30
8/12/2019 18 Jon Kvarekvýl IFE V http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 1/30 04.03.2014 Corrosion Control in Sour Gas Pipelines Jon Kvarekvål Institute for Energy Technology (IFE) Tekna Flow Assurance, 3-4 March 2014

18 Jon Kvarekvýl IFE V

Embed Size (px)

Citation preview

Page 1: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 1/30

04.03.2014

Corrosion Control in SourGas Pipelines

Jon KvarekvålInstitute for Energy Technology (IFE)

Tekna Flow Assurance, 3-4 March 2014

Page 2: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 2/30

04.03.2014 2

H2S/CO2 corrosion impact on flow assurance

• Main cause of leaks, workovers, shutdowns and accidents.• Tubing, flowlines, pipeline, process facilities ++

• Estimated annual cost ca. 10 billions USD 1998 (NACE CoC)• Ca. 30 billions USD today? (NACE worldwide CoC ongoing)

• More than 90% of cost onproactive measures:

• Corrosion mitigation• Monitoring

• Inspection

Page 3: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 3/30

Sour fields characteristics

• Sour natural gas: > 5.7 mg/m3

H2S• Up to 90% H 2S wells actually produced (Canada)

• Sour service limits for materials selection: > 3 mbar H 2S

• 40% of remaining gas reserves worldwide.

• H2S is toxic, reactive and corrosive.

• Corrosion control: Economy = environment• Chemical – inhibition, pH stabilization

• Internal coatings (FBE)

• Mechanical - pigging

• Natural corrosion control – no treatment

04.03.2014 3

Page 4: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 4/30

04.03.2014 4

Internal corrosion

• Unprotected water-wet carbon steel corrodes vigorously in H 2S/CO 2 environments.

• Protection required: Surface layers, inhibitor films, oil/HC wetting,coating .

Page 5: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 5/30

04.03.2014 5

CO2/H2S corrosion regimes

pCO 2/pH 2S=20

CO 2 REGIME

SWEET

H2S REGIMESOUR

CO 2 + H 2S REGIMEMIXED

pCO 2

pH 2S

pCO 2/pH 2S=500

Ref. Shell IP/GS

Page 6: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 6/30

04.03.2014 6

H2S/CO2 corrosion morphology

• Uniform/general corrosion• FeS layers – more or less

protective

• Localized corrosion/pitting• ”Wide/shallow pits” –

ASTM def.

• ”Localized general corrosion”

• Moderate/high penetration

rates, 1-10 mm/y

Ref. Saudi Aramco, Choi et al 2006

Page 7: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 7/30

Gas/condensate multiphase pipeline

04.03.2014 7

Page 8: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 8/30

High risk corrosion zones

• Characterized by unknowns: Inhibitor availability, mass transport,local water chemistry, temperature, …

• UDC - Under-deposit corrosion• Accumulation and deposition of solid particles bottom-of-line

• TLC - Top-of-line corrosion• Water condensation on upper sector of pipeline

• Other areas with recurring breakdown and loss of protective

corrosion layers.

04.03.2014 8

Page 9: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 9/30

Under-deposit corrosion (UDC)

• Inert solids (sand, clays, FeCO 3, …)

• Conductive/reactive solids (FeS, S …)

• FeS particle formation scenario

• 1 km 36” sour gas pipeline, average corrosion rate of 0.1 mm/y• 0.3 m 3 iron per year, corresponding to 0.7 m 3 FeS

• Assuming 70% captured as surface layers

• 100 m 2 surface covered with a 5 mm FeS deposit

• NACE Task Group 380 – report on different UDC test methods.

04.03.2014 9

Page 10: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 10/30

UDC experimental scenario• 25 ° C, 10 bar CO 2, 10 bar H 2S, 14 days.

04.03.2014 10

Page 11: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 11/30

UDC – inert/active particle mixSand:FeS 5:1 0.5 mm/y Sand:FeS 1:1 3.7 mm/y

04.03.2014 11

Page 12: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 12/30

04.03.2014 12

Iron sulfide polymorphism

Name Formula Lattice Structure

Iron monosulfidesAmorphous FeS Fe(HS) 2, FeS x NanocrystallineMackinawite Fe 1+xS, x = 0.005-0.025 TetragonalCubic FeS FeS Cubic

Troilite FeS HexagonalPyrrhotite Fe 1-xS, x = 0.005-0.1 Hexagonal/monocl.

Intermediate iron sulfidesSmythite Fe 9S11 , Fe 7S8 HexagonalGreigite Fe 3S4 Cubic

Iron disulfidesMarcasite FeS 2 OrthorhombicPyrite FeS 2 Cubic

Page 13: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 13/30

04.03.2014 13

Pitting caused by elemental sulfur (So)

Ref. Canspec

non-stoichiometrice- conducting FeS

layer

Ref. Alberta Sulfur Research

Page 14: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 14/30

14

Top-of-line corrosion (TLC)

• Top-of-line corrosion (TLC) occurs on areas with water condensation.

• Typical in the first few kilometers of pipelines with high inlet temperatures.

• The water condensation rate is reduced when the gas phase temperaturedecreases.

• TLC risk usually estimated with multiphase flow models and corrosion models.• Sweet TLC rate dependent on the water condensation rate and the amount of

iron that can be dissolved in the condensing water:

•Corrosi on rate Condensation rate * Dissolved iron concentr ation in cond ensed water

• The above expression not verified for sour TLC, and does probably not applysince FeS supersaturation is rapidly achieved under most conditions.

Page 15: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 15/30

TLC Possible rate-determining parameters• Water condensation rate (and glycol content)

• Low MEG level in condensed water phase (>10 %)

• Corroding surface temperature• Affects electrochemical reaction (corrosion) rates, FeS precipitaion etc.

• Gas convection and diffusion• Supply of water vapor and acid gases not an issue in pipelines, maybe

in stagnant lab tests.

• Supply of organic acids with low vapor pressures may be limited bytransport through the gas phase.

10.06.2004 15

Page 16: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 16/30

pH stabilization in sour service

• Addition of alkaline chemicals to increase pH and enhanceformation of protective layers.

• NaOH, NaHCO 3, MDEA, …

• Numerous JIPs and bilateral research projects 1999-2007• Key findings published through NACE.

• Max. H 2S level 0.02 bar (NORSOK)

• Severe localized corrosion at higher H 2S levels (>0.1 bar)

• Applicable only in MEG systems, not with KHI.

04.03.2014 16

Page 17: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 17/30

04.03.2014 17

Protective pH-stabilized corrosion layer• 0.02 bar H 2S, 2 bar CO 2, 60 oC, pH 6.5, 50% glycol, CR ~ 0.01 mm/y, FeS 1-x

Page 18: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 18/30

2D flow model

Flow direction

Pre-flow section Test specimen

Page 19: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 19/30

2D flow model - mesh

Page 20: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 20/30

04.03.2014 20

Disturbed flow effect2D model of flow velocity streamlines around flow obstacle.

Flow 1 m/s

Page 21: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 21/30

04.03.2014 21

Disturbed flow effect - pitting

Page 22: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 22/30

Sour corrosion inhibition

• Active components: Quaternary amines, imidazolines,polyamines, …

• Water-dispersible or oil-soluble

• High dose rates, ~1000 ppm residuals typical• Sweet systems 30+ ppm

• Continuous + batch treatment• + sulfur solvent if necessary

• Localized corrosion inhibition efficiency more important than WL

04.03.2014 22

Page 23: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 23/30

Hasbah/Arabiyah-Wasit pipeline treatment plan• Wasit gas plant – 260 km subsea pipelines

• Processing Capacity: 2500 MMscfd of non-associated gas

• Production Capacity: 1710 MMscfd of Sales Gas .• + 4200 MTD of Elemental Sulfur , 600 MW of Electrical Power

• Flow improvement: FBE coating (+ chemicals)

• Corrosion protection: Secondary purpose, primary barrier

• Corrosion inhibition: Continuous + Batch, monthly pigging

• Corroding agents 8% CO 2, 4.4% H 2S, elemental sulfur

• Accepted CR<0.1 mm/y, 98% inhibitor availability

• Hydrate inhibition: MEG, 25/75 reclaim/reboil

• Sulfur solvent: Diesel/HDO 0.5-2% load

04.03.2014

Page 24: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 24/30

04.03.2014

Page 25: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 25/30

Spray pigging for TLC control / batch inh.

10.06.2004 25

Page 26: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 26/30

TLC spray test equipment

• Hastelloy autoclave

• 2 L volume

• Coupon holder withcooling chamber

• Air/liquid cooling

• 25 mm ∅ x 3 mmX65 coupons

• Exposed area:

~5 cm2

• Spray option

10.06.2004 26

Page 27: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 27/30

27

TLC spray testing70 ° C, 10.8 bar CO 2, 5.8 bar H 2S, 50 wt-% MEG, HDO, 10 days. 10s spray pulse.

Baseline 0.4 mm/y (2.8 mm/y) Batch inhibited, >0.01 mm/y

Page 28: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 28/30

04.03.2014 28

Inherent protection - CO2 vs. H2S/CO2

0.1

1

10

100

0 20 40 60 80 100

Time / h

C o r r o s i o n r a

t e / ( m m

/ y )

0 0.2 0.4 0.6 0.8 pH2S /p CO2

• 3.4 bar CO 2+H2S, 120oC, pH~5, jet impingement ca. 900 Pa

Page 29: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 29/30

04.03.2014 29

Stratified corrosion layer3.5 bar H 2S , 7 bar CO 2, pH ~ 4, 120 oC, CR ~ 1 mm/y

Page 30: 18 Jon Kvarekvýl IFE V

8/12/2019 18 Jon Kvarekvýl IFE V

http://slidepdf.com/reader/full/18-jon-kvarekvyl-ife-v 30/30

04032014 30

Summary

• Corrosion mitigation in sour HC production is challenging wrt selection,optimization, dosage and availablity of chemicals.

• pH stabilization has been qualified for MEG systems up to 0.02 bar H 2S.• Localized corrosion risk at higher H 2S levels

• Corrosion inhibition is applicable in most sour systems (incl. systemswith elemental sulfur)

• High inhibitor dose rates may be required

• The most effective actives are less «green»…

• FeS particle production may be a threat to flow assurance even withacceptable corrosion rates.