2. LN-CRE2

Embed Size (px)

Citation preview

  • 8/13/2019 2. LN-CRE2

    1/26

    Lecture 2

    Stoichiometry and Chemical

    Reaction Equilibria

    Departemen Teknik Kimia

    Universitas Indonesia

  • 8/13/2019 2. LN-CRE2

    2/26

    Stoichimetry, Extent of Reaction and

    ConversionStiochiometry coefficients

    a A+ b B c C + d DA + b/a Bc/a C + d/a D

    = c/a + d/ab/a -1

    A A + B B + CC + D D =0A = -1,B = - b/a,C = c/a,D = d/aI: coeff. stoichiometry 0iiAv

    Extent ofreaction,

    dn1/v1 = dn2/v2= dn3/v3= = dni/vi= d= (ni-ni0)/vi

    Conversion, X

    X = (ni0-ni)/ni0 = - (vi/nio)

  • 8/13/2019 2. LN-CRE2

    3/26

    Examples:2HI22

    IH rf=

    kfCH2CI

    2

    rb=kbCHI

    2and

    Forward reaction is 1st order in CH2and CI

    2( 2nd order overall)

    Reverse reaction is 2nd order in CHI

    Stoichiometric Equation

    This describes theoverall reaction

    but the reaction ordercannot

    be deduced from it.

    Compare the above reaction with the analogous nonelementaryreaction between H2and Br2 .

    2HBr22

    BrH 2

    22

    2

    211

    BrHBr

    BrH

    f CCk

    CCk

    r

    k1

    k2

  • 8/13/2019 2. LN-CRE2

    4/26

  • 8/13/2019 2. LN-CRE2

    5/26

  • 8/13/2019 2. LN-CRE2

    6/26

  • 8/13/2019 2. LN-CRE2

    7/26

  • 8/13/2019 2. LN-CRE2

    8/26

  • 8/13/2019 2. LN-CRE2

    9/26

    Chemical Reaction Equilibrium

  • 8/13/2019 2. LN-CRE2

    10/26

    Kinetics vs. Themodynamics

  • 8/13/2019 2. LN-CRE2

    11/26

    Chemical Reaction Equilibria

  • 8/13/2019 2. LN-CRE2

    12/26

    Equilibrium state for given T and PCriteria :

    (G)T,P = (G/)T, P= 0iiv

    (G) : Gibbs free energy change, i: the chemical potential

    0)ln()( , ii

    oiiPT aRTGvG

    - RT ln Ka= Go

    aaaa

    ab

    BA

    ad

    D

    ac

    CRTG/

    //

    ln0

  • 8/13/2019 2. LN-CRE2

    13/26

  • 8/13/2019 2. LN-CRE2

    14/26

    Consider the general reversible reaction:

    DcC dbBaA At equilibrium rA=0

    Therefore:

    Therefore:b

    B

    a

    A

    d

    D

    c

    CC

    bB

    fA

    CC

    CCK

    k

    k

    Thermodynamic equilibrium relationship

    b

    B

    a

    AfAfA CCkr

    d

    D

    c

    CbAbA CCkr 0 bAfAA rrr

    rfA= rbAdD

    c

    CbA

    b

    B

    a

    AfA CCkCCk

    Thermodynamic equilibrium constant

    TTR

    HTKTK RXCC

    11exp)()(

    1

    1

  • 8/13/2019 2. LN-CRE2

    15/26

    TTR

    HTKTK RXCC

    11exp)()(

    1

    1

    KC

    T

    KC

    T

    Endothermic Exothermic

  • 8/13/2019 2. LN-CRE2

    16/26

    All reactions are reversible in principle. The extent of reversibility depends on -G, the Gibbs

    Free Energy change.

    pRTInKG Where Kpis the equilibrium constant interms of partial pressures.

    Chemical equilibrium

    If Kp is large, reaction is essentially irreversible, whichmeans that the equilibrium position lies very far to the

    product side.

  • 8/13/2019 2. LN-CRE2

    17/26

    Equilibrium Constants

    Pa KKK ai= fi/fi,o= iPi

    CCCC

    ab

    BA

    ad

    D

    ac

    CCK /

    //

    CCCC

    ab

    BA

    ad

    D

    ac

    CCK /

    //

    Pa KKK

    )(RTKK CP

  • 8/13/2019 2. LN-CRE2

    18/26

    Impact of T, P, Inert changes

  • 8/13/2019 2. LN-CRE2

    19/26

    Total pressure changePi=yi P

    KP=KyP

    d ln K/dT = Ho(T) /RT2

    Temperature change

    dTCHTH opoo

    )(

    plot log K vs 1/T , slope = -(Ho/R), (see Fig EC-1.1)Exo. Reaction (Honegative), K decreases with increasing TEndo. Reaction (Hopositive), K increases with increasing T

    Ka=Kf/P [P/nA+ nB+nC+nD+ nI]c+d-a-b)(

    dD

    cC

    bB

    aA

    nn

    nnInert change

    Impact of T, P, Inert changes

  • 8/13/2019 2. LN-CRE2

    20/26

    Calculation ProcedureDetermine (Go) or (Ho).

    a A + b B c C + d D maka:Xo= c. Xof,C+ d. X

    of,D a. X

    of,A b. X

    of,B , X : G, H

    Calculate KPat T

    with Ho(T) = Ho(25oC) +CpdT2

    )(ln

    RT

    TH

    dT

    Kd oP

    )()(ln TGTKRT o

  • 8/13/2019 2. LN-CRE2

    21/26

    Calculation ProcedureCombine equilibrium composition and Equilibrium

    constant

    b

    B

    a

    A

    d

    D

    c

    C

    aa

    aaK

    .

    .iiaK

    Express in Extent of reaction, composition or conversion

    0 iiAv

    oi

    i

    oi

    ioiin

    v

    n

    nnX

    Solve analytically/graph or numerically

  • 8/13/2019 2. LN-CRE2

    22/26

    Example 3-6 The reversible gas-phase decomposition of nitrogentetroxide, N2O4, to nitrogen dioxide, NO2, is to be carried out atconstant temperature. The feed consists of pure N2O4at 340 K and202.6 kPa (2 atm). The concentration equilibrium constant, Kc, at 340

    K is 0.1 mol/dm3. BA 2

    concentration equilibrium constant:at

    equilibrium !!

  • 8/13/2019 2. LN-CRE2

    23/26

    (a) Calculate the equilibrium conversion of N2O4in a constant-volume batch reactor.

    atequilibrium !!

  • 8/13/2019 2. LN-CRE2

    24/26

    (b) Calculate the equilibrium conversion of N2O4in a flowreactor.

    atequilibrium !!

  • 8/13/2019 2. LN-CRE2

    25/26

    for batch system

    for flow system

    (c) Assuming the reaction is elementary, express the rate ofreaction solely as a function of conversion for a flow systemand for a batch system.

    Elementary reaction:

    BA 2

    (d) Determine the CSTR volume necessary to achieve 80% of

    the equilibrium conversion.

    CSTR design equation

  • 8/13/2019 2. LN-CRE2

    26/26

    HW2

    Scott Fogler P3-11A

    P3-15B

    P3-16B