&VqjWb`Wr{F`enl^YSnl^Ybn[]b^YZz`PZihQ`e`W}p$`SomY^Ybd[o`WsPVfUu`3WvJbd}n}MZ\bdc\s`l`vJX&`m}V_[xs

    b`lnZ>[]X&`WsanlV_SomY`WX>p$`SJnl`nl^_SPjl`-s&hoVY{SP_}MX&`lnWZ\bdck

    g/YF

    xq3kl

    B

    xkW&q3

    HJI$KML5NPOQ

    0_

    -

    -

    -

    -

    -

    -

    Pu Q

    kW

    $qW&kl

    _

    ]

    q

    F

    x

    $YkQ0

    >F

    )

    Wq

    x

    a

    HJI$KML5NPOx

    >_

    W$

    x

    q

    x

    qW

    |]^qn3VqjW}n3V_SomY`WX\pq`WsUWVYXtVY[]X-r)V0k`b]vJX3Vkjb`Wr)

    0

    Yz

    HJI$KML5NPOQ

  • 0 2 4 6 8 10 12 14 16 18 20-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1n=20

    (R

    J)

    mode k

    v2 (mode k=2) v15 (mode k=15)

    0.00.20.40.60.81.0

    J$M5PQ

    MW! "#%$'&)(+*-,/.1001023&

    4658798:=

    * ?

    @

    $BADCFE

    $

    #%$ #%$'.%(G

    98HI:7KJ/:1L'M/:1N98OP5QO/R3SUT

    ;

    C^

    *

    SF^_;W=

    * ?

    @

    $BA)CFE

    $

    [

    Y

    $[

    SUT\8\^

    #%$

    `%acbdafe gUhdi>jlk3mfn

    J$M5P!o

    p

    l_>fq/"rstsvu>f_Mxw)xfysPMos\f]"B"8]"lY!{z|_}YM~q/]

    ]>_v"B"8BYqYM}(*-,Yq(*!

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11

    0.5

    0

    0.5

    1

    1.5

    2

    x

    sin(pi x) sin(5 pi x)

    e 0n=20

    0 2 4 6 8 10 12 14 16 18 20-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    (R

    J)

    mode k

    0.00.20.40.60.81.0

    J$M5P>

    >ZDuW"w8>w> ]]{uW\fY>"B"8""P s}"]\fY

    >Z]}"

    q/]zIF>(+*1qP_6"PqYs{zI/"B ]qP

    ,/,

  • 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.5

    0

    0.5

    1

    1.5

    2

    %cdc !]!'D/]W s%6>

    !Wvv'%B xP1

    %/8P1 fU P +-/11

    6/1/8F>

    1B

    >

    1Df

    P

    f%!8

    Z

    d1!

    s%6W

    )]

    rB]sK

    v}

    %

    P

    %]6

    P

    81P

    +

    Z

    )PW//K/1KP_P'//1PPP !

    Z

    P

    Z

    W|

    +

    >

    /

    B]s

    P

    !

    ! 1

    #"+

    $>

    %

    ]

    f

    8'&(Ws8

    6

    /

    6

    %

    )

    P

  • *,+.-/+0* 13245 6879 6:47?@6BAC-)DFE GH8IKJ,LNMPO

    QR:S.TUVUWYXZT[S.T3\'UV^]'_3_`bac_dVeb_efacghajikghUVehaKRlC_'_3eSKmn_dVoT[SpgV)TqSKVNUnT[arlCUStsZR:a u(gl[ikUlCe

    mfUV)V_(ldv

    wyx{z%|}n~0ndx)C}bx))x)~}=ox)t}bCoN)=0~P

    | Z=

    p )

    p

    }8 r:

    ,

    }b K(

    c

    pZ

    }8 p

    }8

    )

    oCd}== n

    [anS.TNSKm)gl[ayUV afacgVgac_NaRoUafSKVd3UVeUWTdgSKVq

    n

    vQRS.T

    \'gmf](SKV_'eiSKaKR^aKR)_u(U=\daaRoUaaRo_fV mn]'_dlnguV:VgiV)T3SKVBUVeFS.T

    UVen/mfUb_[TnSKay_(lCUajSK_fmf_daKR)geT)gay_(V ajSpUWKWYXUararlCU=\dajSK_u(glnUVe{Tro_'\dSpUWKWYXZ

    lg=]dW_(m3Tdv

    j :b,C,

    GH8IKJ,LNMo

    QRo_F\'gV Z_dljs8_(V\'_{UVUWYXZT[S.Tu(glaKR)_U:T'T'cP_(Speb_(Wmf_(aRogeS.TUVUWgsbg:TacgaRoUagu

    aRo_Ub\gb](S,mn_daKR)gebvQR)__`(lC_(T'T'SpgVoT/u(glaKR)__dStsb_dV)_'\(aygl'TUVe_dSts8_(V ZUWY)_[T':u(glaRo_

    mfgeb_(W8lCg=]dW_dmT'\'UVUWTdgh]'_u(gVenSKV\dWgZTd_'ehUWYaKR)g=sZRaRo_lCg\'_elC_S.TTdgmf_(iR)Ua

    mfglC_SKV)gWY_'e=v

    /jN'

    k

    [a\'UV]'_TR)giVcajl[XnSKa NaRoUa

    p

    /

    }8

    j:

    k

    op

    c

    =

    ?o

  • !" #%$ &(')+*!,.-0/++132045,6-879$):&;-8,1?=,@#6464)A -8/=BC2D*+-8BFE;4G!,H"IJ28=#KL28&;MD*+28&

    I+N7!+MD,H-O/HE;/J=!!&,P,QR!/=/-8/S*+-8BFE-8&;!&,@!T U;VW6XZY\[[

    n=20

    mode k

    v2 (mode k=2) v15 (mode k=15)

    0 2 4 6 8 10 12 14 16 18 20-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    (R

    GS)

    ]Z^_]Z^a` bdc;ef(gh8i(gekj9glh8mong

    U;VW6XZY\[p

    qsrRrutovJw9xGyzwR{9x_|9}y~_}!|u}!~r03 ruy|9}!J{9}y }uu}u {(Go

    !)9

    !

    ;

    )

    ;N

    ~_r9{;0

    N

    oQ

    "

    Q

    20BDS/20,.d2)No29*+-9I!#K1I!7o,P/+!7o#6/ "-0&45d284 AS,6N&(7oBDI+!/"-A#6,.!/20,@#a-0&!T

    dz"33=Rd

    U;VW6XZY\[

    w0J

    .v}Jw0vx_r9y J

    ++D+.!>J

    &45d#6&lN1$9#6'8#6,.!/20,@#6'8BO ,Q-M)L -0BDS*J-8=,29M0')20&,H2!$S-8'8!/d287+=#a28&!45#6BR#6&;20

    ,#a-8&;T

    !

  • RzL 3 d

    !#"$%&('*))+"

    ,.-0/214365879-.:3 ?A@B1(; CEDGFIHKJML

    ;=>3 N?PORQ#SI@1; TUDGVWXWZY\[^]IL`_^]Ia

    b

    '*cedgfehifjkilI'*$m^)'nk0f(opkiq fr&Iqs'*c tMf(uIv

    , -i/1 3 wxNy5z, - :

  • ! !!"$#&%('*)

    ,+.-$/01"-$/)2435768:9A@B5C3578D=.E(F)HGI"JI/KLM"ONP$QR/K

    ST

  • !#"$%&(')

    *+%),.-

  • / 0214365879;:=)? @

    ACBEDGFIH

    J$KML(NL(OQPSRTLVUWPXNSLVY[Z\]LOQ^_`ZbaScedSLf^gYh_jiklYh^gmnUoZprqVsutXvwR]x]y]OQz{_r\]LfUW|nY_rZ4Rn^gRTL(Y

    }

    z~Z\)R]Yh^S!Zz{(^SO YLf_rx]O~Z_V

    J[L(Yh_lZ\nL4RPC__z~ynz~OQzZ`dePg_PSOQNuz~mn^R]YPSynO~LV

    }

    zZ\

    }

    PY8^SmnU_rZPY^SSLR]YPSRTPSY

    Zz~Pmn^gO,ZPZ\]L4mux]yLVYjPgx]m]um]P

    }

    mn_V

    JL(OQO6UoLVNSLVO~PRLfU>PSYOQz~mnLV^gYLVO~OQz~R]Zz{R]YPy]OQL(_[i^gR]R]OQz{(^XZz~PmZPPSZ\]LVYLVCxn^X

    Zz~Pmn_jz{_j_`Zz~OQOG^Sm^ZzQNSL4^SYLf^PSYLV_LV^SYh\,

    lXgg`gSC`(Q`hhf8S EVr8CgVEf ,uG`Vfh

    ;ChCVCVC] u!V`4roogVCVVrVoVfVS

    0214!39(=)3V>!

    r lr[,;

    @

    ACBEDGF

    >>;EEu(!Xh(CXEn]WXWgE(]XXS(~(EEuhgEnh

    TE! ~!`4oge!]f]XT!(!hhXhhSgE(T8

    o ~gE(]g]6Ehh4nX6(h6;EEjV( (X)E~b!!ShXo

    E!gXe(EnVX!h( E ]e~Xh~h(oXSX!~h$!geShX8h(~(X

    ]E(XXVh!h

    qx]OZz~Yz{U z{_^gm z~ZLVY^gZzQNSLL(Z\]PoU ^

    ff8EEgSnh

    }

    zQOQOlYLVU]xn!LZ\]L

    mux]yLVYPgzZL(Yh^XZz~Pmn_

    ZP_PSOQNSL

    yud8zZL(Yh^XZz~Pm

    }

    Lb(PSx]O{UeZ^gL

    !#"

    }

    \]L(YL$%!& !'

    ((

    (!

    )

    gT

    !XEn)X*g+Xh!X>`o-,gTg;]hX!Xh

    Xh!Xhnh!(]gb!ohX g{(!(/.!Eu goeV!S(~( X

    gW`/.f102

    )

    3

    4

    hg]EnX[]eEnEXgn!h!gEnE!gX

    f!hgg0${65T7Egh98hX En(Xog `EnS(~( X

    S>`/.f

    a

    02>u!]6X>hSTEghhgu!

    X

    X

    Xh!Xh8]g[]:X>X ;M!(n~(CSEu >8nXE!he~X(]g u{T7Xo=$>j{(~hXEnX]MVhhXoXoETh{h(ohhX?

    ]g{h;EnT!Q! X>]S

    a

    0+hg>g (8h(XXh8E!XX];;E>X

    EEgCSnhT:fSh4(X*VEu

    %@

    )@

    A

    @

    !B7C78);nXEn;XoEnX

    E(XXXhVgh(!4n{nh](hhgu(D{MXE~(hlX](!g

    q

  • EGFIHJKH1LNM+O/HM!M+P Q:JKR$SIHJ+LE=HJT:EULVQ:WIX&T:WZY\[!H!]!T:^-MH4_HP HJ+LE=HJKT`EaLVQ`WIMbT`JKHJKH!c^dLJKH!Y:e

    LVfHCf4ghLNMiMkjlT`OO/HJf

    m#ndo+pp7p oKqIr$s-nIt1m9r7uwv`x2y*oru!z:oKy{v|s9}sIrrC~dr7~\oKv

    }v/riB41

    }oy/{l

    g

    `

    LWZ]!HiMQ:jHM!jQCQ:EGF]!Q:j%SIQ`WHW#EaM$Q_$EGFIHbHJkJKQ`J$PLOOMkEULOOJKHjlT`LWf

    pz:xoru%zbxGr7y/oKr7uz`oKy{v|s#}7-oKq#r

    HJkJQ:J$LNMiMkjlQCQ:EGF

    #)r+v|nIN~3}v/rxGvuoKqIrruuKvu

    vsz

    ]!QCT:J!MHJ$jlHMKF

    drp

    &

    p

    QCQCYLVY|H!T[!H]!T`^-MHC

    A

    tlv-v`oq\xGn#s#koy/vs#}wz|s\mr$urIur7}KrsoKrC~vsvz`u!}Kru|uy{~#}

    vz|u}KrB|uy{~}v/nIoKy{v|s#}z`ur$!qIr7z|9r7u7p

    F-LNMLVYH!TLNMLW3_T|]EiEF#H]!HW#EUJKT:O)LVY|H!TQ_jb^dOEUL

    JkLVYE=H]!F-W9LVc^#HMfWQ:JY|HJE=QEU^dJkW

    EGF-LNM$LVY|H!TLW#E=QTBSZJKT|]EULV]T`O2T`O

    Q`JkLEFdje)MH:HJT:OLW

    JKH!Y`LVHW9EVM$PLOO2[!HJKH!c^dLJHYf

    a Iw

    xdoKq#r

    FdL

    F_!JKH!c^#HW]

    vtl9vsIrso}v`xdoqIr r7uKuv|u~dr77z%xVz}oruoKq#z|s$oKqIr

    O/Q:P_!JKH!c^#HW]

    vtl9vsIrso}7d4ri}zoq#z:ooKq#r$y*oru!z:oKy{|ritlroqIvd~y{}wz

    MkjQ7Q`EF#HJ

    p

    NV I#

    -1-0.8-0.6-0.4-0.2

    00.20.40.60.8

    1

    n=19

    (RJ)

    mode kv2 (mode k=2) v15 (mode k=15)

    0.00.20.40.60.81.0

    LOW MODES HIGH MODES

    0 2 4 6 8 10 12 14 16 18 20

    }&z|vmIyzl}tlv-v`oqIruk pp7p!

  • +!bGI:ZV`4 9V:7d Z|V7::)kZN+#+-*I!!K!#

    k )N/!`+#:d|

    |

    N+

    4l

    7

    #

    ! "$#%'&)(+*

    -,-B/. 1032546.)7

    -1

    -0.5

    0

    0.5

    1

    mode k

    (R

    J

    )

    =1.1(UNSTABLE)

    =1/2

    =2/3

    =1

    $8dV9,- :.) 8IV:0A;2-46.)=

    ? @2=BACABAC=

    EDGI`

    F.HGI2|Bd|

    |

    B!`6|

    3

    C

    7

    #KJVML

    GI

    `a

    N{PO3QSRTa

    ,-

    9V

    ,-

    7 >L

    =:U. WVYXPZ9A3:

    GI:Z

    [.:\]2GI

    G

    !

    :

    id#k

    /^

    k+

    &

    D:a;_k!)

    +

    `

    ?

    8#V9,-7)\W2J

    :

    lIk#>`kV!

    >`#:V1

    d|

    |

    &

    C

    lC

    GI$Nlk

    L

    L

    D:a!

    $GI

    L!K!#Z

    |

    "$#%'&)(ba

    cedfCgihjdlknmo pqglfrYsktgfBudlmvgfBuswCfFhPoxfCgglmYgzyvmufF{|h~}ShwdlmYg5mP}q2B

    0 2 4 6 8 10 12 14 16 18 200

    100

    200

    300

    400

    500

    600n=19

    Num

    ber

    of it

    erat

    ions

    mode k

    = 1=2/3

    ZI1`Ki`IK

    Ll#l#

    b K`a

    I1dK!

    K!:#!lGIlGI

    `ZU#|

    $!|!k

    |

    &|

    Y|\i!$GI`#ik=::K-

    |

    '. @2C

    :

    k

    dK

    :9=:U

    I

    ` 3GI\-*I!4!K!#

    l

    |

    #

    GI%I`GI+dE=K/B!d

    2!I

    )*

    Z:=k$GI%d*C

    l

    |

    D:k3dVi:*

    d

    #

    GIi#::

    L !K!#

    k1 |b

    !GI:

    LGk `:K -

    |

    Nb

    :Ni``#` 3KI:w!#:1dNk

    L

    LAGI

    DaZ

    4GI

    L!K!#

    l

    |4N

    K!:*z`

    {

    :$#:a

    i-k

    `!

    kK#k!L L

    b

    /1

    `#!`GIb

    D:a!

    $GI

    |

    n !S

    "$#%'&)(+

    5fwChPn

    Z

  • n=19mode k

    v2 (mode k=2) v15 (mode k=15)

    (R

    GS)

    0 2 4 6 8 10 12 14 16 18 20-1

    -0.8-0.6-0.4

    00.20.40.60.8

    1

    ;[P l3CC3vPCE CC

    'ivCYCjiji3->UP$~Y$j5ij'SYEq''t~MijKCP

    iP1EMBP''$ESEv;[PEeSYtBj'KjqvCYCjj3

    'eCljSjUvPE

    $')+

    eCijtY1lYtBlvBCPK

    CEljFMBY5

    ~SlY5PqB

    0 2 4 6 8 10 12 14 16 18 200

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200n=19

    Num

    ber

    of it

    erat

    ions

    mode k

    BCiF5

    BvEMBP'

    tBP'KP1~ viC;'CljSjli'liP~vj-$'YM;~iY

    MBYEM;x

    vPECMCj6;KYjUPCE'$6'xEMBP''

    $ESEU35PiieSY-CMBEEKjjMiCiP+ijj

    l9iliC$Cvvv'~CqYiPMP1viElPe'jK

    tPKiliC$CjEC

    q :)Y3$;z

    $')P

    Klj'>li'lM$BiijljUjCEE''BPEvPSPCCESC

    $Bi-35jCEE'jijij $5iBPiC[MEl-P'tiEEESSj

    >C1

    iPn

    !

    "

    "$#

    B3lnln&%$CijlY('SMjl*)$+

    ,

  • -/.01$2*3547681:9=?35@>A$93B.C4EDGFHIJKLDNMF

    OP"Q&R SUTVOQ&R PS W

    ;X9ZY

    T\[X]^^^?]_/`ba

    P

    c

    Iedgf:hiGihddkj>lmIknbo?MpedkDGl8qrisDNJDGKtun8Kvf$hKxwy

    [

    DCdmhFzI{uIF|F:j>lm}"I?p~EBIkdkKLpkDNJ?KLDNMFz}t

    DGFHI"JKDNMFpFJKLDNMFMFKGf:IExFrIlI?dFJKDNMF$nhi*MK8M7oDGFo?MpklmhKLDNMFDCdi*MdkKj>pkDGFKGf:Iep3548

    T\[X]^^^?]

    w

    [

    9

  • UN NN: GU&

    0 0.2 0.4 0.6 0.8 1-1

    -0.5

    0

    0.5

    12nd Eigenvector (n=19)

    0 0.2 0.4 0.6 0.8 1-1

    -0.5

    0

    0.5

    118th Eigenvector (n=19)

    0 0.2 0.4 0.6 0.8 1-1

    -0.5

    0

    0.5

    12nd Eigenvector (n=9)

    0 0.2 0.4 0.6 0.8 1-1

    -0.5

    0

    0.5

    12nd Eigenvector (n=9)

    >>N5e&&C&ENz$>>E&&CX

    ! #"%$'&()+*,-./"0' 1/ 23"%/4-' 056&/78"%

    ")90:9%;>CZ*]E^$>X5?&Bb$1b:Z>>&R

    cd/"%9C! 5"e"%fgA)/9% F7g"%fO

    hjilk mon/p@qp@rsutwvxp@r

    GU1y

    zI7C{4"%/l- ["G9%f%gM*@"z2@7g")7E|"[")gD>}~)7%*

    "03I%$J)! !"%%O

    &

  • !/)JF(4/G/f/%J)) wF!-

    e1

    1

    e1

    g

    1

    1

    J

    7!RH1

    o >(%Ca(Cf(

    =wBAA1)/A11!%AJF|>%A}zA%Al

    N

    l11/A1!w%C/GA({}14A/0F/(%(ww%/@!0uj}R},

    A17d/)wFJJA)CF:3)3AF})(1-1F/uA!1,l1gJ1A}

    GA(>%1C)A{JG{/1}JFA>1/4F/}(Co)7%1F1

    )}31A>JRJ51}1

    1}(C7l1BJ/%AJFoA7FA/%4A:/G1A/14.

  • "!$#&%

    ' (*),+ .-0/ ' 1)2+ -

    '3(*) 4657+ .- / 8

    9;:

    '()2+ -

  • " ~Q;;3("kh c

    ~I`{"> *1

    d

    X

    Z`

    ~!

    #"

    6%$&

    '

    )(

    *,+

    .-

    0/

    6%$&

    1

    3204

    6587

    489;:

    7

    -3=

    =

    GYX

    Z7[S

    GTJ489

    U

    :GL484

    :

    7

    9;GLH

    5

    :\

    6]!^_

    \

    9`HLacb

    7d5T

    4

    V

    H

    9`H39

    7

    9

    JIb

    655

    fe

    H

    Ug

    X6GL4:69`HhJgR

    :

    7

    GL4

    ^Z_

    \

    GIb

    7

    aib

    7

    9

    5T7

    \

    H

    Sj

    aai4G

    9

    ]L7

    9;GLH

    7

    G

    7

    \

    V5

    G

    b

    7

    9;GLH$

    *1

    ^lk

    4

    e

    HWmGYX

    7

    \

    4

    "hI7

    9;GIH

    e

    4

    8587

    489;:

    7

    9;GLH

    e

    H

    U

    ac4G

    GIHKJ

    L7

    9;GLH

    5

    :\

    6]65VUX85

    :489 P

    U

    e

    :

    H P

    b

    5"U^

    n

    4

    :

    B7

    \

    o

    bp9`R

    >

    Hc:

    P

    67[Sk

    H

    5

    G

    R!9`HhJqX6GI4

    r

    GL4

    A

    s

    -

    ^ut87

    7

    bp48H

    5

    GIb

    7v7

    \

    L7wS

    489

    7

    9`HKJ

    7

    \

    :G

    4

    5"

    JI489

    U

    :GL484

    :

    7

    9;GIHD9`H

    7

    4

    ]5

    GYX

    7

    \

    484GI4

    > Ux5Q7

    G

    5

    9

    ]

    a

    >

    4

    H

    U]

    GL4

    V587

    4

    9Jy\

    7

    X6GI4

    Sw

    4

    U

    X6GI4

    ]

    b

    I7

    9;GIH

    ^

    H

    U

    VZVXWS#USB[\]^_[`![aSQbLUQY>]1Y>a\cd\>eUOVf\VgWSihkjBUlVZ[`![)a SlmZY]^nVgWYVomiYpBVfSjQ\>]a5`

    Vrqi\M[`![)aS)UBmiVgWSQU)\ase*Vrbo\>]8bLUtYasu\>UlVv[B\>]xw6SjycdSB^!z

    {|d}X~x

    T* !L!!*k ! #!

    0, 5, 10, 15, 20, 25,14,

    12,

    10,

    8,

    6,

    4,

    2,

    0,

    2,

    4,

    # Iterations,

    log, 1

    0,||r|

    |, L, 2,

    Weighted Jacobi, ,=2/3,2level multigrid: ,

    1,=2, ,

    2,=2,

    1WbLUihce*jSQbXaXaseUlVyjY>VSlUQVgWStue[BWOp)Y>UlVfSj[B\>]xw6SjycdS)]1[S\!VY>bX]SB^MeUlbX]dcMVXWSQue*asVrb5cjlbo^

    j\[BSB^>e*jS.z1WS[B\>]xw6SjycdS)]1[SMaSw6SaibLUnUW\>q']w6SjBUleUVgWSM]e*unBS)j_\pnbXVfSjYVybo\]U\>]

    VgWSJhi]SunSlUWz]1S_[BY>]VgWbX]*D\pVgWSn]e*unSjn\pbXVfSjYVybo\]UbX]VXWSJhk]1SunSlUWdm#Y6U

    BS)bX]cY

    !

    j\bXunY>VS)a5`

    j\

    \>jlVrbo\>]1Y>a1Vf\tVgWS#Y>un\>e*]xV'\p[B\>u

    e*VY>Vrbo\>]1Y>aqi\>jbX]w>\>a5w6SB^!z

    TB'T)k)T

    D!8

    {|d}X~

    1WSMVyqi\Mcjlbo^TU)[BWSunS

    jSlUS]VS^8Y!B\>w>S_a SYw6S)Une*]jS)U\>asw>SB^VgWSMeS)UBVrbo\>]\ptW\qVf\

    U\>asw>Sp)\>j_BbX]VgWS[B\YjBU)S8unSlUWz1WSY>]UlqiSj8[B\>unSlUOpBj\>ujSBY>a5b)bX]cVgWYVtVgWS

    j\!aS)uUOZ

    Y]^nBxBa\.\DSY![Vras`VXWSUY>unS_Y>]1^MWS][BSVgWS

    UY>unS

    j\.[SB^e*jS[BY]BSOeUSB^nV\U\>a5w6StVXWS)unz

    O)* Z

    Q

    L>%

    .J!t

    T 5 !!.v

    t

    fkM

    )!v! *D

    }X

    i

    #

    Q

    Bxr

    B

    )J

    B

    B

    }X

    %

    v

    5% L

    .

  • 1 !"$#%g"&(')*++,.-/*0213.465702#1$8:9g;$-/*

    ?A@B-/C#Z8&'M#kg*+-/4602#HPlB8&46-/0O8$#8:B!#

  • SUTWVYX

  • \^]`_ab2]dceaFfGgihjcj[klafm,bamknf[goegpf;fFq9r[kla6st@_#agr9u[a;j]dq`v,agWhxwzyij[cj[klaFf{q|f{]g}j;g~j;a~y

    ]db3m,]a2j_HgWho]D_#ag,b3g,~]`_aj;g=m,b;f[aGaf3_#afs

    [ F?[B}-

    ^i ^>Yz#i@iW 0`Y#

    B#i3#l-U3#[o6[

    @g}hm,b'a_m,v,a5g,~kc:f[ag,~@agih']D_#aHmq`~q9am,f'q`~v,g,kv,a;q`~*k]dqbFq9st@_#a

    q9a;mgWhofF]m,bF]dq`~0}q`]`_m0g=g6}q`~q`]dq9m,k@af;f-_mpf{~@g,]ra;a[~Hq`-ekla[a~]a;}ca]st_*q|fq|f

    mj;j;g,-ekq|fi_a;}q`]D_]D_#ah;*k`kY*k]dqbFq9f[j_aa6s

    2{>

    0`Y#

    33#3|#Fp6036

    6#;|xG#l3U

    [[x3#6

    ,I3*=Ul3#[636

    t@_#amr;gvpam,baf[ga}]g;eq9jfJ_q9j;_m,b3a]D_#af;r9u[a;j]2gWhmj[]Nq`v,ab3aFf[a;m,bj_m,~@J_q9j;_

    m,bara[cg,~@]D_#aGf[j;geagWhG]`_*q|fGkla;j[]N*ba6s{~e#mbF]Nq9j[*klm,b;-mk a=r[b3m,q9jG*k]dqbFq9a[]`_g6,f

    m,ba-0m,q`~q`~q`~@jbam,f[aoe#g;e*klmbFq`]Ncra;j;m,f[aGgWho]D_#a[q`beg,]a[~]dq9m,kJm,f{ma[~a[b3m,ka[m,]dq9g,~

    f[g,kv,a[b[s{a[b3aa_m,v,ampf;fF*a]D_#m]-g,*bm,]dbFqm,fG]D_#ab3afF*k]>gWh,q|f[jba]dql[q`~0Hm

    o

    g,~m}q`v,a~5bFq9gWhfFql6asF~]D_q|ff[a[]N]dq`~0-q`]oq|ffF]Nb3mq=_*] hgbFm,b3]gHa9~a

    ]D_#a5j;g6mb;f[abFq9He@b3gr[kla[f[s9hg,*ba;m]Nq9g~fFcpfF]aG>g=aFf~g,]}j;ga

    h;b3g]D_#aq|fj[b3a[]Nql=m]Nq9g~5gihGm

    o

    ^gb{]`_a,q|f[jba]dql=m,]dq9g,~eb3g=j;aFf;f{q|f{~@g,]>m,v,m,q`klmrkaF

    ]D_#a-ebg6j;a;,*b3afq`vpa[~5q`~5]D_q|fkla;j[]N*bajm~~g,]-r;af[a;,q`b3a;j[]Nkcs

    a;mkq`~0q`]D_HfFj_

    0a~@ab3mkUfFcpfF]a[f;q`]D_#g*]ba[*q`bFq`~0}q`~6hgbFm]Nq9g~:mr;g,*]]`_aq|f[jb3a[]dql6m]Nq9g~e@b3g=jaf;f;

    q|f2]`_a2fFr9u[a;j]^gWhmk a=r[b3m,q9j*k]dqbFq9a[]`_g6,f[s

    =

  • @;x#

    3 "!;

    #$%'&(*)+,-/.0.1324*5,6 7 8 9:*;#-?@!AB1DCEF(*G/.@IH7JK

    @L1BMNE$O

  • "!$#%&'()+*,-/.01234 5'

    6

    87:9;=

    9?@A B3CC

  • D EF&GHIGJLKMN-OPJ/QGSR@TMUNWVXG&Y+O

    Z@[\Z ]_^`)acbedfb\g=ach

    i8jki8jki lUm8no(prq(sutuvxwys8p{z5m|q~} 8r5;

    SIIy\x)

    8

    8

    8 _

    \ fuuu~&-|\xxrre

    kIfxu-uu(~x5I

    u)f

    i8jki8j )q~wk}wyvxwks|pzmq~} 8r5

    -8&IIx

    8

    8

    8

    8

    |

    1

    8

    8

    _

    8

    8

    ;

    8

    8

    _

    &ux

    ~fA~f4|S

    %uIxu&fyu|

    UuI8IIfu-yuu

    5

    -IxxuSyAu(r~8xIx

    8

    |

    X

    |

    |

    _

    &ux

    1

    (

    |

    x

    f)/\uISI-

    uuIxf(%uxIr(_ux&)|xuI_uuxucI( &

    u|x~I|u'IIBy-cc~4xxxy'Ie uxIf

    &(e'u\xx%uUx&uI

    I|fIu(|

    r~&B

  • 8k8 (~u&

    !#"%$&'(*),+.- /0213/4657*8 9

    :=@?A

    ?BC

    ?ED2FGAEH

    ?

    /JILKM.NPO

    K

    K

    B

    : ;

    A

    KM.N.Q

    -

    D2FGA

    4

    H

    Q

    D2FGA

    0

    H

    5

    RTSVUXWYZ[U[\]3^_`ba]dceWfgZGSVUhcafdZi\UYU]3^_ZSyUXfa_ZzWoaY A ^'YudTa]ZGSVU

    D ^']3U&uWfklaYZnWYya

  • in 2v

    (o o6

    {

    "!#$&%(')!*+,$&'.-0/1!,*!2435')!,*6')$&*-8793:-8/;!*[email protected]

    E

    whNC/;!*$&w63:-0/1!,*/qN3n6:8,0P$&w63:-0/1!,*(}t/;%1$

    -8t6$\%1/;*$i3P73,#+$i'.-0/1!,*l$iw63:-0/1!,*l/qN"06)r9:)t/;N{5$&3P*hN5-8t63P--0t$3#+$&')-8/;!*

    #/1>whNC/;!*$&w63P-8/;!*3P%;3Nt63,NNC{5!!P-0tN8!%;w-8/;!*hNr$r+$&*/12-8t$/;*/1-8/q3P%#3P-03v/qN#/qNO

    ')!,*-8/;*w6!w6N&}t/1%;$z-8t6$%1/;*$&373#+,$&')-8/;!*Y$&w63:-0/1!,*Y3,#{5/-9N